
InterBase 2020
Update 5

Operations Guide

© 2023 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies
logos, and all other Embarcadero Technologies product or service names are trademarks or
registered trademarks of Embarcadero Technologies, Inc. All other trademarks are property
of their respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers. Embarcadero enables developers to design systems right, build them faster
and run them better, regardless of their platform or programming language. Ninety of the
Fortune 100 and an active community of more than three million users worldwide rely on
Embarcadero products to increase productivity, reduce costs and accelerate innovation.
The company's flagship tools include: Embarcadero® RAD Studio™, Delphi®, C++Builder®,
JBuilder®, and the IoT Award winning InterBase®. Founded in 1993, Embarcadero is
headquartered in Austin, with offices located around the world. Embarcadero is online at
www.embarcadero.com.

October, 2023

. 6

. 6

. 6

. 7

. 11

. 11

. 14

. 16

. 17

. 18

. 22

. 24

. 24

. 25

. 29

. 29

. 30

. 32

. 38

. 39

. 39

. 48

. 57

. 61

. 66

. 68

. 69

. 70

. 72

. 73

. 74

. 75

. 76

. 79

. 79

. 83

. 84

. 86

. 91

. 91

. 93

. 95

. 95

. 96

. 96

. 102

Table of Contents

Introduction to Operations

Who Should Use this Guide
Topics Covered in this Guide
System Requirements and Server Sizing
Primary InterBase Features
About InterBase SuperServer Architecture
Overview of Command-line Tools

Licensing (Operations Guide)

InterBase License Options
Using the License Manager

Server Configuration

Configuring Server Properties
Multi-Instance
SMP Support
Hyper-threading Support on Intel Processors
Using InterBase Manager to Start and Stop InterBase
Starting and Stopping the InterBase Server on UNIX
The Attachment Governor
Server Configuration Using Environment Variables
Managing Temporary Files
Configuring Parameters in ibconfig
Viewing the Server Log File

Network Configuration

Network Protocols
Connecting to Servers and Databases
Encrypting Network Communication
Connection Troubleshooting
Communication Diagnostics

Database User Management

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

Database Configuration and Maintenance

Database Files
On-disk Structure (ODS)
Read-write and Read-only Databases
Creating Databases
Dropping Databases
Backup File Properties
Removing Database Backup Files
Shadowing
Setting Database Properties

. 104

. 106

. 108

. 109

. 112

. 115

. 117

. 118

. 120

. 121

. 122

. 124

. 142

. 154

. 157

. 162

. 164

. 164

. 165

. 170

. 174

. 179

. 179

. 182

. 184

. 186

. 186

. 187

. 190

. 193

. 201

. 227

. 232

. 232

. 235

. 236

. 238

. 240

. 242

. 245

. 247

. 250

. 250

. 253

. 254

. 268

. 271

. 277

Sweep Interval and Automated Housekeeping
Configuring the Database Cache
Forced Writes vs. Buffered Writes
Validation and Repair
Shutting Down and Restarting Databases
Limbo Transactions
Viewing the Administration Log
gfix Command-line Tool
gfix Error Messages
gfix Fixing a database

Database Backup and Restore

About InterBase backup and restore options
Performing backups and restores using the gbak command
Performing backups and restores using IBConsole

Journaling and Disaster Recovery

About Journals, Journal Files, and Journal Archives
Enabling Journaling and Creating Journal Files
Using Journal Archiving
Using a Journal Archive to Recover a Database
Managing Archive Size
Journaling Tips and Best Practices

Database Statistics and Connection Monitoring

Monitoring with System Temporary Tables
Viewing Statistics using IBConsole
Monitoring Client Connections with IBConsole
The gstat Command-line Tool
Viewing Lock Statistics
Retrieving Statistics with isc database info()

Interactive Query

Managing isql Temporary Files
Executing SQL Statements
Using Batch Updates to Submit Multiple Statements
Inspecting Database Objects
Command-line isql Tool
isql Command Reference
Using SQL Scripts

Database and Server Performance

Introduction to Database and Server Performance
Hardware Configuration
Operating System Configuration
Performance Considerations for a Network Configuration
Database Properties
Database Design Principles
Database Tuning Tasks
Application Design Techniques
Application Development Tools

Migrating to InterBase

Migration Process
Migration Issues
Setting SQL Dialects
Features and Dialects
Migrating Servers and Databases
Migrating Databases to Dialect 3
Migrating Clients

. 278

. 279

Migrating Data from Other DBMS Products

InterBase Limits

Various InterBase Limits

Introduction to Operations

The InterBase Operations Guide is a task-oriented reference of procedures to install,
configure, and maintain an InterBase database server or Local InterBase workstation.

This chapter describes who should read this book, and provides a brief overview of the
capabilities and tools available in the InterBase product line.

1. Who Should Use this Guide

The InterBase Operations Guide is for database administrators or system administrators who
are responsible for operating and maintaining InterBase database servers. The material is
also useful for application developers who wish to understand more about InterBase
technology. The guide assumes knowledge of:

Server operating systems for Windows, Linux, and UNIX
Networks and network protocols
Application programming

2. Topics Covered in this Guide

Introduction to InterBase features
Server configuration, startup and shutdown
Network configuration and troubleshooting guidelines
Security configuration for InterBase servers, databases, and data; reference for the
security configuration tools
Implementing stronger password protection
Database configuration and maintenance options; reference for the maintenance tools
Licensing: license registration tools, available certificates, the contents of the InterBase
license file
Backing up and restoring databases; reference for the backup tools
Tracking database statistics and connection monitoring
Interactive query profiling; reference for the interactive query tools
Performance troubleshooting and tuning guidelines.
Two appendices covering migration and the limits of a number of InterBase
characteristics

3. System Requirements and Server Sizing

InterBase server runs on a variety of platforms, including Microsoft Windows server
platforms, Linux, and several UNIX operating systems.

The InterBase server software makes efficient use of system resources on the server node.
The server process uses little more than 1.9MB of memory. Typically, each client connection
to the server adds approximately 115KB of memory. This varies based on the nature of the
client applications and the database design, so the figure is only a baseline for comparison.

The minimal software installation requires disk space ranging from 9MB to 12MB,
depending on platform. During operation, InterBase sorting routine requires additional disk
space as scratch space. The amount of space depends on the volume and type of data the
server is requested to sort.

The InterBase client also runs on any of these operating systems. In addition, InterBase
provides the InterClient Java client interface using the JDBC standard for database
connectivity. Client applications written in Java can run on any client platform that supports

•
•
•

•
•
•
•

•
•
•

•
•
•
•
•

Introduction to Operations

6

Java, even if InterBase does not explicitly list it among its supported platforms. Examples
include Internet appliances with embedded Java capabilities.

Terminology: Throughout this document set, "Windows server platforms" refers to the
supported Windows Server versions. "Windows non-server platforms" refers to the
supported Windows versions designed for personal computers.

For a list of supported Windows versions refer to System Requirements/Prerequisites.

4. Primary InterBase Features

InterBase offers all the benefits of a full-featured RDBMS. The following table lists some of
the key InterBase features:

Feature Description

Network protocol support
All platforms of InterBase support TCP/IP
InterBase servers and clients for Windows support NetBEUI/
named pipes

SQL-92 entry-level conformance
ANSI standard SQL, available through an Interactive SQL tool and
Embarcadero desktop applications.

Simultaneous access to multiple databases One application can access many databases at the same time.

multigenerational
architecture

Server maintains older versions of records (as needed) so that
transactions can see a consistent view of data.

Optimistic row-level locking
Server locks only the individual records that a client updates,
instead of locking an entire database page.

Query optimization
Server optimizes queries automatically, or you can manually
specify a query plan.

Blob data type and Blob filters
Dynamically sizeable data types that can contain unformatted
data such as graphics and text.

Declarative referential integrity
Automatic enforcement of cross-table relationships (between
FOREIGN and PRIMARY KEY constraints).

Stored procedures
Programmatic elements in the database for advanced queries
and data manipulation actions.

Triggers
Self-contained program modules that are activated when data in
a specific table is inserted, updated, or deleted.

Event alerters
Messages passed from the database to an application; enables
applications to receive asynchronous notification of database
changes.

Updatable views Views can reflect data changes as they occur.

User-defined functions (UDFs) Program modules that run on the server.

•
•

Introduction to Operations

7

http://docwiki.embarcadero.com/InterBase/2020/en/System_Requirements/Prerequisites

Feature Description

Outer joins
Relational construct between two tables that enables complex
operations.

Explicit transaction
management

Full control of transaction start, commit, and rollback, including
named transactions.

Concurrent multiple application access to
data.

One client reading a table does not block others from it.

multidimensional arrays Column data types arranged in an indexed list of elements.

Automatic two-phase commit
Multi-database transactions check that changes to all databases
happen before committing (InterBase Server only).

InterBase API
Functions that enable applications to construct SQL/DSQL
statements directly to the InterBase engine and receive results
back.

gpre
Preprocessor for converting embedded SQL/DSQL statements
and variables into a format that can be read by a host-language
compiler; included with the InterBase server license.

IBConsole
Windows tool for data definition, query, database backup,
restoration, maintenance, and security.

isql
Command-line version of the InterBase interactive SQL tool; can
be used instead of IBConsole for interactive queries.

Command-line database administrator
utilities

Command-line version of the InterBase database administration
tools; can be used instead of IBConsole.

Header files
Files included at the beginning of application programs that
define InterBase data types and function calls.

Example make files
Files that demonstrate how to invoke the makefiles to compile
and link InterBase applications.

Example programs
C programs, ready to compile and link, which you can use to
query standard InterBase example databases on the server.

Message file interbase.msg , containing messages presented to the user.

4.1. SQL SUPPORT

InterBase conforms to entry-level SQL-92 requirements. It supports declarative referential
integrity with cascading operations, updatable views, and outer joins. InterBase Server
provides libraries that support development of embedded SQL and DSQL client
applications. On all InterBase platforms, client applications can be written to the InterBase
API, a library of functions with which to send requests for database operations to the server.

Introduction to Operations

8

InterBase also supports extended SQL features, some of which anticipate SQL99 extensions
to the SQL standard. These include stored procedures, triggers, SQL roles, and segmented
Blob support.

For information on SQL, see the Language Reference Guide.

4.2. Multiuser Database Access

InterBase enables many client applications to access a single database simultaneously. A
client applications can also access the multiple databases simultaneously. SQL triggers can
notify client applications when specific database events occur, such as insertions or
deletions.

You can write user-defined functions (UDFs) and store them in an InterBase database,
where they are accessible to all client applications accessing the database.

4.3. Transaction Management

Client applications can start multiple simultaneous transactions. InterBase provides full and
explicit transaction control for starting, committing, and rolling back transactions. The
statements and functions that control starting a transaction also control transaction
behavior.

InterBase transactions can be isolated from changes made by other concurrent
transactions. For the life of these transactions, the database appears to be unchanged
except for the changes made by the transaction. Records deleted by another transaction
exist, newly stored records do not appear to exist, and updated records remain in the
original state.

For information on transaction management, see the Embedded SQL Guide.

4.4. Multigenerational Architecture

InterBase provides expedient handling of time-critical transactions through support of data
concurrency and consistency in mixed use – query and update – environments. InterBase
uses a multigenerational architecture, which creates and stores multiple versions of each
data record. By creating a new version of a record, InterBase allows all clients to read a
version of any record at any time, even if another user is changing that record. InterBase
also uses transactions to isolate groups of database changes from other changes.

4.5. Optimistic Row-level Locking

Optimistic locks are applied only when a client actually updates data, instead of at the
beginning of a transaction. InterBase uses optimistic locking technology to provide greater
throughput of database operations for clients.

InterBase implements true row-level locks, to restrict changes only to the records of the
database that a client changes; this is distinct from page-level locks, which restrict any
arbitrary data that is stored physically nearby in the database. Row-level locks permit
multiple clients to update data that is in the same table without coming into conflict. This
results in greater throughput and less serialization of database operations.

InterBase also provides options for pessimistic table-level locking. See the Embedded SQL
Guide for details.

Introduction to Operations

9

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

4.6. Database Administration

InterBase provides both GUI and command-line tools for managing databases and servers.
You can perform database administration on databases residing on Local InterBase or
InterBase Server with IBConsole, a Windows application running on a client PC. You can also
use command-line database administration utilities on the server.

IBConsole and command-line tools enable the database administrator to:

Manage server security
Back up and restore a database
Perform database maintenance
View database and lock manager statistics

You can find more information on server security later in this chapter, and later chapters
describe individual tasks you can accomplish with IBConsole and the command-line tools.

4.6.1. Managing Server Security

InterBase maintains a list of user names and passwords in a security database. The security
database allows clients to connect to an InterBase database on a server if a user name and
password supplied by the client match a valid user name and password combination in the
InterBase security database (admin.ib by default), on the server.

Note:
Starting with version XE7 InterBase implements stronger password protection on
InterBase databases. See Implementing Stronger Password Protection.

You can add and delete user names and modify a user’s parameters, such as password and
user ID.

For information about managing server security, see Database User Management.

4.6.2. Backing Up and Restoring Databases

You can backup and restore a database using IBConsole or command-line gbak . A backup
can run concurrently with other processes accessing the database because it does not
require exclusive access to the database.

Database backup and restoration can also be used for:

Erasing obsolete versions of database records
Changing the database page size
Changing the database from single-file to multifile
Transferring a database from one operating system to another
Backing up only a database’s metadata to recreate an empty database

For information about database backup and recovery, see About InterBase backup and
restore options.

4.6.3. Maintaining a Database

You can prepare a database for shutdown and perform database maintenance using either
IBConsole or the command-line utilities. If a database incurs minor problems, such as an
operating system write error, these tools enable you to sweep a database without taking the
database off-line.

•
•
•
•

•
•
•
•
•

Introduction to Operations

10

Some of the tasks that are part of database maintenance are:

Sweeping a database
Shutting down the database to provide exclusive access to it
Validating table fragments
Preparing a corrupt database for backup
Resolving transactions “in limbo” from a two-phase commit
Validating and repairing the database structure

For information about database maintenance, see Database Configuration and
Maintenance.

4.6.4. Viewing Statistics

You can monitor the status of a database by viewing statistics from the database header
page, and an analysis of tables and indexes. For more information, see Database Statistics
and Connection Monitoring.

5. About InterBase SuperServer Architecture

InterBase uses SuperServer architecture: a multi-client, multi-threaded implementation of
the InterBase server process. SuperServer replaces the Classic implementation used for
previous versions of InterBase. SuperServer serves many clients at the same time, using
threads instead of separate server processes for each client. Multiple threads share access
to a single server process.

6. Overview of Command-line Tools

For each task that you can perform in IBConsole, there is a command-line tool that you can
run in a command window or console to perform the same task.

The UNIX versions of InterBase include all of the following command-line tools. The
graphical Windows tools do not run on a UNIX workstation, though you can run most of the
tools on Windows to connect to and operate on InterBase databases that reside on UNIX
servers.

An advantage of noninteractive, command-line tools is that you can use them in batch files
or scripts to perform common database operations. You can automate execution of scripts
through the scheduling facility of your operating system(cron on UNIX, AT on Windows). It
is more difficult to automate execution of graphical tools.

6.1. isql

The isql tool is a shell-type interactive program that enables you to quickly and easily
enter SQL statements to execute with respect to a database. This tool uses InterBase
Dynamic SQL mechanism to submit a statement to the server, prepare it, execute it, and
retrieve any data from statements with output (for example, from a SELECT or
EXECUTE PROCEDURE). isql manages transactions, displays metadata information, and
can produce and execute scripts containing SQL statements.

See Interactive Query for full documentation and reference on isql and using isql from
IBConsole.

•
•
•
•
•
•

Introduction to Operations

11

6.2. gbak

The gbak tool provides options for backing up and restoring databases. gbak now backs
up to multiple files and restores from multiple files, making it unnecessary to use the older
gsplit command. Only SYSDBA and the owner of a database can back up a database. Any
InterBase user defined on the server can restore a database, although the user must be
SYSDBA or the database owner in order to restore it over an existing database.

Note:
When you back up and restore databases from IBConsole on Windows platforms, you
are accessing this same tool through the IBConsole interface.

See About InterBase backup and restore options for full documentation and reference on
using gbak .

6.3. gfix

gfix configures several properties of a database, including:

Database active/shutdown status
Default cache allocation for clients
Sweep interval and manual sweep
Synchronous or asynchronous writes
Detection of some types of database corruption
Recovery of unresolved distributed transactions

You can also access all the functionality of gfix through the IBConsole graphical interface.
Only SYSDBA and the owner of a database can run gfix against that database.

See Database Configuration and Maintenance for descriptions of these properties, and a
reference of the gfix tool.

6.4. gsec

You can configure authorized users to access InterBase servers and databases with gsec .
You can also perform the same manipulations on the security database with IBConsole.

See Database User Management for full details and reference.

6.5. gstat

gstat displays some database statistics related to transaction inventory, data distribution
within a database, and index efficiency. You can also view these statistics from IBConsole.
You must be SYSDBA or the owner of a database to view its statistics.

See Database Statistics and Connection Monitoring for more information on retrieving and
interpreting database statistics.

6.6. iblockpr (gds_lock_print)

Note:
The gds_lock_print utility is deprecated and is not included with some versions of
InterBase.

•
•
•
•
•
•

Introduction to Operations

12

You can view statistics from the InterBase server lock manager to monitor lock request
throughput and identify the cause of deadlocks in the rare case that there is a problem with
the InterBase lock manager. The utility is called gds_lock_print on the UNIX platforms,
and iblockpr on the Windows platforms.

See Database Statistics and Connection Monitoring for more information on retrieving and
interpreting lock statistics.

6.7. ibmgr

On UNIX servers, use the ibmgr utility to start and stop the InterBase server process. See
the section Using ibmgr to Start and Stop the Server for details on using this utility.

Introduction to Operations

13

Licensing (Operations Guide)

This chapter summarizes the licensing provisions and add-ons available for InterBase
products. The licensing information in this chapter is not meant to replace or supplant the
information in the much more detailed license agreement you receive at the time of
purchase. Instead, this chapter summarizes general licensing terms and options.

To activate and use an InterBase product, you must register it when you install it or soon
after. For detailed instructions on how to install InterBase products, see the IBsetup.html
file that you receive upon purchase.

This chapter also provides basic instructions on how to use the InterBase License
Manager to view existing license information for the products you have purchased, to
register those products if you have not already, and to view additional add-ons licenses.

1. InterBase License Options

This section summarizes the license provisions and add-on options available for each
InterBase product. For the purposes of this chapter, an “add-on” refers to an InterBase
feature or option you can purchase to “add-on” to the InterBase product(s) you have already
purchased. Each add-on comes with its own license agreement. To purchase an InterBase
add-on, see your sales or Value-Added Reseller () representative, or go to the
Embarcadero.com website.

To view available InterBase add-ons and licenses, you can use the InterBase License
Manager, which installs with your product. For more information, see Using the License
Manager.

Note:
To distribute the InterBase software to third parties as bundled with your own software
application or installed on your hardware, you must contact Embarcadero Technologies
and enter into an Original Equipment Manager (OEM) license agreement.

1.1. Server Edition

InterBase Server Edition software provides strong, symmetric multiple processing support,
and robust database and server monitoring facilities.

The InterBase Server Edition License allows you to:

Install Server Edition software on a single computer.
Make up to four (4) connections per user to the machine on which the server software
is running.
The provisions for each server license are specific to the single computer for which the
server software is licensed. For example, if you purchase two server licenses for 20
users each, you cannot increase the number of licensed users to 40 on a single instance
of the server. Please use "Add-on" licenses to increase the user capacity per instance of
InterBase server.

Note:
You can use the same serial number to install and register Server Edition software on a
second computer for backup purposes as long as the second computer is not used
concurrently with the primary installation.

•
•

•

Licensing (Operations Guide)

14

Add-ons available for the Server Edition

The following add-ons are available for the Server Edition:

InterBase Simultaneous User License

To connect users to Server Edition software, you must purchase as many Simultaneous User
Licenses as you have simultaneous users wanting to connect to that server instance. For
example, if 10 different end users connect to the database server, you must first purchase
10-User Simultaneous User licenses. Each user count in this Simultaneous User License
allows a single user up to four (4) connections to the Server software.

InterBase Unlimited Users License

Use this license to allow an unlimited number of users to access the software. To enable
your users to connect to the Server Edition software via an unrestricted-access Internet
application, you must purchase an Unlimited User License.

InterBase Additional CPUs License

Every license certificate you purchase allows you to install and execute the software on one
computer with up to eight (8) CPUs for each license. The Additional CPUs license enables an
additional 8 CPU cores per license up to a limit of 32 on the system.

1.2. Developer Edition

The Developer Edition License is limited to use of the Server Edition for development
purposes only, using solely client applications executing on the same, single computer as
the server. This license grants no rights for use in a production environment.

There are no add-ons available for the Developer Server Edition.

1.3. Desktop Edition

The InterBase Desktop Edition is an InterBase database server designed to run in a stand-
alone environment for use by a single end user. You can deploy the Desktop Edition on a
desktop, laptop, or other mobile computer.

The InterBase Desktop Edition license enables you to:

Install a single copy of the Desktop Edition on a single computer for your internal data
processing needs only
Log into the same computer on which the software is running and make up to eight (8)
connections to the InterBase Desktop Edition software.

There are no add-ons available for the Desktop Server Edition.

1.4. ToGo Edition

The InterBase ToGo Edition is a small, portable version of the Desktop Edition, and is
designed to run in a stand-alone environment. Refer to System Requirements/Prerequisites
for a list of supported platforms.

The InterBase ToGo license enables the purchaser to:

Deploy applications that are embedded with the InterBase ToGo engine (DLL's).
Deploy ToGo Edition software on a standalone computer for use by a single end user.

•

•

•

•

•

•
•

Licensing (Operations Guide)

15

http://docwiki.embarcadero.com/InterBase/2020/en/System_Requirements/Prerequisites#InterBase_ToGo_Edition

2. Using the License Manager

A separate License Manager tool installs with the Desktop, ToGo, and Server Editions. to
view existing license information for the products you have purchased, to register those
products if you have not already, and to view additional licenses for add-ons.

If your Linux or Solaris environment does not support the GUI installer, you can use the
command-line tool to register additional options and licenses. For information on how to do
so, see the IBsetup.html file.

Important:
In versions of InterBase prior to 2007, you could access an older version of the License
Manager from IBConsole. Because the IBConsole version of License Manager does not
contain up-to-date licensing information and options, including add-ons, we recommend
that you use only the separate InterBase License Manager tool to purchase new licenses.
For more information on licenses refer to Installation, Registration, and Licensing
Information.

2.1. Accessing the License Manager

To access the separate InterBase License Manager tool, do the following:

From the Start menu, select Programs > Embarcadero InterBase 2020 > License
Manager. The License Manager window opens.
To view and select the add-ons available for the InterBase product you are using,
click on the Serial menu and select Add.
When the Add Serial Number dialog opens, type in your serial number and click
OK. The License Manager displays licensing information and allows you to register
the product you purchased if you have not done so already.

1.

2.

3.

Licensing (Operations Guide)

16

http://docwiki.embarcadero.com/InterBase/2020/en/Installation%2C_Registration%2C_and_Licensing_Information
http://docwiki.embarcadero.com/InterBase/2020/en/Installation%2C_Registration%2C_and_Licensing_Information

Server Configuration

This chapter describes the operation and configuration of the InterBase server process,
including the following topics:

1. Configuring Server Properties

You can use InterBase Manager to change database cache size of client map size. The
InterBase Guardian Server Properties dialog enables you to display and configure these
server settings. To access InterBase Guardian, right-click the InterBase Guardian icon in the
System Tray. You can access the Server Properties dialog by any of the following methods:

Select a server (or any branch under the server hierarchy) in the Tree pane and choose
Server|Server Properties.
Select a server in the Tree pane and click Server Properties in the Work pane.
Right-click a server in the Tree pane and choose Server Properties from the context
menu.

The Server Properties dialog contains two tabs, Alias and General.

1.1. The General Tab

The General tab of the Server Properties dialog is where you can view such server settings
as the version, capabilities, number of databases, and number of attachments. You cannot
edit the information displayed on this tab.

The server properties displayed are:

Version: displays the version number for the InterBase Server.
Capabilities: displays support capabilities for the InterBase Server.
Attached databases: displays the path and filename for each attached database
Number of databases: displays the total number of databases in the InterBase Server.
Number of attachments: displays the total number attachments to the InterBase
Server.

You cannot update the information displayed on the General tab; however, you can click
Refresh at any time to retrieve the current server property information. If you need to view
or configure server settings, click the IB Settings tab.

•

•
•

•
•
•
•
•

Server Configuration

17

1.2. The Alias Tab

On the Alias tab, you can inspect the host name and network protocol for the server. You
can inspect and change the Alias name and description.

Alias Name: the name of the server as it appears in the Tree pane. This setting is
editable.
Host Name: the name of the host server. This is determined at the time you create the
server connection and cannot be changed in this dialog.
Network Protocol: the protocol that the server is using to communicate. This is
determined at the time you create the server connection and cannot be changed in this
dialog.
Description: any additional information you wish to add about the server. This field is
optional and editable.

See Also

Using InterBase Manager to Start and Stop InterBase
Using Environment Variables
Managing Temporary Files

2. Multi-Instance

InterBase allows multiple instances of InterBase servers to run simultaneously, you can run
one previous version along side a newer version simultaneously.

multi-instance in general terms set IB_PROTOCOL environment variables so their
application can target the proper InterBase instance

Note:
Make sure to select the proper Multi-instance option during install and select a unique
TCP/IP port for the InterBase instance.

2.1. Windows Server Setup

Start the server as an application with the following switches on a Windows machine.

ibserver -a -p service_name -i interbase_env_variable

The service_name is the entry contained in the services file pointing to the port number
which the InterBase server should bind to. Below is an example of a part of the file from the
<system directory>\drivers\etc\services file.

•

•

•

•

•
•
•

Server Configuration

18

http://docwiki.embarcadero.com/InterBase/2020/en/Using_Environment_Variables

gds_db 3050/tcp #default interbase port number
ib__a 3051/tcp # A's interbase port number

The InterBase environment variable or the -i switch is used for local connections. These
values determines which InterBase server a client on the same machine will connect to. The
InterBase environment variable for a client and server's -i switch must match to have a
successful connection. So if InterBase server is started with the setting:

ibserver -a -p ib__a -i C:\Embarcadero\InterBase

The InterBase server will accept remote connections on the TCP/IP port number 3051 as the
service ib__a is set to port 3051. The local connections will be accepted from client on the
same machine who have their InterBase environment variable set to C:\Program
Files\interbase.

Older versions of InterBase servers (pre-7.5) can still run using the default setting. These
pre-7.5 InterBase servers will accept remote connections on TCP/IP port number 3050. The
local connections will be accepted when the client uses a pre-7.5 interbase client library.

We recommend using the -i switch to set the local InterBase variable for the server. The
order in which InterBase server looks for the InterBase environment variable is as follow;
Command line argument '-i', InterBase environment variable setting, InterBase Registry key
setting, Server's current directory.

2.2. Accessing Remote Databases

2.2.1. Client Side Settings to Access Remote Databases

In order to connect to a specific InterBase server on a machine you need to identify the
server you want to connect to.

2.2.2. Remote Servers

In order to access the database database_name.ib located in the directory database_dir. On
a remote machine remote_host accepting connections on a port number specified by a
service_name on the client machine. The database name specified in isql, the client API or
any InterBase driver should be remote_host/service_name:/database_dir/database_name.ib

Assume that a remote client application wants to access windows server running on a
machine called remote_host running 2 servers with the example configuration specified
above. The client machine will need to have the same service name set as the server, so the
services file will need to have these entries:

gds_db 3050/tcp #default interbase port number
ib__a 3051/tcp # A's interbase port number

In order to access an InterBase server running on the 3051 port number, use the following
database connection string (through isql or through the API)
remote_host/3051:c:\database_dir\ib80test.ib.

For older clients specify the service name which is bound to the port number on which the
older server is listening e.g. remote_host/gds_db:c:\database_dir\ib71test.ib

2.3. Accessing Local Databases

Server Configuration

19

Note:
Windows platform only.

In order to access a database on a local InterBase server, InterBase depends on the
InterBase Environment variable to identify the server to be connected to. A pre-7.5
InterBase server running will be connected to if no server with the InterBase environment
variable setting is running.

In order to access an older server make sure that your application uses the older gds32.dll.
To access a older server using a 7.5 InterBase client library make sure your InterBase
environment variable is set to a empty string "".

Applications can also pass in the information regarding the InterBase server they want to
attach to as part of the InterBase database parameter block (isc_dpb parameter). Setting the
isc_dpb_client_interbase_var followed by the length and the location of the InterBase server
will allow the user to specify the InterBase server to be used. The following code
demonstrates how a client should set the dpb parameter to attach to a InterBase server
running with the InterBase environment variable set to "c:/interbase"

#include <ibase.h>
…
char dpb_buffer[256], dpb;
short dpb_length;
char *ib_server = "c:/interbase";
char *str = "employee.ib";
isc_db_handle db1;
ISC_STATUS status_vector[20];
/* construct the dpb, specifing the IB server to attach to */
dpb = dpb_buffer;
*dpb++ = isc_dbp_version;
*dpb++ = isc_dpb_client_interbase_var;
*dpb++ = strlen(ib_server);
strcpy (dpb, ib_server);
/* set other dpb parameters */
…
/* set the dpb_length as usual */
dpb_length = dpb - dpb_buffer;
/* finally call isc_attach or create with the dpb parameters */
isc_attach_database(status_vector, strlen(str), str, &db1, dpb_length,
dpb_buffer);

2.4. Automatic Rerouting of Databases

Once multiple instance of InterBase servers are running on a machine simultaneously, this
feature will allow setups where some database connections can be re-routed to a different
InterBase server. The user will have to manually start the different instance of InterBase as
an application or service.

2.4.1. Server Side Setup

In order to setup simultaneous InterBase servers on a machine follow the instructions
specified above. Once these machines are set up, and running, follow the instructions below
to setup and use the DB_ROUTE database table in the ADMIN.IB.

The structure of the DB_ROUTE table is as follows:

Server Configuration

20

Column Name Data type Length Description

DB_NAME CHAR 1024

Complete name of the database to
be rerouted, including the path of
the database on the server.

e.g.
Server_Name:DATABASE_DIR\EMPL
OYEE.Ib

SERVICE_NAME CHAR 30

Service name to look up in the
services file for the port number to
be re-routed to. The look up takes
place at the server side, the client is
only aware of the port number and
not the service name.

e.g. ib__a

ACTIVATE_ROUTE BOOLEAN
Set to true if this re-routing is active,
flase it this re-routing is disabled.

The service name that is entered in the set DB_ROUTE table must exist in the services file:

gds_db 3050/tcp #default interbase port number
ib__a 3051/tcp # A’s interbase port number

2.4.2. Client Side Settings for Automatic Rerouting of Databases

No client side settings are required. In order to access the database database_name.ib
located in the directory database_dir. On a remote machine remote_host accepting
connections on a default port number. The database name specified in the client API or any
InterBase driver would be REMOTE_HOST:DATABASE_DIR\DATABASE_NAME.IB.

In order to setup the database server AGNI so that it can re-route in coming connections,
for the database c:\smistry\employee.ib to an older server running on port number
specified by the service ib__a. The ADMIN.IB database on server AGNI will need the following
row of information in DB_ROUTE table.

DB_ROUTE Column Name Value

DB_NAME Server_Name:DATABASE_DIR/EMPLOYEE.IB

SERVICE_NAME ib__a

ACTIVATE_ROUTE TRUE

Since the DB_ROUTE is a regular InterBase table in the ADMIN.IB database, you can use
regular SQL to enter, modify or remove database re-routing from information.

2.5. Startup Parameters

To accommodate multiple instances of InterBase running on the same machine the
InterBase Guardian and Server now have label names as part of their Service names.

InterBase %Service Name% Guardian, i.e. InterBase 2020 server1 Guardian
InterBase (%Service Name%) Server, i.e. InterBase 2020 server1 Server

•
•

Server Configuration

21

The InterBase Server and Guardian have two new command line arguments:

-i %interbase_INSTALL_DIR% -p %SERVICE NAME%

Command line arguments are called start parameters as far as starting the applications are
concerned.

If you write to the Microsoft auto run registry key entry you will need to do the same to the
/SOFTWARE/MICROSOFT/WINDOWS/CURRENTVERSION/RUN registry key setting too.

Currently the registry key is:

InterBaseGuardian .

Change this to:

InterBaseGuardian%SERVICE NAME%

The value of this registry key is currently:

%interbase_INSTALL_DIR%/bin/ibguard -a .

Change this to:

%interbase_INSTALL_DIR%/bin/ibguard -a -i %interbase_INSTALL_DIR% -
p %SERVICE NAME%

3. SMP Support

InterBase provides symmetric multiprocessor (SMP) support for both clients and servers.
Older versions of InterBase ran on SMP systems safely by allowing only a single processor at
a time to execute within the InterBase components. Current versions of InterBase exploit
SMP hardware by running InterBase threads on all processors simultaneously for increased
throughput and performance.

Important:
When you purchase a single server license, you acquire the right to use a single
processor. You must purchase one additional license for each additional processor that
you wish to use.

On Windows platforms, the CPU_AFFINITY setting in the ibconfig configuration file
specifies which processors of a multiprocessor system InterBase should use. The default
setting, in effect when CPU_AFFINITY is commented out, is to use as many processors as
licensing permits. See Expanded Processor Control: CPU_AFFINITY below for how to specify
a subset of processors to use.

3.1. Expanded Processor Control: CPU_AFFINITY

On Windows multiprocessor platforms, you can specify which processors InterBase should
use by adding the CPU_AFFINITY parameter to the ibconfig file. This setting is useful
whenever the number of licensed processors is less than the number of actual processors
present.

Important:
Note that when you purchase a single server license, you acquire the right to use a single
processor. You must purchase one additional license for each additional processor that
you wish to use.

Server Configuration

22

The CPU_AFFINITY parameter populates a bit vector in which each bit represents a
processor on the system on which the threads are allowed to run. The maximum number of
processors depends on the operating system. To specify which processors should be used,
give CPU_AFFINITY a decimal value that corresponds to the binary value that results from
setting a bit for each desired machine. For example, to use processors 2 and 3, set
CPU_AFFINITY to 6:

CPU_AFFINITY 6

To use these processors CPU_AFFINITY value Array setting

1 1 0 0 1

2 2 0 1 0

1 and 2 3 0 1 1

3 4 1 0 0

2 and 3 6 1 1 0

1, 2, and 3 7 1 1 1

3.2. ibconfig Parameter: MAX_THREADS

Setting the MAX_THREADS parameter in ibconfig controls the maximum number of
threads that can be active at one time within the InterBase engine. The default setting is
100:

MAX_THREADS 100

This configuration parameter controls the number of active threads in the engine. The ideal
setting for this number depends partly on the nature of the work being performed by your
clients. If you have many clients performing very similar tasks, you may want to lower the
MAX_THREADS setting to reduce contention. On the other hand, if simultaneous activity is
highly diverse, setting this to a higher value may increase throughput.

Note that this setting does not affect the maximum possible threads that can be created by
the InterBase server but only the number that can be active in the engine at one time.

3.3. ibconfig Parameter: THREAD_STACK_SIZE_MB 2

This parameter controls the stack size of various threads in InterBase. The value is in
multiple of MBs per thread. The valid range is 2MB to 32MB. If it is set beyond the range, the
value defaults to 2MB.

You should not have to change this parameter for normal use of InterBase. In extremely
rare cases of abnormal termination of the process, the reason might be thread stack space
constraints due to high levels of recursive calls (of stored procedures and such). Feel free to
increase this value then.

The default setting on 32-bit Editions is 2 (2 MB).
The default setting on 64-bit Editions is 4 (4 MB).

•
•

Server Configuration

23

4. Hyper-threading Support on Intel Processors

InterBase can support hyper-threading on Intel processors that support logical processors
using Intel hyperthreading technology. To enable this support in the InterBase server, you
must make a setting in the InterBase configuration file, ibconfig . If you are running the
InterBase server on a machine with hyper-threaded processors, edit the
ENABLE_HYPERTHREADING parameter in the configuration file. By default, this parameter is
set to zero. Set the value to 1 to allow the InterBase server to use hyperthreaded
processors.

5. Using InterBase Manager to Start and Stop InterBase

The InterBase Server and InterBase Guardian must be started before you enable database
connections. On Windows platforms, you can use the InterBase Manager to start and stop
the InterBase Server and Guardian. In previous versions of InterBase the InterBase Manager
is a Windows Control Panel applet. Now the InterBase Manager is an application installed
for each instance of the InterBase Server installed. To start the InterBase Manager, choose
Start|Programs|<InterBase install directory>. You can use InterBase Manager to do the
following:

Choose the server startup mode: whether to start the InterBase server manually, or
have it start automatically at system boot time.
Change the path to the server: if you click the Change option, you can browse and
select a different directory.
Change how InterBase Server operates. By default, InterBase runs automatically as a
service on Windows platforms, though it is possible (but not recommended) to run it as
an application.

Note:
To start InterBase Server as an application from a command prompt or in a batch file,
invoke InterBase Guardian with the following options:

ibguard -a -p service_name -i interbase_env_variable

Options: Start and Stop InterBase Commands are:

Command/option Description

-a Start as application.

-i
Environment variable; identifies the Server location for clients that want to
connect locally to the Server.

-p
Port number; where the <service_name> is the entry in the services file pointing
to the port number where InterBase Server listens for connection requests from
clients.

InterBase Guardian starts the server, and places an icon in the System Tray.

Start InterBase Server and InterBase Guardian, via a Start/Stop button. Click Start in the
InterBase Manager Status area to start InterBase Server (and InterBase Guardian). The
server status changes, and an InterBase Guardian icon appears in the system tray.
Once you have started the InterBase Server, you can exit InterBase Manager, and both
InterBase Server and InterBase Guardian will continue to run. The InterBase Guardian
icon remains in the System Tray until you stop the server.

•

•

•

•

Server Configuration

24

Stop InterBase Server and InterBase Guardian, via a Start/Stop button. Click Stop in the
InterBase Manager Status area to stop InterBase Server (and InterBase Guardian). Or,
right-click the InterBase Guardian icon in the System Tray and choose Shutdown.

6. Starting and Stopping the InterBase Server on UNIX

The following sections describe how to start and stop the InterBase server on UNIX.

6.1. Using ibmgr to Start and Stop the Server

The InterBase Server and InterBase Guardian must be started before you enable database
connections. On Windows platforms, you can use the InterBase Manager to start and stop
the InterBase Server and Guardian. In previous versions of InterBase, the InterBase
Manager is a Windows Control Panel applet. Now the InterBase Manager is an application
installed for each instance of the InterBase Server installed. To start the InterBase Manager,
choose Start > Programs > InterBase install directory. You can use InterBase Manager to
do the following:

Choose the server startup mode: whether to start the InterBase server manually, or
have it start automatically at system boot time.
Change the path to the server: if you click the Change option, you can browse and
select a different directory.
Change how InterBase Server operates. By default, InterBase runs automatically as a
service on Windows platforms, though it is possible (but not recommended) to run it as
an application.

Note:
To start InterBase Server as an application from a command prompt or in a batch file,
invoke InterBase Guardian with the following options:

ibguard -a -p service_name -i interbase_env_variable

Options: Start and Stop InterBase Commands are:

Command/option Description

-a Start as application

-i
Environment variable; identifies the Server location for clients that want to
connect locally to the Server.

-p
Port number; where the <service_name> is the entry in the services file pointing
to the port number where InterBase Server listens for connection requests from
clients.

InterBase Guardian starts the server and places an icon in the System Tray.

Start InterBase Server and InterBase Guardian, via a Start/Stop button. Click Start in the
InterBase Manager Status area to start InterBase Server (and InterBase Guardian). The
server status changes, and an InterBase Guardian icon appears in the system tray.
Once you have started the InterBase Server, you can exit InterBase Manager, and both
InterBase Server and InterBase Guardian will continue to run. The InterBase Guardian
icon remains in the System Tray until you stop the server.
Stop InterBase Server and InterBase Guardian, via a Start/Stop button. Click Stop in the
InterBase Manager Status area to stop InterBase Server (and InterBase Guardian).

•

•

•

•

•

•

Server Configuration

25

Alternatively, right-click the InterBase Guardian icon in the System Tray and choose
Shutdown.

6.2. Starting the Server

To start the InterBase server, log in as the “root” or “interbase” user. (“interbase” is a
synonym for “InterBase,” to accommodate operating systems that do not support nine-
character account names.) For example, start InterBase with the following command:

ibmgr -start -p service_name

Note:
Once you have started ibserver using one login, such as “root,” be aware that all
objects created belong to that login. They are not accessible to you if you later start
ibserver as one of the other two (“interbas” or “InterBase”). It is highly recommended
to run the InterBase Server as “InterBase.” If the -p option is not specified, the default of
gds_db is used.

6.3. Stopping the Server

Note:
For safety, make sure all databases have been disconnected before you stop the server.

The command switches -user and -password can be used as option switches for
commands like -start or -shut . For example, you can shut down a server in any of the
following ways:

ibmgr -shut -password password

or

ibmgr u
IBMGR> shut -password password

or

imbgr u
IBMGR> password password
IBMGR> shut

Note:
The -shut option rolls back all current transactions and shuts down the server
immediately. If you need to allow clients a grace period to complete work and detach
gracefully, use shutdown methods for individual databases. See Shutting Down and
Restarting Databases.

6.4. Starting the Server Automatically

To configure a UNIX server to start the InterBase Server automatically at server host boot-
time, you must install a script that the rc initialization scripts can run. Refer to
/etc/init.d/README for more details on how UNIX runs scripts at boot-time.

Example initialization script:

Server Configuration

26

#!/bin/sh
ibserver.sh script - Start/stop the InterBase daemon
Set these environment variables if and only if they are not set.
: ${InterBase:=/usr/interbase}
WARNING: in a real-world installation, you should not put the
SYSDBA password in a publicly-readable file. To protect it:
chmod 700 ibserver.sh; chown root ibserver.sh
export InterBase

ibserver_start() {
 # This example assumes the InterBase server is
being started as UNIX user ’InterBase’.
echo ‘$InterBase/bin/ibmgr -start -forever’ |su InterBase
}

ibserver_stop() {
 # No need to su.
$InterBase/bin/ibmgr -shut -user SYSDBA -password password
}

case $1 in
’start’) ibserver_start ;;
’start_msg’) echo 'InterBase Server starting...\c' ;;

’stop’) ibserver_stop ;;
’stop_msg’) echo 'InterBase Server stopping...\c' ;;

*) echo 'Usage: $0 { start | stop }' ; exit 1 ;;
esac

exit 0

Example initialization script installation on Solaris:

Log in as root.

$ su

Enter the example script above into the initialization script directory.

vi /etc/init.d/ibserver.sh

Enter text.
Link the initialization script into the rc directories for the appropriate run levels
for starting and stopping the InterBase server.

ln /etc/init.d/ibserver.sh /etc/rc0.d/K30ibserver
ln /etc/init.d/ibserver.sh /etc/rc2.d/S85ibserver

Example initialization script installation on Linux:

Log in as root.

$ su

Enter the Linux example script (given below) into the initialization script directory.

cp ibserver.sh /etc/rc.d/init.d/ibserver.sh
chmod 700 /etc/rc.d/init.d/ibserver.sh

Link the initialization script into the rc directories for the appropriate run levels
for starting the InterBase server.

ln -s /etc/rc.d/init.d/ibserver.sh /etc/rc.d/rc0.d/S85ibserver

1.

2.

3.
4.

1.

2.

3.

Server Configuration

27

Link the initialization script into the rc directories for the appropriate run levels
for stopping the InterBase server.

ln -s /etc/rc.d/init.d/ibserver.sh /etc/rc.d/rc0.d/K30ibserver

Make sure you have host equivalence.

touch /etc/gds_hosts.equiv
echo “+” >> /etc/gds_hosts.equiv

Make sure you do not have an inetd entry for InterBase Classic.

echo -e “/gds_db/s/^/#/\nwq” | ed /etc/inetd.conf
killall -HUP inetd

Example Linux initialization script:

#!/bin/sh
ibserver.sh script - Start/stop the InterBase daemon
Set these environment variables if and only if they are not set.
: ${InterBase:=/usr/interbase}
WARNING: in a real-world installation, you should not put the
SYSDBA password in a publicly-readable file. To protect it:
chmod 700 ibserver.sh; chown root ibserver.sh
export InterBase

ibserver_start() {
 # This example assumes the InterBase server is
being started as user “InterBase”.
su - InterBase -c “$InterBase/bin/ibmgr -start -forever”
RETVAL=$?
[$RETVAL -eq 0] && touch //lock/subsys/ibserver
}

ibserver_stop() {
 # No need to su.
$InterBase/bin/ibmgr -shut -user SYSDBA -password password
RETVAL=$?
[$RETVAL -eq 0] && rm -f //lock/subsys/ibserver
}

if [! -d “$InterBase”] ; then
echo “$0: cannot find InterBase installed at $InterBase” >&2
exit 1
fi
if [! -x “$InterBase/bin/ibmgr”] ; then
echo “$0: cannot find the InterBase SuperServer manager as
$InterBase/bin/ibmgr” >&2
if [! -x “$InterBase/bin/gds_inet_server”] ; then
echo “$0: this is InterBase Classic; use inetd instead of
ibserver daemon” >&2
fi
exit1
fi

case $1 in
’start’)
ibserver_start ;
echo “InterBase started” ;;
’start_msg’)
echo 'InterBase Server starting...\c' ;;

’stop’)
ibserver_stop ;
echo “InterBase stopped” ;;
’stop_msg’)
echo 'InterBase Server stopping...\c' ;;

’restart’)
ibserver_stop ; ibserver_start

4.

5.

6.

Server Configuration

28

echo “InterBase restarted” ;;
’restart_msg’)
echo 'InterBase Server restarting...\c' ;;

*) echo “Usage: $0 { start | stop | restart }” ; exit 1 ;;
esac

exit 0

7. The Attachment Governor

The InterBase server has an attachment governor that regulates the number of attachments
to the server. Multiply the value of the USERS field in the license file by four to determine
the total number of permitted concurrent attachments.

All successful attempts to create or connect to a database increment the number of current
attachments. Both local and remote connections count toward the connection limit.
Connections are permitted by the governor until the maximum number of concurrent
attachments is reached. All successful attempts to drop or disconnect from a database
decrement the number of current attachments.

Once the maximum number of attachments is reached, the server returns the error
constant isc_max_att_exceeded (defined in ibase.h), which corresponds to the
message:

Maximum user count exceeded. Contact your database administrator.

8. Server Configuration Using Environment Variables

This section describes the environment variables that InterBase recognizes. When defining
environment variables, keep these rules in mind:

Environment variables must be in the scope of the ibserver process.

On Windows, define environment variables as system variables in the Windows Control
Panel|System dialog.
On UNIX, the easiest way to define environment variables is to add their definitions to
the system-wide default shell profile.

8.1. ISC_USER and ISC_PASSWORD

If you do not provide a user name and password when you connect to a database or when
you run utilities such as gbak , gstat , and gfix , InterBase looks to see if the ISC_USER
and ISC_PASSWORD environment variables are set; if they are, InterBase uses that user and
password as the InterBase user.

Although setting these environment variables is convenient, do not do so if security is at all
an issue.

8.2. The INTERBASE Environment Variables

8.2.1. INTERBASE

The INTERBASE variable is used both during installation and during runtime. During
installation, it defines the path where the InterBase product is installed. If this path is
different from /usr/interbase , all users must have the correct path set at runtime.
During runtime, use the INTERBASE variable to set the InterBase install directory. The
INTERBASE environment variable is used on Windows for local connections. The

•

•

•

Server Configuration

29

INTERBASE environment variable is used by the client to identify the local instance of
InterBase Server to attach to.

8.2.2. INTERBASE_TMP

The INTERBASE_TMP variable can be used to set the location of InterBase sort files on the
server. There are other options for defining the location of these files. See Configuring Sort
Files.

8.2.3. INTERBASE_LOCK and INTERBASE_MSG

INTERBASE_LOCK sets the location of the InterBase lock file and INTERBASE_MSG sets the
location of the InterBase message file. These two variables are independent of each other
and can be set to different locations.

8.2.4. IB_PROTOCOL

The IB_PROTOCOL is used to specify which port you want the InterBase Server to use
during runtime. It is also used by the InterBase Manager to identify which InterBase Server
to manage. It is used by the InterBase clients to identify the instance of InterBase server to
connect to.

8.3. The TMP Environment Variable

The TMP environment variable defines where InterBase stores temporary files, if the
INTERBASE_TMP variable is not defined.

8.4. UNIX and Linux Host Equivalence

On UNIX and Linux machines, you must provide a host equivalence for localhost, since even
local connections go through TCP/IP. To do this, place a line in the /etc/hosts file:

127.0.0.1 localhost

If your local machine has additional names, include them in the line:

127.0.0.1 localhost mymachine_name

See Also

Configuring Sort Files

9. Managing Temporary Files

InterBase creates two types of temporary files: sort files and history list files.

The InterBase server creates sort files when the size of the internal sort buffer is not big
enough to perform the sort. Each request (for example, CONNECT or CREATE DATABASE)
gets and shares the same list of temporary file directories. Each request creates its own
temporary files (each has its own I/O file handle). Sort files are released when sort is
finished or the request is released. If space runs out in a particular directory, InterBase
creates a new temporary file in the next directory from the directory list. If there are no
more entries in the directory list, it prints an error message and stops processing the
current request.

•

Server Configuration

30

The InterBase isql client creates the history list files to keep track of the input commands.
Each instance creates its own temporary files, which can increase in size until they run out
of disk space. Temporary file management is not synchronized between clients. When a
client quits, it releases its temporary files.

9.1. Configuring History Files

To set the location for history files, define the TMP environment variable on your client
machine. This is the only way to define the location of history files. If you do not set the
location for the history files by defining the TMP environment variable, an InterBase client
uses whatever temporary directory it finds defined for the local system. If no temporary
directory is defined, it uses /tmp on a UNIX system or C:\temp on a Windows system.

9.2. Configuring Sort Files

You should make sure to have plenty of free space available for temporary sorting
operations. The maximum amount of temporary space InterBase needs might be larger
than the database itself in some cases.

Temporary sort files are always located on the server where the database is hosted; you
should specify temporary directories on disk drives that are physically local to the server
(not on mapped drives or network mounted file systems).

There are two ways to specify directories for sort files:

You can add an entry to the $InterBase/ ibconfig file to enable directory and space
definition for sort files. The syntax is:

TMP_DIRECTORY size “pathname”

Important:
The pathname must be in double quotes, or the config file will fail.

This defines the maximum size in bytes of each sort directory. You can list several
directories, each on its own line with its own size specification and can specify a directory
more than once with different size configurations. InterBase exhausts the space in each
specification before proceeding to the next one.
For example, if you specify dir1 with a size of 5,000,000 bytes, then specify dir2 with
10,000,000 bytes, followed by dir1 with 2,000,000 bytes, InterBase uses dir1 until it
reaches the 5,000,000 limit, then uses dir2 until it has filled the 10,000,000 bytes allocated
there, and then returns to dir1 where it has another 2,000,000 bytes available. Below are
the ibconfig entries that describe this configuration:

TMP_DIRECTORY 5000000 “C:\dir1”
TMP_DIRECTORY 10000000 “D:\dir2”
TMP_DIRECTORY 2000000 “C:\dir1”

You can use the INTERBASE_TMP and TMP environment variables to define the
location.

If you specify temporary directories in ibconfig , the server uses those values for the sort
files and ignores the server environment variable values. If you do not specify configuration
of temporary directories in ibconfig , then the server picks a location for a sort file based
on the following algorithm:

Use the directory defined in INTERBASE_TMP environment variable.

•

•

1.

Server Configuration

31

If INTERBASE_TMP is not defined, use directory defined in TMP environment
variable.
If TMP is not defined, default to the /tmp directory (UNIX) or C:\temp
(Windows).

10. Configuring Parameters in ibconfig

You specify configuration parameters for InterBase Server by entering their names and
values in the configuration file, ibconfig . Entries are in the form:

parameter <whitespace> value

<parameter> is a string that contains no white space and names a property of the
server being configured.
<value> is a number or string that is the configuration of the specified property.

Each line in ibconfig is limited to 80 characters, including the parameter name and any
whitespace.

If you specify a value of zero or less for a parameter, the server ignores the setting and uses
the default value for that parameter. However, there is no upper limit applied to these
parameters.

The server reports the values for each of these parameters in the interbase.log file on
startup.

When a parameter is commented out in the ibconfig file, the server uses the default
value.

The following is a summary of allowable entries in ibconfig :

Parameter Description

ADMIN_DB

Platforms: All
Specifies the name of the InterBase security database.
Needed only if the security database is not named.

admin.ib

The security database must always be in the InterBase home
directory.

APPDATA_DIRECTORY

The directory path MUST be enclosed in double quotes.
The choice entered may vary based on the underlying OS
platform version.
It is an application for all platforms.
It specifies a directory where InterBase data files (requiring
read-write) access are located. This includes database files
admin.ib, examples/ sub-folder, ext/ sub-folder, secure/ sub-
folder to support SSL/OTW configuration, license/ sub-folder to
deliver licenses required for InterBase runtime, and, other
temporary files InterBase creates to support its runtime engine
(.lck and .env files, interbase.log etc.).
This has been introduced to support Windows UAC driven
requirements when installing under "Program Files" area, but
can also be applied to isolate InterBase "writable" files into a
separate location on other supported Editions and/or OS
platforms.

2.

3.

•

•

•
•
•

•

•
•

•
•

•

Server Configuration

32

Parameter Description

CPU_AFFINITY

Platform: Windows only.
32-bit values only allowed. Only the first 32 processors can be
set.
On a SMP system, sets which processors can be used by the
InterBase server. The value is taken from a bit vector in which
each bit represents a processor. Thus, to use only the first
processor, the value is 1. To use both the first and second
processors, the value is 3. To use the second and third, the
value is 6.
The default is to use all processors (when entry is commented
out).

CONNECTION_TIMEOUT

Platforms: All
Seconds to wait before concluding an attempt to connect has
failed.
Default: 180

DATABASE_CACHE_PAGES

Platforms: All
Server-wide default for the number of database pages to
allocate in memory per database.
Can be overridden by clients.
See Configuring the Database Cache for more information.
Default: 2048

DATABASE_ODS_VERSION

Platforms: All
Version: starting in InterBase XE7
The database server/engine will automatically create/restore
databases to this major ODS version number, if specified.
Valid ODS major versions are in the range of 13 to 16.
Default major ODS version is the latest version supported by
the product.
Default: 16

DEADLOCK_TIMEOUT

Platforms: All
Seconds before an ungranted lock causes a scan to check for
deadlocks.
Default: 10

DUMMY_PACKET_INTERVAL

Platforms: All
Seconds to wait on a silent client connection before the server
sends dummy packets to request acknowledgment.
The default value of 0 will not send any dummy keepalive
packets to the client from the server.
Versions of InterBase before 7.1 used to have this set at 60
seconds, by default. This has now been modified to have a
default of 0 (zero) seconds due to a memory leak bug in one of
the Windows system drivers for socket connections.
Alternatively, you can set the interval value for a specific client
by using the isc_dpb_dummy_packet_interval DPB parameter
while doing a connection.

ENABLE_HYPERTHREADING

Platforms: Windows, for InterBase 32-bit Edition(s) only
Specifies whether Intel Hyper-threading technology enabled
logical processors should be enabled.
Valid values are: 1 (enable), 0 (disable).
Default: 0 (disable)

•
•

•

•

•
•

•

•
•

•
•
•

•
•
•

•
•

•

•
•

•

•
•

•

•

•

•
•

•
•

Server Configuration

33

Parameter Description

ENABLE_PARTIAL_INDEX_SELECTIVITY

Platforms: All
Starting with InterBase XE7 and ODS 16, multi-segment index
definitions track per segment selectivity statistics.
Specifies whether the SQL Optimizer should use this selectivity
data to optimize retrieval.
This setting is engine-wide, so it applies to all queries
submitted to an active engine.
When disabled, the SQL optimizer will treat the index with a
single selectivity value that is not segment specific, as per
InterBase versions prior.
Valid values are: 1 (enable), 0 (disable)
Default: 1 (enable)
This parameter should be left on its default status and
changed only for testing purposes when it is suspected to
produce performance issues.

For: 2017 Update 2 and above only.

EXTERNAL_FILE_DIRECTORY

Platforms: All
The default directory for an external table's file is
<interbase_home>/ext.
Using this parameter, you can list additional directories where
external files can reside.
For security reasons, do not put other files in this directory.
Directory path MUST be enclosed in double quotes. For e.g.

EXTERNAL_FILE_DIRECTORY "C:\Temp"
EXTERNAL_FILE_DIRECTORY "/tmpdir"

List multiple entries one per line; directories are used in the
order specified.

EXTERNAL_FUNCTION_DIRECTORY

Platforms: All
The default directory for UDF libraries is <interbase_home>/
UDF.
Using this parameter, you can list additional directories where
UDF libraries should be loaded from.
For security reasons, do not put other files in this directory.
Directory path MUST be enclosed in double quotes. For e.g.

EXTERNAL_FUNCTION_DIRECTORY "C:\Temp"
EXTERNAL_FUNCTION_DIRECTORY "/tmpdir"

List multiple entries one per line; directories are used in the
order specified.

LOCK_ACQUIRE_SPINS

Platforms: All
Number of spins during a busy wait on the lock table mutex
Relevant only on SMP machines
Default: 0

LOCK_HASH_SLOTS

Platforms: All
Tune lock hash list; more hash slots means shorter hash
chains.
Not necessary except under very high load
Prime number values are recommended.
Default: 101

•
•

•

•

•

•
•
•

•
•

•

•
•

•

•
•

•

•
•

•

•
•
•
•

•
•

•
•
•

Server Configuration

34

Parameter Description

MAX_DB_VIRMEM_USE

Platforms: Windows
Define an upper percentage limit of how much of the available
virtual memory InterBase can use for its large memory
allocations like those of database cache etc. This is set as a
percentage of total virtual memory available to the process.
This can be used to set the limit to a lower level if you observe
that other critical memory allocations such as file I/O buffers,
file handles, socket buffers etc. need the user space.
Valid range that can be set is between 50 and 100.
Please note that setting this to 100 indicates that InterBase can
use up all available virtual memory for its database cache etc.
This is not recommended. For e.g.

setting this to 90 (the default), indicates that on a 2GB
virtual address space, InterBase process will only use up
1.8GB of the available virtual memory for database cache
allocations; the rest will be available for other critical
memory allocations.

MAX_THREADS

Platforms: All
Controls the maximum number of threads that can be active
at one time within the InterBase engine. The listed value
applies to a system with multiple licensed CPUs. For a single
CPU system, the value defaults to 1 which eliminates the
synchronization overhead required by multiple CPUs.
Default: 1000000

MAX_ASSISTANTS

Platforms: All
Controls the maximum number of threads that can be active
assisting other threads with their tasks. This number should be
less than the number of CPUs on which InterBase can run.
Default: 1

MEMORY_RECLAMATION

Platforms: All
Number of seconds between attempts to return unused
memory to OS.
This parameter enables better co-existence with neighboring
processes by not monopolizing memory. It cannot guarantee
that other processes will behave in kind.
0 = disable memory reclamation
1 = memory reclamation on attach of first database
2 = memory reclamation on detach of last database
3 = 1 + 2 above
> 15 = number of seconds between memory reclamations
Default: 300

PAGE_CACHE_EXPANSION

Platforms: All
Number of MB of memory to expand page buffer cache until
upper limit is reached. The upper limit can be a database-
specific setting or the DATABASE_CACHE_PAGES parameter.
The page buffer cache is expanded when there are no more
free buffers, which occurs when all buffers have been loaded
with a database page.
This parameter is used to smooth the memory allocation of
page buffers to match demand generated by client load.
0 = allocate all page buffers on first database attach.
> 0 = expand this many MBs at a time until all page buffers
allocated.
Default: 256

•
•

•

•
•

•
•

•

•
•

•

•
•

•

•
•
•
•
•
•

•
•

•

•
•

•

Server Configuration

35

Parameter Description

PREDICTIVE_IO_PAGES

Platforms: All
Starting with InterBase XE7, InterBase introduced predictive I/
O mechanism to populate in-memory database cache with
interesting pages that can be fetched instead of read from disk
by request worker threads.
This setting allows you to manipulate the number of pages to
be prefetched in one shot, between the values 0 and 64.
As a special case, a setting of 0 pages will disable the predictive
I/O mechanism
Valid values include:

 Default: 64
 Valid range for predictive I/O: 1-64
 Disable feature: 0

This parameter should be left on its default status and
changed only for testing purposes when it is suspected to
produce performance issues.

For: 2017 Update 2 and above only.

SERVER_CLIENT_MAPPING

Platform: Windows
Size in bytes of one client’s portion of the memory mapped file
used for interprocess communication.
Valid values are 1024, 2048, 4096, 8192
Default: 4096

SERVER_PRIORITY_CLASS

Platforms: Windows
Priority of the InterBase service on Windows
The value 1 is low priority, 2 is high priority
Default is 1

SERVER_WORKING_SIZE_MAX

Platforms: Windows
Threshold above which the OS is requested to swap out all
memory.
Default is 0 (system-determined)

SERVER_WORKING_SIZE_MIN

Platforms: Windows
Threshold below which the OS is requested to swap out no
memory.
Default is 0 (system-determined)

SOLARIS_BOUND_THREADS

Platform: Solaris
When set to 1 each user-level thread is bound to a LWP thread.
The default of 0 creates user-level threads unbound and
causes a user-level scheduler to map them to available LWPs.
Default: 0

SOLARIS_SYNC_SCOPE

Platform: Solaris
When set to 1 threads use process-level synchronization
variables.
The default of 0 causes thread-level synchronization variables
to be used.
Default: 0

SORTMEM_BUFFER_SIZE

Platforms: All
Specifies the size of a sort buffer in memory.
Versions of InterBase before 7.1 used to have a static value of
approx. 128 KB. This is now configurable per server using this
parameter. The default value is just about 1 MB.
Setting this to a higher value will enable better performance in
large sort-merge queries.
Default: 1048500

•
•

•

•

•

•

•
•

•
•

•
•
•
•

•
•

•

•
•

•

•
•
•

•

•
•

•

•

•
•
•

•

•

Server Configuration

36

Parameter Description

SQL_COMPILER_RECURSION

Platforms: All
Specifies the call depth that the recursive descent parsing
algorithm will try during SQL compilation phase of statement
preparation. If the call depth would exceed this limit than a
stack overflow is declared and returned as an error. Note that
this is an artificial stack overflow detection and not a hardware
detected stack overflow.
Default: 2000

STARTING_TRANSACTION_ID

Platforms: All
Version: starting in InterBase XE7
ODS version: 16+
The database server/engine will automatically create/restore
databases with this transaction ID as the starting number.
If you want to restore your database(s) to test with very high
transaction ID numbers, to evaluate 48-bit transaction ID
support, set this value and restart InterBase.
Valid values include any value >= 0, that can be represented in
a 48-bit Integer data type.
Default starting transaction ID on database create/restore is 0
Default: 0

SWEEP_QUANTUM

Platform: All
Specifies the maximum number of records that a garbage
collector thread or a sweeper thread is allowed to work before
yielding control back to the worker threads.
Default:10

SWEEP_YIELD_TIME

Platforms: All
Specifies the time, in milliseconds, the sweeper or garbage
collector thread sleeps.
Default:1 millisecond

TCP_REMOTE_BUFFER

Platforms: All
TCP/IP buffer size for send and receive buffers. This applies to
both client and server programs.
Valid range is 1448 to 32768
Default: 8192 bytes

TMP_DIRECTORY

Platforms: All
Directory to use for storing temporary files (such as sort files).
Default is the value of environment variables INTERBASE_TMP
or TMP, in that order; otherwise /tmp on UNIX or C:\temp on
Windows NT/2000/XP.
If you have lots of space in your default temporary folders as
above, then there is no need to mention any further directory
listings here.
Specify directory path and number of bytes available in the
directory.
Directory path MUST be enclosed in double quotes.
Format for entry is as follows.

TMP_DIRECTORY <MaxBytes> <AbsoluteDirectoryPath>
MaxBytes should be a number indicating maximum space
in bytes to be used in the directory, of type 32-bit
unsigned integer.
Valid range: 1MB - 4GB (in bytes)

For e.g.
TMP_DIRECTORY 500400300 "C:\Temp"
TMP_DIRECTORY 1500400300 "/tmpdir"

List multiple entries, one per line; directories are used in the
order specified.

USER_QUANTUM

Platforms: All
Specifies the maximum number of records that a worker
thread (thread running an user query) is allowed to work
before yielding control back to other threads.
Default: 1000

•
•

•

•
•
•
•

•

•

•
•

•
•

•

•
•

•

•
•

•
•

•
•
•

•

•

•
•

•

•

•
•

•

Server Configuration

37

Parameter Description

V4_EVENT_MEMSIZE
Platforms: All
Bytes of shared memory allocated for event manager.
Default: 32768

V4_LOCK_GRANT_ORDER

Platforms: All
1 means locks are granted first come, first served.
0 means emulate InterBase V3.3 behavior, where locks are
granted as soon as they are available; can result in lock
request starvation.
Default: 1

V4_LOCK_MEM_SIZE
Platforms: All
Bytes of shared memory allocated for lock manager.
Default is 98304 on Linux and Solaris, 256K on Windows.

V4_LOCK_SEM_COUNT

Platforms: All
Number of semaphores for interprocess communication
(Classic architecture only).
Default: 32

V4_LOCK_SIGNAL

Platforms: All
UNIX signal to use for interprocess communication
(Classic architecture only).
Default: 16

V4_SOLARIS_STALL_VALUE

Platform: Solaris
Number of seconds a server process waits before retrying for
the lock table mutex.
Default is 60

11. Viewing the Server Log File

InterBase Server logs diagnostic messages in the file interbase.log in the InterBase
install directory. Any messages generated by ibserver are sent to this file. This can be an
important source of diagnostic information if your server is having configuration problems.

Refer to the Language Reference for a list of error messages that can appear in this file.

IBConsole displays this log file in a standard text display window. To display the Server Log
dialog:

Select a server and expand it if it is not already expanded, click Server Log and then
double-click View Logfile in the Work pane.
Right-click a server in the Tree pane and choose View Logfile from the context menu.
Select a server and then choose View Logfile from the Server menu.

The standard text display window enables you to search for specific text, save the text to a
file, and print the text. For an explanation of how to use the standard text display window,
see Text Viewer Window.

•
•
•

•
•
•

•

•
•
•

•
•

•

•
•
•
•

•
•

•

•

•
•

Server Configuration

38

http://docwiki.embarcadero.com/InterBase/2020/en/Text_Viewer_Window

Network Configuration

This chapter details issues with configuring InterBase in a networked client/server
environment. Topics include network protocols supported by InterBase, remote connection
specifiers, encrypting the data that passes between servers, and network troubleshooting
tips.

1. Network Protocols

InterBase supports TCP/IP for all combinations of client and server platforms. Additionally,
InterBase supports NetBEUI on Windows server platforms and for all Windows clients, and a
local connection mode (involving inter-process communication but no network interface) for
Windows clients.

InterBase is designed to allow clients running one operating system to access an InterBase
server that is running on a different platform and operating system than the client.

"Windows server platforms" refers to the supported Windows Server versions. "Windows
non-server platforms" refers to the supported Windows versions designed for personal
computers.

For a list of supported Windows and Linux versions refer to System Requirements/
Prerequisites.

InterBase server platform

Client platform Windows non‑server
Windows

server
UNIX

Windows non-server TCP/IP , Local TCP/IP, NetBEUI TCP/IP

Windows server TCP/IP TCP/IP, NetBEUI, Local TCP/IP

UNIX/Linux TCP/IP TCP/IP TCP/IP

See Also

Connecting to Servers and Databases
Connection Troubleshooting

2. Connecting to Servers and Databases

Before performing any database administration tasks, you must first register and log in to a
server. Once you log in, you can register and connect to databases residing on the server.
You can switch context from one connected database to another by selecting the desired
database from the IBConsole Tree pane. The selected database in the Tree pane is referred
to as the current database. The selected server or the server where the current database
resides is referred to as the current server.

See Also

Network Protocols
Encrypting Network Communication
Connection Troubleshooting

•
•

•
•
•

Network Configuration

39

http://docwiki.embarcadero.com/InterBase/2020/en/System_Requirements/Prerequisites
http://docwiki.embarcadero.com/InterBase/2020/en/System_Requirements/Prerequisites

Communication Diagnostics

2.1. Adding a Server

You can access the Add Server Wizard in IBConsole by one of the following methods:

Choose Server|Add or click the Add a New InterBase Server toolbar button.
Double-click InterBase Servers in the Tree pane.
Right-click InterBase Servers and choose Add from the context menu.

When you add a server, and there is no local server yet added, the Local Server dialogue
opens.

If a local server already exists, the Remote Server Setup dialog opens.

To add a local server:

Once you have clicked Server|Add, click Next in the Welcome dialog to advance to
the Local Server Setup panel.

Select a server instance from the drop-down list.

•

•
•
•

1.

2.

Network Configuration

40

Click Next and Specify Credentials opens.

You can choose to just add the server (without logging in) or you can choose to
add and connect to the server simultaneously.
If you want to just add the server you can ignore the Login Information and click
Next.
If you want to add and connect to the server simultaneously, enter a username
and password in the corresponding text fields and click Next.

Note:
The usernames and passwords must be the InterBase usernames and
passwords stored in the InterBase security database (admin.ib by default) on
the server.

Click Next to advance to the Finish Wizard. Here you have the option to enter a
description name for the server.

Click Finish and once a server is added, IBConsole displays it in the Tree pane.

3.

4.

5.

6.

Network Configuration

41

To add a remote server:

Choose Server > Add or click the Add a New InterBase Server toolbar button and
the Remote Server Setup dialog appears.

Browse the name of the server.
Specify the instance name (the default is gds_db)
The InterBase server name is the name of the database server machine. There is
not a specific name for the InterBase server process itself. For example, if the
server is running on the NT server “venus”, you enter this name in the Server
Name text field.
Enter an alias name in the Optional: Specify an Aliasname text field.
The network protocol you select can be TCP/IP on any platform. On Windows, it
can also be NetBEUI or local. Protocols are valid only when they are supported by
both the client and the server.
Click Next and Specify Credentials opens.

You can choose to just add the server (without logging in) or you can choose to
add and connect to the server simultaneously.
If you want to just add the server you can ignore the Login Information and click
Next.
If you want to add and connect to the server simultaneously, enter a username
and password in the corresponding text fields and click Next.

Note:
The usernames and passwords must be the InterBase usernames and
passwords stored in the InterBase security database (admin.ib by default) on
the server.

1.

2.
3.

4.
5.

6.

7.

Network Configuration

42

Click Next to the Finish Wizard dialog. Here you have the option to enter a
description name for the server.

Click Finish and once a server is added, IBConsole displays it in the Tree pane.

2.2. Logging in to a Server

You can access the Server Login dialog in IBConsole by one of the following methods:

In the Tree pane, select a registered server that is not already logged in. Choose Server|
Login, or double-click Login in the Work pane.
In the Tree pane, double-click a registered server that is not already logged in.
In the Tree pane, right-click a registered server that is not already logged in and choose
Login from the context menu.

The Server Login dialog appears:

To log in to a server:

Verify that the server displayed in the Server field is correct.
Enter a username and password in the corresponding text fields. For convenience,
IBConsole defaults the UserName text field to the last username that was used to
log in (successfully or unsuccessfully).

The usernames and passwords must be the InterBase usernames and
passwords that are stored in the InterBase security database (admin.ib by
default) on the server.
The username is significant to 31 bytes and is not case-sensitive. The
password is significant to eight characters and is case-sensitive.
All users must enter their username and password to log in to a server. The
username and password are verified against records in the security database.
If a matching record is found, the login succeeds.

Click Login to log in to the server.

8.

9.

•

•
•

1.
2.

•

•

•

3.

Network Configuration

43

Important:
Initially, every server has only one authorized user with username SYSDBA. The SYSDBA
must log on and add other authorized users. For more information about how to add
new users, see User Administration with IBConsole.

2.3. Logging Out from a Server

Logging out from a server automatically disconnects all databases but does not un-register
any databases on the server.

You can log out from a server in IBConsole by one of the following methods:

Select a connected server in the Tree pane (you can also select any branch under the
desired server hierarchy) and choose Server|Logout.
Select a connected server in the Tree pane and double-click Logout in the Work pane.
Right-click a connected server in the Tree pane and choose Logout from the context
menu.

A confirmation dialog asks you to confirm that you wish to close the connection to the
selected server. Click Yes if you want to log out from the server, otherwise click No.

2.4. Removing a Server

To remove a server in IBConsole by one of the following methods:

Select Menu |Server > Remove from the toolbar menu.
Click the Remove InterBase Server toolbar button.

A confirmation dialog asks you to confirm that you wish to remove the selected server. Click
Yes if you want to remove the server, otherwise click No.

Note:
Removing a server removes that server from the Tree pane and automatically logs you
out of the current server as well as disconnects any databases on the server.

See Also

Adding a Server
Logging in to a Server
Logging Out from a Server

2.5. Adding a Database

You can access the Add Database and Connect dialog in IBConsole by one of the following
methods:

Choose Database|Add.
Expand a connected server branch. Right-click Databases in the Tree pane and choose
Add from the context menu.
Select a disconnected database in the Tree pane and double-click Add in the work pane,
or right-click the database and choose Add from the context menu.

•

•
•

•
•

•
•
•

•
•

•

Network Configuration

44

To Add a Database:

Make sure the server displayed in the Server field is correct.
Enter the database filename, including the path where the file is located, in the File
text field. For databases that reside on the local server, you also have the option
of clicking the Browse button to locate the file you want. The Browse button is
disabled for all remote servers.
Type an alias name for the database in the Alias Name text field. This is the name
that will appear in the IBConsole window. If you omit this step, the alias defaults to
the filename that you select in step 2.
Check the Save Alias Information check box if you wish to permanently register
the database. This saves the database alias name in the Windows registry.
Check the Use alias DB Connect check if you have specified an Alias Name and you
want to connect using it instead of using the File entry.
You also have the option to save your password so it is automatically supplied
each time you log in.
At this point you can choose to just add the database without connecting, or you
can choose to add and connect to the database simultaneously. If you only want
to add the database, ignore the Login Information and click OK.
If you want to add and connect a database simultaneously, type the username,
password and optional role and default character set for the database in the
corresponding text fields and click OK. If you want to connect using a role, specify
the role in the Role text field. This is optional. Connecting using a role gives you all
privileges that have been assigned to that role, assuming that you have previously
been granted that role with the GRANT statement. For more information on roles,
refer to SQL Roles.

Once you add a database, it appears in the Tree pane.

See Also

Connecting to a New Database
Disconnecting a Database
Un-registering a Database

2.6. Connecting to a New Database

IBConsole provides two methods for connecting to a database. The first method is a quick
connect using the username and password that were supplied with the login to the server
to instantaneously connect the database. The second method allows you to connect to the

1.
2.

3.

4.

5.

6.

7.

8.

•
•
•

Network Configuration

45

database using a different username and password by accessing the Database Connect
dialog.

2.6.1. Connecting to a Database Using Connect

If you want to perform an automatic connect, using the username and password supplied
for the server login to instantaneously connect the database, you can do so by one of the
following methods:

Select a disconnected database in the Tree pane. Choose Database|Connect, choose
Connect in the Work pane, or click on the Database Connect toolbar button.
Right-click a disconnected database in the Tree pane and choose Connect from the
context menu.
Double-click a disconnected database in the Tree pane.

Once you connect to a database, the database tree expands to display the database
hierarchy.

2.6.2. Connecting to a Database Using Connect As

If you want to access the Connect Database dialog in IBConsole to connect to the database
using a different username and password from that which was supplied in the server login,
you can do so by one of the following methods:

Select a disconnected database in the Tree pane. Choose Database|Connect As or
choose Connect As in the Work pane.
Right-click a disconnected database in the Tree pane and choose Connect As from the
context menu. This displays the Database Connect dialog box:

To Connect to a Database:

Verify that the database displayed in the Database field is correct.
Type the username and password for the database in the corresponding User
Name and Password text fields.
If you want to connect as a role, specify the role in the Role text field. This is
optional. Connecting as a role gives you all privileges that have been assigned to
that role, assuming that you have previously been granted that role with the
GRANT statement. Once you have typed a character in the Role field, the Case
Sensitive Role Name field becomes active. Check this box if you want the server to
consider case in the role name. Role names are case insensitive by default. For
more information on roles, refer to SQL Roles.

•

•

•

•

•

1.
2.

3.

Network Configuration

46

Select the SQL Client dialect. The dialect for the database connection will default
to the lower value of the client or server. For more information on SQL dialects,
refer to “Understanding SQL Dialects” in the migration appendix of the InterBase
Operations Guide.
Optionally, you can choose a character set to use. If you do not specify one here,
the server uses the default set that was specified at creation time.
Click Connect.

Once you connect to a database, the database tree expands to display the database
hierarchy.

2.7. Disconnecting a Database

You can disconnect a database in IBConsole by one of the following methods:

Select a connected database in the Tree Pane (you can also select any branch under the
desired database hierarchy) and choose Database|Disconnect or click the Disconnect
Database toolbar button
Select a connected database in the Tree pane and double-click Disconnect in the Work
pane.
Right-click a connected database in the Tree pane and choose Disconnect from the
context menu.

A confirmation dialog asks you to confirm that you wish to close the connection to the
selected database. Click OK if you want to disconnect the database, otherwise click Cancel.

See Also

Adding a Database
Connecting to a New Database
Un-registering a Database

2.8. Un-registering a Database

Un-registering a database automatically disconnects the current database and removes it
from the Tree pane.

You can un-register a disconnected database in IBConsole by one of the following methods:

Select a database in the Tree pane (you can also select any branch under the desired
database hierarchy) and choose Database|Un-register.
Select a database in the Tree pane and double-click Un-register in the Work pane.
Right-click a database in the Tree pane and choose Un-register from the context menu.

A confirmation dialog asks you to confirm that you wish to un-register the database. Click
Yes if you want to un-register the database, otherwise click No.

See Also

Adding a Database
Connecting to a New Database
Disconnecting a Database

2.9. Connection-specific Examples

Here are some examples of connecting to databases on various types of servers.

For a Windows server, the database path name must contain the appropriate drive
letter designation. For example, to connect to a local database:

4.

5.

6.

•

•

•

•
•
•

•

•
•

•
•
•

•

Network Configuration

47

D:\users\accting\fin\accred.ib

To connect to a database on a remote server using the TCP/IP protocol:

ntserver:D:\users\accting\fin\accred.ib

To connect via NetBEUI (Windows server platforms only), use UNC notation:

\\ntserver\D:\users\accting\fin\accred.ib

For a UNIX or Linux server, you must enter the complete and absolute directory path
for the database. For example:

server:/usr/accting/fin/accred.ib

See Also

Logging in to a Server
Logging Out from a Server
Adding a Database
Connecting to a New Database
Disconnecting a Database

3. Encrypting Network Communication

Information sent to an InterBase remote client from a database server is unencrypted
during the transmission process, even when the data was encrypted prior to transmission.
This creates an opportunity for a security breach. To protect against this, you can use the
Over-the-Wire (OTW) encryption feature of InterBase to encrypt data during the
transmission process.

In the XE3 release, a Strong Encryption license was incorporated into the server license that
allows AES encryption which applies to OTW. This is no longer an add-on license, but is
automatically part of Server/Desktop.ToGo Edition.

You can also use InterBase to encrypt a database and/or individual columns in a database
table. For information on how to do so, see the Data Definition Guide.

Note:
The OTW functionality is designed to be used in conjunction with the InterBase database
user name and password. It is not meant to replace it.

See Also

Network Protocols
Connecting to Servers and Databases
Connection Troubleshooting
Communication Diagnostics

3.1. Requirements and Constraints for Encrypted Network
Communications

InterBase OTW encryption is provided using SSL v3 and TLS v1 security protocols. SSL uses
the X.509 standard for its public key infrastructure. Both the InterBase client and server
must have the X.509 files installed to use OTW encryption.

•

•

•

•
•
•
•
•

•
•
•
•

Network Configuration

48

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

InterBase uses the following conventions on both the client and server sides:

All the X.509 PKI (public key infrastructure) files, which include the certificate file and the
CA files, must be in the Privacy Enhanced Mail (PEM) format.
The clientCertFile and IBSSL_SERVER_CERTFILE parameters always refer to the PEM
formatted file that contains the CA signed certificate and the private key. These files
should not be distributed.
The serverPublicPath and serverPublicFile parameters on the client, and
IBSSL_SERVER_CAFILE and IBSSL_SERVER_CAPTH on the server, always refer to the
public key certificate.
InterBase supports both stronger (AES) and weak (DES) encryptions out of the box.
InterBase XE and earlier supports the use of weak encryption (DES) out of the box, but
to use stronger encryption (AES), you must, due to U.S. export regulations, obtain a
strong encryption license from InterBase and install it on the server machine.

Note:
The InterBase JDBC driver now supports the OTW functionality.

3.2. Setting up OTW Encryption

InterBase OTW encryption consists of two parts: one resides on the server side and the
other resides on the client side and works to secure the server. The sections below explain
how to set up OTW on both the server and client sides. Sample OTW configurations follow
the instructions.

Note:
For information on specifying JDBC properties for OTW, see SSL File Properties. Also in
the Developer's Guide, table 4.10 defines the new extended properties.

Before setting up OTW encryption on the server or client side, you must first obtain the
necessary security certificates, provided by your Certificate Authority (CA) vendor. InterBase
uses these certificates to verify identity information.

3.2.1. Generating Security Certificates

OTW requires the generation and use of the following certificates:

A public key certificate for the server. For example, ibserverCAfile.pem
The server’s private key and server certificate. For example, ibserver.pem

You can use any SSL tool to generate these certificates, or contact your IT department or CA
vendor. To learn how to create SSL certificates using OpenSSL, see the following website:

http://www.openssl.org/docs/apps/openssl.html

3.2.2. Setting up the Client Side

The client application indicates to the InterBase client library that it needs to perform OTW
encryption via the connection string. The connection string takes the OTW parameters
before the database path/name, as specified in the syntax below.

Note:
The existing OTW properties have been changed to the new JDBC OTW properties.

•

•

•

•

•
•

•

Network Configuration

49

http://docwiki.embarcadero.com/InterBase/2020/en/SSL_File_Properties
http://docwiki.embarcadero.com/InterBase/2020/en/Developer%27s_Guide
http://www.openssl.org/docs/apps/openssl.html

Important:
It is strongly recommended that the old native OTW properties no longer be used.
However, the new native client and server supports both the old and new names.

It is likely that this will be the last release of InterBase Client which supports the old
parameters. It is important that you start using the new parameters:

Old OTW Client Properties:
New OTW Properties Starting with

InterBase XE:

OTWENABLE ssl=true

PASSPHRASE clientPassPhrase

PASSPHRASEFILE clientPassPhraseFile

CERTFILE clientCertFile

CAFILE serverPublicFile

CAPATH serverPublicPath

Syntax: To enable OTW on the client side, use the following syntax for your database
connection string:

<secure server host name>[/secure server port name | secure server port number]?
ssl=true[?serverPublicFile=complete location of the CA file | ?
serverPublicPath=name
 of directory containing the CA certificates |?clientCertFile=name of the client
certificate file][?clientPassPhraseFile=pass phrase filename |?
clientPassPhrase=pass phrase]??:<database path>/<database name>

The starting '?ssl=true' and the ending '??' are mandatory, and work as demarcations for the
OTW encryption parameters. Table 5.3 lists the descriptions of the options used in the
syntax sample.

Options Description

secure server host name

The hostname, Fully Qualified Domain name, or IP address of the
machine that is hosting the secure InterBase server. If the
machine has multiple network interface cards, define the
hostname/IP of the interface that is used by the InterBase server.

secure server port name

If you have a local service name associated with the socket port
of the remote server, mention that name here; this is typically
defined in the /etc/services file on Unix or on the <windows
system directory>/drivers/etc/services file on Windows. The
client library will automatically translate this to the socket port
number at connection time.

Network Configuration

50

Options Description

secure server port number
The socket port number where the remote server is listening for
secure connection requests. You provide this OR the port name
above; not both.

ssl

This must be set for any of the other OTW parameters to be
accepted and for the connection to be secure.

Note: This option replaces the “OTWENABLE” option. It is
strongly recommended that the OTWENABLE option no
longer be used.

serverPublicFile

Location of the certificate file. By default, InterBase searches for
ibserverCAfile.pem in the user’s home directory. Both the
serverPublicFile and serverPublicPath (defined below) must
follow the PEM format as per standard SSL requirements. The
client will not be expected to create this file. This file will be
created by the database administrator of the server you are
connecting to. If you are the person generating this file, please
ensure that the public certificate file has been created binding
the certificate to the DNS of the server. This DNS must match the
<secure host name> used by the client.

Note: This option replaces the “CAFILE” option. It is
strongly recommended that the CAFILE option no longer
be used.

serverPublicPath

If you use and mention the serverPublicPath, then each file in the
directory must contain only a single CA certificate and the files
must be named by the hash of the subject name and extension
of “.0”. There are no default for this option. It is recommended
that you use the serverPublicFile as opposed to serverPublicPath;
if you specify both, serverPublicFile will be used. The
organization hosting the server will provide the CA file. This file is
used to verify that the connection is being made to a legitimate
and verified server. Care must be taken to ensure that you are
referencing the CA you want to use. Please see About the
“c_rehash” command for more information.

Note: This option replaces the “CAPATH” option. It is
strongly recommended that the CAPATH option no longer
be used.

In addition, if you need to enable server verification of the client, you can use the
parameters described in the table below. An example follows the table:

Parameter name Description

clientCertFile

Location and name of the client certification file. This certificate
will be presented to the server during the SSL connection phase.
The clientCertFile must be in the PEM format and must contain
both the client certificate and the private key.

Note: This option replaces the “CERTFILE” option. It is
strongly recommended that the CERTFILE option no longer
be used.

clientPassPhraseFile

Name and location of the text file containing the client private
key passphrase. You can use either the clientPassPhrase File
parameter, or the clientPassPhrase parameter.

Note: This option replaces the “PASSPHRASEFILE” option.
It is strongly recommended that the PASSPHRASEFILE
option no longer be used.

Network Configuration

51

Parameter name Description

clientPassPhrase

Specify a private key PassPhrase. You can use either the
clientPassPhrase parameter or the clientPassPhraseFile
parameter.

Note: This option replaces the “PASSPHRASEFILE” option.
It is strongly recommended that the PASSPHRASEFILE
option no longer be used.

Following is a sample of how to use these parameters in an isql command:

isql> connect ‘localhost/gds_ssl?ssl=true?clientPassPhrase=clientkey?
clientCertFile=c:\ib_builds\InterBase\secureserver\client\client.pem?
serverPublicFile=c:\ib_builds\InterBase\secureserver\client\
serverCAfile.pem??:c:/foo.ib’

3.2.3. About the “c_rehash” command

Use this command if you want to use the serverPublicPath parameter instead of the
serverPublicFile on the client or the IBSSL_SERVER_CAPATH instead of the
IBSSL_SERVER_CAFILE parameter on the server. For more information on how to set up this
directory please go to the OpenSSL website and look for the c_rehash command.

“c_rehash” is a command provided by OpenSSL. This script automatically creates symbolic
links to a directory of certificates. For example, suppose that you have a directory called
some/where/certs, which contains several CA certificates, and that you want to prepare this
directory for use as a serverPublicPath directory. In this case, you can use the following
commands:

cd /some/where/certs
c_rehash .

3.3. Setting up the Server Side

After you have enabled the client side for OTW, you must change the configuration
parameters in the SSL configuration file called “ibss_config.” This file is located in
“<install_directory>\secure\server” directory. The configuration file contains information
required by the server. Instructions on how to set up this file are provided below.

In addition, the InterBase server requires two DH (Diffie-Hellman) parameter files to
operate. For more information about the dhparameter files, see Generating the
dhparameter files.

3.3.1. Changing the ibss_config file

Following is sample ibss_config file:

IBSSL_SERVER_HOST_NAME=localhost
IBSSL_SERVER_PORT_NO=3065
IBSSL_SERVER_PHASSPHRASE=serverkey
IBSSL_SERVER_clientCertFile=<install_directory>/secure/server/ibserver.pem
#IBSSL_SERVER_PASSPHRASEFILE=c:/secure/pass.txt
#example comment line
#only needed for client verification
#IBSSL_SERVER_VERIFY_CLIENT
#IBSSL_SERVER_CAFILE=<install_directory>/secure/server/root.pem

The following table provides a description of each parameter in the sample above.

Network Configuration

52

Parameter Description

IBSSL_SERVER_PORT_NO and
IBSSL_SERVER_HOST_NAME

Port number and the hostname of the SSL port number and SSL
machine name (can be localhost) of the InterBase server the
InterBase Server is running on. The defaults are machine name
or host name and '3065.' In most cases, the
IBSSL_SERVER_HOST_NAME need not be set.

IBSSL_SERVER_CERTFILE

Location of the private key stored in a file.This will be used by the
server for encryption. (Default location and filename: will the
<install_directory>/secure/server/ibserver.pem. The
IBSSL_SERVER_CERTFILE must be in PEM format and must
contain both the private key and the certificate.

IBSSL_SERVER_PASSPHRASEFILE

Location of the file containing the passphrase. This must be
secure. Make sure you have the correct permissions for this file;
the server only needs read access to the file during start up time.
The log file will indicate via a message that the passphrase is not
loaded. This means you can have the pass phrase on a
removable media and once the server has started the media
(and hence the passphrase) maybe safely removed.

IBSSL_SERVER_PASSPHRASE

Contains the server pass phrase to be used in conjunction with
the server certificate file. Use this instead of the
IBSSL_SERVER_PASSPHRASEFILE. If both are set the
IBSSL_SERVER_PASSPHRASE is used instead of
IBSSL_SERVER_PASSPHRASEFILE. If both are not set, InterBase
assumes that the private key does not contain a pass phrase.

IBSSL_SERVER_VERIFY_CLIENT

If this parameter is set, then the server will ensure that the client
has sent us a certificate. This certificate will be verified against
the file specified in the IBSSL_SERVER_CAFILE (or the directory
specified in the IBSSL_SERVER_CAPTH).

IBSSL_SERVER_CAFILE

Location of the file containing the CA file, which can be used to
verify the client certificate.There is no default for this file.
However, it is recommended that you locate the file in
<install_directory>/secure/server/ and call it ibrootcert.pem. The
file must be in PEM format and is needed only if the
IBSSL_SERVER_VERIFY_CLIENT flag is set.

IBSSL_SERVER_CAPATH

Used for the same purpose as the IBSSL_SERVER_CAFILE.
However, in this case, the parameter points to a directory
containing the CA certificates in PEM format. The files each
contain one CA certificate and are only needed if the
IBSSL_SERVER_VERIFY_CLIENT flag is set. The files are looked up
by the CA subject name hash value, which must be available. See
About the “c_rehash” command for information about this
command, which can be used to convert multiple PEM files into a
IBSSL_SERVER_CAPATH-accessible directory.

In addition, InterBase following information is assumed about the ibss_config file:

General format of the file is <parameter_name>=value.
Lines starting with “#” are assumed to be comments.
Lines greater than 1023 characters are truncated to 1023 characters.
Spaces at the end of the line are considered part of the name or number, so do not put
spaces at the end of a line. In case of a filename, enclose the filename in straight
quotation marks to avoid problems with unseen space characters at the end of the line.

•
•
•
•

Network Configuration

53

3.3.2. Generating the dhparameter files

As mentioned above, to use OTW, the server also requires two DH (Diffie-Hellman)
parameter files. These are located at <install_directory>/secure/server and are called
dh512.pem and dh1024.pem, respectively. InterBase uses the DH key exchange protocol to
establish a SSL connection, be it DSA- or RSA-based. InterBase also uses ephemeral mode to
ensure forward secrecy.

You are encouraged to generate your own DH parameter files, if you want these files to be
unique to your installation. Otherwise, the default ones provided by InterBase will be used.
In order for the InterBase server to make successful SSL connections, these files are
required.

To create the dhparameter files, use the following commands:

openssl dhparam -check -text -5 512 -out dh512.pem
openssl dhparam -check -text -5 1024 -out dh1024.pem

After generating the files, copy them to the <install_directory>/secure/server directory.

3.4. Sample OTW Configurations

The following sample configurations were designed to help you effectively enable and
implement OTW across your network.

3.4.1. Sample 1: Setting up the Client and Server Without Client Verification by
the Server

This is the setup that most InterBase customers will use. In this setup, the server’s identity is
provided by the server’s certificate and the client verifies that the server matches what the
client wanted to connect to. The client also authenticates the server certificate based on a
CA file located on the client.

Setting up the server

To set up the sample server for OTW, take the following steps:

Create the ibserverCAfile.pem and the ibserver.pem files.
Copy the ibserver.pem file to <install_directory>/secure/server/ibserver.pem.
Create or copy the ibss_config in the <install_directory>/secure/server/ directory
from the ibss_config default file.
Setup and create the 2 dhparam files in the <install_directory>/secure/server
directory, if you want unique ones for your location.
Start the server, which should be set up for receiving SSL connections on port
3065 (default).

Setting up the client

To set up the sample client for OTW:

Copy the ibserverCAfile.pem provided by the server DBA to the user’s home
directory.
Using isql, make a connection using the following as your URL. Assume your server
and client are on the same machine then the hostname is “localhost”.

1.
2.
3.

4.

5.

1.

2.

Network Configuration

54

isql> connect “localhost/3065?ssl=true??:c:/foo.ib”;

You are now set up to use OTW. This example used default locations for all the certificate
and CA files used. If you do not use the defaults and decide to change the location of the
server files, you must change the IBSSL_SERVER_CERTFILE parameter in the ibss_config file
to point to your PEM formatted Certificate (plus private key) file.

If you locate the CA file (on the client machine) in a directory other than your home directory
use the following command on connect:

isql> connect “localhost/3065?ssl=true?serverPublicFile=<your CA file location
and name>??:c:/foo.ib”;

3.4.2. Sample 2: Setting up the Client and Server for Verifying the Client

To setup InterBase with client side verification, you must first perform all the steps in
Sample 1 for both server and client setup. For this example, we will assume that InterBase is
installed in C:\InterBase.

Setting up the server

To set up the sample server:

Copy the ibrootcert.pem file to the <install_directory>/secure/server directory.
This is the public key certificate used by the server to identify the client.
The ibss_config file must be modified to indicate to the server that client
verification has been enabled, and that the public key certificate location. This is
done by adding the following to the <install_directory>/secure/server/ibss_config
file:

IBSSL_SERVER_VERIFY_CLIENT
IBSSL_SERVER_CAFILE=c:\InterBase\secure\server\ibrootcert.pem

Setting up the client

To set up the sample client:

Copy the ibclient.pem file, which is a PEM formatted file that contains the client
certificate and private key, to your HOME directory on the client. Assume that your
HOME directory is C:\smistry, then the complete path for the file will be c:
\smistry\ibclient.pem.
Specify the location of your client certificate and private key on the connection
URL. For example, if you are connecting to c:/foo.ib using isql, the command would
be:

isql> connect “localhost/3065?ssl=true?clientCertFile=C:
\smistry\ibclient.pem??:c:/foo.ib”;

3.4.3. Sample 3: Setting up a JDBC Client and InterBase Server for Verifying the
Client

These instructions are only needed if you need your JDBC client connection verified by the
server. Use the Sun provided keytool.

1.

2.

1.

2.

Network Configuration

55

You can use the "keytool -genkey" to generate a new self signed private key and public key
pair. This password is to be used when making a connection via JDBC (clientPassPhrase).

Examples:

[C:/ib_svn_build/certificates] keytool -genkey -keystore smclient.jks
Enter keystore password: client
What is your first and last name?
 [Unknown]: Shaunak Mistry
What is the name of your organizational unit?
 [Unknown]: InterBase
What is the name of your organization?
 [Unknown]: Embarcadero
What is the name of your City or Locality?
 [Unknown]: Scotts Valley
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Shaunak Mistry, OU=InterBase, O=Embarcadero, L=Scotts Valley, ST=CA, C=US
correct?
 [no]: yes

Enter key password for <mykey>

RETURN if same as keystore password):

These commands created a new keystore called smclient.jks. It contains your private and
public key and a self signed certificate.

If you follow this example then the following values need to be appended to your JDBC
connection URL to make a JDBC connection using client side verification.

?clientPrivateFile=c:/smistry/smclient.jks?clientPassPhrase=client

Next you can use the keytool -export -rfc to export you public key. This public key must be
added to the server, and pointed to by the server using the IBSSL_SERVER_CAFILE option in
the ibss_config file.

[C:/ib_svn_build/certificates] keytool -export -rfc -keystore smclient.jks

Enter keystore password: client

-----BEGIN CERTIFICATE-----
MIIDHzCCAtwCBEpt7k4wCwYHKoZIzjgEAwUAMHUxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTEW
MBQGA1UEBxMNU2NvdHRzIFZhbGxleTEUMBIGA1UEChMLRW1iYXJjYWRlcm8xEjAQBgNVBAsTCUlu
dGVyQmFzZTEXMBUGA1UEAxMOU2hhdW5hayBNaXN0cnkwHhcNMDkwNzI3MTgxMzM0WhcNMDkxMDI1
utRZT+ZxBxCBgLRJFnEj6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6
ASQ7zKTxvqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSoDgYQAAoGAOOavhpQAOLHr/Yw59LrA
SOflcsA15BaAy1NUEl65cqb1/TO/jWroKjlG8dv1uNdsc2kZ4ptmM0L2RjksLxcrqUBm9qjedan9
X8cjEnTeU2hOrmARoZeFhlvtw4CfiuXwnFeagF2IxrETyVLEXMV1A5ATRzrdTqQcfnwPCua0F3Ew-----
END CERTIFICATE----- CwYHKoZIzjgEAwUAAzAAMC0CFQCJtK/
qpIw0ahuIYqYP5d1D90UbdAIUEeU4nXvZAUxZv5SPcFFP uowm7bI= -----END CERTIFICATE-----

or use the command

Network Configuration

56

[C:/ib_svn_build/certificates] keytool -export -rfc -keystore smclient.jks -file
mycert.pem

Enter keystore password: client

Certificate stored in file <mycert.pem>

Now the file mycert.pem contains your public certificate. Move this to the server and make
sure this is included in the file pointed to by the IBSSL_SERVER_CAFILE.

If you want to get your private key validated by a certification authority, the client need to
use the "keytool -certreq" command to generate a certificate signing request for a
Certificate signing authority. Once this request is validated you would add this certificate
reply to your keystore via a "keytool -import" command. This is followed by a "keytool -
export" command to get the certificate to authenticate your public key. This exported
certificate will then be moved to the InterBase server, so the InterBase server can "trust"
and verify the client private key.

4. Connection Troubleshooting

This section describes some troubleshooting guidelines for issues related to network
configuration and client/server connections. If you are having trouble connecting client to
server over a network, use the steps listed below to diagnose the cause. On Windows, you
can perform some of these tests using the Communications Diagnostic dialog. See
Communication Diagnostics for more information.

4.1. Connection Refused Errors

If the client fails to reach the server host at all, or the gds_db service fails to answer, you
might get a “connection refused” error. Below is a checklist that you can use to diagnose the
source of this error:

Is there low-level network access between the client and server?
Can the client resolve the server’s hostname?
Is the server behind a firewall?
Are the client and server on different subnets?
Can you connect to a database locally?
Can you connect to a database loopback?
Is the server listening on the InterBase port?
Is the services file configured on client and server?

4.1.1. Is there low-level network access between the client and server?

You can quickly test whether the client cannot reach the server because of a physically
disconnected network or improper network software configuration, by using the ping
command. Usage is:

ping servername

Error messages from ping indicate that there is a network problem. Check that the
network is plugged in, that the network wires are not damaged, and that the client and
server software is properly configured.

Test connectivity from the client in question to another server; if it succeeds, this could rule
out improper network configuration on the client.

•
•
•
•
•
•
•
•

Network Configuration

57

Test connectivity from another client to the InterBase server host; if it succeeds, this could
rule out improper network configuration on the server.

4.1.2. Can the client resolve the server’s hostname?

InterBase clients must specify the server by name, not by IP address, except in some Linux
distributions. Therefore, the client must be able to resolve the server’s hostname. For TCP/
IP, this is done either by maintaining a hosts file on the client with the mappings of
hostnames to IP addresses, or by the client querying a DNS server or WINS server to resolve
this mapping. Make sure the name server has a correct entry for the server host in
question.

4.1.3. Is the server behind a firewall?

If the database server is behind a software or hardware firewall, all network traffic could be
restricted and the client might not be able to reach the server at all. Some firewalls permit
or restrict traffic based on the port to which the client attempts to connect. Because of this,
it is not conclusive whether a given service can reach the server. Neither is it an indication of
connectivity if the client can resolve the IP address; that merely indicates that the client can
reach a name server that resolves the InterBase server hostname.

If the client is separated from the server by a firewall, the client cannot connect.

4.1.4. Are the client and server on different subnets?

NetBEUI cannot route network traffic between subnets. Other protocols can also be
configured to restrict traffic between subnets. If the client and server are on a complex
network with multiple subnets, ask your network administrator if the network configuration
allows you to route network traffic between the client and server in question using a given
protocol.

4.1.5. Can you connect to a database locally?

To confirm that the ibserver process is running on the server and able to attach to your
database, try a local database connection:

Log in to the console of the database server host, and run an application such as
command-line isql .
Attempt to connect to a database without specifying a hostname: list just the path.

The Communications Diagnostic dialog also has a local database attachment test. See DB
Connection Tab for details.

Note:
Local connection mode is not available on UNIX servers.

4.1.6. Can you connect to a database loopback?

You can simulate a client/server connection and test the configuration of the server without
the additional variable of the client configuration and intervening network by connecting in
a loopback mode.

Log in to the console of the database server host and run an application such as
command-line isql or InterBase IBConsole isql.

1.

2.

1.

Network Configuration

58

Attempt to connect to the database using a remote connection specification, even
though the server named is also the client host.

Whether this test fails or succeeds, it helps to narrow the focus of further diagnostic tests. If
it fails, you can infer that the configuration of the server is at fault. If it succeeds, you can
infer that the server is not at fault and you can concentrate further tests on the client.

4.1.7. Is the server listening on the InterBase port?

If the ibserver process on the server has not started, there is no answer to attempts to
connect to the gds_db service (port 3050).

Start the ibserver process on the server. Use ibmgr -start on UNIX, or the InterBase
Manager on Windows. See Server Configuration.

4.1.8. Is the services file configured on client and server?

The services file must have correct entries to indicate the port number associated with
the named service gds_db . This configuration must be accessible on the client as well as
the server.

gds_db 3050/tcp # InterBase Server

This file is found in the following locations:

Windows server platforms: C:\system32\drivers\etc\services or
C:\Windows\system32\drivers\etc\services on new Windows platforms

On Windows non-server platforms: C:\windows\services .

On UNIX: /etc/services .

In a UNIX environment with NIS, the NIS server can be configured to supply the services
file to all NIS clients on UNIX workstations.

See Also

Connection Rejected Errors
Other Errors

4.2. Connection Rejected Errors

If the client reaches the server host and the gds_db service answers but you still cannot
attach to a database, it can result in a “connection rejected” error. Below is a checklist that
you can use to diagnose the source of this error.

Did you get the correct path to the database?
Is UNIX host equivalence established?
Is the database on a networked file system?
Are the user and password valid?
Does the server have permissions on the database file?
Does the server have permissions to create files in the InterBase install directory?

2.

•
•

•
•
•
•
•
•

Network Configuration

59

4.2.1. Did you get the correct path to the database?

Verify that you supplied the correct path to the database file. Keep in mind:

On Windows, you must supply the drive letter with the path.
On UNIX, paths are case-sensitive.
Slash (“/”) vs. backslash (“\”) does not matter, unless you need to use double-
backslashes in string literals in C or C++ code.

4.2.2. Is UNIX host equivalence established?

To use the UNIX user-equivalence feature, there must be a trusted host relationship between
the client and the server. See Users on UNIX.

4.2.3. Is the database on a networked file system?

A database file must not reside on an NFS file system or a mapped drive. When the
ibserver process finds such a case, it either denies the connection or passes the
connection request on to the InterBase service running on the file server. See Networked
File Systems for more details.

To correct this situation, move your database to a file system on a hard disk that is
physically local to the database server.

4.2.4. Are the user and password valid?

The client application must use a valid user and password combination that matches an
entry in the InterBase security database (admin.ib by default).

4.2.5. Does the server have permissions on the database file?

The ibserver process must have permission to read and write the database file at the
operating system level. Check the permissions on the database file, and the uid of the
ibserver process. (On UNIX, you have the option of running ibserver as user InterBase,
a non-superuser uid.)

The InterBase security database (admin.ib by default) that contains users and passwords
must also be writable by the ibserver process.

4.2.6. Does the server have permissions to create files in the InterBase install
directory?

The ibserver process must have write permission in the InterBase directory (by default,
/usr/InterBase on UNIX, C:\Program Files\Embarcadero\InterBase on Windows).
The server process must be able to write to, and perhaps create, the interbase.log file
and other temporary files.

See Also

Connection Refused Errors
Other Errors

4.3. Other Errors

•
•
•

•
•

Network Configuration

60

4.3.1. Unknown Win32 error 10061

This error is often associated with a missing server-access license for the InterBase software
on the server host. Make sure you have licensed InterBase server to allow clients to connect
from the network.

4.3.2. Unable to complete network request to host

This error occurs in cases when the InterBase client cannot establish a network connection
to the server host. This can occur for a variety of reasons. Below is a list of common causes:

The BDE Administrator requires that you specify the InterBase connect string in the
SERVER NAME alias property. You must use this property and must not use the PATH
alias property, or else you receive the network error message.
The InterBase client attempts to translate the server portion of your connect string to
an IP address, by calling gethostbyname() . If you supplied an IP address,
gethostbyname() is likely to fail to resolve it. Some modern TCP/IP drivers – including
Winsock 2 and Linux TCP/IP – do resolve strings that look like IP addresses. If you are on
Windows, specify hosts by name, or else upgrade your TCP/IP driver to Winsock 2.

The InterBase client must look up the InterBase network service by name. If the client
doesn’t find the entry for gds_db in the services file, it might fail to connect to the
server, and give the network error. You can create the entry in the services file
manually, or reinstall InterBase to perform this task.
The server you specify must be running on the network that you use. If the hostname
corresponds to a host that is inaccessible because of network interruption, or the host
is not running, then the connection request fails with the network error.
The syntax of the InterBase connect string determines the network protocol the client
uses to connect to the server host (see Connection-specific Examples). Different server
platforms support different subsets of network protocols. If your server does not
support the protocol indicated by your connect string, the connection attempt fails with
the network error. For example, the NetBEUI connection syntax
(\\server\C:\path\database.ib) works only if your server is running Windows. The
syntax does not work if your server is running UNIX or Linux.
A network connection request succeeds only if the InterBase server is installed and
active on the server host, and that the InterBase server is licensed to receive remote
connection requests. If there is no process listening for connection requests, the client’s
connection requests with the network error. You should check that the InterBase server
is installed on the server, that it is running, and that the license includes the Server
capability.

5. Communication Diagnostics

Network configuration of a client/server system involves several different software and
hardware layers and proper configuration of each of these layers. When one or more layers
are mis-configured, it is not always evident where the problem lies. InterBase
Communication diagnostics helps to identify the source of the problem by testing each layer
progressively for existing or potential network problems.

You can access the Communication Diagnostics dialog by one of the following methods:

Select a disconnected server in the Tree pane. Choose Server|Diagnose Connection .
Right-click InterBase Servers or any disconnected server in the Tree pane and choose
Diagnose Connection from the context menu.
Select a disconnected server from the Tree pane and double-click Diagnose Connection
in the Work pane.

•

•

•

•

•

•

•
•

•

Network Configuration

61

There are four types of diagnostics that you can perform. The Communications Diagnostics
dialog has separate tabs for each diagnostic type.

5.1. DB Connection Tab

This test lets you connect to an InterBase database using the InterBase client libraries. It is
the most basic test of InterBase operation and is generally used only after confirmation that
the underlying network is working correctly.

5.1.1. To Run a DB Connection Test

Select either the Local Server option or the Remote Server option.
If you choose Local Server, the Server Name and Network Protocol information is
not required. These text fields are disabled. You can proceed to step 5.
If you choose Remote Server, type the name of the server in the Server Name text
field.
The InterBase server name is the name of the database server machine. There is
not a specific name for the InterBase server process itself. For example, if the
server is running on the NT server “ venus ”, you enter this name in the Server
Name text field.
If you choose Remote Server, select a network protocol from the drop-down list:
either TCP/IP, NetBEUI, named pipe, or local. Protocols are valid only when they
are supported by both the client and the server.
Enter the database filename, including the path where file is located, in the
Database text field. If you selected the Local Server option in step 1 you can also
click the browse button to locate the file you want. If you selected the Remote
Server option, however the browse button is disabled.
Type the username and password for the database in the corresponding
User Name and Password text fields.
Click Test to display the results of the connectivity test in the Results text area.

5.1.2. Sample output (local connection)

Attempting to attach to:
C:\Program Files\Embarcadero\InterBase\examples\Database\employee.ib

1.
2.

3.

4.

5.

6.

7.

8.

Network Configuration

62

Attaching ...Passed!
Detaching ...Passed!
InterBase Communication Test Passed!

5.2. TCP/IP Tab

Use this property sheet to test Winsock TCP/IP connectivity.

To run a winsock TCP/IP connectivity test:

Enter either a network host name or IP address in the Host text field.
Select a service name or number from the drop-down Service list. Possible service
selections are: 21, Ping, 3050, ftp, gds_db .
Select Ping from the Service drop-down list to display a summary of round-trip
times and packet loss statistics.
Click Test to display the results of the connectivity test in the Results text area.

Sample results (ftp):

Initialized Winsock.
Attempting connection to DBSERVE.
Socket for connection obtained.
Found service ‘FTP’ at port ‘21’.
Connection established to host ‘DBSERVE’ on port 21.
TCP/IP Communication Test Passed!

Sample results (ping):

Pinging DBSERVE [200.34.4.5] with 32 bytes of data.
Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=0ms TTL=128
Ping statistics for 200.34.4.5:
Packets: Send = 4, Received = 4, Lost = 0 (0%),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms

1.
2.

3.

Network Configuration

63

If the error message is Then check

Failed to find named port
Your services file to be sure there is an entry for
gds_db in the form: gds_db 3050/tcp .

Failed to connect to host
Hostname, port 3050
The InterBase Server to make sure it is installed
properly, is running, and is configured for TCP/IP.

Failed to resolve hostname

Hostname
Your hosts file or DNS to be sure it has an entry for
the server.
That you used a hostname and not an IP address.

Unavailable database
Whether the InterBase server is running; the server
must be running before attempting a database
connection.

5.3. NetBEUI Tab

NetBEUI is supported on all Windows clients, but only Windows server platforms support
NetBEUI as a server.

Use this property sheet to test NetBEUI connectivity between the client and the server.

To run a NetBEUI connectivity test:

Select a Windows server on which InterBase has been installed from the Server
Name drop-down list. If the desired server does not exist in this list, you can type
the server name in the edit portion of the drop-down list.
Click Test to display the results of the connectivity test in the Results text area.

Sample output (NetBEUI connection):

Attempting to attach to DBSERVE using
the following named pipe:
\\dbserve\pipe\interbas\server'ds.db.
NetBEUI Communication Test Passed!

•
•

•
•

•

1.

2.

Network Configuration

64

The connection may fail if a Microsoft Windows network is not the default network for the
client. You should also be logged into the Windows network with a valid user name and
password.

Network Configuration

65

Database User Management

InterBase provides several methods for configuring and enforcing security by controlling
how a database is accessed and used. Server security enables you to:

Add a user to the security database
Delete a user from the security database
Modify user information in the security database
Display a list of users in the security database
Enable embedded user authentication
Create database alias
Delete a database alias
Display a list of all database alias

This chapter gives an overview of these options. The user administration tools are covered
here, but SQL statements for configuring privileges are in other InterBase books; these
passages are referenced where appropriate.

1. Security Model

Security for InterBase relies on a central security database for each server host. This
database, admin.ib by default, contains a record for each legitimate user who has
permission to connect to databases and InterBase services on that host. Each record
includes the user login name and the associated encrypted password. The entries in this
security database apply to all databases on that server host.

The username is significant to 31 bytes and is not case sensitive. When a stronger password
protection is implemented, the password is now significant to 32 bytes instead of 8 and is
case sensitive.

Before performing any database administration tasks, you must first log in to a server. Once
you log in to a server, you can then connect to databases residing on the server.

All users must enter their username and password to log in to a server. The password is
encrypted for transmission over the network. The username and password are verified
against records in the security database. If a matching record is found, the login succeeds.

1.1. The SYSDBA User

Every InterBase server has a SYSDBA user, with default password masterkey. SYSDBA is a
special user account that can bypass normal SQL security and perform tasks such as
database backups and shutdowns.

Initially, SYSDBA is the only authorized user on a server; the SYSDBA must authorize all
other users on the server. Only the SYSDBA user can update the security database to add,
delete, or modify user configurations. SYSDBA can use either gsec or IBConsole to
authorize a new user by assigning a username and password in the security database.

Important:
We strongly recommend you change the password for SYSDBA as soon as possible after
installing InterBase. If you do not alter the SYSDBA password, unauthorized users have
easy access and none of your databases are secure.

•
•
•
•
•
•
•
•

Database User Management

66

1.2. Other Users

The SYSDBA account can create other users on a per-server basis. Use gsec or IBConsole
to create, modify, or remove users from the InterBase security database. These users are
authorized to connect to any database on that database server host. It is a common design
strategy to create a distinct InterBase user for each person who uses the databases on your
server. However, other strategies are also legitimate. For example:

Create one InterBase user for an entire group of people to use, in order to simplify
password administration. For example, a user FINANCE could satisfy the access needs
for any and all staff in a financial analysis team. This team only needs to remember one
password between them.
Create one InterBase user for a group of people to use, as warranted by requirements
of distinct privilege configurations. For example, if Erin and Manuel have identical
access to the data within a database, they could use the same InterBase user account.

1.3. Users on UNIX

If both the client and the server are running UNIX, you can allow UNIX usernames access to
databases by configuring the server host to treat the client host as a trusted host.

To establish a trusted host relationship between two hosts, add an entry in
/etc/hosts.equiv or /etc/gds_hosts.equiv on the server. The former file establishes
trusted host status for any service (for example, rlogin , rsh , and rcp); the latter file
establishes trusted host status for InterBase client/server connections only. The format of
entries in both files is identical; see your operating system documentation on hosts.equiv
for details.

The login of the client user must exist on the server. In addition to the hosts.equiv
method of establishing a trusted host, the you can also use the .rhosts file in the home
directory of the account on the server that matches the account on the client.

The InterBase client library defaults to using the current client’s UNIX login as the InterBase
login only when the client specifies no username through any of the following methods:

Database parameter buffer (dpb) parameters – see the API Guide.
Command-line options – for example, -user options of isql or another utility
Environment variables – see ISC_USER and ISC_PASSWORD.

Notes

This feature is not implemented on Windows servers, because Windows does not
implement a trusted host mechanism as UNIX does.
Windows clients cannot be treated as trusted hosts by UNIX servers.

See Also

The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security

•

•

•
•
•

•

•

•
•
•
•
•
•
•
•
•
•

Database User Management

67

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

Using gsec to Manage Database Alias
gsec Error Messages

2. The InterBase Security Database

The InterBase server stores the names and passwords of its authorized users in a special
security database that resides in the InterBase home directory. By default, it is named
admin.ib .

Note:
For information on stronger password protection on InterBase databases. See
Implementing Stronger Password Protection.

You can use another name for the security database if you wish. If you change this name,
you must add an entry to the ibconfig file, setting ADMIN_DB to the new name.

ADMIN_DB newname.ib

Note:
You can use any file extension for database files, but InterBase recommends using .ib .

Every user of an InterBase server requires an entry in the InterBase security database. The
gsec security utility lets you display, add, modify, or delete information in the security
database. IBConsole provides a graphical interface for the same functionality. The following
table describes the contents of the security database:

Column Required Description

User name Yes
The name that the user supplies when logging
in; maximum length is 31 bytes.

Password Yes

The user’s password

Case sensitive
Only the first eight bytes are significant
Maximum length: 32 bytes.

UID No An integer that specifies a user ID.

GID No An integer that specifies a group ID.

Full name No User’s real name (as opposed to login name)

See Also

Security Model
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias

•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•

Database User Management

68

gsec Error Messages

3. Implementing Stronger Password Protection

Stronger password protection on InterBase databases can be implemented since InterBase
XE. This additional functionality supports a longer effective password length, resulting in
stronger password protection.

3.1. Requirements/Constraints

This design supports server-wide user authentication as manifested by the USERS table
of the security database, configured with the IBCONFIG.ADMIN_IB property parameter,
which defaults to the admin.ib file.
The design also supports EUA (Embedded User Authentication) databases. As with the
non-EUA databases, it also has to be explicitly enabled by the owner/administrator.
Please note that the USERS table in admin.ib has RDB$USERS as the counterpart in EUA
databases; so the earlier references have to be compatible with EUA database
references.
A user account in the USERS table can only accommodate a single password hash value.
This restriction means that once the user account password is changed to use SHA-1,
the user has to use the new IB client to log into the new IB server.
A plaintext password length of 32 bytes is supported in this release, up from 8 bytes in
earlier versions of InterBase.
An updated version of IBConsole is present in the kit. This version does not show the
“Default” buttons in the database/server login screens.
A batch script (changepassword.bat) is now provided in the <interbase>/bin directory to
update the SYSDBA account password post-install.

3.2. Getting Started with Implementing Stronger Password Protection

The DES-CRYPT password algorithm has been replaced with a modern cryptographic hash
function that is more widely accepted by organizations in private industry and government.
The design uses SHA-1, which generates a fixed length 160-bit hash.

Before starting, it is strongly recommended that you back up your old admin.ib
from the current installation before installing the new InterBase. This allows you
to restore it, if needed.
After new IB has been installed on the server, run the following against admin.ib:

isql admin.ib -user SYSDBA -pass xxxxxxx
sql> ALTER DATABASE SET PASSWORD DIGEST 'SHA-1';
sql> CREATE DOMAIN PASSWORD_DIGEST AS CHAR(16) CHARACTER SET ASCII;
sql> ALTER TABLE USERS ADD PASSWORD_DIGEST PASSWORD_DIGEST;
sql> UPDATE USERS SET PASSWORD_DIGEST = 'DES-CRYPT';
sql> COMMIT;

Note:
The ALTER DATABASE command can only be run by the database owner or
SYSDBA. This command modifies RDB$DATABASE.RDB$PASSWORD_DIGEST to
the string value "SHA-1". This means that all new password hash generation for
new or existing user accounts in the USERS table will use the SHA-1 hash
function.

The password hash function can be reset to DES-CRYPT using the same DDL:

ALTER DATABASE SET PASSWORD DIGEST 'DES-CRYPT';

•

•

•

•

•

•

•

1.

2.

Database User Management

69

The admin database is now prepared so that new user accounts or modifying the password
of existing accounts will generate SHA-1 password hashes against plaintext passwords up to
an untruncated length of 32 significant bytes.

GSEC [add | modify], IBConsole, and the IB Services API support the SHA-1 password hash
algorithm. Any of these tools can be used to maintain the passwords of server-wide user
accounts. If an existing user account has had its password changed, then that user must log
in to the server using the new IB client library.

Important:
There will be backward compatibility problems if the converted admin.ib database is
backed up and restored by an older IB engine after the password hashes have been
converted to SHA-1. Older IB engines will not understand the different password hashes
and will cause unrecoverable login errors.

See Also

Security Model
The InterBase Security Database
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

4. Enabling Embedded User Authentication

Embedded user authentication (EUA) stores database user name and password information
directly in the database. When user authentication is embedded in a database, database
metadata IP is better protected from outside inspection. EUA also makes transportable
databases more secure.

Only the database owner is allowed to administer embedded user authentication. A regular
user may alter the password for their own user account.

Having a SYSDBA user account under embedded user authentication is optional. If there is a
SYSDBA account, it has most of the same privileges for the database in which it is
embedded that any admin.ib would have. The sole exception is that the SYSDBA cannot
maintain admin control for EUA if it has been implemented by another user.

Important: EUA must be enabled to use the InterBase encryption feature, which facilitates
the encryption of database pages and columns. Access to encrypted databases and columns
can be given to specified users when EUA has been enabled. For more information about
the InterBase encryption feature, see the Data Definition Guide.

4.1. Check if EUA is Active with isc_database Info API

If isc_databaseinfo() is invoked with info item isc_info_db_eua_active it returns:

1 if EUA is active for the database.
0 if EUA is not active.

•
•
•
•
•
•
•
•
•
•
•
•

•
•

Database User Management

70

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

Only the owner or SYSDBA can query for this information, once connected to the database.
For all other users, the info request is ignored.

4.2. Enabling EUA Using iSQL

You can enable EUA using the following commands:

When creating a new database, use:

CREATE DATABASE <database name> [WITH ADMIN OPTION]
The admin clause automatically inserts name and password information for the user
creating the database into the RDB$USERSsystem table.

When altering an existing database, use:

ALTER DATABASE [ADD ADMIN OPTION]

Alternatively, the gsec command-line utility has a new option, -user_database
[database_name], which allows that tool to maintain user accounts for embedded user
authentication enabled databases.

To disable EUA, use the following syntax:

ALTER DATABASE [DROP ADMIN OPTION]

Once EUA is disabled, access to the database will be authenticated via the centralized user
authentication database of the server ADMIN.IB .

4.3. Enabling EUA Using IBConsole

You can enable EUA using the IBConsole when you use the IBConsole interface to create a
new database.

To enable EUA from IB Console:

Right-click on Databases and choose Create Database from the context menu.
On Create Database, in the Embedded User Authentication field, change the
default, No, to Yes.
Change the other settings as needed, and choose OK to create the database. EUA
is now enabled.

4.4. Adding and Modifying Users in a EUA-enabled Database

To add users to a EUA-enabled database, use the isc_spb_user_dbname service
parameter block (SPB) with the isc_action_svc_add_user service action. The allowed
service actions are isc_action_svc_xxx_user , where you replace xxx with add/modify/
delete/display for each respective action.

The following code sample illustrates how to use this SPB to add a user to EUA-enabled
database:

#ifdef EUA_DATABASE
*thd++ = isc_spb_user_dbname;
ADD_SPB_LENGTH (thd, strlen(target_db));
for (x = target_db; *x;)
*thd++ = *x++;
#endif

•

•

1.
2.

3.

Database User Management

71

For more information about using this and other service parameter blocks and service
actions, see the InterBase API Guide.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

5. System Table Security

InterBase stores the database metadata in its system tables. These tables have an intricate
set of dependencies between them, and writing to one without sufficient knowledge can
corrupt the database. For this reason, the system tables have the following default security
access applied to them:

By default, PUBLIC users have only SELECT privileges on the system tables.
The database owner, the SYSDBA user, and the operating system administrator (root on
UNIX and Administrator on Windows server platforms) have full access to the system
tables, including write permission. These users can, if desired, assign write privileges to
individual users or to PUBLIC , using the GRANT statement.

5.1. Older Databases

InterBase applies this default security (no write access for PUBLIC) to older databases
whenever possible:

The gbak backup/restore utility applies the default security to any database when it is
restored to ODS 10.1 (InterBase 6.5) or later.
When an InterBase server that is version 6.5 or later attaches an older database, it
applies the default privileges to that database if they are not already present, even if
the database is ODS 10.0 or earlier.

5.2. Scripts for Changing Database Security

Three SQL scripts are included in <ib_install>/examples/security directory:
readmeta.sql , writemeta.sql and blindmeta.sql. These scripts can be run against
databases with isql to make wholesale changes to system tables access privileges of a
database, except or rdb$users for security purposes.

readmeta.sql applies the default PUBLIC access privileges: PUBLIC can only select
from the system tables, but the database owner, system administrator, and SYSDBA
user have full access. This script can be used to return a database that has customized
system table privileges back to this default.
writemeta.sql grants all system table privileges to PUBLIC . This is the behavior that
existed in InterBase 6.0 and earlier.

•
•
•
•
•
•
•
•
•
•
•
•

•
•

•

•

•

•

Database User Management

72

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

blindmeta.sql revokes all system table privileges from PUBLIC . This prevents any
PUBLIC user from querying the system tables, including InterBase and third-party
utilities run by PUBLIC users. For example, gstat , gbak , QLI and IBConsole would
not be able to query system metadata. This script allows developers to protect their
intellectual property by hiding the database design of tables, stored procedures and
triggers from the general public and competitors. Blind access makes it difficult, if not
impossible, for a general user to generate ad hoc queries against a database.

A database with blind access does not prevent any user from using InterBase Data
Definition Language (DDL) to define new database objects. It just prevents a user from
querying or writing to the system tables directly.
isc_blob_lookup_desc() and isc_array_lookup_bounds() Two client-side APIs,
isc_blob_lookup_desc () and isc_array_lookup_bounds (), cannot execute without
SELECT metadata privileges, because the APIs directly query some InterBase system tables.
Thus databases that have had blindmeta.sql run against them are not able to execute
these APIs for any users except the owner, the system administrator, and SYSDBA .
Older InterBase clients InterBase 6.0 and previous InterBase kits cannot access a database
on behalf of a user if that user has no privileges to the system tables. Thus an InterBase
developer who runs blindmeta.sql on an InterBase database cannot ship that database
to customers with InterBase 6.0 or older runtime kits and expect those users to be able to
access the database. The developer would have to run readmeta.sql against a copy of the
database and ship that to customers who have older InterBase runtimes.

5.3. System Table Security Migration Issues

The InterBase engine automatically installs the default (SELECT -only) SQL privileges for
PUBLIC on the system tables when attaching ODS 10.0 or older databases. Thus if all users
must be able to write to database metadata, writemeta.sql will have to be run against
each database to restore that behavior.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

6. SQL Privileges

Connecting to a database does not automatically include privileges to modify or even view
data stored within that database. Privileges must be granted explicitly; users cannot access
any database objects until they have been granted privileges. Privileges granted to PUBLIC
apply to all users.

For full description of syntax of SQL privileges, see entries for GRANT and ROLE in the
Language Reference and Data Definition Guide.

•

•
•
•
•
•
•
•
•
•
•
•
•

Database User Management

73

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

7. Groups of Users

InterBase implements features for assigning SQL privileges to groups of users. SQL roles are
implemented on a per-database basis. UNIX groups are implemented on a server-wide
basis, using the UNIX group mechanism.

7.1. SQL Roles

InterBase supports SQL group-level security as described in the ISO-ANSI Working Draft for
Database Language. For syntax of SQL ROLE , see Language Reference Guide and Data
Definition Guide.

Implementing roles is a four-step process:

1. Declare the role with CREATE ROLE .

CREATE ROLE sales;

2. Assign privileges on specific tables and columns to the role using the GRANT statement.

GRANT UPDATE ON table1 TO sales;

3. Grant the role to users, again with the GRANT statement.

GRANT sales TO user1, user2, user3;

4. Finally, to acquire the privileges assigned to a role, users must specify the role when
connecting to a database.

CONNECT 'foo.ib' USER 'user1' PASSWORD 'peanuts' ROLE sales;

User1 now has update privileges on TABLE1 for the duration of the connection.

A user can belong to only one role per connection to the database and cannot change role
while connected. To change role, the user must disconnect and reconnect, specifying a
different role name.

You can adopt a role when connecting to a database by any one of the following means:

To specify a role when attaching to a database through IBConsole isql, display the
Database Connect dialog and type a rolename in the Role field.
To specify a role programmatically upon connection using the InterBase API, use
the dpb parameter isc_dpb_sql_role_name . See the API Guide.

To specify a role for a connection made by an embedded SQL application or isql
session, use the ROLE <rolename> clause of the CONNECT statement. See the
statement reference for CONNECT in the Language Reference Guide.

Note:
Applications using BDE version 5.02 or later, including Delphi, JBuilder, and C++Builder,
have a property by which they can specify a role name. Also, the ODBC driver that
currently ships with InterBase also recognizes roles.

•

•

•

Database User Management

74

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

7.2. UNIX Groups

Operating system-level groups are implicit in InterBase security on UNIX, similarly to the
way UNIX users automatically supplement the users in the InterBase security database. For
full description of usage and syntax of using UNIX groups with InterBase security, see
Language Reference Guide and Data Definition Guide.

Note:
Integration of UNIX groups with database security is not a SQL standard feature.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

8. Other Security Measures

InterBase provides some restrictions on the use of InterBase tools in order to increase
security. In addition, there are things that you can do to protect your databases from
security breaches. This section describes these options.

8.1. Restriction on Using InterBase Tools

As a security measure, InterBase requires that only the owner of a database or SYSDBA can
execute gbak , gstat , and gfix .

Only the database owner or SYSDBA can use gbak to back up a database. Anyone can
restore a database, because there is no concept of an InterBase user for a backup file.
However, only the owner or SYSDBA can restore a database over an existing database.
For security purposes, make sure that your backup files are stored in a secure location.
This prevents unauthorized persons from restoring databases and gaining access to
them.
On UNIX platforms, there is a further constraint on gstat : to run gstat , you must
have system-level read access to the database file. To access the database with gstat ,
you must either be logged into the account running the InterBase server (“InterBase” or
“root”) or someone must change the permissions on the database file to include read
permission for your Group.

8.2. Protecting your Databases

You can take several steps to increase the security of your databases and other files on your
system:

UNIX and Linux systems: Before starting the InterBase server, log in as user “InterBase”
(or “interbas”, if user names longer than eight characters are not allowed), rather than

•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

Database User Management

75

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

“root” (only these users can start the server). This restricts the ability of other users to
accidentally or intentionally access or overwrite sensitive files such as the password file.
Start the InterBase server while you are logged on as user “InterBase”.
Windows server platforms: When the InterBase server is run as a service, you can
protect a database against unauthorized access from outside InterBase (such as by a
copy command), by making the database files readable only by the system account,
under which services run. However, if you make the database readable only by the
system account, remote access to the database must be by TCP/IP, not by NetBEUI.
Because anyone can restore a backed up database, it is wise to keep your backup files
in a directory with restricted access. On UNIX, only the backup file itself, not the
directory in which it resides, needs to have permissions restricted to prevent reading by
unauthorized persons.

For example, if all of the following are true:

the backup file has permission 600 (rw-------) or 640 (rw-r-----)
only trusted persons belong to the groups
the directory has permission rwxr-xr-x

then persons other than the responsible owner and group can see that the backup file is
there, but they cannot get at it. If the user or backup script issues the command
umask 077 (or 027, as appropriate) before running gbak , unauthorized persons will not
be able to access the backup file, no matter what the permissions on the directory. The
directory should not be writable by “other”, since this permits other persons to delete the
backup file.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

9. User Administration with IBConsole

User administration is accomplished through the User Information dialog where you are
able to add, modify, view and delete users. User administration can only be performed after
logging in to the server.

9.1. Displaying the User Information Dialog

You can use any of the following methods to access the User Information dialog:

Select a logged in server or any branch under the server hierarchy from the list of
registered servers in the Tree pane; choose Server|User Security.
Select a logged in server from the list of registered servers in the Tree pane. Double-
click User Security in the Work pane or right-click the selected server and choose User
Security from the context menu.
Select Users under the desired server in the Tree pane to display a list of valid users in
the Work pane. Double-click a user name to display the User Information dialog.

•

•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

Database User Management

76

9.2. Adding a User

Use the User Information dialog to add new users. To access this dialog follow one of the
methods described in Displaying the User Information Dialog.

To add a new user:

Display the User Information dialog in one of the following ways:
Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security.
Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.
Select Users under the desired server in the Tree pane to display a list of valid
users in the Work pane. Double-click a user name to display the User
Information dialog.

Click New. The New and Delete buttons are disabled and the Close button changes
to a Cancel button.
Type the new username in the User Name text field.
Type the user’s password in both the Password and the Confirm Password text
fields.
Add any desired optional information in the corresponding text fields. Each of the
optional text fields can be up to 32 bytes.
Click Apply to add the new user to the security database or click Cancel to
abandon your changes.

Note:
Usernames can be up to 31 bytes long and are not case sensitive. Passwords are case-
sensitive and only the first eight characters are significant. InterBase does not allow you
to create usernames or passwords containing spaces.

9.3. Modifying User Configurations

Use the User Information dialog to modify user configurations. To access this dialog follow
one of the methods described in Displaying the User Information Dialog.

1.
•

•

•

2.

3.
4.

5.

6.

Database User Management

77

To modify user’s details:

Display the User Information dialog in one of the following two ways:
Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security to
display the User Information dialog.
Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.
Select Users under the desired server in the Tree pane to display a list of valid
users in the Work pane. Double-click a user name to display the User
Information dialog.

From the User Name drop-down list, select the user whose configuration you wish
to modify. The user’s details display. You can also type the first letter of the
desired username in the User Name drop-down list to quickly scroll to usernames
beginning with that letter. By repeatedly typing that same letter, you can scroll
through all usernames that begin with that letter.
Change any of the text fields except the User Name. If you change the password,
you must enter the same password in the Password text field and the Confirm
Password text field.
Click the Apply button to save your changes.

You cannot modify a username. The only way to change a username is to delete the user
and then add a user with the new name.

9.4. Deleting a User

Use the User Information dialog to removed users from the security database. To access
this dialog follow one of the methods described in Displaying the User Information Dialog.

Display the User Information dialog in one of the following two ways:
Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security.
Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.

Select the user you wish to delete from the User Name drop-down list. You can
also type the first letter of the desired username in the User Name drop-down list
to quickly scroll to usernames beginning with that letter. By repeatedly typing that
same letter, you can scroll through all usernames that begin with that letter.
Click Delete. A confirmation dialog inquires, “Do you wish to delete user
username?” If you choose OK, the user is removed and is no longer authorized to
access databases on the current server.

Important:
Although it is possible for the SYSDBA to delete the SYSDBA user, it is strongly not
recommended because it will no longer be possible to add new users or modify existing
user configurations. If you do delete the SYSDBA user, you must reinstall InterBase to
restore the InterBase security database (admin.ib by default).

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication

1.
•

•

•

2.

3.

4.

1.
•

•

2.

3.

•
•
•
•

Database User Management

78

System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

10. User Administration With the InterBase API

The InterBase API includes three functions that permit authors of InterBase applications to
add, delete, and modify users programmatically using three API functions: isc_add_user
(), isc_delete_user (), and isc_modifiy_user (). These functions are deprecated in
InterBase 6 and later, however, because they are replaced by functions in the InterBase
Services API.

The InterBase Services API provides a much broader and more robust set of tools for
programmatically managing users in the security database. See “Working with Services” in
the API Guide for details and examples of using the Services API functions.

For programmers using Delphi and C++Builder, the IBX components include components
for managing users. For more information on using the IBX components, refer to the
Developer's Guide.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
Using gsec to Manage Security
Using gsec to Manage Database Alias
gsec Error Messages

11. Using gsec to Manage Security

The InterBase command-line security utility is gsec . This utility is used in conjunction with
the InterBase security database (admin.ib by default) to specify user names and
passwords for an InterBase server. This tool duplicates the functionality of Server|User
Security in IBConsole for Windows.

The security database resides in the InterBase install directory. To connect to a database on
the server, users must specify a user name and password, which are verified against
information stored in the security database. If a matching row is found, the connection ‐
succeeds.

Important:
Only the SYSDBA can run gsec . To do this, use one of the following methods:

Invoke the command as:

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•

Database User Management

79

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Developer%27s_Guide

gsec -user sysdba -password masterkey

Define the ISC_USER and ISC_PASSWORD environment variables for SYSDBA before
you invoke the command.
Run gsec when you are logged in as root on UNIX or Administrator on Windows.

To use gsec interactively, type gsec at the command prompt. The prompt changes to
GSEC> , indicating that you are in interactive mode. To quit an interactive session, type
QUIT .

11.1. Running gsec Remotely

You can use gsec on a client host to administer users in a security database on a remote
server. Use the -database option with a remote database specification to connect to a
remote InterBase security database. For example:

gsec -database jupiter:/usr/InterBase/admin.ib

11.2. Running gsec with Embedded Database User Authentication

You can gsec to database which enabled embedded user authentication. Use the
-user_database option with embedded user authentication database specification to
connect to a database which enabled embedded user authentication.

For example:

gsec -user_database jupiter:/usr/InterBase/employee.ib

11.3. Using gsec Commands

The following table summarizes gsec commands. The initial part of each command is
required. The part in brackets is optional.

Command Description

di[splay]
Displays all rows of the InterBase security database
(admin.ib by default)

di[splay] name Displays information only for user <name>

a[dd] name -pw password
 [option argument]
 [option argument ...]

Adds user <name> to the security database with
password <string>. Each option and corresponding
argument specify other data associated with the user,
as shown in Adding Entries to the Security Database

mo[dify] name [options]
Like add , except that <name> already exists in the
security database

de[lete] name Deletes user <name> from the security database

alias_add path name Adds a database alias. The path is the location of the
database, and <name> is the name given for the alias

•

•

Database User Management

80

Command Description

alias_del name Deletes database alias <name> from the security
database

alias_dis Displays all database alias

alias_dis name Displays information only for alias <name>

h[elp] or ? Displays gsec commands and syntax

q[uit] Quits the interactive session

11.3.1. Displaying the Security

To see the contents of the InterBase security database, enter the DISPLAY command at the
GSEC> prompt. All the rows in the security database are displayed:

GSEC> display
user name uid gid full name
--
JOHN 123 345 John Doe
JANE 124 345 Jane Doe
RICH 125 345 Richard Roe

Note that passwords are never displayed.

11.3.2. Adding Entries to the Security Database

To add users to the security database, use the add command:

a[dd] name -pw password [options]

followed by a user name, the -pw option followed by a password, and any other options, as
shown in the following table. The password is case sensitive. None of the other parameters
are case sensitive.

For each option, the initial letter or letters are required, and optional parts are enclosed in
brackets. Each option must be followed by a corresponding argument, a string that specifies
the data to be entered into the specified column in the InterBase security database
(admin.ib by default).

Option Meaning

- password or -pa string Password of user who is performing the change

- user string User who is performing the change

- pw string Target user password

- uid integer Target user ID

Database User Management

81

Option Meaning

- gid integer Group ID for target user

- fname string First Name for target user

- mname string Middle Name for target user

- lname string Last Name for target user

-user_database string Name of user database

-database string Name of remote security database

Note:
The -pa switch specifies the root or the SYSDBA account password; -pw specifies the
password for the user being added or modified.

For example, to add user “jones” and assign the password “welcome”, enter:

GSEC> add jones -pw welcome

Use display to verify the entry. An unassigned UID or GID defaults to 0:

GSEC> display
user name uid gid full name
--
JONES 0 0

For example, to add authorization for a user named Cindi Brown with user name “cbrown”
and password “coffee2go”, use the following gsec command:

GSEC> add cbrown -pw coffee2go -fname cindi -lname brown

To verify the new entry, display the contents of the security database:

GSEC> display
user name uid gid full name
--
JONES 0 0
CBROWN 0 0 CINDI BROWN

gsec stores the user name in uppercase regardless of how it is entered.

11.3.3. Modifying the Security Database

To change existing entries in the security database, use the modify command. Supply the
user name for the entry to change, followed by the option indicating the items to change
and the corresponding values to which to change them.

For example, to set the user ID of user “cbrown” to 8 and change the first name to “Cindy”,
enter the following commands:

GSEC> modify cbrown -uid 8 -fname cindy

Database User Management

82

To verify the changed line, use display followed by the user name:

GSEC> display cbrown
user name uid gid full name

CBROWN 8 0 CINDY BROWN

Note:
To modify a user name, first delete the entry in the security database, then enter the new
user name and re-enter the other information.

11.3.4. Deleting Entries from the Security Database

To delete a user’s entry from the security database, use delete and specify the user name:

GSEC> delete cbrown

You can confirm that the entry has been deleted with the display command.

11.4. Using gsec from a Windows Command Prompt

To use gsec from the Windows command prompt, precede each command with gsec and
prefix each gsec command with a hyphen (-). For example, to add user “aladdin” and
assign the password, “sesame”, enter the following at the command line:

C:> gsec -add aladdin -pw sesame

To display the contents of the InterBase security database, enter:

C:> gsec -display

12. Using gsec to Manage Database Alias

Database Alias eliminates the need of knowing the exact location of the database file by the
client application as long as the client application refers to the database by its alias.

To add database alias to the security database, use the alias_add command:

alias_add alias name

and alias_dbpath path name

where path is the location of the database.

For example, to add the database alias "emp" with the path "C:
\Embarcadero\InterBase\examples\database\employee.ib", enter:

GSEC> alias_add emp -alias_dbpath "C:
\Embarcadero\InterBase\examples\database\employee.ib"

Note:
Quotes are necessary for paths that contain spaces.

Use alias_dis to verify the entry:

Database User Management

83

GSEC> alias_dis emp C:\Embarcadero\InterBase\examples\database\employee.ib

To delete a database alias from the security database, use the alias_del command:

alias_del name

For example, to delete the database alias “emp”, enter:

GSEC> alias_del emp

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
gsec Error Messages

13. gsec Error Messages

Error Message Causes and Suggested Actions to Take

Add record error

The add command either specified an existing user,
used invalid syntax, or was issued without appropriate
privilege to run gsec . Change the user name or use
modify on the existing user.

<string> already specified
During an add or modify , you specified data for the
same column more than once. Retype the command.

Ambiguous switch specified A command did not uniquely specify a valid operation.

Delete record error
The delete command was not allowed. Check that
you have appropriate privilege to use gsec .

Error in switch specifications
This message accompanies other error messages and
indicates that invalid syntax was used. Check other
error messages for the cause.

Find/delete record error
Either the delete command could not find a specified
user, or you do not have appropriate privilege to use
gsec .

Find/display record error
Either the display command could not find a
specified user, or you do not have appropriate
privilege to use gsec .

•
•
•
•
•
•
•
•
•
•
•
•

Database User Management

84

Error Message Causes and Suggested Actions to Take

Find/modify record error
Either the modify command could not find a specified
user, or you do not have appropriate privilege to use
gsec .

Incompatible switches specified Correct the syntax and try again.

Invalid parameter, no switch defined You specified a value without a preceding argument.

Invalid switch specified
You specified an unrecognized option. Fix it and try
again.

Modify record error

Invalid syntax for modify command. Fix it and try
again.

Also check that you have appropriate privilege to run
gsec .

No user name specified Specify a user name after add , modify , or delete .

Record not found for user: <string>
An entry for the specified user could not be found. Use
display to list all users, then try again.

Unable to open database
The InterBase security database does not exist or
cannot be located by the operating system.

See Also

Security Model
The InterBase Security Database
Implementing Stronger Password Protection
Enabling Embedded User Authentication
System Table Security
SQL Privileges
Groups of Users
Other Security Measures
User Administration with IBConsole
User Administration With the InterBase API
Using gsec to Manage Security
Using gsec to Manage Database Alias

•
•
•
•
•
•
•
•
•
•
•
•

Database User Management

85

Database Configuration and Maintenance

This chapter describes configuration and maintenance issues for individual databases,
including the following topics:

1. Database Files

InterBase database files are in many cases self-contained. All the data and indexes are
maintained as data structures within one type of file. The transaction log is also kept within
this file.

You can extend the functions available in InterBase database metadata by creating libraries
of functions compiled in your language of choice. You can compile functions into a dynamic
library (called a DLL on Windows, and a shared library on UNIX) and use them in queries,
stored procedures, triggers, views, and so on.

1.1. Database File Size

InterBase database file size is the product of the number of database pages times the page
size. The minimum page size is 1 KB, the default page size is 4KB, and the maximum page
size is 16KB. Each page can store records only from a single table. You set the database
page size when you create a database by using the PAGE SIZE clause of the
CREATE DATABASE statement, or its equivalent in IBConsole. You can change the page size
when you restore a database using gbak or IBConsole.

InterBase supports 64-bit file IO, so the size of a database file is effectively limited only by
the operating system.

Note:
Using gbak is the only way to reduce the size of the primary database file. When you
restore a database, you can specify multiple files without reference to the original file
sizes.

1.1.1. Dynamic File Sizing

InterBase dynamically expands the last file in a database as needed. This applies to single-
file databases as well as to the last file of multifile databases. Specifying a LENGTH for the
last or only file in a database has no effect.

1.1.2. Database File Preallocations

The InterBase SQL statement CREATE DATABASE includes a preallocation clause to specify
extra database space for the new database. The space is actually allocated when the user
detaches from the connection that was established by the CREATE DATABASE statement.
The database preallocation feature supports secondary database files in that the
preallocation will be spread across all secondary files in accordance with their file size
specifications.

To specify preallocation, use the following syntax:

Example:

... [[NO] PREALLOCATE [=] int [PAGES]]

Database Configuration and Maintenance

86

By default, creating a database does not preallocate additional database pages, so it is as if
NO PREALLOCATE had been specified. IB provides this syntax so that a DDL script can
explicitly state and document that preallocation has not been specified. Database
preallocation is always specified in units of database pages to be consistent with other
related features (i.e., length of secondary database files or shadow sets).

Important:
If a preallocation exceeds available disk space, the IB thread making the write request
when the device fills will timeout after 1 minute of waiting for the I/O to complete. It
makes 4 additional I/O attempts, waiting 1 minute each time, to complete the write
(results written to the InterBase log). If space is not freed to allow the preallocation
operation to continue, the space requested will not be allocated.

1.1.3. isql -extract PREALLOCATE

The CREATE DATABASE command now includes the isql -extract PREALLOCATE clause to the
formatted CREATE DATABASE statement if there is a non-zero preallocation value for the
database. The isql extract operation can be invoked with the -a|-x options.

1.1.4. GSTAT (Database File Size)|GSTAT

GSTAT displays the database preallocation information, which is stored on the database
header page. Following is a sample from a GSTAT -H command:

Example:

variable header data:
Preallocate pages: 5000
Sweep interval: 25000
END

1.1.5. API DPB Parameter

At the InterBase API-level, there is a DPB parameter, isc_dpb_preallocate, that takes a 4-byte
integer to specify database preallocation. It is only recognized and processed by
isc_create_database(). isc_attach_database() silently ignores isc_dpb_preallocate. You can
use the isc_info_db_preallocate database info parameter to request database preallocate
information stored on the database header page.

With the InterBase service API, actions isc_action_svc_backup (isc_action_svc_restore) take
new parameters, isc_spb_bkp_preallocate (isc_spb_res_preallocate), respectively. Both
parameters take a 4-byte argument to specify the database preallocation in units of
database pages. The service parameters have the same numeric value but two symbolic
constants are provided for source code clarity to show the proper intent.

Note:
See “Working with Databases” in the API Guide for more information about DPB
parameters.

See Also

External Files
Temporary Files
File Naming Conventions
Multifile Databases

•
•
•
•

Database Configuration and Maintenance

87

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

Networked File Systems

1.2. External Files

InterBase permits external files to be used as external tables. These tables are limited in
their functionality:

From a database that is in read-write mode, you can execute only SELECT and INSERT
statements on external tables. From a read-only database, you can execute only
SELECT statement on external tables.
You cannot define indexes on external tables; they are outside of the control of the
multigenerational architecture.
The 2GB external file size limit has been removed from InterBase XE onward.

The default location for external files is <InterBase_home>/ext . InterBase can always find
external files that you place here. If you want to place them elsewhere, you must specify the
location in the ibconfig configuration file using the EXTERNAL_FILE_DIRECTORY entry.

Important:
For security reasons, it is extremely important that you not place files with sensitive
content in the same directory with external tables.

Migration note: If you are migrating from InterBase 6.x or older to InterBase 7.x or newer,
and your database includes external table files, you must either move these files to
<InterBase_home>/ext or note their locations in ibconfig using the
EXTERNAL_FILE_DIRECTORY entry

1.3. Temporary Files

InterBase dynamically creates files in the temporary file space for scratch space during
sorting operations involving large amounts of data. See Managing Temporary Files for
details on temporary file use.

1.4. File Naming Conventions

You can use any file extension for database files, but InterBase recommends using .ib for
database files and .ibk for backup files.

InterBase is available on a wide variety of platforms. In most cases users in a heterogeneous
networking environment can access their InterBase database files regardless of platform
differences between client and server machines if they know the file naming conventions of
the target platform.

Generally, InterBase fully supports each file naming conventions of a platform, including the
use of node and path names. InterBase, however, recognizes two categories of file
specification in commands and statements that accept more than one file name. The first
file specification is called the primary file specification. Subsequent file specifications are
called secondary file specifications. Some commands and statements place restrictions on
using node names with secondary file specifications. In syntax statements, file specification
is denoted as '<filespec>'

1.4.1. Primary File Specifications

InterBase syntax always supports a full file specification, including optional node name and
full path, for primary file specifications. For example, the syntax notation for
CREATE DATABASE appears as follows:

•

•

•

•

Database Configuration and Maintenance

88

CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]

In this syntax, the <filespec> that follows CREATE DATABASE supports a node name and
path specification, including a platform-specific drive or volume specification.

1.4.2. Secondary File Specifications

For InterBase syntax that supports multiple file specification, such as CREATE DATABASE , all
file specifications after the first one are secondary. Secondary file specifications cannot
include a node name, but can specify a full path name.

See Also

Database File Size
External Files
Temporary Files
Multifile Databases
Networked File Systems

1.5. Multifile Databases

InterBase supports databases that span multiple files and multiple file systems. You can add
additional files to the database without having to take it off line.

The Database Restore task in IBConsole and in the gbak command-line utility permit you to
create a multifile database. The only way to alter the file size allocation of an existing
database is to back up and restore the database file.

1.5.1. Adding Database Files

You have the option of specifying the size of secondary files in either of two ways: specify
the page on which each secondary file starts, or specify the length in database pages of
each file. When you specify the size using the LENGTH keyword, do not specify the length of
the final file. InterBase sizes the final file dynamically, as needed.

The following isql example adds files using STARTING AT syntax:

CONNECT ‘first.ib’;
ALTER DATABASE
 ADD FILE 'second.ib' STARTING AT 50000;

1.5.2. Altering Database File Sizes

You cannot use ALTER DATABASE to split an existing database file. For example, if your
existing database is 80,000 pages long and you issue the command above, InterBase starts
the new database file at page 80,001. The only way to split an existing database file into
smaller files is to back it up and restore it. When you restore a database, you are free to
specify secondary file sizes at will, without reference to the original file sizes.

The following isql example adds a file using LENGTH syntax. second.ib will begin on the
page following the final page of first.ib and will grow to 50,000 database pages. Then
InterBase begins writing to third.ib and dynamically increases the size as necessary.

•
•
•
•
•

Database Configuration and Maintenance

89

CONNECT 'first.ib';
ALTER DATABASE ADD FILE 'second.ib' LENGTH 50000
 ADD FILE 'third.ib';

InterBase starts writing data to third.ib only after second.ib file fills up. In the example
above, second.ib is 50,000 pages long, and begins following the original file. InterBase will
begin filling the third.ib file after second.ib reaches 50,000 pages. Database pages are
4KB each by default and have a maximum size of 8KB.

There is no guarantee that a given table resides entirely in one file or another. InterBase
stores records based on available space within database files. Over time, records from a
given table tend to spread over all the files in a multifile database.

1.5.3. Maximum Number of Files

InterBase allows up to 131,000 database files, including shadow files. Note that your
operating system might have a lower limit on the number of simultaneous open files than
the ibserver process can have.

1.5.4. Application Considerations

A multifile database is not the same thing as multiple single-file databases. The tables are all
part of the same database they used to be in, but they can be stored across the multiple
files. From the standpoint of your application, they are all part of the same database and
are accessed exactly the same way they would be in a single-file database.

Your application does not need to know about any files except the first one. Any time your
database operations access/write data in the secondary files, the InterBase software takes
care of it without requiring any special programming from your application. The application
attaches to the database by specifying the path of the first file of the database; applications
do not change.

1.5.5. Reorganizing File Allocation

You can change the sizes of the files of a multifile database when using gbak to restore a
database. If you need to move a multi-file database to a different disk or directory, use gbak
to back up the database, then specify the new locations of all secondary files as you restore
the database. See Performing backups and restores using the gbak command.

Tip:
Any database in a production environment should include a definition for at least one
secondary file, even if the current size of the database does not warrant a multifile
database. Data tends to accumulate without bounds, and some day in the future your
database might exceed your file system size, or the maximum file size of the operating
system. By defining a secondary file, you specify what action InterBase takes when the
database grows beyond these limits. This means that the database administrator is freed
from monitoring the database as it approaches the file size limit.

See Also

Database File Size
External Files
Temporary Files
File Naming Conventions
Networked File Systems

•
•
•
•
•

Database Configuration and Maintenance

90

1.6. Networked File Systems

An InterBase database must reside on a disk local to the server software that accesses it.
The database file (including any secondary files and shadow files) cannot reside on
networked or remote file systems (called mapped drives on Windows and NFS file systems on
UNIX). External tables and UDF libraries can reside on networked file systems, but this
practice is not recommended because networked file systems can suffer from intermittent
availability.

On UNIX, the InterBase software detects that a database file is located on an NFS file
system. In this case, it invokes the remote access method to contact an InterBase server
process running on the host that exported the file system. If there is no InterBase server
software running on that node, any connection to the database fails.

2. On-disk Structure (ODS)

Each release of InterBase has characteristic features in its internal file format. To distinguish
between the file formats, InterBase records an on-disk structure (ODS) number in the
database file. In general, major ODS versions (those incrementing the number to the left of
the decimal point) introduce features that are not backward compatible with earlier ODS
versions.

The InterBase 2020 format is ODS 18, but still supports existing databases with ODS 17
through 13. Older ODS version are not supported and can not be connected to. It is strongly
recommended to back up and restore your database so it can be upgraded to ODS 18 and
benefit from the newer features.

When you create a new database or restore a backup file in the current version of
InterBase, the resulting database file has the current ODS version.

Important:
To upgrade the ODS of an older database, you must back it up using the backup utility
for the version of the existing database and then restore it using the current version of
InterBase.

3. Read-write and Read-only Databases

InterBase databases have two modes: read-only and read-write. At creation, all databases
are both readable and writable: they are in read-write mode.

3.1. Read-write Databases

To function in read-write mode, databases must exist on writable media and the ibserver
process must have write access to the database file. For databases that are in read-write
mode, this is true even when they are used only for reading because the transaction states
are kept in an internal inventory data structure within the database file. Therefore any
transaction against the database requires the ability to write to the transaction inventory.

Under both Windows and UNIX, read-write database files must be writable by the user ID
for the ibserver process. However, the operating environment or file system can be
configured to create files that have limited file privileges by default. If you attempt to attach
to a database and get an error of “unavailable database,” first check to see if the
permissions of the database file are such that the user ID of the ibserver process does
not have write privilege on the database file.

Database Configuration and Maintenance

91

3.2. Read-only Databases

You can change InterBase databases to read-only mode. This provides enhanced security for
databases by protecting them from accidental or malicious updates and enables
distribution on read-only media such as CDROMs. Databases are always in read‑write mode
at creation time. This feature is independent of dialect. Any ODS 10 or higher database can
be set to read-only mode.

You can use gbak , gfix , or IBConsole to change a database to read-only mode. (See
Making a Database Read-only below.)

3.2.1. Properties of Read-only Databases

In read-only mode, databases can be placed on CD-ROMs or in read-only file systems as
well as on read-write file systems.
Attempted INSERT , UPDATE , and DELETE operations on a read-only database
generate an error. See the “Error Codes and Messages” chapter of the Language
Reference Guide.
No metadata changes are allowed in read-only databases.
Generators in a read-only database do not increment and are allowed only to return
the current value. For example, in a read-only database, the following statement
succeeds:

SELECT GEN_ID(generator_name, 0) FROM table_name;

The following statement fails with the error “attempted update on read-only database.”

SELECT GEN_ID(generator_name, 1) FROM table_name;

External files accessed through a read-only database open in read-only mode,
regardless of the file’s permissions at the file system level.

3.2.2. Making a Database Read-only

To change the mode of a database between read-write and read-only, you must be either its
owner or SYSDBA and you must have exclusive access to a database.

From within InterBase, you can change a read-write database to read-only mode in any of
three ways:

In IBConsole, select the database, display its properties, and edit the mode. For more
information, refer to Setting Database Properties.
Use gbak to back up the database and restore it in read-only mode:

gbak -create -mode read_only foo.ibk foo.ib

Use gfix to change the mode to read-only:

gfix -mode read_only foo.ib

Important:
To set a database to read-only mode from any application that uses BDE, ODBC, or JDBC,
use the isc_action_svc_properties () function in the InterBase Services API.

•

•

•
•

•

•

•

•

Database Configuration and Maintenance

92

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

Tip:
To distribute a read-write database on a CD-ROM, back it up and put the database.ibk
file on the CD-ROM. As part of the installation, restore the database to the user’s hard
disk.

3.2.3. Read-only with Older InterBase Versions

A pre-6 InterBase client can access a read-only database to perform SELECT
operations. No other operation succeeds.
If a current InterBase client tries to set a pre-6 database to read-only mode, the server
silently ignores the request. There is no way to make older databases read-only. You
must upgrade them.

See Also

Database Files
Creating Databases
Dropping Databases

4. Creating Databases

You can create databases on local and remote servers using IBConsole with the Create
Database dialog.

You can use any of the following methods to access the Create Database dialog:

In the Tree pane, select a server or anywhere in the branch under the desired server
and choose Database|Create Database.
In the Tree pane, right click the Databases branch under the desired server, and select
Create Database from the context menu.

•

•

•
•
•

•

•

Database Configuration and Maintenance

93

To Create a Database:

Ensure that the server indicated is correct. If it is not, cancel this dialog and re-
initiate it under the correct server.
Type an Alias name for the new database in the Alias text field.

On the Files section, click to set the name and destination folder of your
backup.

To use multiple files, select Use Multiple Files and click to add files.

Note:
Database files must reside on a local drive.

You can specify create options by entering a valid value, by clicking the option
value and choosing a new value from a drop-down list of values or by double-
clicking the option value to rotate its value to the next in the list of values. For
more information, see Database Options below.
To create a basic database without any options, leave all options blank.
Click OK to create the specified database.

Important:
The alias name that you specify when creating a database references the
necessary database file information associated with the database. When
performing database configuration and maintenance, you need to specify only
the alias name, not the actual database filename. If the database spans
multiple files, the server uses the header page of each file to locate additional
files.

4.1. Database Options

The database options that you can set are Page Size, Default Character Set, and SQL dialect.

4.1.1. Page Size (Database Options)

InterBase supports database page sizes of 1024, 2048, 4096, 8192, and 16384 bytes. The
default is 4096 bytes.

4.1.2. Default Character Set

See Character Set setting on the page Options Tab for a detailed explanation of character
sets.

For more information about creating databases, see the Language Reference Guide. See
the Data Definition Guide for an explanation of character sets.

4.1.3. SQL Dialect

An InterBase database SQL dialect determines how double quotes, large exact numerics,
and certain data types such as SQL DATE , TIME , and TIMESTAMP are interpreted. In most
cases you should create databases in dialect 3 in order to have access to all current
InterBase features.

Changing a database dialect from 1 to 3 may require some preparation if it contains DATE
data types, DECIMAL or NUMERIC data types with precision greater than 9, or has strings

1.

2.
3.

4.

5.

Database Configuration and Maintenance

94

http://docwiki.embarcadero.com/InterBase/2020/en/Database_Options
http://docwiki.embarcadero.com/InterBase/2020/en/Options_Tab
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

that are in double quotes rather than single quotes. For more information about dialects,
refer to Understanding SQL Dialects in the migration appendix of the Operations Guide.

To Change the Database Dialect:

Highlight the database in the Tree pane and perform one of the following actions:
Choose Database|Properties.
Right-click and choose Properties from the context menu.
Double-click Properties in the Work pane.

Click the General tab and change the SQL dialect in the Options field.

Tip:
To suppress the display of system tables in IBConsole, deselect System Data from the
View menu.

See Also

Database Files
Read-write and Read-only Databases
Dropping Databases
Removing Database Backup Files
Setting Database Properties

5. Dropping Databases

You can drop databases using IBConsole. Dropping a database deletes the current database
and database alias, removing both data and metadata.

A database can be dropped only by its creator or SYSDBA.

To Drop a Database:

Select the database you wish to drop in the Tree pane.
Choose Database|Drop Database or select Drop Database from the Work pane.
A dialog asks you to confirm that you wish to delete the database. Click Yes if you
want to drop the selected database, otherwise click No.

Important:
Dropping a database deletes all data and metadata in the database.

6. Backup File Properties

You can view and modify backup file information in IBConsole with the Backup Alias
Properties dialog. You can access this dialog with either of the following methods:

Expand Backup in the Tree pane, select a backup alias, and double-click Modify
Backup Alias from the Work pane.
Right-click a backup alias in the Tree pane and choose Modify Backup Alias from the
context menu.

1.
•
•
•

2.

•
•
•
•
•

1.
2.
3.

•

•

Database Configuration and Maintenance

95

To Edit Backup File Properties:

Enter a new backup alias name in the Alias Name text field.
Add, remove, or modify the backup filenames and corresponding file sizes
associated with the backup in the backup files table. When specifying filenames,
be sure to include the file path where the file is located.
add a new row to the backup files table, move to the last row and column of the
table and type W ‑ Z . To remove a file from the backup file list, delete the values
from the table.
Select a server from the Target Database Server drop-down list. You can also type
the server name in the edit portion of the drop-down list.
Select a database alias from the Target Database Alias drop-down list. You can
also type the alias name in the edit portion of the drop-down list.
Click Apply to save your changes.

See Also

Removing Database Backup Files
Setting Database Properties

7. Removing Database Backup Files

You can remove database backup files in IBConsole with either of the following methods:

Expand Backup in the Tree pane and select a backup alias and double-click Delete Alias
from the Work pane.
Right-click a backup alias in the Tree pane and choose Delete Alias from the context
menu.

A dialog asks you to confirm that you wish to remove the selected backup file. Click Yes if
you want to delete the backup file, otherwise click No.

See Also

Backup File Properties
Database Files

8. Shadowing

InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called disk shadowing, or sometimes just

1.
2.

3.

4.

5.

6.

•
•

•

•

•
•

Database Configuration and Maintenance

96

shadowing. This chapter describes how to set up and use shadowing.This section describes
the various tasks involved in shadowing, as well as the advantages and limitations of
shadowing.

8.1. Tasks for Shadowing

The main tasks in setting up and maintaining shadowing are as follows:

Creating a shadow.
Shadowing begins with the creation of a shadow. A shadow is an identical, physical
copy of a database. When a shadow is defined for a database, changes to the
database are written simultaneously to its shadow. In this way, the shadow always
reflects the current state of the database. For information about the different
ways to define a shadow, see Creating a Shadow.
Activating a shadow.
If something happens to make a database unavailable, the shadow can be
activated. Activating a shadow means it takes over for the database; the shadow
becomes accessible to users as the main database. Activating a shadow happens
either automatically or through the intervention of a database administrator,
depending on how the shadow was defined. For more information about
activating a shadow, see Activating a Shadow.
Deleting a shadow.
If shadowing is no longer desired, it can be stopped by deleting the shadow. For
more information about deleting a shadow, see Dropping a Shadow.
Adding files to a shadow.
A shadow can consist of more than one file. As shadows grow in size, files can be
added to accommodate the increased space requirements. For more information
about adding shadow files, see Adding a Shadow File.

8.2. Advantages of Shadowing

Shadowing offers several advantages:

Recovery is quick. Activating a shadow makes it available immediately.
Creating a shadow does not require exclusive access to the database.
Shadow files use the same amount of disk space as the database. Log files, on the other
hand, can grow well beyond the size of the database.
You can control the allocation of disk space. A shadow can span multiple files on
multiple disks.
Shadowing does not use a separate process. The database process handles writing to
the shadow.
Shadowing can run behind the scenes and needs little or no maintenance.

8.3. Limitations of Shadowing

Shadowing has the following limitations:

Shadowing is not an implementation of replication. Shadowing is one-way writing,
duplicating every write operation on the master database. Client applications cannot
access the shadow file directly.
Shadowing is useful only for recovery from hardware failures or accidental deletion of
the database. User errors or software failures that corrupt the database are duplicated
in the shadow.
Recovery to a specific point in time is not possible. When a shadow is activated, it takes
over as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

1.

2.

3.

4.

•
•
•

•

•

•

•

•

•

Database Configuration and Maintenance

97

Shadowing can occur only to a local disk. Shadowing to a NFS file system or mapped
drive is not supported. Shadowing to tape or other media is unsupported.

8.4. Creating a Shadow

A shadow is created with the CREATE SHADOW statement in SQL. Because this does not
require exclusive access, it can be done without affecting users. For detailed information
about CREATE SHADOW , see the Language Reference.

Before creating a shadow, consider the following topics:

The location of the shadow

A shadow should be created on a different disk from where the main database resides.
Because shadowing is intended as a recovery mechanism in case of disk failure, maintaining
a database and its shadow on the same disk defeats the purpose of shadowing.

Distributing the shadow

A shadow can be created as a single disk file called a shadow file or as multiple files called a
shadow set. To improve space allocation and disk I/O, each file in a shadow set can be
placed on a different disk.

User access to the database

If a shadow becomes unavailable, InterBase can either deny user access to the database
until shadowing is resumed, or allow access even though database changes are not being
shadowed. Depending on which database behavior is desired, the database administrator
creates a shadow either in auto mode or in manual mode. For more information about
these modes, see Auto Mode and Manual Mode.

Automatic shadow creation

To ensure that a new shadow is automatically created, create a conditional shadow. For
more information, see Conditional Shadows, in this chapter.

The next sections describe how to create shadows with various options:

Single-file or multifile shadows
Auto or manual shadows
Conditional shadows

These choices are not mutually exclusive. For example, you can create a single-file,
conditional shadow in manual mode.

8.4.1. Creating a Single-file Shadow

To create a single-file shadow for database employee.ib , enter:

SQL> CREATE SHADOW 1 '/usr/InterBase/examples/employee.shd';

The name of the shadow file is employee.shd , and it is identified by the number 1. Verify
that the shadow has been created by using the isql command SHOW DATABASE :

SQL> SHOW DATABASE;
Database: employee.ib
Shadow 1: '/usr/InterBase/examples/employee.shd' auto
PAGE_SIZE 4096
Number of DB pages allocated = 392
Sweep interval = 20000

•

•

•

•

•

•
•
•

Database Configuration and Maintenance

98

The page size of the shadow is the same as that of the database.

See Also

Creating a Multifile Shadow
Auto Mode and Manual Mode
Conditional Shadows

8.4.2. Creating a Multifile Shadow

If your database is large, you can shadow it to a multifile shadow, spreading the shadow
files over several disks. To create a multifile shadow, specify the name and size of each file
in the shadow set. As with multifile databases, you have the option of specifying the size of
secondary files in either of two ways: specify the page on which each secondary file starts,
or specify the length in database pages of each file. When you specify the size using the
LENGTH keyword, do not specify the length of the final file. InterBase sizes the final file
dynamically, as needed.

For example, the following example creates a shadow set consisting of three files. The
primary file, employee.shd , is 10,000 database pages in length. The second file is 20,000
database pages long, and the final file grows as needed.

SQL> CREATE SHADOW 1 'employee.shd' LENGTH 10000
CON> FILE 'emp2.shd' LENGTH 20000
CON> FILE 'emp3.shd';

Instead of specifying the page length of secondary files, you can specify their starting page.
The following example creates the same shadows as the previous example:

SQL> CREATE SHADOW 1 'employee.shd'
CON> FILE 'emp1.shd' STARTING AT 10000
CON> FILE 'emp2.shd' STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and
starting pages for the shadow just created:

SQL> SHOW DATABASE;
Database: employee.ib
Shadow 1: '/usr/InterBase/examples/employee.shd' auto length 10000
file /usr/InterBase/examples/emp1.shd length 2000 starting 10000
file /usr/InterBase/examples/emp2.shd length 2000 starting 30000
PAGE_SIZE 4096
Number of DB pages allocated = 392
Sweep interval = 20000

The page length you allocate for secondary shadow files need not correspond to the page
length of the secondary files of the database. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

See Also

Creating a Single-file Shadow
Auto Mode and Manual Mode
Conditional Shadows

8.4.3. Auto Mode and Manual Mode

A shadow can become unavailable for the same reasons a database becomes unavailable
(disk failure, network failure, or accidental deletion). If a shadow becomes unavailable, and

•
•
•

•
•
•

Database Configuration and Maintenance

99

it was created in auto mode, database operations continue automatically without
shadowing. If a shadow becomes unavailable, and it was created in manual mode, further
access to the database is denied until the database administrator intervenes. The benefits
of auto mode and manual mode are compared in the following table:

Mode Advantage Disadvantage

Auto Database operation is uninterrupted

Creates a temporary period when the
database is not shadowed

The database administrator might be
unaware that the database is operating
without a shadow

Manual
Prevents the database from running
unintentionally without a shadow

Database operation is halted until the
problem is fixed

Needs intervention of the database
administrator

Auto mode

The AUTO keyword directs the CREATE SHADOW statement to create a shadow in auto
mode:

SQL> CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation is uninterrupted even though there is no shadow. To
resume shadowing, it might be necessary to create a new shadow. If the original shadow
was created as a conditional shadow, a new shadow is automatically created. For more
information about conditional shadows, see Conditional Shadows.

Manual mode

The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in manual
mode:

SQL> CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
attachments to the database are prevented. To allow database attachments again, the
database owner or SYSDBA must enter the following command:

gfix -kill database

This command deletes metadata references to the unavailable shadow corresponding to
<database>. After deleting the references, a new shadow can be created if shadowing
needs to resume.

See Also

Creating a Single-file Shadow
Creating a Multifile Shadow
Conditional Shadows

•
•
•

Database Configuration and Maintenance

100

8.4.4. Conditional Shadows

You can define a shadow in a way that if that shadow replaces a database, the server
creates a new shadow file. This allows shadowing to continue uninterrupted. A shadow
defined with this behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the
CREATE SHADOW statement. For example,

CREATE SHADOW 3 CONDITIONAL 'atlas.shd';

Creating a conditional file directs InterBase to automatically create a new shadow. This
happens in either of two cases:

The database or one of its shadow files becomes unavailable.
The shadow takes over for the database due to hardware failure.

8.5. Activating a Shadow

When a database becomes unavailable, database operations are resumed by activating the
shadow. To do so, log in as SYSDBA or the database owner and use gfix with the
-activate option.

Important:
Before activating a shadow, check that the main database is unavailable. If a shadow is
activated while the main database is available, the shadow can be corrupted by existing
attachments to the main database.

To activate a shadow, specify the path name of its primary file. For example, if database
employee.ib has a shadow named employee.shd , enter:

gfix -activate employee.shd

After a shadow is activated, you should change its name to the name of your original
database. Then, create a new shadow if shadowing needs to continue and if another disk
drive is available.

8.6. Dropping a Shadow

To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. For example,

SQL> DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW DATABASE .

Important:
DROP SHADOW deletes shadow references from a database’s metadata, as well as the
physical files on disk. Once the files have been removed from disk, there is no
opportunity to recover them. However, a shadow is merely a copy of an existing
database, so the new shadow is identical to the dropped shadow.

•
•

Database Configuration and Maintenance

101

8.7. Adding a Shadow File

If a database is expected to increase in size, consider adding files to its shadow. To add a
shadow file, first use DROP SHADOW to delete the existing shadow, then use
CREATE SHADOW to create a multifile shadow.

The page length you allocate for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

9. Setting Database Properties

The Database Properties dialog enables you to display and configure certain database
settings. You can access the Database Properties dialog by any of the following methods:

Select a connected database (or any branch under the database hierarchy) in the Tree
pane and choose Database|Properties.
Select a connected database in the Tree pane and double-click Properties in the Work
pane.
Right-click a connected database in the Tree pane and choose Properties from the
context menu.

The Database Properties dialog contains two tabs, Alias and General.

9.1. Alias Tab

The Alias tab of the Database Properties dialog is where you can specify an alias name for a
database as well as the file path and file name of the selected database.

Error creating thumbnail: Unable to save thumbnail to destination

To edit database alias settings:

Enter the alias name of the database in the Alias Name text field.
Enter database file name, including the path where the file is located, in the File
text field. If you prefer, you can also click the browse button to locate the file
you want.
If you want to change the database file name, the database must be disconnected
before you access the Database Properties dialog.
If you need to view or configure the general database settings, click the General
tab and see General Tab below for further information.
Once you are finished making changes to the database properties click OK to save
your changes, otherwise click Cancel.

9.2. General Tab

The General tab of the Database Properties dialog is where you can view such database
settings as the database owner, secondary files and their start pages, the number of
allocated database pages and the page size. You can also set such options as Forced Writes,
Sweep Interval, SQL Dialect and Read Only.

Error creating thumbnail: Unable to save thumbnail to destination

To edit database general options:

Choose option values in the Options table. You can specify options by clicking the
option value and entering a new value, by choosing a new value from a drop-down

•

•

•

1.
2.

3.

4.

1.

Database Configuration and Maintenance

102

list of values or by double-clicking the option value to rotate its value to the next in
the list of values.
If you need to view or configure the database alias settings, click the Alias tab and
see Alias Tab above for further information.
Once you are finished making changes to the database properties click OK to save
your changes, otherwise click Cancel.

Option Value

Read Only

Option values are True and False. To make the
database read only set the Read Only option to
True. This prevents users from performing any
DML or updates to the database. The default
setting for this option is False. See Making a
Database Read-only for more information.

Write Mode
Sets the database write mode. Available options
are Asynchronous, Synchronous and Direct I/O

Sweep Interval

he sweep interval is the number of transactions
that will occur before an automatic database
sweep takes place. You can enter any positive
number for the sweep interval, or zero to disable
the automatic sweep. See Sweep Interval and
Automated Housekeeping for further information
on setting the sweep interval.

Database Dialect

An InterBase database SQL dialect determines
how double quotes, large exact numerics, and
certain data types such as SQLDATE, TIME, and
TIMESTAMP are interpreted. In most cases you
should choose dialect 3 in order to have access to
all current InterBase features. For more
information refer to Features and Dialects.

Page Buffers
Enter a numeric value. It lets you set the number
of database page buffers.

Linger Interval
Set a value in seconds. It allows a database to
remain in memory after the last user detaches.

Flush Interval
Enables database flush. The interval <number> is
interpreted in units of seconds.

Reclaim Interval

Set a value in seconds. Determines how often the
garbage collector thread will run to release
memory from unused procedures, triggers, and
internal system queries back to InterBase
memory heap.

Group Commit
Available options are Yes and No when enabled
allows transactions to be committed by a
background cache writer thread.

Reserve Table Space
Available options are Yes and No. When set to No
it disables space reservation on the database.

Embedded User Authentication
Option Values are Disabled and Enabled. Stores
database user name and password information
directly in the database.

See Also

Database Files
Read-write and Read-only Databases
Creating Databases
Dropping Databases

2.

3.

•
•
•
•

Database Configuration and Maintenance

103

10. Sweep Interval and Automated Housekeeping

Sweeping a database is a systematic way of removing outdated records. Periodic sweeping
prevents a database from growing too large. In the past, sweeping slowed system
performance and users disabled the automatic database sweep function because of the
impact on product operations.

InterBase databases periodically need to be swept. Otherwise, the main memory allocated
for the bitmap of each translation increases to the point where performance becomes
unacceptable. The longer sweep takes to complete, the more main memory requirements
increase for starting new transactions.

10.1. Fast Sweep

With the implementation of the fast sweep optimization starting with InterBase XE, the
memory allocation issue has been mitigated. The user has the option to configure their
databases for automatic sweep. In cases where large databases have large archival or
infrequently modified tables, a database sweep will have minimal impact on the
performance of running transactional operations.

Only ODS 15 and later databases can perform fast database sweeps. The effectiveness of a
fast sweep is directly proportional to the fraction of database data pages that have been
modified since the last sweep. If every data page has been changed, fast sweep is no faster
than the former methodology. If very few pages are changed, fast sweep is nearly
instantaneous. If half the pages were updated, fast sweep is then half the former sweep
time.

Starting with InterBase XE7, any database that you restore is immediately marked as swept,
therefore the first sweep of that database is a fast sweep. This feature is available starting
with InterBase XE7 and onwards.

There is no new user interface or action required by the user to enable fast sweep
functionality. Manual sweep initiated by the GFIX command line tool, IBConsole, or
programmatically, as well as automatic sweep configuration on a database, use the fast
sweep mechanism.

As a database administrator, you can tune database sweeping, balancing its advantages and
disadvantages to best satisfy the needs of the users.

10.2. Overview of Sweeping

InterBase uses a multigenerational architecture. This means that multiple versions of data
records are stored directly on the data pages. When a record is updated or deleted,
InterBase keeps a copy of the old state of the record and creates a new version. This can
increase the size of a database.

10.2.1. Garbage Collection

To limit the growth of the database, InterBase performs garbage collection by sweeping the
database. This process frees up space allocated to outdated record versions. Whenever a
transaction accesses a record, outdated versions of that record are collected. Records that
were rolled back are not collected. To guarantee that all outdated records are collected,
including those that were rolled back, InterBase periodically sweeps the database.

Database Configuration and Maintenance

104

10.2.2. Automatic Housekeeping

If a transaction is left in an active (unresolved) state, this is an “interesting” transaction. In a
given transaction inventory of a database, the first transaction with a state other than
committed is known as the Oldest Interesting Transaction (OIT). Automatic housekeeping
occurs when the difference between the OIT and the oldest active transaction (OAT) is
greater than the sweep interval. By default, this sweep interval is 20,000, but it is
configurable (see Setting the Sweep Interval).

Note:
It is a subtle but important distinction that the automatic sweep does not necessarily
occur every 20,000 transactions. It is only when the difference between the OIT and OAT
reaches the threshold. If every transaction to the database is committed promptly, then
this difference it is not likely to be great enough to trigger the automatic sweep.

The InterBase server process initiates a special thread to perform this sweep
asynchronously, so that the client process can continue functioning, unaffected by the
amount of work done by the sweep.

Tip:
Sweeping a database is not the only way to perform systematic garbage collection.
Backing up a database achieves the same result, because the InterBase server must read
every record, an action that forces garbage collection throughout the database. As a
result, regularly backing up a database can reduce the need to sweep. This enables you
to maintain better application performance. For more information about the advantages
of backing up and restoring, see About InterBase backup and restore options.

10.2.3. Configuring Sweeping

You are able to control several aspects of database sweeping. You can:

Change the automatic sweep interval.
Disable automatic sweeping.
Sweep a database immediately.

The first two functions are performed in the Database Properties dialog. The last is
performed with a sweep menu command and is explained in Performing an Immediate
Database Sweep.

10.3. Setting the Sweep Interval

To set the automatic sweep threshold to n transactions:

gfix -h n

Sweeping a database can affect transaction start-up if rolled back transactions exist in the
database. As the time since the last sweep increases, the time for transaction start-up can
also increase. Lowering the sweep interval can help reduce the time for transaction start-up.

On the other hand, frequent database sweeps can reduce application performance. Raising
the sweep interval could help improve overall performance. The database administrator
should weigh the issues for the affected applications and decide whether the sweep interval
provides the desired database performance.

To set the sweep interval with IBConsole, refer to Setting Database Properties.

•
•
•

Database Configuration and Maintenance

105

Tip:
Unless the database contains many rolled back transactions, changing the sweep interval
has little effect on database size. As a result, it is more common for a database
administrator to tune the database by disabling sweeping and performing it at specific
times. These activities are described in the next two sections.

10.4. Disabling Automatic Sweeping

To disable automatic sweeping, set the sweep threshold to zero (0). Disabling automatic
sweeping is useful if:

Maximum throughput is important. Transactions are never delayed by sweeping.
You want to schedule sweeping at specific times. You can manually sweep the database
at any time. It is common to schedule sweeps at a time of least activity on the database
server, to avoid competing for resources with clients.

To disable automatic sweeping with IBConsole, refer to Setting Database Properties.

10.5. Performing an Immediate Database Sweep

You can perform an immediate database sweep with any of the following methods:

Right click a connected database in the Tree pane and choose Maintenance|Sweep
from the context menu.
Select a connected database in the Tree pane and double-click Sweep in the Work pane.
enter the following command:

gfix -sweep

This operation runs an immediate sweep of the database, releasing space held by records
that were rolled back and by out-of-date record versions. Sweeps are also done
automatically at a specified interval.

Sweeping a database does not strictly require it to be shut down. You can perform sweeping
at any time, but it can impact system performance and should be done when it
inconveniences users the least.

If a sweep is performed as an exclusive operation on the database, there is additional
tuning that the procedure performs. As long as there are no outstanding active
transactions, the sweep updates the state of data records and the state of the inventory of
past transactions. Non-committed transactions are finally rendered obsolete, and internal
data structures need not track them in order to maintain snapshots of database versions.
The benefit of this is a reduction of memory use, and a noticeable performance
improvement.

11. Configuring the Database Cache

The database cache consists of all database pages (also called buffers) held in memory at
one time. Database cache size is the number of database pages. You can set the default size
of the database cache at three levels:

Server level: applies to all databases
Database level: applies only to a single database (using gfix or
ALTER DATABASE SET PAGE CACHE to set the size for a specific database)

Connection level: applies only to a specific isql connection

•
•

•

•
•

•
•

•

Database Configuration and Maintenance

106

We recommend setting cache size at the database level rather than at the server level. This
reduces the likelihood of inappropriate database cache sizes.

Every database on a server requires RAM equal to the cache size (number of database
pages) times the page size. By default, the cache size is 2048 pages per database and the
page size is 4KB. Thus, a single database running at the default setting requires 8MB of
memory, but three such databases require 24MB of memory.

11.1. Default Cache Size Per Database

The buffers parameter of the gfix utility sets the default number of cache pages for a
specific database:

gfix -buffers n database_name

This sets the number of cache pages for the specified database to <n>, overriding the server
value, which by default is 2048 pages.

The default size for a database can also be set using the ALTER DATABASE statement:

ALTER DATABASE SET PAGE CACHE n

To run gfix or ALTER DATABASE , you must be either SYSDBA or the owner of the
database.

Both gfix and ALTER DATABASE immediately attempt to expand the cache buffers to the
number of pages requested.

11.2. Default Cache Size Per isql Connection

To configure the number of cache pages for the duration of one isql connection, invoke
isql with the following option:

isql -c n database_name

<n> is the number of cache pages to be used as the default for the session; <n> is trimmed
to the database-specific cache setting if it is greater than that value.

A CONNECT statement entered in an isql query accepts the argument CACHE n. (Refer to
the discussion of CONNECT in the Language Reference manual for a full description of the
CONNECT function). For example:

isql> CONNECT database_name CACHE n;

The value <n> can be any positive integer number of database pages. If a database cache
already exists in the server because of another attachment to the database, the cache size
is increased only if <n> is greater than current cache size.

11.3. Setting Cache Size in Applications

InterBase API: use the isc_dpb_num_buffers parameter to set cache size in a database
parameter buffer (DPB).

IBX: use the num_buffers parameter to set cache size in the TIBDatabase parameter list. For
example: num_buffers=250. For the parameter to be parsed correctly, there must be no
spaces around the = sign.

Database Configuration and Maintenance

107

The number of buffers passed by the InterBase API or IBX is trimmed to the database-
specific cache setting if it is greater than that value.

11.4. Default Cache Size Per Server

For SuperServer installations, you can configure the default number of pages used for the
database caches. By default, the database cache size is 2048 pages per database. You can
modify this default by changing the value of DATABASE_CACHE_PAGES in the ibconfig
configuration file. When you change this setting, it applies to every active database on the
server .

You can also set the default cache size for each database using the gfix or SET PAGE
CACHE utilities. This approach permits greater flexibility, and reduces the risk that memory
is overused, or that database caches are too small.

We strongly recommend that you use gfix or SET PAGE CACHE to set cache size rather
than DATABASE_CACHE_PAGES .

11.5. Verifying Cache Size

To verify the size of the database cache currently in use, execute the following commands in
isql:

isql> CONNECT database_name;
isql> SET STATS ON;
isql> COMMIT;
Current memory = 415768
Delta memory = -2048
Max memory = 419840
Elapsed time = 0.03 sec
Buffers = 2048
Reads = 0
Writes 2
Fetches = 2
isql> QUIT;

The empty COMMIT command prompts isql to display information about memory and
buffer usage. The “Buffers” line specifies the size of the cache for that database.

Note:
The example command listing shows "Buffers=2048" for user to verify that cache setting
has been changed. This is no longer strictly true. For very large cache buffer settings
(>256MB), InterBase incrementally allocates additional cache buffers on-demand. So it is
possible that the listed command will show a Buffers value that is a lower number. The
actual value can always be determined by running gstat -h and examining the Page
buffers entry or querying column RDB$PAGE_CACHE from system table RDB$DATABASE.

12. Forced Writes vs. Buffered Writes

When an InterBase Server performs forced writes (also referred to as synchronous writes), it
physically writes data to disk whenever the database performs an (internal) write operation.

If forced writes are not enabled, then even though InterBase performs a write, the data may
not be physically written to disk, since operating systems buffer disk writes. If there is a
system failure before the data is written to disk, then information can be lost.

Performing forced writes ensures data integrity and safety, but slow performance. In
particular, operations that involve data modification are slower.

Database Configuration and Maintenance

108

Forced writes are enabled or disabled in the Database Properties dialog. For more
information, refer to Setting Database Properties.

13. Validation and Repair

In day-to-day operation, a database is sometimes subjected to events that pose minor
problems to database structures. These events include:

Abnormal termination of a database application. This does not affect the integrity of the
database. When an application is canceled, committed data is preserved, and
uncommitted changes are rolled back. If InterBase has already assigned a data page for
the uncommitted changes, the page might be considered an orphan page. Orphan
pages are unassigned disk space that should be returned to free space.
Write errors in the operating system or hardware. These usually create a problem with
database integrity. Write errors can cause data structures such as database pages and
indexes to become broken or lost. These corrupt data structures can make committed
data unrecoverable.

13.1. Validating a Database

You should validate a database:

Whenever a database backup is unsuccessful.
Whenever an application receives a “corrupt database” error.
Periodically, to monitor for corrupt data structures or misallocated space.
Any time you suspect data corruption.

Database validation requires exclusive access to the database. Shut down a database to
acquire exclusive access. If you do not have exclusive access to the database, you get the
error message:

bad parameters on attach or create database - secondary server attachments cannot
validate databases

To shut down a database, refer to the directions in Shutting Down a Database.

13.1.1. Validating a Database Using gfix

To validate a database using gfix, follow these steps:

Enter the following command:

gfix -v

If you suspect you have a corrupt database, make a copy of your database using
an OS command (gbak will not back up corrupt data).
Use the gfix command to mark corrupt structures in the copied database:

gfix -mend

If gfix reports any checksum errors, validate and repair the database again,
ignoring any checksum errors:

gfix -validate -ignore

•

•

•
•
•
•

1.

2.

3.

4.

Database Configuration and Maintenance

109

Note:
InterBase supports true checksums only for ODS 8 and earlier.

It may be necessary to validate a database multiple times to correct all the errors.

13.1.2. Validating a Database using IBConsole

To validate a database using IBConsole, access the Database Validation dialog by any of the
following methods:

Select a disconnected database in the Tree pane and double-click Validation in the Work
pane.
Right-click a disconnected database in the Tree pane and choose Validation from the
context menu.
Select Database|Maintenance|Validation.

To validate database:

1. Check that the database indicated is correct. If it is not, cancel this dialog and re-initiate
the Database Validation dialog under the correct database.
2. Specify which validation options you want by clicking in the right column and choosing
True or False from the drop-down list. See the table below for a description of each option.
3. Click OK if you want to proceed with the validation, otherwise click Cancel.

When IBConsole validates a database, it verifies the integrity of data structures. Specifically,
it does the following:

Reports corrupt data structures.
Reports misallocated data pages.
Returns orphan pages to free space.

Option Value

Validate Record Fragments

Option values are True and False. By default, database
validation reports and releases only page structures. If
the Validate Record Fragments option is set to True,
validation reports and releases record structures as
well as page structures.

Read Only Validation
Option values are True and False. By default, validating
a database updates it, if necessary. To prevent
updating, set the Read Only Validation option to True.

•

•

•

•
•
•

Database Configuration and Maintenance

110

Option Value

Ignore Checksum Errors

Option values are True and False. A checksum is a
page-by-page analysis of data to verify its integrity. A
bad checksum means that a database page has been
randomly overwritten (for example, due to a system
crash).

Checksum errors indicate data corruption. To repair a
database that reports checksum errors, set the Ignore
Checksum Errors option to True. This enables
IBConsole to ignore checksums when validating a
database. Ignoring checksums allows successful
validation of a corrupt database, but the affected data
may be lost.

Note: InterBase supports true checksums only for ODS
8 and earlier.

See Also

Repairing a Corrupt Database
Shutting Down and Restarting Databases

13.2. Repairing a Corrupt Database

If a database contains errors, they are displayed in the following dialog:

The errors encountered are summarized in the text display area. The repair options you
selected in the Database Validation dialog are selected in this dialog also.

To repair the database, choose Repair. This fixes problems that cause records to be corrupt
and marks corrupt structures. In subsequent operations (such as backing up), InterBase
ignores the marked records.

Some corruptions are too serious for IBConsole to correct. These include corruptions to
certain strategic structures, such as space allocation pages. In addition, IBConsole cannot fix
certain checksum errors that are random by nature and not specifically associated with
InterBase.

Note:
Free pages are no longer reported, and broken records are marked as damaged. Any
records marked during repair are ignored when the database is backed up.

•
•

Database Configuration and Maintenance

111

If you suspect you have a corrupt database, perform the following steps:

Make a copy of the database using an operating-system command. Do not use the
IBConsole Backup utility or the gbak command, because they cannot back up a
database containing corrupt data. If IBConsole reports any checksum errors,
validate and repair the database again, setting the Ignore Checksum Error option
to True. Note: InterBase supports true checksums only for ODS 8 and earlier.
It may be necessary to validate a database multiple times to correct all the errors.
Validate the database again, with the Read Only Validation option set to True.
Back up the mended database with IBConsole or gbak . At this point, any
damaged records are lost, since they were not included during the back up. For
more information about database backup, see About InterBase backup and
restore options.
Restore the database to rebuild indexes and other database structures. The
restored database should now be free of corruption.
To verify that restoring the database fixed the problem, validate the restored
database with the Read Only Validation option set to True.

14. Shutting Down and Restarting Databases

Maintaining a database often involves shutting it down. Only the SYSDBA or the owner of a
database (the user who created it) can shut it down. The user who shuts down the database
then has exclusive access to the database.

Exclusive access to a database is required to:

Validate and repair the database.
Add or drop a foreign key on a table in the database.
Add a secondary database file.

After a database is shut down, the database owner and SYSDBA are still able to connect to
it, but any other user attempting to connect gets an error message stating that the database
is shut down.

14.1. Shutting Down a Database

To shut down a database, select a connected database from the Tree pane and double-click
Shutdown in the Work pane or choose Database|Maintenance|Shutdown to display the
Database Shutdown dialog:

14.1.1. Shutdown Timeout Options

You can specify a timeout value by selecting a new value from the drop-down list of values
or by typing the value in the edit portion of the drop-down list. Timeout values can range
from 1 minute to 500 minutes.

1.

2.

3.

4.

5.

•
•
•

Database Configuration and Maintenance

112

14.1.2. Shutdown Options

You can specify shutdown options by selecting a new value from the drop-down list of
values. Shutdown option values include: Deny New Connections While Waiting, Deny New
Transactions While Waiting, and Force Shutdown After Timeout.

Deny new connections while waiting

This option allows all existing database connections to complete their operations
unaffected. IBConsole shuts down the database after all processes disconnect from the
database. At the end of the time-out period, if there are still active connections, then the
database is not shut down.

This prevents any new processes from connecting to the database during the timeout
period. This enables current users to complete their work, while preventing others from
beginning new work.

Suppose the SYSDBA needs to shut down database orders.ib at the end of the day (five
hours from now) to perform routine maintenance. The Marketing department is currently
using the database to generate important sales reports.

In this case, the SYSDBA would shut down orders.ib with the following parameters:

Deny New Connections.
Timeout of 300 minutes (five hours).

These parameters specify to deny any new database connections and to shut down the
database any time during the next five hours when there are no more active connections.

Any users who are already connected to the database are able to finish processing their
sales reports, but new connections are denied. During the timeout period, the SYSDBA
sends out periodic broadcast messages asking users to finish their work by 6 p.m.

When all users have disconnected, the database is shut down. If all users have not
disconnected after five hours, then the database is not shut down. Because the shutdown is
not critical, it is not forced.

It would be inappropriate to deny new transactions, since generating a report could require
several transactions, and a user might be disconnected from the database before
completing all necessary transactions. It would also be inappropriate to force shutdown,
since it might cause users to lose work.

Deny new transactions while waiting

This option allows existing transactions to run to normal completion. Once transaction
processing is complete, IBConsole shuts down the database. Denying new transactions also
denies new database connections. At the end of the time-out period, if there are still active
transactions, then the database is not shut down.

This is the most restrictive shutdown option, since it prevents any new transactions from
starting against the database. This option also prevents any new connections to the
database.

Suppose the SYSDBA needs to perform critical operations that require shutdown of the
database orders.ib . This is a database used by dozens of customer service
representatives throughout the day to enter new orders and query existing orders.

•
•

Database Configuration and Maintenance

113

At 5 p.m., the SYSDBA initiates a database shutdown of orders.ib with the following
parameters:

Deny New Transactions.
Timeout of 60 minutes.

These parameters deny new transactions for the next hour. During that time, users can
complete their current transactions before losing access to the database. Simply denying
new connections would not be sufficient, since the shutdown cannot afford to wait for users
to disconnect from the database.

During this hour, the SYSDBA sends out periodic broadcast messages warning users that
shutdown is happening at 6 p.m and instructs them to complete their work. When all
transactions have been completed, the database is shut down.

After an hour, if there are still any active transactions, IBConsole cancels the shutdown.
Since the SYSDBA needs to perform database maintenance, and has sent out numerous
warnings that a shutdown is about to occur, there is no choice but to force a shutdown.

Force Shutdown After Timeout

With this option, there are no restrictions on database transactions or connections. As soon
as there are no processes or connections to the database, IBConsole shuts down the
database. At the end of the time-out period, if there are still active connections, IBConsole
rolls back any uncommitted transactions, disconnects any users, and shuts down the
database.

If critical database maintenance requires a database to be shut down while there are still
active transactions, the SYSDBA can force shut down. This step should be taken only if
broadcast messages have been sent out to users that shutdown is about to occur. If users
have not heeded repeated warnings and remain active, then their work is rolled back.

This option does not deny new transactions or connections during the time-out period. If, at
any time during the time-out period, there are no connections to the database, IBConsole
shuts down the database.

Important:
Forcing database shutdown interferes with normal database operations, and should only
be used after users have been given appropriate broadcast notification well in advance.

See Also

Restarting a Database
Database Files

14.2. Restarting a Database

After a database is shut down, it must be restarted (brought back online) before users can
access it.

To restart a database, select a previously shut down database from the Tree pane and
choose Database|Maintenance|Database Restart or double-click Database Restart in the
Work pane. The currently selected database is brought back online immediately.

•
•

•
•

Database Configuration and Maintenance

114

15. Limbo Transactions

When committing a transaction that spans multiple databases, InterBase automatically
performs a two-phase commit. A two-phase commit guarantees that the transaction updates
either all of the databases involved or none of them – data is never partially updated.

Note:
The Borland Database Engine (BDE), as of version 4.5, does not exercise the two-phase
commit or distributed transactions capabilities of InterBase, therefore applications using
the BDE never create limbo transactions.

In the first phase of a two-phase commit, InterBase prepares each database for the commit
by writing the changes from each subtransaction to the database. A subtransaction is the
part of a multi-database transaction that involves only one database. In the second phase,
InterBase marks each subtransaction as committed in the order that it was prepared.

If a two-phase commit fails during the second phase, some subtransactions are committed
and others are not. A two-phase commit can fail if a network interruption or disk crash
makes one or more databases unavailable. Failure of a two-phase commit causes limbo
transactions, transactions that the server does not know whether to commit or roll back.

It is possible that some records in a database are inaccessible due to their association with a
transaction that is in a limbo state. To correct this, you must recover the transaction using
IBConsole. Recovering a limbo transaction means committing it or rolling it back. Use gfix to
recover transactions.

15.1. Recovering Transactions

You can recover transactions by any of the following methods:

Select a connected database in the Tree pane and double-click Transaction Recovery in
the Work pane or choose Database|Maintenance|Transaction Recovery.
Right-click a connected database in the Tree pane and choose Maintenance|
Transaction Recovery from the context menu.

The Transaction Recovery dialog contains two tabs, Transactions and Details. The
Transactions tab displays a list of limbo transactions that can then be recovered—that is, to
committed or rolled back. You can also seek suggested recovery actions and set current
actions to perform on the selected limbo transactions. The Details tab displays detailed
information about a selected transaction.

15.1.1. Transaction Tab

All the pending transactions in the database are listed in the text area of the Transactions
tab. You can roll back, commit, or perform a two-phase commit on such transactions.

•

•

Database Configuration and Maintenance

115

To recover Limbo Transactions:

Select a limbo transaction in the table.
The Connect Path text field displays the current path of the database file for the
selected transaction, if it is a multi-database transaction. You can change the
target database path, if necessary, by overwriting the current path.</br> The
information on the path to the database was stored when the client application
attempted the commit. It is possible that the path and network protocol from that
machine does not work from the client which is now running IBConsole. Before
attempting to roll back or commit any transaction, confirm the path of all involved
databases is correct.</br> When entering the current path, be sure to include the
server name and separator indicating communication protocol. To use TCP/IP,
separate the server and directory path with a colon (:). To use NetBEUI, precede
the server name with either a double backslash (\\) or a double slash (//), and then
separate the server name and directory path with either a backslash or a slash.
If you want to continue with the transaction recovery process select a repair
option and click Repair, otherwise click Cancel. To determine the recommended
action, click on the transaction and select the Details tab. For further information
about transaction recovery suggestions, see Details Tab below.

15.1.2. Details Tab

The Details tab displays the host server, the remote server, database path, and
recommended action: either commit or rollback. If you want to continue with the
transaction recovery process select a repair option and click Repair, otherwise click Cancel.

1.
2.

3.

Database Configuration and Maintenance

116

See Also

Database Files
Shadowing

16. Viewing the Administration Log

IBConsole displays the administration log file in a standard text display window, the
Administration Log dialog, which can be accessed by any of the following methods:

Select a server (or any branch under the server hierarchy) in the Tree pane and choose
Server|View Logfile.
Right-click the desired server in the Tree pane and choose View Logfile from the context
menu.
Under the desired server, select Server Log in the Tree pane and then double-click View
Logfile in the Work pane.

The standard text display window enables you to search for specific text, save the text to a
file, and print the text. For an explanation of how to use the standard text display window,
see Text Viewer Window.

•
•

•

•

•

Database Configuration and Maintenance

117

http://docwiki.embarcadero.com/InterBase/2020/en/Text_Viewer_Window

17. gfix Command-line Tool

The gfix tool performs a number of maintenance activities on a database, including the
following:

Database shutdown
Changing database mode to read-only or read-write
Changing the dialect of a database
Setting cache size at the database level
Committing limbo transactions
Mending databases and making minor data repairs
Sweeping databases
Displaying, committing, or recovering limbo transactions

To run gfix , you must attach as either SYSDBA or the owner of the database. Most of
these actions can also be performed through IBConsole.

gfix [options] db_name

Options: In the OPTION column of the following table, only the characters outside the
brackets ([]) are required. You can specify additional characters up to and including the full
option name. To help identify options that perform similar functions, the TASK column
indicates the type of activity associated with an option.

Option Task Description

-ac[tivate] Activate shadows
Activate shadows when the database
dies. NOTE: syntax is gfix -ac (no
database name).

-at [tach] n Shutdown

Used with - shut to prevent new
database connections during timeout
period of <n> seconds; shutdown is
canceled if there are still processes
connected after <n> seconds.

-b [uffers] n Cache buffers
Sets default cache buffers for the
database to <n> pages.

-c [ommit] {ID| all } Transaction recovery
Commits limbo transaction specified by
ID or commit all limbo transactions.

-force n Shutdown

Used with - shut to force shutdown of
a database after <n> seconds; this is a
drastic solution that should be used
with caution.

-fu[ll] Data repair
Used with - v to check record and page
structures, releasing unassigned record
fragments.

•
•
•
•
•
•
•
•

Database Configuration and Maintenance

118

Option Task Description

-h [ousekeeping] n Sweeping

Changes automatic sweep threshold to
<n> transactions.

Setting <n> to 0 disables sweeping.
Default threshold is 20,000
transactions (see Overview of
Sweeping).
Exclusive access not needed

-i [gnore] Data repair

Ignores checksum errors when
validating or sweeping; InterBase
supports true checksums only for ODS 8
and earlier.

-k [ill] Drop shadows
Drops unavailable shadows.
Syntax is gfix -k (no database
name).

-l [ist] Transaction recovery

Displays IDs of each limbo transaction
and indicates what would occur if -t
were used for automated two-phase
recovery.

-m [end] Data repair
Marks corrupt records as unavailable,
so they are skipped (for example, during
a subsequent backup).

-mo[de] [read_write|read_only} Set access mode

Sets mode of database to either read-
only or read-write.
Default table mode is read_write.
Requires exclusive access to the
database.

-n [o_update] Data repair
Used with - v to validate corrupt or
misallocated structures; structures are
reported but not fixed.

-o [nline] Shutdown
Cancels a - shut operation that is
scheduled to take effect or rescinds a
shutdown that is currently in effect.

-pa [ssword] text Remote access
Checks for password <text> before
accessing a database.

-pr[ompt] Transaction recovery
Used with -l to prompt for action
during transaction recovery.

-r [ollback] {ID| all } Transaction recovery
Rolls back limbo transaction specified
by ID or roll back all limbo
transactions.

-sh [ut] Shutdown
Shuts down the database.
Must be used in conjunction with -
attach , - force , or - tran .

-sq[l_dialect] n Database dialect

Changes database dialect to <n>.

Dialect 1 = InterBase 5.x compatibility
Dialect 3 = Current InterBase with
SQL92 features

•
•

•

•
•

•

•
•

•
•

•
•

Database Configuration and Maintenance

119

Option Task Description

-sw[eep] Sweeping

Forces an immediate sweep of the
database.

Useful if automatic sweeping is
disabled.
Exclusive access is not necessary.

-tr [an] n Shutdown

Used with - shut to prevent new
transactions from starting during
timeout period of <n> seconds; cancels
shutdown if there are still active
transactions after <n> seconds.

-tw[o_phase] {ID | all } Transaction recovery

Performs automated two-phase
recovery, either for a limbo transaction
specified by ID or for all limbo
transactions.

-user name Remote access
Checks for user <name> before
accessing a remote database.

-v [alidate] Data repair

Locates and releases pages that are
allocated but unassigned to any data
structures; also reports corrupt
structures.

-w[rite] {sync | async | direct } Database
writes

Database writes Enables or disables
forced (synchronous) writes.

sync enables forced writes; async
enables buffered writes; direct enables
direct I/O.

-z
Shows version of gfix and of the
InterBase engine.

Examples: The following example changes the dialect of the customer.ib database to 3:

gfix -sql 3 customer.ib

The following example changes the customer.ib database to read-only mode:

gfix -mo read_only customer.ib

18. gfix Error Messages

Error Message Causes and Suggested Actions to Take

Database file name <string> already given
A command-line option was interpreted as a database
file because the option was not preceded by a hyphen
(-) or slash (/). Correct the syntax.

Invalid switch A command-line option was not recognized.

•

•

Database Configuration and Maintenance

120

Error Message Causes and Suggested Actions to Take

Incompatible switch combinations

You specified at least two options that do not work
together, or you specified an option that has no
meaning without another option (for example, -full
by itself).

More limbo transactions than fit. Try again.
The database contains more limbo transactions than
gfix can print in a single session. Commit or roll back

some of the limbo transactions, then try again.

Numeric value required
The -housekeeping option requires a single, non-
negative argument specifying number of transactions
per sweep.

Please retry, specifying <string>
Both a file name and at least one option must be ‐
specified.

Transaction number or “all” required
You specified -commit , -rollback , or -two_phase
without supplying the required argument.

-mode read_only or read_write
The -mode option takes either read_only or
read_write as an option.

“read_only” or “read_write” required
The -mode option must be accompanied by one of
these two arguments.

See Also

gfix Command-line Tool

19. gfix Fixing a database

This section guides you on how to attempt fixing a corrupt database, during this process it's
possible to lose some data.

Follow these steps to start the process:

Make sure you work with a copy of the database, this can prevent further damage
and provides exclusive access to the database, which is necessary for performing
the required actions.
Type gfix -v -f databasename.gdb on the command line console.
If the previous step reports corruption, type gfix -m -i databasename.gdb
Repeat step 2 to see if corruption was fixed.

To know more about gfix parameters refer to Gfix Command-line Tool

•

1.

2.
3.
4.

Database Configuration and Maintenance

121

Database Backup and Restore

The purpose of a database backup is to protect and preserve data in case of database or
machine failure. A database restore uses the backup file to recreate the database.

A database backup saves a database to a file on a hard disk or other storage medium.
InterBase provides full and incremental backup capability, as well a number of options that
allow you to tailor your backups to suit a iety of scenarios.

To most effectively protect your database from power failure, disk crashes, or other
potential data loss, perform backups on a regular basis. For additional safety, store the
backup file in a different physical location from the database server.

This chapter explains how to perform full and incremental backups on InterBase machines.
It also explains how to restore InterBase databases.

1. About InterBase backup and restore options

You can use InterBase to backup data to the following locations:

To a second drive on the InterBase server.
To another machine on the local network.
To a machine at a remote location using a VPN or WAN.

InterBase backups can run concurrently while other users are using the database. You do
not have to shut down the database to run a backup. However, any data changes that
clients commit to the database after the backup begins are not recorded in the backup file.

1.1. InterBase backup and restore tools

You can use either of the following InterBase tools to backup and restore InterBase
databases:

The gbak command-line tool

Use the InterBase gbak command to specify and execute backup and restore operations
from a Windows or Unix command line. Familiarity with isql, InterBase version of SQL is
recommended. isql provides a number of options to help tailor your backup and restore to
suit different circumstances and environments.

The IBConsole

The IBConsole intuitive user interface allows you to use your mouse, context menus, and
dialog boxes to specify the type of backup and restore you want to perform. The same
backup and restore options that are available using gbak are available through the
IBConsole user interface. You do not need to be familiar with command-line operations or
with SQL or isql to use IBConsole.

This chapter explains how to use both tools to perform backups and restores.

1.2. The difference between logical and physical backups

InterBase uses the gbak command to perform backups. The gbak command makes the
following distinctions between backup types.

Logical:

•
•
•

•

•

•

Database Backup and Restore

122

The full backup typically performed by gbak is a “logical” backup. It extracts every record in
the database and stores it in a different format. Thus, it is not an exact replica of the
database file. Logical backups reclaim space occupied by deleted records, thereby reducing
database size.
A logical backup, performed by a gbak client, can save the target backup file anywhere on
the network; you do not have to have an InterBase server on the client machine. If the
backup is performed using the Services API, then the backup file can only be written to file
systems that are accessible to the server (since the server is performing the backup
operation).
When executing a logical backup with gbak, use the following syntax:
gbak [-b] [options] <database> <target>
If you choose the Backup option using IBConsole, this is the type of backup InterBase
executes.
Restoring from logical backups gives you the option of changing the database page size and
distributing the database among multiple files or disks.

Physical:

InterBase physical backup, also referred to as an online dump, copies the database at the
page level and saves it in its original format. Thus, a physical backup creates an exact replica
of the database during backup process. You can convert the replica to a read-write
database, though if you do so, you will no longer be able to dump to the replica from the
original database.
To perform a physical backup, use the following syntax:
gbak [-d] [options] <database> <target>
Notice that the physical backup uses the -d switch rather than the -b switch that is specified
in the logical backup.
An incremental backup copies all of the changes that have been committed to the
database since the last full backup. An incremental backup is a physical backup and uses
the -d switch. The first time you use the gbak -d switch, InterBase performs a full physical
backup (an online dump). After the initial full dump, each subsequent backup using the -d
switch performs an incremental backup, saving and copying all of the transactions
committed since the last full backup.
If you choose the Incremental Backup option using IBConsole, IBConsole performs an
initial full online dump using the -d switch. All subsequent backups using the -d switch are
incremental.

Important:
To add an additional level of database protection, use journal files and journal archiving.
Journal files record each database transaction as it occurs, even those that occur when a
backup is running. A journal archive stores current journal files. You can use a journal
archive to recover data to a specific point in time. For more information about journaling
and journal archives, see Journaling and Disaster Recovery.

1.3. Database ownership

Although backing up a database can be performed only by the owner or SYSDBA, any user
can restore a database as long as they are not restoring it over an existing database. A
database file restored from a logical backup belongs to the user ID of the person who
performed the restore. This means that backing up and restoring a database is a
mechanism for changing the ownership of a database. It also means that an unauthorized
user can steal a database by restoring a backup file to a machine where he knows the
SYSDBA password. It is important to ensure that your backup files are secured from
unauthorized access.

•

Database Backup and Restore

123

To restore a database over an existing database, you must be SYSDBA or the owner of the
existing database.

1.3.1. Restoring the ODS

InterBase automatically restores the database to the latest on-disk structure (ODS). If the
database uses an earlier ODS, errors may occur. To avoid this, keep your databases
updated by using the latest version of the ODS.

To upgrade existing databases to a new ODS, perform the following steps:

1. Before installing a new version of InterBase, back up databases using the old version.
2. Install the InterBase server.
3. Once the new server is installed, restore the databases.

For more information about migrating to a later version of InterBase, see Migrating to
InterBase.

2. Performing backups and restores using the gbak command

You can use the gbak command-line tool to perform database backups and restores, using
different options to specify different outcomes. For instruction on how to use IBConsole for
backups and restores, see Performing backups and restores using IBConsole, later in this
chapter.

Note:
For information on how to use the gbak command to encrypt backup files and to restore
encrypted backup files, see Encrypting Your Data.

2.1. General guidelines for using gbak

When backing up a database, keep the following information in mind:

Unless the -service option is specified, gbak writes the backup files to the current
directory of the machine on which it is running, not on the server where the database
resides. If you specify a location for the backup file, it is relative to the machine where
gbak is executing. You can write the backup files only to this local machine or to drives
that are mapped to it. Note that the -service switch changes this behavior. (See
Using gbak with InterBase Service Manager.)
When you are backing up a multifile database, specify only the first file in the backup
command. You must not name the subsequent database files: they will be interpreted
as backup file names.
The default unit for backup files is bytes. You can choose to specify kilobytes,
megabytes, or gigabytes (k , m , or g) instead. Restored database files can be specified
only in database pages.
Use the -transportable switch if you operate in a multiplatform environment. This
switch permits the database to be restored to a platform other than the one on which it
originally resided. Using this option routinely is a good idea when you are operating in a
multiplatform environment.
Use the -service switch if you are backing up to the same server that holds the
original database. This option invokes the InterBase Service Manager on the server host
and saves both time and network traffic.

Tip:
It is good security practice to change your backup files to read-only at the system level

•

•

•

•

•

Database Backup and Restore

124

http://docwiki.embarcadero.com/InterBase/2020/en/Encrypting_Your_Data

after creating them. This prevents them from being accidentally overwritten. In addition,
you can protect your databases from being “kidnapped” on UNIX and Windows systems
by placing the backup files in directories with restricted access.

2.2. Initiating multi- and single-file backups

When backing up a multifile database, specify only the first file name of the database.

For backing up to a single file

gbak [-b] [options] database target

For backing up to multiple files

gbak [-b] [options] database target1 size1[k|m|g] target2 [size2[k|m|g] target3

Argument Description

<database>
Name of a database to back up
For a multifile database, the name of the first database file

<target>

Name of a storage device or backup file to which to back up

On UNIX, can also be stdout , in which case gbak writes its
output to the standard output (usually a pipe).
No size need be specified when restoring to a single file, since
the database always expands as needed to fill all available
space.

<size>

Length of a backup file or restored database file

The only permissible unit for a restored database file is
database pages; minimum value is 200.
Default unit for a backup file is bytes.
Size of backup files can also be specified in kilobytes,
megabytes, or gigabytes.
Do not specify a size for the final backup file or database file;
the last file always expands as needed to fill all available space.

Options: In the OPTION column of the following tables, only the characters outside the
square brackets ([]) are required.

Table 8.2 lists the options to gbak that are available for creating backups.

Option Description

-b [ackup_database] Backs up database to file or device.

-co [nvert] Converts external files as internal tables.

-d[ump]
The first time you use the -d switch, it executes a full
physical backup. Subsequent uses execute an
incremental backup.

-e [xpand] Creates a noncompressed back up.

-fa [ctor] n Uses blocking factor <n> for tape device.

•
•

•

•

•

•
•

•

Database Backup and Restore

125

Option Description

-g [arbage_collect]

This option instructs the server not to perform garbage
collection on every record it visits. This enables the
server to retrieve records faster, and to send them to
the gbak client for archiving.

-ig [nore] Ignores checksums during backup; Note: InterBase
supports true checksums only for ODS 8 and earlier.

-l [imbo] Ignores limbo transactions during backup.

-m [etadata] Backs up metadata only, no data.

-nt Creates the backup in nontransportable format.

-ol [d_descriptions] Backs up metadata in old-style format.

-ov [erwrite_dump] This switch causes the current set of online dump files
to be deleted, and initiates a full database dump

-pas [sword] text Checks for password <text> before accessing a
database.

-role name Connects as role <name>.

- se [rvice] servicename

Creates the backup files on the host where the
original database files are located, using InterBase
Service Manager.
<servicename> invokes the Service Manager on the
server host; syntax varies with the network protocol
in use:

IMPORTANT NOTE: If you are providing file path
names with embedded spaces in them and using the
InterBase service manager (-service switch in GBAK),
you will need to multi-quote the file names:
<double_quote><single_quote>filepath<single_quote>
<double_quote>

The above is required because the command shell
strips away the external double_quotes and only leaves
the internal single_quotes for InterBase to know that it
is a single string value.

For example:

gbak –service service_mgr –r “’/path/with space/
foo.ibk’” “’/path/with space/foo.ib’” –user sysdba –
password masterkey

-t [ransportable] Creates a transportable backup [default].

-user name
Checks for user <name> before accessing remote
database.

-v [erbose] Shows what gbak is doing.

•

•

Database Backup and Restore

126

Option Description

-y [file | suppress_output]
Direct status messages to <file>; <file> must not
already exist; suppress_output suppress output
messages.

-z Show version of gbak and of InterBase engine.

2.3. Creating incremental backups

An incremental backup copies all of the changes to the database that have occurred since
the last full or incremental backup. The first time you use the gbak -d switch, InterBase
performs a full physical backup (an online dump). After the initial full dump, the -d switch
performs an incremental backup, saving and copying all of the transactions committed since
the last full backup.

2.3.1. Incremental backup guidelines

When specifying an incremental backup, keep the following information in mind:

Performing an incremental online dump still requires a full scan of the source database.
The performance improvement accrues from limiting the number of page writes to the
online dump files, especially if those files are located on a remote file server.
Multiple online dumps of the same or distinct databases can be run concurrently
though this would not be recommended for performance reasons.
An active online dump can be cancelled by the InterBase Performance Monitor or killing
the GBAK process.
External tables are not backed up by an online dump.
External tables may not be accessible if the online dump is attached as a read-only
database. If the external file pathnames cannot be accessed from the online dump
location, there is no way to modify the metadata of the dump without making the dump
a read-write database. If it is made a read-write database, it can no longer be a target
for online dump again.
Since an online dump is a physical backup, the online dump files are not transportable
to other hardware platforms. To make the backup transportable, use traditional logical
backup of gbak using the -t switch.
When a CREATE JOURNAL ARCHIVE statement is executed, InterBase uses the online
dump feature to copy the database to a journal archive directory. For more information
about journal files and journal archiving, see Journaling and Disaster Recovery.

2.3.2. Executing an incremental backup

To execute an incremental backup, use the following syntax:

GBAK {-D} dbname file [size] add_file1 [size1] add_file2 [size2] ...

The first dump file in the list is similar to the first database file in a multi-file database. It is
the file that is used as a reference to an existing online dump. If there are additional dump
files listed on the GBAK command line, those files are added to the set of files in the online
dump.

Example: The following example can assist you in creating an initial incremental online
dump.

•
•

•

•

•
•

•

•

Database Backup and Restore

127

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp EMPLOYEE.gdmp.1
gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
gbak: WARNING: Dumped 1 pages to page appendix file

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp EMPLOYEE.gdmp.1
gbak: ERROR: I/O error for file "E:\EMPLOYEE\EMPLOYEE.GDMP.1"
gbak: ERROR: Error while trying to create file
gbak: ERROR: The file exists.

gbak: Exiting before completion due to errors

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp EMPLOYEE.gdmp.2
gbak: WARNING: Dumped 2 pages of a total 46270 database pages
gbak: WARNING: Dumped 0 pages to page appendix file

In the example above, EMPLOYEE.gdmp .1 was added in the course of a full database dump.

Re-executing the command gives an error because it tries to add EMPLOYEE.gdmp.1 again
causing a file creation error. The last command adds a new file EMPLOYEE.gdmp.2
successfully.

The online dump files can be on either a local or a remote file system that is writable by the
InterBase server. An online dump is a server-side operation only. While the online dump
files can be located on any mounted file system, the page appendix file is always on the
local file system. This file is written to by concurrent server threads handling client requests
when it is necessary to preserve the state of an image of a page for the online dump. This is
analogous to InterBase multigenerational architecture (MGA) where a previous version of a
row is stored when updating a row to preserve a snapshot of a transaction. The page
appendix file helps to maintain the physical page snapshot of the online dump. It is a
temporary file and is deleted when the online dump completes.

The [size] parameter is optional and denotes the size of the file in units of pages, using the
page size of the database. If the [size] parameter is not provided then that dump file's size
will be determined by its file-sequenced counterpart in the database. If the sequence of the
dump file is higher than the sequence of any database file, then it takes the size of its
predecessor dump file.

If you run GBAK -D against an existing online dump, an incremental dump will be created.

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
gbak: WARNING: Dumped 23 pages to page appendix file

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: WARNING: Dumped 2 pages of a total 46270 database pages

gbak: WARNING: Dumped 0 pages to page appendix file

This updates the online dump with only those pages that have changed since the last dump.
An incremental dump can always be retried if it fails. If a full online dump fails, InterBase will
delete the online dump files that were written prior to the failure. If InterBase cannot access
those files because of the failure, those online dump files will have to be deleted manually.

Distinguished Dump: "Incremental Dump" before and in InterBase XE3 required the
database server to read all pages from the database file, but only write the pages that had
been modified to the target database dump file. With the implementation of a tracking
system in XE7, only those pages that need updating since the last dump would be fetched.
This provides instantaneous updates to the target. There can only be 1 "Distinguished
Dump" per source database. The choice of a "distinguished dump" is as follows:

The first "dump" on the source database file will be a "distinguished dump"; all further
dump targets are "normal dump" targets.

•

Database Backup and Restore

128

Should the "first" dump be made online and thus sever its link to the source database,
the next "dump" to be incrementally updated will now become the "disinguished
dump".

2.3.3. Over-writing Incremental backups

The -OV overwrite switch causes the current set of online dump files to be deleted, and
initiates a full database dump.

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: WARNING: Dumped 2 pages of a total 46270 database pages
gbak: WARNING: Dumped 1 pages to page appendix file

[E:/EMPLOYEE] gbak -d -ov EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: WARNING: Dumped 46270 pages of a total 46270 database pages
gbak: WARNING: Dumped 7 pages to page appendix file

The online dump files are marked as a read-only InterBase database. This means that it can
be accessed by read-only database applications. It is undefined how such database
applications will behave if they access the online dump “database” while the dump files are
being incrementally updated. If an online dump is converted to read-write, it ceases to be an
online dump and becomes a standalone database. Attempting to perform an online dump
against it will fail.

[E:/EMPLOYEE] gfix EMPLOYEE.gdmp -mode read_write

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: ERROR: online dump failure: dump file has no dump timestamp
gbak: Exiting before completion due to errors

[E:/EMPLOYEE] gfix EMPLOYEE.gdmp -mode read_only

[E:/EMPLOYEE] gbak -d EMPLOYEE.gdb EMPLOYEE.gdmp
gbak: ERROR: online dump failure: dump file has no dump timestamp
gbak: Exiting before completion due to errors

The online dump can be converted to a read-write database by using the
gfix -mode read_write command and used in place. If the current location is not
convenient for database processing, then online dump can be run against these dump files
to copy them somewhere else local or remote. This provides a general copy mechanism that
allows multifile databases to be copied and have their internal secondary file name links
automatically updated for the copy destination.

Database validation (gfix -v) can be run against an online dump because it is a database.
An additional validation check is performed against an online dump, which checks that no
database page has a write timestamp greater than that of the online dump timestamp. The
online dump timestamp represents that last time a full or incremental dump succeeded.

[E:/EMPLOYEE] gfix -v -n EMPLOYEE.gdmp
Summary of validation errors

Number of database page errors : 1
and in the InterBase log file:.
IBSMP (Server) Sat Jun 24 14:41:36 2006
Database: E:\EMPLOYEE\EMPLOYEE.GDMP
Page 155 has timestamp 1151170444 greater than dump timestamp 1151170438

•

Database Backup and Restore

129

2.3.4. Timestamp Changes

GSTAT -H has been modified to list the online dump timestamp after the database
creation date entry. Note that the database creation date is that of the source database and
not the online dump.

[E:/EMPLOYEE] gstat -h EMPLOYEE.gdmp
Database "EMPLOYEE.gdmp"
Database header page information:
Flags 0
Checksum 12345
Write timestamp Jun 28, 2006 19:57:41
Page size 4096
ODS version 12.0
Oldest transaction 72
Oldest active 73
Oldest snapshot 73
Next transaction 74
Sequence number 0
Next attachment ID 0
Implementation ID 16
Shadow count 0
Page buffers 0
Next header page 0
Clumplet End 102
Database dialect 3
Creation date Jun 25, 2006 13:22:10
Online dump timestamp Jun 28, 2006 19:59:16
Attributes read only

Variable header data:

Dump file length: 20000
END

You can request an online dump by passing a string of database parameter blocks to the
isc_attach_database() API.

2.3.5. Database parameter blocks used by an incremental backup

Incremental backup support has been added to the gbak utility using database parameter
blocks (DPB). All general requirements and restrictions for DPB construction are
documented in the API Guide in the Working with Databases chapter. Table 4.2 refers to
DPB Parameters Groups by Purpose. Table 4.3 covers the Alphabetical List of DBP
Parameters.

A successful online dump returns a warning status vector to pass back dump information
status:

status [0] = isc_arg_gds
status [1] = isc_arg_success
status [2] = isc_arg_warning
status [3] = isc_old_dump_stats
status [4] = isc_arg_number
status [5] = <no. of dumped pages>
status [6] = isc_arg_number
status [7] = <total no. of DB pages>
status [8] = isc_arg_gds
status [9] = isc_old_appendix_stats
status [10] = isc_arg_number
status [11] = <no. pages written to appendix>
status [12] = isc_arg_end

Database Backup and Restore

130

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

2.3.6. Page Appendix File

When an online dump is running, client worker threads never write to the online dump files.
Thus, their performance is not degraded by writing over the network to a remote file
system. However, to maintain physical and time consistency of the dump, client worker
threads may write pages to a local temporary file with a prefix of ib_dump_ . Any database
page is guaranteed to be written at most one time to this temporary file. This temporary file
is known as the dump or page appendix file.

For very large databases with intensive update activity, the page appendix file could also
grow to a very large size. There must be adequate space in the temp directories to handle
this storage demand or the online dump will fail. The dump information returned to GBAK
about the number of pages written to the appendix file can aid configuration of the temp
file space.

2.3.7. Preallocating database space with gbak

GBAK backs up and restores database preallocation information. This preallocation
information will be silently ignored by earlier versions of the product that are not aware of
the feature. A switch has been added to -gbak to alter the stored preallocation in a database
or backup file.

Example:

/D/testbed>isql
 Use CONNECT or CREATE DATABASE to specify a database
 SQL> create database 'pr.ib' preallocate 500;
 SQL> commit;
 SQL> quit;
 /D/testbed>ls -l pr.ib
-rwxrwxrwx 1 Administrators None 2048000 Jul 2 18:09
pr.ib /* It is 2MB size because each of the 500 database pages is
4KB in size */
 /D/testbed>isql -a pr.ib
SET SQL DIALECT 3;
/* CREATE DATABASE 'pr.ib' PREALLOCATE 500
PAGE_SIZE 4096
 */
/* Grant permissions for this database */
 /D/testbed>isql -x pr.ib
SET SQL DIALECT 3;
/* CREATE DATABASE 'pr.ib' PREALLOCATE 500 PAGE_SIZE 4096
 */
/* Grant permissions for this database */
 /D/testbed>

2.3.8. Using the switch -PR(EALLOCATE) argument

The switch -PR(EALLOCATE) uses an integer argument, which consists of the number of
preallocation pages. This switch is legal for both backup and restore command-line options.
For backup, the preallocation switch stores its argument in the backup file instead of the
value specified in the database that is being backed up. For restore, the preallocation switch
argument is used at the preallocation value in the restore database, instead of the value
stored in the backup file.

A GBAK preallocate switch value of 0 (zero) effectively disables database preallocation in the
backup file or restored database. In GBAK verbose mode, database preallocation is logged
to the console. The example below shows a sample database backup in verbose mode. A
similar message is logged for database restore.

Database Backup and Restore

131

Example:

gbak -v foo.gdb foo.gbk -pr 5000
...
gbak: readied database foo.gdb for backup
gbak: creating file foo.gbk
gbak: starting transaction
gbak: database foo.gdb has a page size of 4096 bytes.
gbak: database preallocation 5000 pages

If a database restore reduces the page size, the number of pages for database preallocation
is automatically scaled upward to maintain a constant database preallocation size in bytes.
If the restored page size is increased, database preallocation is reduced accordingly with a
similar “Reducing” message written to the console. If the GBAK -PREALLOCATE switch was
given, then the automatic scaling of the database preallocation does not occur with
changing page size. In other words, the -PREALLOCATE switch takes precedence.

Example:

gbak -v foo.gdb foo.gbk -page_size 2048
...
Reducing the database page size from 4096 bytes to 2048 bytes
Increasing database preallocation from 5000 pages to 10000 pages
created database foo1.gdb, page_size 2048 bytes
database preallocation 10000 pages

2.4. Restoring a database with gbak

Note:
For information on restoring tablespaces refer to Tablespace Backup/Restore and
Recovery

Use the following syntax to restore a database:

For restoring:

gbak {-c|-r} [options] source dbfile

For restoring to multiple files:

gbak {-c|-r} [options] source dbfile1 size1 dbfile2 [size2 dbfile3 …]

For restoring from multiple files:

gbak {-c|-r} [options] source1 source2 [source3 …] dbfile

By extension, you can restore from multiple files to multiple files using the following syntax:

gbak {-c|-r} [options] source1 source2 [source3 …] dbfile1 size1
 dbfile2 [size2 dbfile3 …]

For restoring from Embedded User Authentication backup files:

The USER and PASSWORD server credentials are required to create a database on the
server and execute the restore service. The -eua_u[ser] name and -eua_p[assword] text
database credentials are required to ensure that only the database owner can restore an
EUA database.

Database Backup and Restore

132

http://docwiki.embarcadero.com/InterBase/2020/en/Tablespace#Backup.2C_Restore_and_Recovery
http://docwiki.embarcadero.com/InterBase/2020/en/Tablespace#Backup.2C_Restore_and_Recovery

Argument Description

<source>

Name of a storage device or backup file from which to restore.

On UNIX, this can also be stdin , in which case gbak reads
input from the standard input (usually a pipe).

<dbfile> The name of a restored database file.

<size>

Length of a backup file or restored database file

The only permissible unit for a restored database file is
database pages; minimum value is 200.
Default unit for a backup file is bytes.
Size of backup files can also be specified in kilobytes,
megabytes, or gigabytes.
Do not specify a size for the final backup file or database file;
the last file always expands as needed to fill all available space.

The following table lists gbak options that are available when restoring databases.

Option Description

-c[reate_database] Restores database to a new file.

-bu[ffers] Sets cache size for restored database.

-i[nactive] Makes indexes inactive upon restore.

-eua_u[ser] name

Checks for user name before accessing EUA
(embedded user authentication) database.

The -user and -password options still need to be
provided, in addition to your -eua equivalents when
restoring an EUA database.

Either EUA switch can be omitted if it has an identical
value to its counterpart. However it is recommended
that the PASSWORD and EUA_PASSWORD should not
be the same.

-eua_p[assword] text

Checks for password text before accessing EUA
(embedded user authentication) database.

The -user and -password options still need to be
provided, in addition to your -eua equivalents when
restoring an EUA database.

Either EUA switch can be omitted if it has an identical
value to its counterpart. However it is recommended
that the PASSWORD and EUA_PASSWORD should not
be the same.

-k[ill]
Does not create any shadows that were previously
defined.

-mo[de] {read_write | read_only}
Specifies whether the restored database is writable

Possible values are read_only and read_write .
Default is read_write .

•

•
•

•

•
•

Database Backup and Restore

133

Option Description

-n[o_validity]
Deletes validity constraints from restored metadata;
allows restoration of data that would otherwise not
meet validity constraints.

-ods[_version] n

Restores the database to specific major ODS version
number. where <n> is a supported major ODS version.
The target database engine will have its own allowed
major ODS version list. When this option is specified at
restore time, it overrides the server-side IBConfig
setting DATABASE_ODS_VERSION.

gbak -r employee.gbk emp15.ib -ods_version 15 -
user sysdba -pass masterkey
gbak -c employee.gbk emp17.ib -ods_version 17 -
user sysdba -pass masterkey
gbak -service localhost:service_mgr -r <path>/
employee.gbk <path>/emp17.ib -ods_version 17 -
user sysdba -pass masterkey

-o[ne_at_a_time]
Restores one table at a time; useful for partial recovery
if database contains corrupt data.

-p[age_size] n
Resets page size to <n> bytes (1024, 2048, 4096, 8192,
or 16384); default is 4096.

-pas[sword] text
Checks for password <text> before accessing a
database.

-r[eplace_database] Restores database to new file or replaces existing file.

-se[rvice] servicename

Creates the restored database on the host where the
backup files are located, using InterBase Service
Manager.
<servicename> invokes the Service Manager on the
server host; syntax varies with the network protocol
in use:

TCP/IP hostname:service_mgr

Named pipes
\
\hostname\service_mg
r

Local service_mgr

-user name Checks for user <name> before accessing database.

-use_[all_space]

Restores database with 100% fill ratio on every data
page. By default, space is reserved for each row on a
data page to accommodate a back version of an
UPDATE or DELETE. Depending on the size of the
compressed rows, that could translate e to any
percentage.

-v[erbose] Shows what gbak is doing.

-va[lidate] Use to validate the database when restoring it.

•

•

•

•

•

Database Backup and Restore

134

Option Description

-w[rite] {async | sync | direct}

Overrides a database write mode. The “write” mode is
preserved during a backup/restore lifecycle.

sync enables forced writes; async enables buffered
writes; direct enables direct I/O.

-y [file | suppress_output]
If used with -v , directs status messages to <file>; if
used without -v and <file> is omitted, suppresses
output messages.

-z Show version of gbak and of InterBase engine.

When restoring a database, keep the following information in mind:

Anyone can restore a database. However, only the database owner or SYSDBA can
restore a database over an existing database.
Do not restore a backup over a database that is currently in use; it is likely to corrupt
the database.
When restoring from a multifile backup, name all the backup files, in any order.
Do not provide a file size for the last (or only) file of the restored database. InterBase
does not return an error, but it always “grows” the last file as needed until all available
space is used. This dynamic sizing is a feature of InterBase.
You specify the size of a restored database in database pages. The default size for
database files is 200 pages. The default database page size is 4K, so if the page size has
not been changed, the default database size is 800K. This is sufficient for only a very
small database. To change the size of the database pages, use the -p[age_size]
option when restoring.

Tip:
Use the -service switch if you are restoring to the same server that holds the backup
file. This option invokes the InterBase Service Manager on the server host and saves both
time and network traffic.

Note:
If you specify several target database files but have only a small amount of data, the
target files are quite small (around 800K for the first one and 4K for subsequent ones)
when they are first created. They grow in sequence to the specified sizes as you populate
the database.

2.5. Using gbak with InterBase Service Manager

When you run gbak with the -service switch, gbak invokes the backup and restore
functions of InterBase’s Service Manager on the server where the database resides. When
run without the -service switch, gbak executes on the machine where it is invoked –
typically a client – and writes the backup file on (or relative to) that machine. Using the
-service switch to invoke the Service Manager saves a significant amount of time and
network traffic when you want to create the backup on the same host on which the
database resides. When the Service API is used, both the database and the backup file must
be accessible to the server.

When you use the -service switch, you specify the host name followed by the string
“service_mgr”. The syntax you use for this ies with the network protocol you are using.

•

•

•
•

•

Database Backup and Restore

135

Together, these components are referred to as “host_service” in the syntax statements that
follow in this section:

Network protocol Syntax

TCP/IP hostname:service_mgr

NetBEUI \\hostname\service_mgr

Local service_mgr

OTW (Over-the-wire) hostname/port number?ssl=true?...<other OTW
parameters>...??:service_mgr

The syntax in the right column appears in the gbak syntax below as “host_service”.

The local case is trivial on NT. If you are backing up a local database, the results in terms of
time and network traffic are the same whether you use the -service switch or not, even
though the actual implementation would be slightly different. On UNIX systems, the local
case is equivalent to specifying (for TCP/IP) localhost:service_mgr and saves both time
and network traffic.

Syntax: Backing up with Service Manager

gbak -b [options] -se[rvice] host_service database filename

Syntax: Restoring with Service Manager

gbak {-c|-r} [options] -se[rvice] host_service filename database

You can back up to multiple files and restore from multiple files using Service Manager.

Important:
On UNIX systems, in order to restore a database that has been backed up using the
Service Manager, you must either use the Service Manager for the restore or you must
be logged onto the system as the user that InterBase was running as when the backup
was created (either root or InterBase). This is because the InterBase user (root or
InterBase) is the owner of the backup file at the system level when the Service
Manager is invoked, and the backup file is readable to only that user. When gbak is used
to back up a database without the -service option, the owner of the backup file at the
system level is the login of the person who ran gbak . On Windows platforms, the
system-level constraints do not apply.

2.6. The user name and password

When InterBase checks to see whether the user running gbak is authorized to do so, it
determines the user according to the following hierarchy:

The - user that is specified, with a correct password, as part of the gbak command.
The user and password specified in the ISC_USER and ISC_PASSWORD environment
variables, provided they also exist in the InterBase security database. (Setting these
environment variables is strongly not recommended, since it is extremely insecure.)
UNIX only: If no user is specified at any of the previous levels, InterBase uses the UNIX
login if the user is running on the server or on a trusted host.

•
•

•

Database Backup and Restore

136

2.7. Some backup and restore examples

Note:
The following examples use forward slashes exclusively. InterBase accepts either forward
or backward slashes for paths on Wintel platforms.

2.7.1. Database backup examples

The following example backs up foo.ib , which resides on the server jupiter and writes
the backup file to the current directory of the client machine where gbak is running.
foo.ib can be either a single-file database or the name of the first file in a multifile
database. Using this syntax (without the -se switch) copies a lot of data over the net.

gbak -b -user joe -password blurf@ jupiter:/foo.ib foo.ibk

The next example backs up foo.ib , which resides on the server jupiter and writes the
backup file to the C:/archive directory on the client machine where gbak is running. As
before, foo.ib can be a single file database or the name of the first file in a multifile
database. This syntax causes the same amount of network traffic as the first example.

gbak -b -user joe -password blurf@ jupiter:/foo.ib C:\archive\foo.ibk

The next example backs up the same database on jupiter , but uses the -se [rvice]
switch to invoke the Service Manager on jupiter , which writes the backup to the
\backup directory on jupiter . This command causes very little network traffic and is
therefore faster than performing the same task without the -se (-service) switch. Note
that the syntax (jupiter:service_mgr) indicates a TCP/IP connection.

gbak -b -user joe -password blurf@ -se jupiter:service_mgr /foo.ib /backup/
foo.ibk

The next example again backs up foo1.ib on server jupiter to multiple files in the
/backup directory on jupiter using the Service Manager. This syntax backs up a single
file or multifile database and uses a minimum of time and network traffic. It converts
external files as internal tables and creates a backup in a transportable format that can be
restored on any InterBase-supported platform. To back up a multifile database, name only
the first file in the backup command. In this example, the first two backup files are limited to
500K. The last one expands as necessary.

gbak -b -user joe -pass blurf@ -co -t -se jupiter:service_mgr
 /foo1.ib/backup/backup1.ibk 500k /backup/backup2.ibk 500k
 /backup/lastBackup.ibk

2.7.2. Database restore examples

The first example restores a database that resides in the /archive directory on the
machine where gbak is running and restores it to jupiter , overwriting an existing (but
inactive) database.

gbak -r -user joe -pass blurf@ C:\archive\foo.ibk jupiter:/foo.ib

The next example restores a multifile database from the /backup directory of jupiter to the
/companydb directory of jupiter . This command runs on the server by invoking Service

Database Backup and Restore

137

Manager, thus saving time and network traffic. In this example, the first two files of the
restored database are 500 pages long and the last file grows as needed.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr /backup/foo1.ibk
 /backup/foo2.ibk /backup/fooLast.ibk /companydb/foo1.ib 500
 /companydb/foo2.ib 500 /companydb/fooLast.ib

The next example executes on server Jupiter using Service Manager and restores a backup
that is on Jupiter to another server called Pluto.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr

 /backup/foo.ibk pluto:/companydb/foo.ib

2.7.3. Database restore examples

The first example restores a database that resides in the / archive directory on the
machine where gbak is running and restores it to jupiter , overwriting an existing (but
inactive) database.

gbak -r -user joe -pass blurf@ C:\archive\foo.ibk jupiter:/foo.ib

The next example restores a multifile database from the /backup directory of jupiter to the
/companydb directory of jupiter . This command runs on the server by invoking Service
Manager, thus saving time and network traffic. In this example, the first two files of the
restored database are 500 pages long and the last file grows as needed.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr /backup/foo1.ibk
 /backup/foo2.ibk /backup/fooLast.ibk /companydb/foo1.ib 500
 /companydb/foo2.ib 500 /companydb/fooLast.ib

The next example executes on server Jupiter using Service Manager and restores a backup
that is on Jupiter to another server called Pluto.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr

 /backup/foo.ibk pluto:/companydb/foo.ib

2.8. gbak error messages

Error Message Causes and Suggested Actions to Take

Array dimension for column <string> is invalid Fix the array definition before backing up

Bad attribute for RDB$CHARACTER_SETS An incompatible character set is in use

Bad attribute for RDB$COLLATIONS Fix the attribute in the named system table

Bad attribute for table constraint
Check integrity constraints; if restoring, consider using
the -no_validity option to delete validity
constraints.

Blocking factor parameter missing Supply a numeric argument for “factor” option

Database Backup and Restore

138

Error Message Causes and Suggested Actions to Take

Cannot commit files

Database contains corruption or metadata violates
integrity constraints.
Try restoring tables using -one_at_a_time option,
or delete validity constraints using -no_validity
option.

Cannot commit index <string>
Data might conflict with defined indexes.
Try restoring using “inactive” option to prevent
rebuilding indexes.

Cannot find column for Blob

Cannot find table <string>

Cannot open backup file <string> Correct the file name you supplied and try again

Cannot open status and error output file <string>
Messages are being redirected to invalid file name.
Check format of file or access permissions on the ‐
directory of output file.

Commit failed on table <string>
Data corruption or violation of integrity constraint in
the specified table
Check metadata or restore “one table at a time”

Conflicting switches for backup/restore
A backup-only option and restore-only option were
used in the same operation; fix the command and ‐
execute again.

Could not open file name <string> Fix the file name and re-execute command

Could not read from file <string> Fix the file name and re-execute command

Could not write to file <string> Fix the file name and re-execute command

Datatype n not understood An illegal data type is being specified

Database format n is too old to restore to

The gbak version used is incompatible with the
InterBase version of the database
Try backing up the database using the -expand or
-old options and then restoring it.

Database <string> already exists. To replace it, use the
-R switch

You used -create in restoring a back up file, but
the target database already exists.
Either rename the target database or use
-replace .

Could not drop database <string> (database might be
in use).

You used -replace in restoring a file to an existing
database, but the database is in use.
Either rename the target database or wait until it is
not in use.

Device type not specified
The -device option (Apollo only) must be followed by
ct or mt ; obsolete as of InterBase V3.3

Device type <string> not known
The -device option (Apollo only) was used
incorrectly; obsolete as of InterBase V3.3

Do not recognize record type n

•

•

•
•

•
•

•

•

•

•

•

•

•

•

Database Backup and Restore

139

Error Message Causes and Suggested Actions to Take

Do not recognize <string> attribute n -- continuing

Do not understand BLOB INFO item n

Error accessing BLOB column <string> -- continuing

ERROR: Backup incomplete

The backup cannot be written to the target device or
file system
Either there is insufficient space, a hardware write
problem, or data corruption

Error committing metadata for table <string>
A table within the database could be corrupt.
If restoring a database, try using -one_at_a_time
to isolate the table.

Exiting before completion due to errors

This message accompanies other error messages
and indicates that back up or restore could not
execute.
Check other error messages for the cause.

Expected array dimension n but instead found m. Try redefining the problem array.

Expected array version number n but instead found m. Try redefining the problem array.

Expected backup database <string>, found <string> Check the name of the backup file being restored.

Expected backup description record.

Expected backup start time <string>, found <string>

Expected backup version 1, 2, or 3. Found n.

Expected blocking factor, encountered <string> The -factor option requires a numeric argument.

Expected data attribute

Expected database description record

Expected number of bytes to be skipped, encountered
<string>

Expected page size, encountered <string>
The -page_size option requires a numeric
argument.

Expected record length

Expected volume number n, found volume n
When backing up or restoring with multiple tapes, be
sure to specify the correct volume number.

Expected XDR record length

•

•

•
•

•

•

Database Backup and Restore

140

Error Message Causes and Suggested Actions to Take

Failed in put_blr_gen_id

Failed in store_blr_gen_id

Failed to create database <string>
The target database specified is invalid; it might
already exist.

column <string> used in index <string> seems to have
vanished

An index references a non-existent column.
Check either the index definition or column
definition.

Found unknown switch An unrecognized gbak option was specified.

Index <string> omitted because n of the expected m
keys were found.

Input and output have the same name. Disallowed.
A backup file and database must have unique names;
correct the names and try again.

Length given for initial file (n) is less than minimum (m).

In restoring a database into multiple files, the
primary file was not allocated sufficient space.
InterBase automatically increases the page length to
the minimum value.
No action necessary.

Missing parameter for the number of bytes to be
skipped.

Multiple sources or destinations specified
Only one device name can be specified as a source or
target.

No table name for data
The database contains data that is not assigned to
any table.
Use gfix to validate or mend the database.

Page size is allowed only on restore or create.
The -page_size option was used during a back up
instead of a restore.

Page size parameter missing
The -page_size option requires a numeric
argument.

Page size specified (n bytes) rounded up to m bytes.
Invalid page sizes are rounded up to 1024, 2048, 4096,
8192, or 16384, whichever is closest.

Page size specified (n) greater than limit
Specify a page size of 1024, 2048, 8192, or 16384. The
default is 4096 bytes.

Password parameter missing
The back up or restore is accessing a remote
machine.
Use -password and specify a password.

Protection is not there yet Unimplemented option -unprotected used

•
•

•

•

•

•

•

•

•

Database Backup and Restore

141

Error Message Causes and Suggested Actions to Take

Redirect location for output is not specified.
You specified an option reserved for future use by
InterBase.

REPLACE specified, but the first file <string> is a
database.

Check that the file name following the -replace
option is a backup file rather than a database.

Requires both input and output file names.
Specify both a source and target when backing up or
restoring.

RESTORE: decompression length error

Possible incompatibility in the gbak version used
for backing up and the gbak version used for
restoring.
Check whether -expand should be specified during
back up.

Restore failed for record in table <string> Possible data corruption in the named table

Skipped n bytes after reading a bad attribute n.

Skipped n bytes looking for next valid attribute,
encountered attribute m.

Trigger <string> is invalid

Unexpected end of file on backup file

Restoration of the backup file failed; the backup
procedure that created the backup file might have
terminated abnormally.
If possible, create a new backup file and use it to
restore the database.

Unexpected I/O error while <string> backup file
A disk error or other hardware error might have
occurred during a backup or restore.

Unknown switch <string> An unrecognized gbak option was specified.

User name parameter missing
The backup or restore is accessing a remote
machine.
Supply a user name with the -user option.

Validation error on column in table <string>

The database cannot be restored because it contains
data that violates integrity constraints.
Try deleting constraints from the metadata by
specifying -no_validity during restore.

Warning -- record could not be restored Possible corruption of the named data

Wrong length record, expected n encountered n

3. Performing backups and restores using IBConsole

This section provides instruction on how to use IBConsole to backup and restore a
database. You can use IBConsole to specify both full and incremental backups. For an
overview of each type, see the About InterBase backup and restore options section at the
beginning of this chapter.

•

•

•

•

•

•

•

•

Database Backup and Restore

142

3.1. Performing a full backup using IBConsole

To initiate a full, logical backup using IBConsole, take the following steps:

Right-click on a database in the tree pane, and select Backup/Restore from the
context menu.
When the context menu expands to display backup and restore options, select
Backup. The Database Backup dialog appears, as shown in the figure:

Check the database server to make sure the indicated server is correct. If it is not,
cancel this dialog and re-initiate the Database Backup dialog under the correct
server.
If you accessed the Database Backup dialog from a database alias, the Alias field is
automatically assigned. If you accessed the Database Backup dialog from the
Databases menu, then you must select an alias from the list of database aliases.
The database alias references the associated database file name, so you need to
specify only the alias name, not the actual database filename, when indicating the
database to back up. If the database spans multiple files, the server uses the
header page of each file to locate additional files, so the entire database can be
backed up based on the alias filename.
Select a destination server from a list of registered servers in the Backup Files
Server drop‑down list.
Once a destination server has been selected, a list of backup file aliases is
available from the Backup Files Alias drop‑down list. If you want to overwrite an
existing backup file, select the appropriate file from the drop‑down list. If you want
to create a new backup file, you can type a new alias name in the Backup File(s)
Alias field.

On the File Name section, click to set the name and destination folder of your
backup.
On the Tablespaces the Include field lists all the tablespaces included in the
backup. If you want to exclude a tablespace from the backup process, select it and

click the right arrow to add it to the Excluded list.
To use multiple files, go to the Multiple Files tab and select Use Multiple

Files then click to add files.
You can specify backup options by entering a valid value, by clicking the option
value and choosing a new value from a drop‑down list of values, or by double-

1.

2.

3.

4.

5.

6.

7.

8.

9.

•

10.

Database Backup and Restore

143

clicking the option value to rotate its value to the next in the list of values. See
About IBConsole backup options below for descriptions of these options.
Click OK to start the backup.

Note:
Database files and backup files can have any name that is legal on the operating system;
the ib and ibk file extensions are InterBase conventions only.

A backup file typically occupies less space than the source database because it includes only
the current version of data and incurs less overhead for data storage. A backup file also
contains only the index definition, not the index data structures.

If you specify a backup file that already exists, IBConsole overwrites it. To avoid overwriting,
specify a unique name for the backup file.

3.1.1. About IBConsole backup options

The backup options are shown on the right side of the Database Backup dialog. You can
specify options by entering a value, by clicking the option value and choosing a new value
from a drop‑down list of values, or by double-clicking the option value to rotate its value to
the next in the list of values.

3.1.2. Format

To move a database to a machine with an operating system different from the one under
which the backup was performed, make sure the Format option is set to Transportable. This
option writes data in a generic format, enabling you to move to any machine that supports
InterBase.

Important:
Never copy a database from one location to another. Back it up and then restore it to the
new location.

3.1.3. Metadata Only

Option values are True and False.

When backing up a database, you can exclude its data, saving only its metadata. You might
want to do this to:

Retain a record of the metadata before it is modified.
Create an empty copy of the database. The copy has the same metadata but can be
populated with different data.

11.

•
•

Database Backup and Restore

144

http://docwiki.embarcadero.com/InterBase/2020/en/About_IBConsole_backup_options

To back up metadata only, select True for the Metadata Only option.

Tip:
You can also extract a database’s metadata using isql . isql produces a SQL data
definition text file that contains the SQL code used to create it. IBConsole backup
Metadata Only creates a binary backup file containing only metadata.

This function corresponds to the -metadata option of gbak.

3.1.4. Garbage Collection

Option values are True and False .

By default, IBConsole performs garbage collection during backup. To prevent garbage
collection during a backup, set the Garbage Collection option value to False .

Garbage Collection marks space used by old versions of data records as free for reuse.
Generally, you want IBConsole to perform garbage collection during backup.

Tip:
Disabling garbage collection during the backup process improves backup performance. If
garbage collection is necessary, you can run a separate sweep operation using gfix. In
addition, you do not want to perform garbage collection if there is data corruption in old
record versions and you want to prevent InterBase from visiting those records during a
backup.

This function corresponds to the -garbage_collect option of gbak .

3.1.5. Transactions in limbo

Option values are Process and Ignore.

To ignore limbo transactions during backup, set the Transactions in Limbo option value to
Ignore.

When IBConsole ignores limbo transactions during backup, it ignores all record versions
created by any limbo transaction, finds the most recently committed version of a record,
and backs up that version.

Limbo transactions are usually caused by the failure of a two-phase commit. They can also
exist due to system failure or when a single-database transaction is prepared.

Before backing up a database that contains limbo transactions, it is a good idea to perform
transaction recovery, by choosing Database>Maintenance>Transaction Recovery in the
Database Maintenance window. Refer to Recovering Transactions for more information.

This function corresponds to the -limbo option of gbak .

3.1.6. Checksums

Note:
For performance reasons, InterBase supports true checksums only for ODS 8 and earlier.
For ODS 9 and later, InterBase always generates the string “12345” as the checksum. This
maintains compatibility with older versions.

Database Backup and Restore

145

http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole

Option values are Process and Ignore.

To ignore checksums during backup, set the Checksums option value to Ignore.

A checksum is a page-by-page analysis of data to verify its integrity. A bad checksum means
that a data page has been randomly overwritten; for example, due to a system crash.

Checksum errors indicate data corruption, and InterBase normally prevents you from
backing up a database if bad checksums are detected. Examine the data the next time you
restore the database.

This function corresponds to the -ignore option of gbak .

3.1.7. Convert to Tables

To convert external files to internal tables, set the Convert to Tables option value to True .

This function corresponds to the -convert option of gbak .

3.1.8. Performing a Full Backup with Verbose Output

Option values are None, To Screen and To File.

To monitor the backup process as it runs, set the Verbose Output option value to To Screen.
This option opens a standard text display window to display status messages during the
backup. For example:

Error creating thumbnail: Unable to save thumbnail to
destination

The standard text display window enables you to search for specific text, save the text to a
file, and print the text. For an explanation of how to use the standard text display window,
see Text Viewer Window.

This function corresponds to the -verbose option of gbak.

3.1.9. Transferring databases to servers running different operating systems

Set the Format option to Transportable in the Database Backup dialog.
Back up the database.
If you backed up to a removable medium, proceed to Step 4. If you created a
backup file on disk, use operating-system commands to copy the file to a
removable medium, such as a tape. Then load the contents of the medium onto
another machine, or copy it across a network to another machine.
On the destination machine, restore the backup file. If restoring from a removable
medium, such as tape, specify the device name instead of the backup file.

3.2. Performing an incremental backup using IBConsole

An incremental backup copies all of the changes that have been committed to the
database since the last full backup. The first time you choose Incremental Backup from
IBConsole, InterBase performs a full physical backup (an online dump). After the initial full
dump, each subsequent incremental backup saves and copies all of the transactions
committed since the last full backup.

1.
2.
3.

4.

Database Backup and Restore

146

http://docwiki.embarcadero.com/InterBase/2020/en/Text_Viewer_Window

To initiate an incremental backup using IBConsole, take the following steps:

In the tree pane, right-click the database on which to perform an incremental
backup, and select Backup/Restore from the context menu.
When the context menu expands to display backup and restore options, select
Incremental Backup. The Incremental Backup dialog appears, as shown in the
figure:
Error creating thumbnail: Unable to save thumbnail
to destination
On Incremental Backup, specify the following:

To add a dump file click on the Files section, on the New Dump File dialog

click to set the name and destination folder of your backup, .
Once you add a file, the Tablespaces tab shows a list of tablespaces on the
database.
To change a file location, select a file and click

To use multiple files go the Multiple Files tab, select Use Multiple Files and click

 to add files.
To overwrite the previous incremental backup, change the Overwrite value to
True. For detailed information about what occurs when you overwrite an
incremental backup, see Over-writing Incremental backups.
Choose OK to start the backup.

3.3. Restoring a database using IBConsole

Use the Database Restore dialog to restore databases. To access this dialog, select a server
from the list of available servers displayed in the Tree pane and continue with one of these
possible methods:

Select anything under the databases hierarchy and choose Database|Maintenance|
Backup/Restore|Restore.
Double-click any backup alias name under the Backup hierarchy.
Right-click Backup or any backup alias name under the Backup hierarchy and choose
Restore from the context menu.
Select any backup alias name under Backup and click Restore in the Work pane.

The Database Restore dialog appears:

1.

2.

3.
•

•

•
4.

5.

6.

•

•
•

•

Database Backup and Restore

147

Important:
When restoring a database, do not replace a database that is currently in use.

To restore a database:

Check the source Backup File(s) Server to make sure the indicated server is
correct. If it is not, cancel this dialog and re-initiate the Database Restore dialog
under the correct server.
If you accessed the Database Restore dialog from a backup alias, then the Alias
field is automatically assigned.
If you accessed the Database Restore dialog from Backup, then you must select

an alias from the list of backup aliases or click to add backup files. It is
important that you include all filenames associated with the restore.

Note:
The backup alias references the associated backup file names, so you need
only to specify the alias name, not the actual backup file name, when indicating
the backup to restore. If the backup spans multiple files, the server uses the
header page of each file to locate additional files, so the entire backup can be
restored based on the alias filename.

Once you select your backup file(s) the table on the Tablespace Info tab
populates with all the tablespaces present on the backup. On this section you can
choose which tablespaces include in the restore process.
Select a destination server from a list of registered servers in the Database Server
drop-down list.
If you want to restore to an existing database, select its alias from the Database
Alias drop-down list. If you want to restore to a new database, type a new alias

name in the Database Alias field and click to set a filename and destination.

To use multiple files, select Use Multiple Files and click to add files.

1.

2.

3.

4.

5.

6.

7.

Database Backup and Restore

148

Note:
You cannot restore a database to a network file system (mapped drive).

You can specify options for the restore by entering a valid value, by clicking the
option value and choosing a new value from a drop‑down list of values or by
double-clicking the option value to rotate its value to the next in the list of values.
See Restore options below for a description of these options.
Click OK to start the restore.

Typically, a restored database occupies less disk space than it did before being
backed up, but disk space requirements could change if the ODS version changes.
For information about the ODS, see Restoring the ODS.

Note:
The InterBase restore utility allows you to restore a database successfully even
if for some reason the restore process could not rebuild indexes for the
database. For example, this can occur if there is not enough temporary disk
space to perform the sorting necessary to build an index. If this occurs, the
database is restored and available, but indexes are inactive. After the restore
completes, use ALTER INDEX to make the indexes active.

3.3.1. Restore options

The restore options are shown on the right side of the Database Restore dialog. You can
specify options by entering a value, by clicking the option value and choosing a new value
from a drop‑down list of values, or by double-clicking the option value to rotate its value to
the next in the list of values.

8.

9.

Database Backup and Restore

149

http://docwiki.embarcadero.com/InterBase/2020/en/Restore_options
http://docwiki.embarcadero.com/InterBase/2020/en/Restoring_the_ODS

3.3.2. Restoring Page Size Options

InterBase supports database page sizes of 1024, 2048, 4096, 8192, and 16384 bytes. The
default is 4096 bytes. To change the page size, back up the database and then restore it,
modifying the Page Size option in the Database Restore dialog.

Changing the page size can improve performance for the following reasons:

Storing and retrieving Blob data is most efficient when the entire Blob fits on a single
database page. If an application stores many Blobs exceeding 4KB, using a larger page
size reduces the time for accessing Blob data.
InterBase performs better if rows do not span pages. If a database contains long rows
of data, consider increasing the page size.
If a database has a large index, increasing the database page size reduces the number
of levels in the index tree. Indexes work faster if their depth is kept to a minimum.
Choose Database|Maintenance|Database Statistics to display index statistics, and
consider increasing the page size if index depth is greater than three on any frequently
used index.
If most transactions involve only a few rows of data, a smaller page size may be
appropriate, because less data needs to be passed back and forth and less memory is
used by the disk cache.

This function corresponds to the - page_size option of gbak .

3.3.3. Overwrite

Option values are True and False .

IBConsole cannot overwrite an existing database file unless the Overwrite option value is
set to True . If you attempt to restore to an existing database name and this option is set
to False , the restore does not proceed.

To restore a database over an existing database, you must be the owner of the existing
database or SYSDBA.

Important:
Do not replace an existing database while clients are operating on it. When restoring to
an existing file name, a safer approach is to rename the existing database file, restore
the database, then drop or archive the old database as needed.

This function corresponds to the - replace option of gbak .

3.3.4. Restore Type

Option values are:

Create Database | Replace Database | Create Tablespace | Replace
Tablespace.

Create Database Fully restore to a target database, if it does not exist already.

Replace Database Overwrite a potentially existing target database.

Create Tablespace Truncate table(s) in target tablespace before restoring from backup.

Replace Tablespace Delete target tablespace file(s) and recreate from backup.

•

•

•

•

Database Backup and Restore

150

http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole

To restore a database over an existing database, you must be the owner of the existing
database or SYSDBA.

Important:
Do not replace an existing database while clients are operating on it. When restoring to
an existing file name, a safer approach is to rename the existing database file, restore
the database, then drop or archive the old database as needed.

This function corresponds to the - replace option of gbak .

3.3.5. Commit After Each Table

Option values are True and False.

Normally, IBConsole restores all metadata before restoring any data. If you set the Commit
After Each Table option value to True, IBConsole restores the metadata and data for each
table together, committing one table at a time.

This option is useful when you are having trouble restoring a backup file. This can happen if
the data is corrupt or is invalid according to integrity constraints.

If you have a problem backup file, restoring the database one table at a time lets you
recover some of the data intact. You can restore only the tables that precede the bad data;
restoration fails the moment it encounters bad data.

This function corresponds to the - one_at_a_time option of gbak .

3.3.6. Create Shadow Files

Shadow files are identical, physical copies of database files in a database. To recreate
shadow files that were saved during the backup process set the Create Shadow Files option
to True. For further information on shadowing see Shadowing.

3.3.7. Deactivate Indexes

Option values are True and False.

Normally, InterBase rebuilds indexes when a database is restored. If the database
contained duplicate values in a unique index when it was backed up, restoration fails.
Duplicate values can be introduced into a database if indexes were temporarily made
inactive (for example, to allow insertion of many records or to rebalance an index).

To enable restoration to succeed in this case, set the Deactivate Indexes option to True. This
makes indexes inactive and prevents them from rebuilding. Then eliminate the duplicate
index values, and re-activate indexes through ALTER INDEX in isql .

A unique index cannot be activated using the ALTER INDEX statement; a unique index
must be dropped and then created again. For more information about activating indexes,
see the Language Reference.

Tip:
The Deactivate Indexes option is also useful for bringing a database online more quickly.
Data access is slower until indexes are rebuilt, but the database is available. After the
database is restored, users can access it while indexes are reactivated.

This function corresponds to the - inactive option of gbak .

Database Backup and Restore

151

http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole
http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole

3.3.8. Validity Conditions

Option values are Restore and Ignore.

If you redefine validity constraints in a database where data is already entered, your data
might no longer satisfy the validity constraints. You might not discover this until you try to
restore the database, at which time an error message about invalid data appears.

Important:
Always make a copy of metadata before redefining it; for example, by extracting it using
isql .

To restore a database that contains invalid data, set the Validity Conditions option to Ignore.
This option deletes validity constraints from the metadata. After the database is restored,
change the data to make it valid according to the new integrity constraints. Then add back
the constraints that were deleted.

This option is also useful if you plan to redefine the validity conditions after restoring the
database. If you do so, thoroughly test the data after redefining any validity constraints.

This function corresponds to the - no_validity option of gbak .

3.3.9. Use All Space

Option values are True and False.

To restore a database with 100% fill ratio on every data page, set the Use All Space option to
True. By default, space is reserved for each row on a data page to accommodate a back
version of an UPDATE or DELETE. Depending on the size of the compressed rows, that could
translate to any percentage.

This function corresponds to the -use_all_space option of gbak .

3.3.10. Restoring a Backup Using Verbose Output

Option values are None, To Screen, and To File.

To monitor the restore process as it runs, set the Verbose Output option to To Screen. This
option opens a standard text display window to display status messages during the restore.
For example:

Database Backup and Restore

152

The standard text display window enables you to search for specific text, save the text to a
file, and print the text. For an explanation of how to use the standard text display window,
see Text Viewer Window.

This function corresponds to the - verbose option of gbak .

Database Backup and Restore

153

http://docwiki.embarcadero.com/InterBase/2020/en/Text_Viewer_Window

Journaling and Disaster Recovery

Journaling combines the protection of forced writes (also known as synchronous writes)
with better performance, and also supports the improved disaster recovery provided by
journal archiving.

When enabled, journal archiving allows databases to recover from a complete loss of an
InterBase server machine to within a few minutes of when the disaster occurred, or to a
specific point in time.

This chapter defines key terms such as journal, journal file, and journal archive, and explains
how to implement and use them with your database.

Note:
Journaling is available in the Server Edition of InterBase, starting from version 2007. It is
not available in the Desktop Edition.

1. About Journals, Journal Files, and Journal Archives

A journal consists of one or more journal files. A journal file records each database
transaction as it occurs. This makes a journal an always-up-to-date record of database
transactions. Journaling is sometimes referred to as write-ahead logging (WAL).

A journal archive is a directory that contains a full database dump and all the journal files
completed since that dump. You can use the journal archive to recover to the last
transaction recorded in the most recently archived journal file. You can also use an archived
journal file to perform point-in-time recovery. Point-in-time recovery uses the internal
timestamp that is recorded on each transaction in the file, which allows you to, if desired,
recover to a specific date and time.

1.1. How Journaling Works

Journaling turns off forced writes to the hard drive, and synchronously writes the updates
to the journal file instead. Because journal file writes are sequential rather than random,
there is no disk head movement, which improves database performance.

To save changed pages in the database cache to the hard disk, you set up journaling
checkpoints to occur automatically. A checkpoint specifies the time at which InterBase
must save all the changed pages in the database cache to the database file. After the
checkpoint has been reached, the data in the journal file is no longer needed, so the file can
be reused. For best performance, place the journal files on a dedicated hard drive. The
journal files must be on the database server machine.

Journaling guarantees that all changes are on disk before a transaction is marked
committed as long as O/S and hardware caching are disabled.

You do not need to use journal archiving to use journaling and journal files. However,
journal archiving lets you recover from a disaster that completely destroys the database
server.

When a database is configured for direct I/O, adding journaling does not automatically
convert the database to asynchronous buffered I/O as it does when the database is
configured for synchronous buffer I/O. This is to avoid buffered I/O at all costs when the
database is set to direct I/O.

Journaling and Disaster Recovery

154

InterBase uses buffered file I/O on all platforms to perform I/O on database pages for the
file on disk. The pages are delivered via the System File Cache, which acts as a duplicate
store of the pages on RAM. Subsequent loads of the same page(s) are quickly served by the
OS kernel if the page exists in the System File Cache. On systems where there is high
contention with other files for the System File Cache (a shared pool used by all processes for
buffered file I/O) the performance of InterBase may not be optimal. If available System File
Cache is limited due to RAM resource limitations, the kernel must spend time cleaning up
unused blocks of memory from other processes as well as provide for servicing a new block
I/O request.

The performance problem is alleviated by using "direct I/O" (also known as non-buffered I/
O) so blocks of pages are directly read from the disk into the process space and do not need
to use the System File Cache.

This is supported on Windows OS only. This setting is not supported on non-Windows
platform databases; you will see the following error.

feature is not supported
-direct I/O operation

If a database enabled with "direct" I/O is then copied to an older version of InterBase, the
setting will not be used by the older InterBase server. The older server will employ the
"sync" write mode in this case.

The fixes are as follows:

The gfix command line tool has been modified to allow setting a database to be in
"direct" I/O write mode.

gfix [-write {async, sync, direct}] . . .
For example:
#gfix -write direct foo.ib -user sysdba -password masterkey

The gbak command line tool now has a new restore option (optional) setting to override
a database write mode. The "write" mode will be preserved during a backup/restore
lifecycle.

gbak [-write {async, sync, direct}] . . .
For example:
gbak -write direct -r foo.ibk foo.ib -user sysdba -password masterkey

Services API support for the new and updated gfix and gbak options. You can find
the various new arguments and respective values in ibase.h

Service API database restore arguments

•

•

•

Journaling and Disaster Recovery

155

Argument Purpose
Argument

length
Argument

value

isc_spb_res_write_mode

Set the write mode of
the database. The next
byte must be one of:

isc_spb_res_wm_async

isc_spb_res_wm_sync

isc_spb_res_wm_direct

Corresponds to
gbak -write

1 byte byte

Service API database properties arguments

Add isc_spb_prp_wm_direct to the following argument: isc_spb_prp_write_mode >

gstat command line tool will exhibit the following setting,direct, in its "Attributes"
header line output.

gstat -h foo.ib -user sysdba -password masterkey
. . .
Database header page information:
Flags 0
Checksum 12345
Write timestamp Mar 3, 2011 13:36:31
Page size 8192
ODS version 15.0
. . .
Creation date Feb 23, 2011 14:58:27
Attributes force write, direct, no reserve
Variable header data:
Sweep interval: 20000
END
. . .

It is important to note that a database needs to be set with "gfix -write direct" option and
reloaded by the database engine for this to take effect.

Also, since the System File Cache will not be used when "direct" I/O is set, it is
recommended that the database cache setting and database linger interval be set suitably.
This allows the most frequently used pages to be in memory, the InterBase database cache,
when new connections are serviced.

This "direct" I/O setting on a database is only possible if the database page size is an exact
multiple of the underlying disk sector size of the file. The standard for so many decades has
been 512 bytes per sector on hard disks. Newer hard disks however are trying to adopt the
more Advanced Format of 4096 bytes per sector. InterBase supports the following database
page sizes: 1024, 2048, 4096, 8192 and 16384 bytes per page. Databases that have a page
size of 1024 or 2048 bytes cannot be set to "direct" I/O on hard disks that only support the
4096 bytes per sector standard; you need to restore your database to a larger page size on
such disks before enabling "direct" I/O on them.

If you try to enable "direct" I/O on an incompatible device, the following error message is
returned stating the minimum required database page size. The following example shows
an error message where the disk sector size is 4096 bytes.

Error: must backup and restore to DB page size
>= 4096 bytes to support direct I/O on this device.

•

Journaling and Disaster Recovery

156

1.1.1. How Journal Archiving Works

The purpose of journal archiving is to provide effective and efficient disaster recovery. As
mentioned above, a journal archive is a directory that contains a full database dump and all
of the completed journal files that have been archived since that dump. As such, a journal
archive enables you to recover to the last committed transaction in the most recently
archived and completed journal file.

Important:
For disaster recovery purposes, a journal archive should always be located on a different
machine — ideally, in a remote location — than the one that houses the database server.

Only completed journal files are archived to the archive directory. This means that up to the
moment recovery is possible when the hard drive that contains the current, active,
unarchived journal file remains intact. However, if disaster wipes out the hard drive that
contains the active, incomplete journal file, the data on that file will also be lost.

Note:
Before you can activate journal archiving, you must first enable journaling. For
instructions on how to do so, see Enabling Journaling and Creating Journal Files. For
instructions on how to activate journal archiving, see Using Journal Archiving.

1.2. Configuring your System to Use Journaling and Journal Archiving

Use the following criteria to determine the optimal journaling configuration of your system:

The I/O speed of the device on which the journal files are created.
The speed of concurrent creation of new journal files.
Hardware requirements and ease of setup.

It is not necessary for InterBase to be installed and running on the machine used for journal
archive storage.

1.2.1. Additional Considerations

A journal archive is platform-specific. For example, an archive created with InterBase for
Windows cannot be directly used to recover an InterBase database on another
platform. Instead, an archived database dump could be logically backed up in
transportable format and then logically restored on the other platform.
Only full dumps are archived. You cannot archive incremental database dumps. The
gbak -archive_database command initiates a full, physical backup. For more
information about InterBase backup options, see About InterBase backup and restore
options.
The journal and journal archive are restricted to a single directory. The number of items
allowed to be archived will be limited by the number of files that are allowed in a
directory for a given file system.

2. Enabling Journaling and Creating Journal Files

To create a journal file and activate journaling, use the following DDL syntax:

CREATE JOURNAL [<journal-file-specification>] [LENGTH <number-of-pages> [PAGES]]

[CHECKPOINT LENGTH <number-of-pages> [PAGES]]
[CHECKPOINT INTERVAL <number-of-seconds> [SECONDS]]

•
•
•

•

•

•

Journaling and Disaster Recovery

157

[PAGE SIZE <number-of-bytes> [BYTES]]
[PAGE CACHE <number-of-buffers> [BUFFERS]]
[[NO] TIMESTAMP NAME]
[[NO] PREALLOCATE <number-of-pages> [PAGES]];

Note:
InterBase currently requires that all journal files be stored in the same directory.

All CREATE JOURNAL clauses are optional. Table 1.1 describes the function of each option
and its default value.

Option Description Default values

<Journal_file_spec>

Specifies a quoted string containing
the full path and base file name of
the journal file. The base journal file
name is used as a template for the
actual journal file names as they are
created.

The full database path and file
name

LENGTH

This clause specifies the number of
pages that can be written to the
journal file before rolling over to a
new journal file. For tips on
calculating this number, see Tips for
Determining Journal Rollover
Frequency.

Maximum: 2GB or 4000 pages

CHECKPOINT LENGTH

This clause specifies the number of
pages that can be written to the
journal file before checkpoint
occurs. For tips on calculating
checkpoint length, see Tips for
Determining Journal Rollover
Frequency.

500

CHECKPOINT INTERVAL

Determines the number of seconds
between database checkpoints. The
checkpoint interval determines how
long it will take to recover after a
server crash.

Note: If both CHECKPOINT LENGTH
and CHECKPOINT INTERVAL are
specified, whichever event occurs
first will initiate a database
checkpoint. For tips on calculating
the checkpoint interval, see Tips for
Determining Checkpoint Intervals.

0

PAGE SIZE

Determines the size of a journal
page in bytes. A journal page size
must be at least twice the size of a
database page size. If a journal page
size of less is specified, it will be
rounded up to twice the database
page size and a warning will be
returned. The journal page size
need not be a power of 2.

Twice the database page size

Journaling and Disaster Recovery

158

Option Description Default values

PAGE CACHE

Determines the number of journal
pages that are cached to memory.
This number must be large enough
to provide buffers for worker
threads to write to when the cache
writer is writing other buffers. If the
number is too small, the worker
threads wait and performance
suffers.

100 buffers

[NO] TIMESTAMP NAME

Determines whether or not to
append the file creation timestamp
to the base journal file name.

If used, the base journal file name
will be appended with a timestamp
in the following format:

YYYY_MM_DDTHH_MM_SSZ.sequence_number.journal

Enabled

[NO] PREALLOCATE

Specifies the amount of disk space
preallocated for journal files. For
more information about using the
preallocate clause, see About
Preallocating Journal Space.

No default value.

The CREATE JOURNAL statement causes all subsequent write operations on a database to
be done asynchronously. The journal file I/O is always synchronous and cannot be altered.
All transaction changes are safely recorded on durable storage before the transaction is
committed. This guarantees the ACID properties of a transaction (the database industry
standards for Atomicity, Consistency, Isolation, and Durability).

Using asynchronous I/O for database writes allows the operating system to optimize file I/O,
such as by writing consecutive pages together, or by using scatter/gather techniques that
write consecutive pages in discontiguous page buffers. Journal file I/O is performed using
InterBase careful write strategy. This implies that database pages can be written back to the
database in any order after their changes have been journaled.

During a database checkpoint, any database page writes that were buffered asynchronously
are flushed to disc before checkpoint completion is signaled. You can re-enable
synchronous writes for the database, which removes the requirement for a flush operation
before a database checkpoint can be considered complete. Doing so, however, can degrade
performance.

2.1. About Preallocating Journal Space

As suggested earlier, for best performance journal files should be placed on a dedicated
hard drive. If they are not, access to other files on the drive causes the disk heads to move
away from the journal files, which forces a seek-back to the journal file before a new page is
written. In addition, each time the journal file size increases, even when the journal files are
on a dedicated drive, the disk heads seek away from the journal file so the operating system
can update the directory information. To allow the disk heads to remain on the current
journal file at all times, you can use the PREALLOCATE clause. The PREALLOCATE clause
enables you to allocate space equal to the maximum number of journal files that will exist
during normal operation, multiplied by the length of the journal files specified in the
LENGTH clause of the CREATE JOURNAL statement.

Journaling and Disaster Recovery

159

If the journal is not on a dedicated drive, you can use the PREALLOCATE clause to allocate
space equal to the size of the maximum number of journal files that might exist. This
guarantees that other files cannot consume the space that may be needed for the journal. If
journal archiving is enabled, and you are archiving to a remote machine, allocate enough
space to accommodate the journal files that will accumulate if the connection to the remove
machine is lost and the journal files cannot be archived for a period of time.

2.2. Tips for Determining Journal Rollover Frequency

Journal file rollover is a time-consuming operation. If rollover happens too frequently,
performance will degrade. However, if you are using journal archiving, you want the journal
file to rollover as often as possible so the completed journal file can be archived frequently,
which minimizes the number of transactions that will be lost if disaster destroys the
database server. Determining the most effective rollover frequency is a balancing act and
the best answer will be different for each InterBase installation.

You can use the following equations to help you determine the most efficacious rollover
frequency for your journal files. You can enter the resulting number in the LENGTH clause
of the CREATE JOURNAL statement, which specifies when the end of a journal file is
reached. When the end of the file is reached, journaling resumes on a new file. When a
journal file is complete (i.e. its end has been reached), it can be saved to the archive
directory.

To determine frequency in bytes, use the following equation:

(journal file length * journal page size) = # of bytes before rollover occurs

To determine a rollover interval, you can use either of the following equations:

(journal file length * journal page size) / (database page size * writes per
minute) = # of minutes between rollovers

The equation above lets you see how often a rollover will occur for a given journal file
length. The equation below calculates the journal length that will give the rollover interval
you specify:

(rollover interval * database page size * writes per minute) / journal page size
= journal file length

2.3. Tips for Determining Checkpoint Intervals

InterBase uses the checkpoint interval to determine how long it takes InterBase to recover
after a server crash. If the server crashes, all of the changes in the cache will be lost. This is
okay because the changes were written synchronously to the journal, which stores them on
disk, but not in the database. When the server restarts, it must read all of the journal files
and copy the changes in the journal to the database to bring the database file up-to-date.
The more journal files there are, the longer this will take. Performing frequent checkpoints
means that the changes in the cache are written to the database frequently, so fewer
changes are kept in the journal. This in turn means that fewer journal files are required and
recovery will take less time.

You can use the following equations to help you determine the most effective checkpoint
interval for your system:

(checkpoint length * journal page size) / (database page size * writes/minutes) =
of minutes between checkpoints

Journaling and Disaster Recovery

160

To help determine the time your system needs to recover, use this equation:

(checkpoint length * journal page size) / 1,048,576 = maximum time to recover
after a crash in seconds

Note:
This equation assumes that the journal file is processed at a rate of one megabyte per
second during crash recovery. Typically, a journal file is processed at one to two
megabytes per second.

To determine checkpoint length for a given recovery time, use this equation:

(recovery time in seconds * 1,048,576) / journal page size = checkpoint length

2.4. Displaying Journal Information

To display journaling information for a database, use the following command:

gstat <a_database> -l

The switch is a lower case L, rather than the numeral one.

2.5. Using IBConsole to Initiate Journaling

IBConsole offers the same journaling options in a dialog box as those described in Enabling
Journaling and Creating Journal Files. You cannot use IBConsole to create journal
archives.

To initiate journaling from IBConsole, take the following steps:

In the tree pane, right-click the database for which to initiate journaling, and select
Backup/Restore from the context menu.
When the Backup/Restore menu options appear, select Create Journal. The
Create Journal dialog appears, as shown in the figure:

On Create Journal, specify the options to use, then choose OK to begin journaling.
For descriptions of each option, see Enabling Journaling and Creating Journal
Files.

1.

2.

3.

Journaling and Disaster Recovery

161

http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole
http://docwiki.embarcadero.com/InterBase/2020/en/IBConsole

2.6. Disabling Journal Files

The DROP JOURNAL statement discontinues the use of write-ahead logging and deletes all
journal files. This operation does not delete any journal files in the journal archive but does
discontinue maintenance of the journal archive. Dropping journal files requires exclusive
access to the database.

To disable journaling, use the following syntax:

DROP JOURNAL

3. Using Journal Archiving

As mentioned on the previous section, a journal archive is a directory that contains a full
database dump, and the completed journal files that have been archived since that dump.
InterBase requires that you create and update archive content (the dump and journal files)
in two steps:

1. Archive the database.
2. Archive the journal files.

The commands used to perform each task are explained below.

Note:
Creating a journal archive does not require exclusive database access.

3.1. The command that Activates Journal Archiving

The CREATE JOURNAL ARCHIVE command activates journal archiving in an InterBase
database. A journal archive file (IB_JOURNAL_ARCHIVE) is placed in the journal archive
directory.

Note:
To perform an initial (and subsequent) dumps, gbak -archive_database must be
performed.

The following command is used to activate journaling:

CREATE JOURNAL ARCHIVE <journal archive directory>

where <journal archive directory> is the location in which InterBase stores the journal
archive. If the directory does not exist or is not accessible, InterBase returns an error
message. The directory path can be a local drive, a mapped drive, or an UNC path (as long
as the underlying file APIs can open the file using that specification). If you do not specify a
journal archive directory in the CREATE JOURNAL ARCHIVE statement, InterBase uses the
journal directory created with the CREATE JOURNAL statement.

When you do not activate journal archiving, the current journal files are reused after a
checkpoint writes the records of a jounal file to the hard drive.

Important:
You only use the CREATE JOURNAL ARCHIVE command to initiate journal archiving on a
database. Once you initiate archiving and InterBase performs the first dump, you use the

Journaling and Disaster Recovery

162

gbak -archive_database command, discussed below, to perform subsequent dumps.
If you disable journal archiving and want to resume it, use CREATE JOURNAL ARCHIVE.

3.2. The Command that Archives Journal Files

The gbak -archive_journals command instructs InterBase to copy the completed journal files
to the journal archive directory. To ensure that the archive always contains the most
recently completed journal files, you should issue this command on a regular basis.

To copy completed journal files to the archive directory, use the following syntax:

gbak -archive_journals <dbname>

where <dbname> specifies the database that is being archived. The journal archive will grow
in storage size as the most recently completed journal files are continually archived. For
instructions on how to manage archive size, see Managing Archive Size.

3.3. The Command that Performs Subsequent Archive Dumps

After the initial dump, performed by the CREATE JOURNAL ARCHIVE command, you use the
following syntax to perform subsequent dumps:

gbak -archive_database <dbname>

This command performs a full, physical dump to the archive directory, which helps to
reduce the number of journal files that must be stored. The older a dump is, the more
journal files InterBase needs to keep the archive up-to-date.

3.4. How Often Should you Archive Journal Files?

Use the following statements and questions to help determine how often to archive journal
files:

How much data can you afford to lose if the IB server is destroyed?
What is the journal rollover frequency? There is no reason to archive journal files more
often that the journal rollover interval.
Frequent journal rollover + frequent journal archiving means minimum data loss.
However, too frequent journal rollover + too frequent journal archiving means poor
performance. What is the best balance for your system?

3.5. Disabling a Journal Archive

The DROP JOURNAL ARCHIVE statement disables journal archiving for the database. It
causes all journal files and database file dumps to be deleted in all journal archive
directories. The file system directories themselves are not deleted.

Disabling journal archiving does not disable database journaling (the creation of journal
files). The database will continue to use the write-ahead protocol to commit database
changes to the journals. If the intent is to also disable journaling, then you must execute a
separate DROP JOURNAL statement, shown in Disabling Journal Files.

To disable journal archiving, use the following syntax:

DROP JOURNAL ARCHIVE

•
•

•

Journaling and Disaster Recovery

163

http://docwiki.embarcadero.com/InterBase/2020/en/Disabling_Journal_Files

4. Using a Journal Archive to Recover a Database

To recover a database from a journal archive, use the following syntax:

gbak -archive_recover [-until <timestamp>] <archive_dbname> <local_dbname>

If you do not use the -UNTIL switch, InterBase recovers the database to the last committed
transaction in the most recently archived journal file or to the last committed transaction in
the current, active journal file if the current, active journal file is accessible. The
-until <timestamp> instructs InterBase to recover transactions until the date and time
you specify.

It is recommended that you start building a new archive soon after a successful recovery
event. You can create a new archive by issuing the gbak -archive_database and the
gbak -archive_journals commands.

5. Managing Archive Size

As the number of archived journal files grows, recovery time increases. To keep the archive
from becoming too large, you can use any of the following options:

Run the gbak -archive_database command to create a new dump, thereby reducing
the number of journal files InterBase needs to keep the archive up-to-date.
Run the gfix command to set a maximum number of dumps to allow in the archive:

gfix -archive_dumps <number> db_name

When the number of database dumps in the archive exceeds the <number> given, older
dumps and journals will be deleted.

Run the gfix -archive_sweep command to manually control archive size (described
below).

5.1. About Archive Sequence Numbers and Archive Sweeping

All archived items are denoted by an archive sequence number that corresponds to the
order in which the items were created in the archive.

To remove all files in an archive with a sequence number lower than a number you specify,
use the following syntax:

gfix -archive_sweep <archive_sequence_no> [-force] db_name

If an archived item cannot be swept (garbage-collected), the sweep will stop and return an
error status. Sometimes all lower sequenced items cannot be deleted. For example, a
database dump may depend on a lower sequenced journal file with which to start recovery.
In that case, InterBase will automatically adjust the given sequence number to a lower
number, so that this dependency is not lost.

5.2. Tracking the Archive State

To track the state of the archive, use the RDB$JOURNAL_ARCHIVES system table. The gbak
and gfix commands use this system table to decide which archive items are targets for the
command.

•

•

•

Journaling and Disaster Recovery

164

The following table describes column and data type information for
RDB$JOURNAL_ARCHIVES .

Column Name Data Type Length Description

RDB$ARCHIVE_NAME CHAR 1024 The name of the archived item.

RDB$ARCHIVE_TYPE CHAR 1

The type of the archived item. 'D'
indicates a database dump. 'S'
indicates a secondary database file
of a database dump. 'J' indicates a
journal file.

RDB$ARCHIVE_LENGTH INT64 8
Length of the archived item as
stored in bytes.

RDB$ARCHIVE_SEQUENCE INTEGER 4 Sequence number of archived item.

RDB$ARCHIVE_TIMESTAMP TIMESTAMP 8
Timestamp when item was stored in
the archive.

RDB$DEPENDED_ON_SEQUENCE INTEGER 4

Sequence of archived item that this
item depends on. For 'S' archive
types, it would be the sequence no.
of the 'D' primary database dump
file. For 'D' archive types, it is the
sequence no. of the starting journal
file for recovering from the archive.

RDB$DEPENDED_ON_TIMESTAMP TIMESTAMP 8
As above, but the archive timestamp
for the archived item that this item
depends on.

6. Journaling Tips and Best Practices

The following example uses the EMPLOYEE sample database that is shipped with InterBase,
and is intended as a “best practice” for creating and managing journal files and archives. Its
settings are designed to minimize journal file rollover and to reduce the probability of
journal buffer wait states. The default property values for the sample journal subsystem are
for a low-end machine with minimal configuration. This is very similar to InterBase default
page buffer cache of 2048.

6.1. Designing a Minimal Configuration

To begin, set the following parameters:

CREATE JOURNAL 'e:\database\test'
LENGTH 65000
CHECKPOINT LENGTH 10000
PAGE CACHE 2500;

Given a database that has an 8KB page size, the journal PAGE SIZE will default to
16KB (2 x 8KB) . Therefore, the LENGTH parameter (65000) will cause rollover to a new
journal file every 1GB (65000 x 16KB) . If you instead set the LENGTH at 500, the system
would roll over to a new journal file every 8MB, which is extremely frequent. A performance
drop may occur during this process. Using a larger LENGTH value will make this occur

Journaling and Disaster Recovery

165

(65000/500 or 130 times) less often.

The CHECKPOINT LENGTH parameter of 10000 means the database checkpoint will occur
every 160MB (10000 x 16KB). Assume the built-in CHECKPOINT LENGTH is 500, which means
your system will checkpoint the database every 8MB (500 x 16KB). CHECKPOINT LENGTH is a
matter of individual taste. It represents the maximum number of bytes that will have to be
applied to a database from the journal files after a system crash. You can expect to average
between 1MB to 2MB/sec. applying the journal files during the recovery process. So the
160MB checkpoint length suggested here would take a maximum of about 2 minutes to
recover depending on your machine. If your organization can tolerate a longer recovery
time in return for minimizing the online frequency of database checkpoints, then raise the
CHECKPOINT LENGTH accordingly.

The PAGE CACHE parameter can be raised to reduce the probability of incurring journal
buffer wait states. At any moment, the journal cache writer thread will be syncing some
number of journal buffers to the journal file on disk. During this period, we want to insure
that the worker threads have enough spare journal buffers to write to when a database
page's journal changes need to be moved to a journal buffer.

For example, imagine that the journal cache writer is syncing 500 journal buffers to disk.
The 2500 journal buffer configuration will leave 2000 spare buffers for the worker threads
to dump their journal changes. At the built-in PAGE CACHE default of 100, the worker
threads can stall due to a high rate of journal buffer wait states.

Lastly, the use of a SAN mirrored cache will always make InterBase journaling sub-system
result in lower performance than a non-journaled InterBase database. This is because twice
the amount of data is being written with the journaling subsystem: once to the journal files
and once to the database files, plus the additional CPU cost of journal cache management in
the InterBase server.

Even for direct-attached storage, it is necessary to pay attention to on-disk write cache
enablement. New computers sometimes arrive with on-disk write cache enabled. This
means that synchronous writes to a database or journal are not really synchronized to disk
oxide. Unless the write cache (SAN or direct) has been disabled or has battery backup, it
cannot offer durability for database commits.

InterBase journaling should only result in a performance gain when disk I/O is write-
through, where every database write goes to disk oxide and not an on-disk cache.

Hopefully, the CREATE JOURNAL statement above will minimize this cost. Remember that
the end goal is to provide point-in-time disaster recovery using the CREATE JOURNAL
ARCHIVE statement to archive time-consistent database dumps and journal files.

6.2. Creating a Sample Journal Archive

To get started, issue:

CREATE JOURNAL ARCHIVE <journal archive directory>

This activates journal archiving and performs the initial database dump.

Then copy the completed journal files to the archive directory, using the following syntax:

gbak -archive_journals <dbname>

Now, in the archive directory listing below, the database dump, EMPLOYEE.
2006-08-21T15-48-17Z.1.DATABASE, has no database changes made after 2006-08-21

Journaling and Disaster Recovery

166

15:48:17. It does not care what updates are going to the main database while it is being
dumped or after it is finished dumping. This includes the checkpoint process.

24 Aug 21 15:45 IB_JOURNAL
 24 Aug 21 15:45 IB_JOURNAL_ARCHIVE
 130399832 Aug 21 16:00 EMPLOYEE.2006-08-21T15-45-11Z.1.JOURNAL
 979562496 Aug 21 16:00 EMPLOYEE.2006-08-21T15-48-17Z.1.DATABASE
 130397262 Aug 21 16:00 EMPLOYEE.2006-08-21T15-51-51Z.2.JOURNAL
 130399932 Aug 22 18:13 EMPLOYEE.2006-08-21T15-57-03Z.3.JOURNAL
 130398336 Aug 22 18:13 EMPLOYEE.2006-08-22T18-06-19Z.4.JOURNAL
 130397418 Aug 22 18:14 EMPLOYEE.2006-08-22T18-10-52Z.5.JOURNAL
 35392721 Aug 23 00:27 EMPLOYEE.2006-08-22T18-14-47Z.6.JOURNAL

Use the gstat -L EMPLOYEE.2006-08-21T15-48-17Z.1.DATABASE command to generate
the following summary:

Database log page information:
 Creation date Aug 21, 2006 15:45:11
 Log flags: 1
 Recovery required
 Next log page: 0
 Variable log data:
 Control Point 1:
 File name: E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\ EMPLOYEE.2006-08-21T15-45-11Z.
1.JOURNAL

 Partition offset: 0 Seqno: 1 Offset: 5694

This is what the log page of the main database looked like at precisely
2006-08-21 15:48:17 . If you attempt to recover using this database dump, it will start
with journal file, EMPLOYEE.2006-08-21T15-45-11Z.1.JOURNAL, at offset 5694 and
continue through the last journal file or whatever timestamp was specified with an optional
-UNTIL clause:

GBAK -ARCHIVE_R E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\EMPLOYEE.2006-08-21T15-48-17Z.
1.DATABASE E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB -UNTIL "2006-08-21 18:08:15"

and in the interbase.log :

IBSMP (Server) Tue Aug 22 22:49:08 2006
 Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
 Long term recovery until "2006-08-21 18:08:15" begin

 IBSMP (Server) Tue Aug 22 22:49:09 2006
 Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
 Applying journal file: E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\EMPLOYEE.
2006-08-21T15-45-11Z.1.JOURNAL

 IBSMP (Server) Tue Aug 22 22:51:38 2006
 Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
 Applying journal file: E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\EMPLOYEE.
2006-08-21T15-51-51Z.2.JOURNAL

IBSMP (Server) Tue Aug 22 22:53:24 2006
Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
Applying journal file: E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\EMPLOYEE.
2006-08-21T15-57-03Z.3.JOURNAL

IBSMP (Server) Tue Aug 22 22:55:44 2006
Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
Applying journal file:
E:\EMPLOYEE_JOURNALS_AND_ARCHIVES\EMPLOYEE.2006-08-22T18-06-19Z.4.JOURNAL

IBSMP (Server) Tue Aug 22 22:55:57 2006

Journaling and Disaster Recovery

167

Database: E:\EMPLOYEE_RECOVER\EMPLOYEE.GDB
Long term recovery end

GBAK -ARCHIVE_DATABASE (creating archive db dump) never locks anything. The only
archive management restriction is that archive operations are serialized. You cannot do
multiple GBAK/GFIX operations against it at the same time. The important point here is
that the main database is fully accessible at all times.

GBAK -ARCHIVE_JOURNALS <my_database> causes non-archived journal files to be copied
to the archive (or marked as archived as above) when you do not want to dump the whole
database. Again, a row is entered into RDB$JOURNAL_ARCHIVES for each archived journal
file.

GFIX -ARCHIVE_SWEEP <sequence no.> <my_database> deletes all files in
RDB$JOURNAL_ARCHIVES with RDB$ARCHIVE_SEQUENCE less than the requested sequence.

GFIX -ARCHIVE_DUMPS <number> <my_database> configures the maximum number of
database dumps allowed in the archive. After issuing GBAK -ARCHIVE_DATABASE , archive
management will automatically delete the oldest archive database dump and all earlier
journal files if the dump limit has been exceeded by the addition of the new database
dump.

GBAK -ARCHIVE_RECOVER <archive_directory/archive_database> <new_database>
[-UNTIL <timestamp>] ,
will recover a database from the archived journal files. Remember that <archive_directory>
has to be mounted for read access on the machine performing the recovery.

Archive directories can be located on InterBase servers or passive file servers and
appliances. The archived files are opened directly by clients and not through an InterBase
server. Archive database dumps are sealed so you can simultaneously run database
validation (usually requires exclusive), logical GBAK, and have multiple, same-platform
machines on the network attach the database for read-only queries, which implies high
levels of page I/O over the network.

If the most current, non-archived journal files are accessible from the machine where the
recover is being executed, then the recovery process will “jump” to those journal files to
recover the most recently committed transactions, notwithstanding the optional -UNTIL
clause. The recovered database is divorced of any journal or journal archive so it is
necessary to define them again if desired.

However, it is more useful to leave the recovered database in a perpetual state of long term
recovery. That is, every time after the first GBAK -ARCHIVE_RECOVER , subsequent
GBAK -ARCHIVE_RECOVER statements apply the incremental journal changes. This provides
perfect symmetry with the online dump feature:

rem Full online dump
gbak -dump employee.gdb dump.ib
rem Incremental dump
gbak -dump employee.gdb dump.ib
rem Incremental dump
gbak -dump employee.gdb dump.ib
rem Divorce from main DB, and make the dump database online for read-write
operations
gfix -mode read_write dump.ib

rem Archive Database
gbak -archive_database employee.gdb
rem Archive Journals
gbak -archive_journal employee.gdb
rem To recover, find the lastest employee.gdb.*.database file in the archive
folder, and recover from that. For example, if the latest full database archive
file is employee.gdb.5.database, execute the following archive recover command:

Journaling and Disaster Recovery

168

gbak -archive_recover employee.gdb.5.database recover.ib
rem Make the recovered database online for read-write operations. Note: the
recovered database does not have any journal archive setup at this point. You
will need to set this up again.
gfix -mode read_write recover.ib

Note: The sample above is a Windows batch script.

This functional modification is much more efficient. Full, archival recovery can take hours
depending on the volume of journal changes.

If you divorce from the database, you save 1 second in not having to type
GFIX -MODE READ_WRITE at the cost of having to create another full recovery if you want a
more recent copy (hour(s)). Now you have to run GFIX -MODE READ_WRITE to divorce, but
you gain hours of efficiency by being able to get the incremental journal changes since the
last GBAK -ARCHIVE_RECOVER . This also means that the recovered database can be
deployed more quickly if the main database is lost. It also can function as a more up-to-date
READ_ONLY database for queries and reporting purposes.

Lastly, the journal archive is never implicitly dropped as a side-effect of DROP DATABASE or
DROP JOURNAL . It is necessary to explicitly issue a DROP JOURNAL ARCHIVE statement
before DROP DATABASE . The journal archive potentially represents the last known source of
the contents of a dropped database so it is intentionally difficult to delete.

Journaling and Disaster Recovery

169

Database Statistics and Connection Monitoring

InterBase provides a number of ways to view statistics about database behavior and to
exert control over that behavior.

1. Monitoring with System Temporary Tables

The InterBase Server has always kept a lot of statistics about what was going on, but it has
not been easy, or in some cases possible, to surface that information. Now, InterBase
captures that information and makes it available in a set of global system temporary tables.
These tables describe the runtime behavior of a database. They also provide a level of
control.

Although it has always been possible to see a list of users who were currently attached to a
database, you can now find out much more. For example, you can see how long each user
has been connected, what application each user is running, or the total amount of data I/O
used by each attachment. A glance at the temporary table metadata listed in the Language
Reference Guide will suggest the vast possibilities that are available here.

It is also possible to exercise a certain amount of control over the state of a database by
performing updates to these tables. See Updating System Temporary Tables.

These system temporary tables are specific to each database attachment and are visible
only to the sysdba user and the database owner. There is therefore no need for unique
names and no danger of collisions by separate attachments. Each table is populated only at
the point when a client queries it.

The following system temporary tables are available. Their structure is documented in the
Language Reference Guide.

Table name Description

TMP$ATTACHMENTS One row for each connection to a database.

TMP$DATABASE One row for each database you are attached to.

TMP$HEAPS One row for each entry in the InterBase Random and Block heap.

TMP$INDICES One row for each index loaded in to database cache.

TMP$POOL_BLOCKS One row for each block of memory in each pool.

TMP$POOLS One row for each current memory pool.

TMP$PROCEDURES One row for each procedure executed since the current connection began.

TMP$RELATIONS One row for each relation referenced since the current connection began.

TMP$STATEMENTS One row for each statement currently executing for any current connection.

Database Statistics and Connection Monitoring

170

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

Table name Description

TMP$TRANSACTIONS One row for each transaction that is active or in limbo.

TMP$TRIGGERS One row for each trigger loaded in to the database cache.

1.1. Querying System Temporary Tables

Clients can query these tables using SELECT statements, just as they would query any
other table. By querying these tables, a rich collection of data about server performance
and user behavior is available.

You cannot create or redefine temporary tables yourself.

Tip:
For frequent monitoring, the best transaction control is to start the transaction as
READ_COMMITTED , READ_ONLY . Then commit it with COMMIT_RETAINING . This has the
least impact on the system.

1.1.1. Refreshing the Temporary Tables

To refresh the rows in the temporary tables, commit your transaction and perform the
SELECT from the temporary tables again. InterBase automatically deletes the rows stored
in temporary tables on a commit.

1.1.2. Listing the Temporary Tables

To display a list of these temporary tables, issue the following command in isql:

SHOW SYSTEM

The temporary tables are listed at the end of the system tables. To see the metadata for a
particular table, issue:

SHOW TABLE tablename

Note:
The SHOW SYSTEM command is available only in command-line isql, not in InterBase
Windows isql .

1.1.3. Security

Unlike system tables, which have a default access privilege of SELECT for PUBLIC users,
the temporary tables have no default access by PUBLIC . The display and manipulation of
this runtime information is restricted to SYSDBA and the database owner. These two users
have the option of using the GRANT statement to allow access to other users. The
statement can grant only SELECT privileges.

1.1.4. Examples of Querying System Temporary Tables

To illustrate the richness of the possibilities afforded by these temporary tables, here are
some examples how you might query them.

Database Statistics and Connection Monitoring

171

Top ten SQL statements by execution :

SELECT a.tmp$user, s.tmp$timestamp, s.tmp$sql, s.tmp$quantum
FROM TMP$STATEMENTS s, TMP$ATTACHMENTS a
WHERE a.TMP$ATTACHMENT_ID = s.TMP$ATTACHMENT_ID
ORDER BY s.TMP$QUANTUM DESC ROWS 10;

Top ten oldest transaction snapshots:

SELECT a.TMP$USER, t.TMP$TIMESTAMP, t.TMP$TRANSACTION_ID, t.TMP$SNAPSHOT
FROM TMP$ATTACHMENTS a, TMP$TRANSACTIONS t
WHERE a.TMP$ATTACHMENT_ID = t.TMP$ATTACHMENT_ID
ORDER BY t.TMP$SNAPSHOT ROWS 10;

Top ten tables with the most garbage to clean up:

SELECT TMP$RELATION_NAME, TMP$GARBAGE_COLLECT_PAGES
FROM TMP$RELATIONS
ORDER BY TMP$GARBAGE_COLLECT_PAGES DESC ROWS 10;

Top ten most executed stored procedures:

SELECT TMP$PROCEDURE_NAME, TMP$INVOCATIONS
FROM TMP$PROCEDURES
ORDER BY TMP$INVOCATIONS DESC ROWS 10;

Is database sweep active and what's its progress?:

SELECT TMP$SWEEP_RELATION, TMP$SWEEP_RECORDS
FROM TMP$DATABASE
WHERE TMP$SWEEP_ACTIVE = 'Y';

Pool memory allocations grouped by pool type:

SELECT TMP$TYPE, SUM(TMP$POOL_MEMORY) TMP$TOTAL_MEMORY,
SUM(TMP$FREE_MEMORY) TMP$TOTAL_FREE
FROM TMP$POOLS
GROUP BY TMP$TYPE
ORDER BY 2 DESC;

1.2. Updating System Temporary Tables

There are cases where, having acquired information about the state of the database, you
need to take appropriate action. You might, for example, detect a transaction that had
unexpectedly been open for many hours, or one that was consuming resources that were
needed by others. By updating the TMP$STATE column of certain temporary tables, you can
perform the following updates:

Roll back an active or limbo transaction
Commit a limbo transaction
Cancel an attachment’s executing operation
Shut down the current attachment
Ping database attachments to check if they are alive
Make an executing statement stop running

1.2.1. Making single changes

The following examples operate on a single attachment or transaction.

•
•
•
•
•
•

Database Statistics and Connection Monitoring

172

Action Statement

To roll back an active transaction
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'ROLLBACK' WHERE TMP$TRANSACTION
_ID=123;

To roll back a limbo transaction
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'ROLLBACK' WHERE TMP$TRANSACTION
_ID=123;

To commit a limbo transaction
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'COMMIT' WHERE TMP$TRANSACTION_I
D=123;

To cancel the attachment’s currently executing operation
UPDATE TMP$ATTACHMENTS SET TMP$STATE
= 'CANCEL' WHERE TMP$ATTACHMENT_ID=1
23;

To shut down the current attachment
UPDATE TMP$ATTACHMENTS SET TMP$STATE
= 'SHUTDOWN' WHERE
TMP$ATTACHMENT_ID=123;

To ping an attachment by sending a keepalive request. If the
connection/attachment is defunct, the server will automatically
cleanup the port

UPDATE TMP$ATTACHMENTS SET TMP$STATE
= 'KEEPALIVE' WHERE TMP$ATTACHMENT_I
D=123;

To make an executing statement stop running
UPDATE TMP$STATEMENTS SET TMP$STATE
= 'CANCEL' WHERE TMP$STATEMENT_ID=12
3;

Note:
Shutting down an attachment detaches the user from the database and terminates the
local or network attachment to the server.</blockquote>

1.2.2. Making global changes

You can make more global changes, as listed below.

Action Statement

To roll back all active transactions
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'ROLLBACK' WHERE TMP$STATE ='ACT
IVE';

To roll back all limbo transactions
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'ROLLBACK' WHERE TMP$STATE ='LIM
BO';

To commit all limbo transactions
UPDATE TMP$TRANSACTIONS SET TMP$STAT
E = 'COMMIT' WHERE TMP$STATE ='LIMBO
';

Database Statistics and Connection Monitoring

173

2. Viewing Statistics using IBConsole

To view database statistics, use one of the following methods to access the Database
Statistics dialog:

Select a connected database in the Tree pane and choose Database|Maintenance|
Database Statistics.
Select a connected database in the Tree pane and double-click Database Statistics in
the Work pane.
Right-click a connected database in the Tree pane and choose Maintenance|Database
Statistics from the context menu.

A Database Statistics dialog appears where you can select which statistics you want to
display.

To view database statistics:

Select the statistical data you wish to generate from the Options list. You can
specify options by entering a value, by clicking the option value and choosing a
new value from a drop-down list of values or by double-clicking the option value to
rotate its value to the next in the list of values.
Click OK to generate database statistics.

Note:
In some cases, it can take a long time to display the statistics for large databases
because, depending on what information has been selected to report, generating these
statistics may analyze all the tables and indexes in a database.

Error creating thumbnail: Unable to save thumbnail to destination

The Database Statistics report dialog is a standard text display window that exhibits
database summary and database analysis information statistics. For an explanation of how
to use the standard text display window, see Text Viewer Window.

2.1. Database Statistics Options

When you request a statistic option, InterBase generates and displays information for that
database statistic. Possible statistic option values include: All Options, Data Pages, Database
Log, Header Pages, Index Pages, and System Relations.

Note:
In addition to the selected statistic, header page information is displayed, regardless
which statistic has been selected to report. If Header Pages is the selected option value,
then only header page information will be displayed.

•

•

•

1.

2.

Database Statistics and Connection Monitoring

174

http://docwiki.embarcadero.com/InterBase/2020/en/Text_Viewer_Window

2.1.1. All Options

Displays statistic information for all options including Data Pages, Database Log, Header
Pages, Index Pages, and System Relations.

This function corresponds to the -all option of gstat .

2.1.2. Data Pages

Displays data page information in the database summary. Below is an example of data page
information, followed by an explanation of each item.

COUNTRY (31)
Primary pointer page: 246, Index root page: 247
Data pages: 1, data page slots: 1, average fill: 59%
Fill distribution:
0 - 19% = 0
20 - 39% = 0
40 - 59% = 1
60 - 79% = 0
80 - 99% = 0

The first line displays a database table name while the remaining lines contain item
information pertaining to the table. These items include:

Item Description

Primary pointer page The page that is the first pointer page for the table.

Index root page The page number that is the first pointer page for indexes.

Data pages The total number of data pages.

Data page slots
The number of pointers to database pages, whether the pages are still in the
database or not.

Average fill The average percentage to which the data pages are filled.

Fill distribution
A histogram that shows the number of data pages that are filled to the
percentages.

2.1.3. Database Log

Displays the database log in the database summary. Below is an example of database log
information.

This function corresponds to the -log option of gstat .

Database log page information:
Creation date Dec 20, 1998 11:38:19
Log flags: 2
No write ahead log
Next log page: 0
Variable log data:
Control Point 1:
File name:

Database Statistics and Connection Monitoring

175

Partition offset: 0 Seqno: 0 Offset: 0
Control Point 2:
File name:
Partition offset: 0 Seqno: 0 Offset: 0
Current File:
File name:
Partition offset: 0 Seqno: 0 Offset: 0

2.1.4. Header Pages

Displays header page information in the database summary. Below is an example of
database summary header page information, followed by an explanation of each item.

This function corresponds to the -header option of gstat .

Database "C:\Embarcadero\InterBase\examples\Database\employee.ib"

Database header page information:
Flags 0
Checksum 12345
Generation 41
Page size 4096
ODS version 12.0
Oldest transaction 29
Oldest active 30
Oldest snapshot 30
Next transaction 34
Bumped transaction 1
Sequence number 0
Next attachment ID 0
Implementation ID 16
Shadow count 0
Page buffers 0
Next header page 0
Database dialect 1
Creation date Aug 26, 2006 17:05:03

Variable header data:
Sweep interval: 20000
END

Service ended at 9/3/2006 4:59:05 PM

The first line displays the name and location of the primary database file while the
remaining lines contain information on the database header page. These items include:

Item Description

Checksum
InterBase supports true checksums only for ODS 8 and earlier. For ODS 9 and
later, the checksum value is always “12345”.

Generation Counter incremented each time header page is written.

Page size The current database page size, in bytes.

ODS version The version of the database’s on-disk structure.

Oldest transaction
The transaction ID number of the oldest “interesting” transaction (those that are
active, in limbo, or rolled back, but not committed).

Oldest active The transaction ID number of the oldest active transaction.

Database Statistics and Connection Monitoring

176

Item Description

Next transaction

The transaction ID number that InterBase assigns to the next transaction.

The difference between the oldest transaction and the next transaction
determines when database sweeping occurs. For example, if the difference is
greater than this difference (set to 20,000 by default), then InterBase initiates a
database sweep. See Overview of Sweeping.

Sequence number
The sequence number of the header page (zero is used for the first page, one for
second page, and so on).

Next connection ID ID number of the next database connection.

Implementation ID

The architecture of the system on which the database was created. These ID
definitions are platform-dependent #define directives for a macro class named
CLASS:

1 HP Apollo Domain OS
2 Sun Solaris SPARC, HP9000 s300, Xenix, Motorola IMP UNIX, UnixWare, NCR
UNIX, NeXT, Data General DG-UX Intel
3 Sun Solaris x86
4 VMS
5 VAX Ultrix
6 MIPS Ultrix
7 HP9000 s700/s800
8 Novell NetWare
9 Apple Macintosh 680x0
10 IBM AIX POWER series, IBM AIX PowerPC
11 Data General DG-UX 88K
12 HP MPE/xl
13 SGI IRIX
14 Cray
15 SF/1
16 Microsoft Windows 7 (32-bit and 64-bit)
17 OS/2
18 Windows 16 bit
19 LINUX on Intel series
20 LINUX on Sparc systems
21 DARWIN on Intel
22 DARWIN on PowerPC
23 DARWIN on iOS ARM architecture
24 Android on x86 architecture (emulator)
25 Android on ARM architecture (device

Shadow count The number of shadow files defined for the database.

Number of cache buffers The number of page buffers in the database cache.

Next header page The ID of the next header page.

Database dialect The SQL dialect of the database

Creation date The date when the database was created.

Attributes

force write—indicates that forced database writes are enabled.
no_reserve—indicates that space is not reserved on each page for old
generations of data. This enables data to be packed more closely on each page
and therefore makes the database occupy less disk space.
shutdown—indicates database is shut down.

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•

Database Statistics and Connection Monitoring

177

Item Description

Variable header data
sweep interval
secondary file information

2.1.5. Index Pages

Displays index information in the database summary. Below is an example of index page
information, followed by an explanation of each item.

Index CUSTNAMEX (2)
Depth: 2, leaf buckets: 2, nodes: 27
Average data length: 45.00, total dup: 0, max dup: 0
Fill distribution:
0 - 19% = 0
20 - 39% = 0
40 - 59% = 1
60 - 79% = 0
80 - 99% = 1

Item Description

Index The name of the index.

Depth

The number of levels in the index page tree. If the depth of the index page tree is
greater than three, then sorting may not be as efficient as possible. To reduce the
depth of the index page tree, increase the page size. If increasing the page size
does not reduce the depth, then return it to its previous size.

Leaf buckets The number of leaf (bottom level) pages in the index page tree.

Nodes The total number of index pages in the tree.

Average data length The average length of each key, in bytes.

Total dup The total number of rows that have duplicate indexes.

Max dup The number of duplicates of the index with the most duplicates

Fill distribution
A histogram that shows the number of index pages filled to the specified
percentages.

2.1.6. System Relations

Displays information for system tables in the database.

RDB$CHECK_CONSTRAINTS (24)
Primary pointer page: 54, Index root page: 55
Data pages: 5, data page slots: 5, average fill: 59%
Fill distribution:
0 - 19% = 0
20 - 39% = 1
40 - 59% = 0
60 - 79% = 4
80 - 99% = 0

Index RDB$INDEX_14 (0)
Depth: 1, leaf buckets: 1, nodes: 68

•
•

Database Statistics and Connection Monitoring

178

Average data length: 0.00, total dup: 14, max dup: 1
Fill distribution:
0 - 19% = 0
20 - 39% = 0
40 - 59% = 1
60 - 79% = 0
80 - 99% = 0

The statistics contained here are similar to that of data pages and index pages. For
information on the items see Data Pages and Index Pages above.

3. Monitoring Client Connections with IBConsole

You can view a list of users currently connected to a particular database in IBConsole using
the Database Connections dialog. You can access this dialog by one of the following
methods:

Select a database (or any branch under the database hierarchy) in the Tree pane and
choose Database|Connected Users.
Select a database in the Tree pane and double-click Connected Users in the Actions
column of the Work pane.

Right-click a database in the Tree pane and choose Connected Users from the
context menu.

Note:
InterBase temporary system tables provide resources for more extensive monitoring of
database activity. See Monitoring with System Temporary Tables.

4. The gstat Command-line Tool

gstat [<options>] <database>

Description: The gstat program is a command-line tool for retrieving and reporting
database statistics. Its function is the same as that described for IBConsole earlier in this
chapter.

•

•

•

Database Statistics and Connection Monitoring

179

You must be SYSDBA or the owner of a database to run gstat . On UNIX platforms, there is
a further constraint on gstat : in order to run gstat , you must have system-level read
access to the database files. You can gain this by logging in as the same account that the
InterBase server is running as (InterBase or root) or by setting the system-level permissions
on the database file to include read permission for your Group. These restrictions exist on
UNIX platforms because gstat accesses the database file at the system level rather than
through the InterBase server.

Note:
You can run gstat only against local databases: run gstat on the server host.

Options: Table 1.5 lists the valid options for gstat:

Option Description

- all
Equivalent to supplying - index and - data ; this is the
default if you supply none of - index , - data , or -
all .

- data Retrieves and displays statistics on data tables in the
database.

- header Stops reporting statistics after reporting the
information on the header page.

- index Retrieves and displays statistics on indexes in the
database.

- log Stops reporting statistics after reporting the
information on the log pages.

- pa [ssword] text Checks for password <text> before accessing a
database.

-r[ecord]
Adds lines for average record length and average
version length to the table statistics.

- system Retrieves statistics on system tables and indexes in
addition to user tables and indexes.

-t[able]
Outputs index and fill information for the requested
table, in addition to database header, file, and log
statistics; table name is case sensitive.

- user name Checks for user <name> before accessing database.

- z Prints product version of gstat .

Example: The following command requests table statistics, including record and version
length for the JOB table in employee.ib :

gstat -user SYSDBA -pa masterkey employee.ib -t JOB -r

Database Statistics and Connection Monitoring

180

The command produces the following output:

Database "employee.ib"

Database header page information:
Flags 0
Checksum 12345
Write timestamp Jul 9, 2010 19:58:59
Generation 26
Page size 4096
ODS version 15.0
Oldest transaction 19
Oldest active 20
Oldest snapshot 20
Next transaction 21
Sequence number 0
Next attachment ID 0
Implementation ID 16
Shadow count 0
Page buffers 0
Next header page 0
Database dialect 1
Creation date Jul 9, 2010 19:58:59
Attributes force write

variable header data:
Sweep interval: 20000
END

Database file sequence:
File employee.ib is the only file

Database log page information:
Creation date
Log flags: 2
No write ahead log

Next log page: 0

variable log data:
Control Point 1:
File name:
Partition offset: 0 Seqno: 0
 Offset: 0
Control Point 2:
File name:
Partition offset: 0 Seqno: 0
 Offset: 0
Current File:
File name:
Partition offset: 0 Seqno: 0
 Offset: 0
END

Analyzing database pages ...

JOB (129)
Primary pointer page: 178, Index root page: 179
Average record length: 64.87, total records: 31, max record length: 77
Average version length: 0.00, total versions: 0, max versions: 0
Data pages: 3, data page slots: 3, average fill: 72%
Fill distribution:
0 - 19% = 0
20 - 39% = 1
40 - 59% = 0
60 - 79% = 0
80 - 99% = 2

Blob pointer page: 253
Average blob length: 535.27, total blobs: 11, max blob length: 4598
Average segment length: 33.83, total segments: 175, max segment length:85
Blob pages: 1, blob page slots: 1, average fill: 41%
Fill distribution:

Database Statistics and Connection Monitoring

181

0 - 19% = 0 20 - 39% = 0
40 - 59% = 1
60 - 79% = 0
80 - 99% = 0

Index MAXSALX (2)
Depth: 1, leaf buckets: 1, nodes: 31
Average data length: 4.00, total dup: 5, max dup: 1
Fill distribution:
0 - 19% = 1
20 - 39% = 0
40 - 59% = 0
60 - 79% = 0
80 - 99% = 0

Index MINSALX (1)
Depth: 1, leaf buckets: 1, nodes: 31
Average data length: 4.00, total dup: 7, max dup: 2
Fill distribution:
0 - 19% = 1
20 - 39% = 0
40 - 59% = 0
60 - 79% = 0
80 - 99% = 0

Index RDB$FOREIGN3 (3)
Depth: 1, leaf buckets: 1, nodes: 31
Average data length: 1.00, total dup: 24, max dup: 20
Fill distribution:
0 - 19% = 1
20 - 39% = 0
40 - 59% = 0
60 - 79% = 0
80 - 99% = 0

Index RDB$PRIMARY2 (0)
Depth: 1, leaf buckets: 1, nodes: 31
Average data length: 10.00, total dup: 0, max dup: 0
Fill distribution:
0 - 19% = 1
20 - 39% = 0
40 - 59% = 0
60 - 79% = 0
80 - 99% = 0

5. Viewing Lock Statistics

Note:
The gds_lock_print utility is deprecated and is not included with some versions of
InterBase.

Locking is a mechanism that InterBase uses to maintain the consistency of the database
when it is accessed by multiple users. The lock manager is a thread in the ibserver
process that coordinates locking.

The lock manager uses a lock table to coordinate resource sharing among client threads in
the ibserver process connected to the database. The lock table contains information on
all the locks in the system and their states. The global header information contains useful
aggregate information such as the size of the lock table, the number of free locks, the
number of deadlocks, and so on. There is also process information such as whether the lock
has been granted or is waiting. This information is useful when trying to correct deadlock
situations.

iblockpr [a,o,w] (Windows) or gds_lock_print [a,o,w] (UNIX)

Database Statistics and Connection Monitoring

182

iblockpr [-i{a,o,w}] [t n]

Description: iblockpr monitors performance by checking lock requests.

The first form of syntax given above retrieves a report of lock statistics at one instant in
time. The second form monitors performance by collecting samples at fixed intervals.

The options display interactive information on current activity in the lock table. The utility
prints out the events per second for each sampling and gives the average of the values in
each column at the end.

Option Description

[none] Same as -o

-a Prints a static view of the contents of the lock table.

-o
Prints a static lock table summary and a list of all
entities that own blocks.

-w

Prints out all the information provided by the -o flag
plus wait statistics for each owner; this option helps to
discover which owner’s request is blocking others in
the lock table.

The following options supply interactive statistics (events/second) for the requested items, which are sampled
<n> times every <t> seconds, with one line printed for each sample. The average of the sample values is

printed at the end of each column. If you do not supply values for <n> and <t> , the default is <n>=1 .

-i
Prints all statistics; the output is easier to read if you
issue -ia , -io , and -iw separately.

-ia
Prints how many threads are trying to acquire access
to the lock table per second.

-io
Prints operation statistics such lock requests,
conversions, downgrades, and releases per second.

-iw
Prints number of lock acquisitions and requests
waiting per second, wait percent, and retries.

t Specifies the time in seconds between samplings.

n Specifies the number of samples to be taken.

Example: The following statement prints “acquire” statistics (access to lock table: acquire/s,
acqwait/s, %acqwait, acqrtry/s, and rtrysuc/s) every three seconds until ten samples have
been taken:

gds_lock_print -ia 3 10

Database Statistics and Connection Monitoring

183

6. Retrieving Statistics with isc database info()

InterBase includes programming facilities to gather performance timings and database
operation statistics.

You can use the API function isc_database_info() to retrieve statistics, by specifying
one or more of the following request buffer items:

Request Buffer Item Result Buffer Contents

isc_info_fetches
Number of reads from the memory buffer cache;
calculated since the InterBase server started.

isc_info_marks
Number of writes to the memory buffer cache;
calculated since the InterBase server started.

isc_info_reads
Number of page reads; calculated since the InterBase
server started.

isc_info_writes
Number of page writes; calculated since the InterBase
server started.

isc_info_backout_count
Number of removals of record versions per table since
the current database attachment started.

isc_info_delete_count

Number of row deletions

Reported per table.
Calculated since the current database attachment
started.

isc_info_expunge_count

Number of removals of a record and all of its
ancestors, for records whose deletions have been
committed

Reported per table.
Calculated since the current database attachment
started.

isc_info_insert_count

Number of inserts into the database

Reported per table.
Calculated since the current database attachment
started.

isc_info_purge_count

Number of removals of old versions of fully mature
records (records committed, resulting in older-
ancestor-versions no longer being needed)

Reported per table.
Calculated since the current database attachment
started.

isc_info_read_idx_count

Number of reads done via an index

Reported per table.
Calculated since the current database attachment
started.

•
•

•
•

•
•

•
•

•
•

Database Statistics and Connection Monitoring

184

Request Buffer Item Result Buffer Contents

isc_info_read_seq_count

Number of sequential database reads, that is, the
number of sequential table scans (row reads)

Reported per table.
Calculated since the current database attachment
started.

isc_info_read_update_count

Number of row updates

Reported per table.
Calculated since the current database attachment
started.

See the API Guide for information on request buffers, and details of using this API call.

•
•

•
•

Database Statistics and Connection Monitoring

185

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

Interactive Query

This chapter documents the IBConsole interactive SQL (isql) and command-line isql
utilities for InterBase. These tools provide an interface to InterBase Dynamic SQL
interpreter. You can use these query tools to perform data definition, prototype queries
before implementing them in your application, or to perform ad hoc examination of data in
your database. Refer to interactive SQL Window documentation for an over view of this tool.

1. Managing isql Temporary Files

isql creates temporary files used during a session to store information such as the
command history, output file names, and so on. These files are named in the form
isql_aa.xx . The files are stored in the directory specified by the TMP environment
variable, or if that is not defined, the working directory, or if that is not defined, they are
stored in the Windows directory.

To avoid cluttering the Windows directory with InterBase temporary files, specify a different
directory for them by defining the TMP environment variable.

When you exit, isql deletes these temporary files. If isql terminates abnormally, then these
files remain and may be freely deleted without any adverse effects. You should not delete
any of these temporary files while isql is running, because they may be used in the current
session.

2. Executing SQL Statements

Within isql, you can execute SQL statements in either of two ways:

Interactively, one statement at a time
From a script containing multiple statements

2.1. Executing SQL Interactively

To execute a SQL statement interactively:

Type a single SQL statement in the SQL input area. Make sure any other existing
statements are commented. A statement is commented if it is preceded by “/*” and
followed by “*/”. If the statement already exists in the SQL input area make sure all
statements except the one you wish to execute are commented. Commented
statements in the SQL input area are ignored during execution.
Choose Query|Execute, enter W +E, or click the Execute toolbar button. If more
than one statement is uncommented, Execute executes each statement, one after
the other.

Tip:
You can copy text from other Windows applications such as the Notepad and Wordpad
text editors and paste it into the SQL input area. You can also copy statements from the
isql output area and paste them into the SQL input area. This cut-and-paste method is
also a convenient way to use the online SQL tutorial provided in the online Help.

When SQL statements are executed, whether successfully or not, they become part of the
isql command history, a sequential list of SQL statements entered in the current session.

•
•

1.

2.

Interactive Query

186

http://docwiki.embarcadero.com/InterBase/2020/en/Interactive_SQL_Window

2.2. Preparing SQL Statements

Use the Prepare toolbar button, or select Query|Prepare, to prepare SQL statements for
execution and to view the query plan. Prepare compiles the query plan on the server, and
displays it in the Plan tab of the SQL output area. Use Prepare to determine if your SQL
script is well-constructed, without having to wait for the SQL script to execute.

2.2.1. Valid SQL Statements

You can execute interactively any SQL statement identified as “available in DSQL” in the
Language Reference. You cannot use any statements that are specifically identified in the
Language Reference as isql statements; all these have functionally equivalent menu
items in isql.

For example, the SET NAMES statement cannot be executed from the SQL input area. To
change the active character set, choose Edit|Options and select the desired character set
option value in the SQL Options dialog.

SQL script files can include statements that are not valid to enter interactively. For
example, you can use the SET statements such as SET LIST in scripts.
Transaction names may not be used with SET TRANSACTION statement.
The SQL input area accepts multiple statements, although only one can be executed at
a time. Each statement entered in the SQL input area must be terminated by a
semicolon (;). The SQL input area accepts multiple statements, although only one can
be executed at a time. An uncommented statement that holds the mouse cursor is
called the current statement.

2.2.2. Executing a SQL Script File

To execute a SQL script file containing SQL statements:

Choose Query|Load Script or click the Load Script toolbar button.
Locate the desired script file in the Open dialog, and click Open to display the
statements of the script file in the SQL input area.
Ensure that you are connected to the desired database.
If you are connected to the database, comment out any CONNECT or
CREATE DATABASE statements.
Choose Query|Execute or click Execute on the toolbar to begin executing the
entire script statement by statement.

Note:
Statements executed from a loaded script file do not become part of the command
history.

3. Using Batch Updates to Submit Multiple Statements

Batch updates allow you to send a group of SQL statements to a server in a single unit.
Grouping SQL statements into batches reduces the amount of network traffic between the
client and the database server. This results in improved performance, especially in LAN and
WAN environments.

Note:
Batch updates only work using the InterBase 2007 client library and an InterClient JDBC
driver.

•

•

•
•

1.
2.

3.
4.

5.

Interactive Query

187

You can send multiple INSERT , UPDATE , and DELETE statements to the server using batch
updates. In response, the server returns an array of ULONG values that reflect the number
of affected rows per statement.

SQL statements such as SELECT and CREATE DATABASE are not supported in batch updates.
SQL DDL is supported.

The following diagram shows the flow of communication between client and server when
completing a number of INSERT statements using traditional InterBase client APIs. Note
the flow of communication shown in the figure also applies to UPDATE and DELETE
statements.

The following diagram shows the flow of communication when using batch updates. Note
the reduction in network traffic, resulting in better performance.

Interactive Query

188

3.1. Using the Batch Functions in isql

In isql, SQL statements to be executed in batch mode must be surrounded by the new
BATCH START and BATCH EXEXCUTE commands. For example:

BATCH START;
...
(allowed DDL/DML statements)
...
BATCH EXECUTE;

The BATCH EXECUTE command sends the statements between BATCH START and
BATCH EXECUTE to the server. To begin another batch operation, you must issue another
BATCH START command.

The following demonstrates a specific example of using batch mode with isql.

BATCH START;
INSERT INTO t1(f1, f2) VALUES (0,1);
UPDATE t1 SET f1=1 WHERE f2=1;
BATCH EXECUTE;

The first SQL statement in the example inserts a new row into table t1 . The second
statement updates the newly inserted row with a new value. Both of these statements are
executed in one API call.

For details on how to use the batch_excute and batch_execute_immed functions, see
Chapter 15 of the InterBase API Guide.

Note:
The AUTOCOMMITDDL mode of isql must be turned off in order to use batch updates.

3.2. Committing and Rolling Back Transactions

Changes to the database from data definition (DDL) statements—for example, CREATE and
ALTER statements—are automatically committed by default. To turn off automatic commit
of DDL, choose Edit|Options and set the Auto Commit DDL option to false in the SQL
Options dialog.

Changes made to the database by data manipulation (DML) statements—for example
INSERT and UPDATE —are not permanent until they are committed. Commit changes by
choosing Transactions|Commit or by clicking Commit on the toolbar.

To undo all database changes from DML statements since the last commit, choose
Transactions|Rollback or click Rollback on the toolbar.

3.3. Saving isql Input and Output

You can save the following to a file:

SQL statements entered in the SQL input area of the current session.
The output of the last SQL statement executed.

•
•

Interactive Query

189

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

3.3.1. Saving SQL Input

To save the SQL statements entered in the SQL input area of the current session to a text
file:

In the SQL Editor, choose Menu|Query>Save Script or click the Save Script
toolbar button.
Enter a file name, including the location for the new file, in the Save As dialog and
click Save. To include the location for the file, type the file path and file name in
the Filename text area, or browse to the folder where you would like the file to
reside and type only the file name.

Only the SQL statements entered in the current session, not the output, are saved to the
specified file.

3.3.2. Saving SQL Output

To save the results of the last executed SQL statement to a file:

In the SQL Editor, choose Menu|Query>Save Output.
Enter a file name, including the location for the new file, in the Export To dialog
and click Save. To include the location for the file, either type the file path and file
name in the Filename text area, or browse to the folder where you would like the
file to reside and type only the file name.

The output in the Data tab from the last successful statement is saved to the named text
file.

If you run a SQL script, and then choose to save the output, all the commands in the script
file and their results are saved to the output file. If command display has been turned off in
a script with SET ECHO OFF , then SQL statements in the script are not saved to the file.

4. Inspecting Database Objects

Use the object inspector to view properties, metadata, permissions, data, and dependencies
for the entire database or for a specific table, view, function, procedure, or any other
database attribute displayed in the Tree pane.

To open the object inspector, double-click a database object in the Work pane. The object
inspector appears:

Error creating thumbnail: Unable to save thumbnail
to destination

Depending on the database object selected, the object inspector has some or all of the
following tabs: Properties, Metadata, Permissions, Data, and Dependencies. These are
discussed in the following sections.

4.1. Viewing Object Properties

The Properties tab is available when viewing Table and View database objects. Use the
Properties tab of the object inspector to display properties for database objects, including
columns, triggers, check constraints, indexes, unique constraints, and referential
constraints. The Properties tab has five toolbar buttons for displaying the various object
properties:

1.

2.

1.
2.

Interactive Query

190

Button Description

Show columns: displays the name, type, collation, character set, default value, and whether
or not null values are acceptable for every row in the column. The accelerator key is W + Y +C.
For more information on columns, refer to “Defining columns” in the Data Definition Guide.

Show triggers: displays the name and type of each trigger, as well as whether or not it is
active. In addition, it displays the SQL trigger statement. The accelerator key is W + Y +T. For
more information on triggers, refer to “Working with Triggers” in the Data Definition Guide.

Show check constraints: displays the names of the constraints, whether or not they can be
deferred, and if they were initially deferred. In addition, it displays the SQL check constraint
statements. The accelerator key is W + Y +H. For more information, refer to “Defining a
CHECK constraint” in the Data Definition Guide.

Show indexes: displays the name of the index keys, and whether or not they are unique,
descending, or active. The accelerator key is W + Y +R. For more information, refer to
“Working with Indexes” in the Data Definition Guide.

Show unique constraints: displays the names of the constraints, whether or not they can be
deferred, if they were initially deferred, and the index keys. The accelerator key is W + Y +U.

Show referential constraints: displays the names of the constraints, whether or not they
can be deferred, if they were initially deferred, the match options, the update rules, the
delete rules, the index, and the reference table. The accelerator key is W + Y +R.

4.2. Viewing Metadata

The metadata which the Metadata tab of the object inspector displays depends on the
database that is selected in the Tree pane, or the item that is selected in the Work pane.

To view metadata for an entire database Select a connected database in the Tree pane,
and then double-click View Metadata in the Work pane. The metadata is displayed in a text
window.

To view metadata for a specific database object perform one of the following actions:

Select a database element from the hierarchy displayed in the Tree pane, and then in
the Work pane double-click an object to display its Properties dialog. Click the Metadata
tab to see the object’s metadata.
Select a database element from the hierarchy displayed in the Tree pane, and then in
the Work pane right-click a database object associated with that element and select
Extract from the context menu.

For example, if you want metadata for domains only, expand the desired database
hierarchy (if it is not already expanded), select Domains, double-click on a domain in the
Work pane, and select the Metadata tab of the Properties dialog.

Use the drop-down list at the top of the dialog to select other objects associated with the
database element.

The following table lists the items for which you can view metadata for associated objects
with the object inspector.

•

•

Interactive Query

191

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

Item Displays

Blob Filters Blob filters definition

Domains
Metadata script, dependencies, data type, description, check constraints, and
default values

Exceptions
Description, exception number, exception message, metadata script, and
dependencies

External Functions UDFs definition

Generators Generator ID, current value, metadata script, and dependencies

Stored Procedures
Metadata script, procedure body, input parameters, output parameters,
permissions, data, and dependencies

Roles Role definition

Tables
Columns, data types, triggers, indexes, unique constraints, referential constraints,
check constraints, metadata script, permissions, data, and dependencies

Views Metadata script, permissions, data, and dependencies

4.3. Extracting Metadata

You can extract a metadata script to a file by displaying the desired metadata in the
Metadata tab and clicking the Save Script toolbar button.

Extracting an entire database exports metadata in a specific order, to allow the resulting
script to be used as input to recreate the database.

Metadata Comments

1. Database Extracts database with default character set and PAGE_SIZE .

2. Domains Must be before tables that reference domains.

3. Tables Must be after domains.

4. Indexes Must be after tables.

5. FOREIGN KEY
constraints

Must be added after tables to avoid tables being referenced before they have
been created.

6. Views Must be after tables.

7. CHECK constraints Must be after tables.

Interactive Query

192

Metadata Comments

8. Exceptions
Must be extracted before stored procedures and triggers that contain code to
raise exceptions.

9. Stored procedures
Stored procedures are shown with no body in CREATE PROCEDURE and then
ALTER PROCEDURE to add the text of the procedure body; this is to allow circular

or recursive procedure references.

10. Triggers

Must be after tables.

Must be after stored procedures, to allow trigger code to reference procedures.

Does not extract triggers from CHECK constraints.

11. Roles Must be before GRANT privileges.

12. GRANT privileges Must be after tables, views, stored procedures, triggers, and roles.

Items that are not extracted include:

Code of external functions or filters, because that code is not part of the database. The
declarations to the database (with DECLARE EXTERNAL FUNCTION and
DECLARE FILTER) are extracted.
System tables, system views, and system triggers.
Because DDL statements do not contain references to object ownership, the extracted
file does not show ownership. The output file includes the name of the object and the
owner if one is defined. There is no way to assign an object to its original owner.

5. Command-line isql Tool

Command-line isql is a utility for processing SQL data definition (DDL) and data
manipulation (DML) statements from interactive input or from a source file. It enables you
to create and view metadata, add and modify data, grant user permissions, test queries,
and perform database administration tasks.

For a description of the standard SQL commands available in isql , see the Language
Reference Guide. For a description of special isql commands, see isql Command
Reference.

You can use isql in the following ways:

Interactively to process SQL statements, by entering statements at the isql prompt
Noninteractively to process SQL statements in a file

5.1. Invoking isql

To start the isql utility, type the following at a UNIX shell prompt or Windows console
prompt:

isql [options] [database_name]

where options are command-line options and <database_name> is the name of the
database to connect to, including disk and directory path.

•

•
•

•
•

Interactive Query

193

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

If no options are specified, isql starts an interactive session. If no database is specified,
you must connect to an existing database or create a new one. If a database was specified,
isql starts the interactive session by connecting to the named database.

If options are specified, isql starts interactively or noninteractively, depending on the
options. For example, reading an input file and writing to an output file are noninteractive
tasks, so the -input or -output options do not start an interactive session. Additional
noninteractive options include -a , -database , -extract , and -x , which are used when
extracting DDL statements.

When you start an interactive isql session, the following prompt appears:

SQL>

You must then end each command with a terminator character. The default terminator is a
semicolon (;). You can change the terminator to any character or group of characters with
the SET TERMINATOR command or with the -terminator command-line option. If you
omit the terminator, a continuation prompt appears (CON>).

Note:
For clarity, all of the commands and examples in this chapter end with the default
semicolon terminator.

5.1.1. Command-line Options

Only the initial characters in an option are required. You can also type any portion of the
text enclosed in brackets, including the full option name. For example, specifying -n , -no ,
or -noauto has the same effect.

The table below lists the availabel isql command-line options:

Option Description

-a Extracts all DDL for the named database.

-c[ache]
Set number of cache buffers for this connection to the
database; see Default Cache Size Per isql.

-d[atabase] <name>

Used with -x ; changes the CREATE DATABASE
statement that is extracted to a file.

Without -d , CREATE DATABASE appears as a C-
style comment and uses the database name
specified on the isql command line.
With -d , isql extracts an uncommented
CREATE DATABASE and substitutes <name> as its

database argument.

-e[cho] Displays (echoes) each statement before executing it.

-ex[tract] Same as -x

•

•

Interactive Query

194

Option Description

-i[nput] <file>

Reads commands from an input file such as a SQL
script file instead of from standard input.

input files can contain -input commands that call
other files, enabling execution to branch and then
return.
isql exits (with a commit) when it reaches the end

of the first file.
In interactive sessions, use -input to read
commands from a file.

-m[erge_stderr]
Merges stderr output with stdout.
Useful for capturing output and errors to a single file
when running isql in a shell script or batch file.

-names <character set name>

Specifies the character set to use for current database
attachment. Default is NONE .

Note: Any SET NAMES call in isql or inside an
SQL script overrides the character set that you
provide in the command-line.

-n[oauto]
Turns off automatic commit of DDL statements; by
default, DDL statements are committed automatically
in a separate transaction.

-nowarnings
Displays warning messages if, and only if, an error
occurs (be default, isql displays any message returned
in a status vector, even if no error occurred).

-o[utput] file
Writes results to an output file instead of to standard
output; in interactive sessions, use -output to write
results to a file.

-pas[sword] password

Used with -user

Specifies a password when connecting to a remote
server.
For access, both <password> and <user> must
represent a valid entry in the security database.

-page[length] <n>
Prints column headers every <n> lines instead of the
default 20.

-q[uiet]

-r[ole] <rolename>
Grants privileges of role <rolename> to <user> on
connection to the database.

•

•

•

•
•

•

•

Interactive Query

195

Option Description

-s[qldialect] <n>

Interprets subsequent commands as dialect <n> until
end of session or until dialect is changed by a
SET SQL DIALECT statement.

For <n> = 1, commands are processed as in
InterBase 5 or earlier.
For <n> = 2, elements that have different
interpretations in dialect 1 and 3 are all flagged with
warnings or errors to assist in migrating databases
to dialect 3.
For <n> = 3, all statements are parsed as current
InterBase SQL semantics: double quotes are
delimited identifiers, DATE data type is SQL DATE ,
and exact numerics with precision greater than 9 are
stored as INT64 .

-t[erminator] <x>

Changes the end-of-statement symbol from the default
semicolon (;) to <x>, where <x> is a single character
or any sequence of characters; deprecated in InterBase
7.

-u[ser] <user>

Used with - password ; specifies a user name when
connecting to a remote server.

For access, both <password> and <user> must
represent a valid entry in the security database.

-x
Extracts DDL for the named database; displays DDL to
the screen unless redirected to a file.

-z Displays the software version of isql .

5.1.2. Using Warnings

Warnings can be issued for the following conditions:

SQL statements with no effect
SQL expressions that produce different results in InterBase 5 versus InterBase 6 or later
API calls that will be replaced in future versions of the product
Pending database shutdown

5.1.3. Examples of Invoking isql

Suppose createdb.sql contains DDL statements to create a database. To execute the
statements, enter:

isql -input createdb.sql

The following example starts an interactive connection to a remote database. The
remote server, jupiter, accepts the specified user and password combination with the
privileges assigned to the STAFF role:

isql -user sales -password mycode -role 'staff''jupiter:/usr/customer.ib'

The next example starts an interactive session but does not attach to a database. isql
commands are displayed, and query results print column headers every 30 lines:

•

•

•

•

•
•
•
•

•

•

•

Interactive Query

196

isql -echo -page 30

5.1.4. Exiting isql after invoking isql

To exit isql and roll back all uncommitted work, enter:

QUIT;

To exit isql and commit all work, enter:

EXIT;

5.1.5. Connecting to a Database Using isql

If you do not specify a database on the command-line when invoking isql , you must either
connect to an existing database or create a new one. Use the CONNECT command to
connect to a database and CREATE DATABASE to create a database. For the full syntax of
CONNECT and CREATE DATABASE , see the Language Reference.

You can connect to either local or remote databases. The syntax is slightly different for the
two:

To connect to a local database on a Windows platform, use the CONNECT command with
the full path of the database as the argument. For example:

SQL> CONNECT 'C:/Embarcadero/InterBase/Database/examples/employee.ib' role
'staff';

To connect to a remote database on a Windows or UNIX server using TCP/IP, use the
CONNECT command with the full node name and path of the database as the argument.
Separate the node name from the database path with a colon.

Examples of connecting to remote databases:

To connect to a database on a UNIX platform named jupiter:

SQL> CONNECT 'jupiter:/usr/InterBase/examples/employee.ib';

To connect to a database on a Windows platform named venus:

SQL> CONNECT 'venus:c:/Embarcadero/InterBase/examples/database/employee.ib';

Note:
Be careful not to confuse node names and shared disks, since both are specified with a
colon separator. If you specify a single letter that maps to a disk drive, it is assumed to be
a drive, not a node name.

Tip:
You can use either forward slashes (/) or backslashes (\) as directory separators.
InterBase automatically converts either type of slash to the appropriate type for the
server operating system.

Interactive Query

197

5.2. Setting isql Client Dialect

To use isql to create a database in a particular dialect, first set isql to the desired
dialect and then create the database. You can set isql dialect the following ways:

On the command line, start isql with option -sql_dialect n, where n is 1, 2, or 3:

isql -sql_dialect n

Within an isql session or in a SQL script, include the following statement:

SET SQL DIALECT n;

isql dialect precedence is as follows:

Lowest: Dialect of an attached version 6 or later database
Next lowest: Dialect specified on the command line
Next highest: Dialect specified during the session
Highest: Dialect of an attached Version 5 database (=1)

In InterBase, isql has the following behavior with respect to dialects:

If you start isql and attach to a database without specifying a dialect, isql takes on
the dialect of the database.
If you specify a dialect on the command line when you invoke isql , it retains that
dialect after connection unless explicitly changed.
When you change the dialect during a session using SET SQL DIALECT n, isql
continues to operate in that dialect until it is explicitly changed.
When you create a database using isql , the database is created with the dialect of
the isql client; for example, if isql has been set to dialect 1, when you create a
database, it is a dialect 1 database.
If you create a database without first specifying a dialect for the isql client or
attaching to a database, isql creates the database in dialect 3.

The statements above are true whether you are running isql as a command-line utility or
accessing it through IBConsole.

Important:
Any InterBase isql client that attaches to a Version 5 database resets to dialect 1.

5.3. Transaction Behavior in isql

When you start isql , InterBase begins a transaction. That transaction remains in effect
until you issue a COMMIT or ROLLBACK statement. You must issue a COMMIT or ROLLBACK
statement to end a transaction. Issuing one of these statements automatically starts a new
transaction. You can also start a transaction with the SET TRANSACTION statement.

isql uses a separate transaction for DDL statements. When these statements are issued
at the SQL> prompt, they are committed automatically as soon as they are completed. DDL
scripts should issue a COMMIT after every CREATE statement to ensure that new database
objects are available to all subsequent statements that depend on them. For more
information on DDL statements, see the Data Definition Guide.

•

•

•
•
•
•

•

•

•

•

•

Interactive Query

198

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

5.4. Extracting Metadata Using isql

You can extract the DDL statements that define the metadata for a database to an output
file with the -extract option. Adding the optional -output flag reroutes output to a
named file. Use this syntax:

isql [[-extract | -x][-a] [[-output | -o] outputfile]] database;

The -x option is an abbreviation for -extract . The -a flag directs isql to extract all
database objects. Note that the output file specification, <outputfile>, must follow the
-output flag, while you can place the name of the database being extracted at the end of
the command.

Option Description

<database>
File specification of the database from which metadata
is being extracted

<outputfile>
File specification of the text file to receive the extracted
statements; if omitted, isql writes the information to
the screen

You can use the resulting text file to:

Examine the current state of a database’s system tables before you plan alterations to
it, or when a database has changed significantly since its creation.
Use your text editor to make changes to the database definition or create a new
database source file.

The -extract option does not extract UDF code and Blob filters, because they are not part
of the database. It does extract the declarations to the database (with
DECLARE EXTERNAL FUNCTION and DECLARE FILTER).

The -extract option also does not extract system tables, system views, or system triggers.

Because DDL statements do not contain references to object ownership, the extracted file
does not show ownership. The output file includes the name of the object and the owner if
one is defined. There is no way to assign an object to its original owner.

For a list of the order of extraction of metadata objects, see Extracting Metadata.For
example, the following statement extracts the system catalogs from the database
employee.ib to a file called employee.sql :

isql -extract -output employee.sql employee.ib;

The resulting output script is created with -commit following each set of commands, so
that tables can be referenced in subsequent definitions. This command extracts all
keywords and object names in uppercase when possible (some international metadata has
no uppercase).

To extract DDL statements from database employee.ib and store in the file
employee.sql , enter:

isql -a employee.ib -output employee.sql

The following example extracts the DDL statements from the database dev.ib :

•

•

Interactive Query

199

http://docwiki.embarcadero.com/InterBase/2020/en/Extracting_Metadata

isql -x dev.ib

This example combines the -extract and -output options to extract the DDL statements
from the database dev.ib into a file called dev.out . The output database name must
follow the -output flag.

isql -extract -output dev.out dev.ib

5.5. isql Commands

At the SQL> prompt, you can enter any of three kinds of commands:

SQL data definition (DDL) statements, such as CREATE , ALTER , DROP , GRANT , and
REVOKE . These statements create, modify, or remove metadata and objects, and
control user access (via privileges) to the database. For more information about DDL,
see the Data Definition Guide.
SQL data manipulation (DML) statements such as SELECT , INSERT , UPDATE , and
DELETE . These four data manipulation operations affect the data in a database. They
retrieve, modify, add, or delete data. For more information about DML statements, see
the Language Reference.
isql commands that fall into three main categories:

SHOW commands (to display metadata or other database information)
SET commands (to modify the isql environment)
Other commands (for example, commands to read an input file, write to an output file,
or end an isql session)

Some isql commands have many options. See isql Command Reference

5.5.1. SHOW Commands

SHOW commands are used to display metadata, including tables, indexes, procedures, and
triggers.

SHOW commands list all of the specified objects or give information about a particular
object when used with <name.>

SHOW commands operate on a separate transaction from user statements. They run as
READ COMMITTED background statements and acknowledge all metadata changes
immediately.

5.5.2. SET Commands

SET commands enable you to view and change the isql environment.

5.5.3. Other isql Commands

The remaining isql commands perform a variety of useful tasks, including reading a SQL
file, executing shell commands, and exiting isql . The other isql commands are:
BLOBDUMP , EDIT , EXIT , HELP , INPUT , OUTPUT , QUIT , SHELL .

5.5.4. QUIT and EXIT Commands

To exit the isql utility and roll back all uncommitted work, enter:

•

•

•

•
•
•

Interactive Query

200

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

SQL> QUIT;

To exit the isql utility and commit all work, enter:

SQL> EXIT;

5.6. Error Handling in isql

InterBase handles errors in isql and DSQL in the same way. To indicate the causes of an
error, isql uses the SQLCODE variable and the InterBase status array.

The following table lists values that are returned to SQLCODE :

SQLCODE Message Meaning

< 0 SQLERROR Error occurred; statement did not execute

0 SUCCESS Successful execution

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND
No qualifying rows found, or end of current
active set of rows reached

For a detailed discussion of error handling, see the Embedded SQL Guide. For a complete
listing of SQLCODE and InterBase status array codes, see the Language Reference Guide.

6. isql Command Reference

This page lists the special commands available in InterBase isql . These commands are
also available in SQL scripts. Each command has a corresponding topic page, which contains
the syntax and a detailed description of the command.

For a list of the standard DSQL commands available in isql , see Statement and Function
Reference in the Language Reference Guide.

isql supports the following special commands:

Command Topic

BLOBDUMP BLOBDUMP

EDIT EDIT

EXIT EXIT

HELP HELP

INPUT INPUT

OUTPUT OUTPUT

Interactive Query

201

http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Statement_and_Function_Reference_%28Language_Reference_Guide%29
http://docwiki.embarcadero.com/InterBase/2020/en/Statement_and_Function_Reference_%28Language_Reference_Guide%29

Command Topic

QUIT QUIT

RECONNECT RECONNECT

SET SET

SET AUTODDL SET AUTODDL

SET BLOBDISPLAY SET BLOBDISPLAY

SET COUNT SET COUNT

SET ECHO SET ECHO

SET LIST SET LIST

SET NAMES SET NAMES

SET PLAN SET PLAN

SET STATS SET STATS

SET TERM SET TERM

SET TIME SET TIME

SET SUBSCRIPTION SET SUBSCRIPTION

SHELL SHELL

SHOW CHECK SHOW CHECK

SHOW DATABASE SHOW DATABASE

SHOW DOMAINS SHOW DOMAINS

SHOW EXCEPTIONS SHOW EXCEPTIONS

SHOW FILTERS SHOW FILTERS

SHOW FUNCTIONS SHOW FUNCTIONS

SHOW GENERATORS SHOW GENERATORS

Interactive Query

202

http://docwiki.embarcadero.com/InterBase/2020/en/RECONNECT
http://docwiki.embarcadero.com/InterBase/2020/en/SET_SUBSCRIPTION

Command Topic

SHOW GRANT SHOW GRANT

SHOW INDEX SHOW INDEX

SHOW INDICES SHOW INDEX

SHOW PROCEDURES SHOW PROCEDURES

SHOW ROLES SHOW ROLES

SHOW SUBSCRIPTION

SHOW SUBSCRIPTIONS
SHOW SUBSCRIPTION

SHOW SYSTEM SHOW SYSTEM

SHOW TABLES SHOW TABLES

SHOW TRIGGERS SHOW TRIGGERS

SHOW VERSION SHOW VERSION

SHOW VIEWS SHOW VIEWS

See Also

Statement and Function Reference

6.1. BLOBDUMP

Places the contents of a BLOB column in a named file for reading or editing.

BLOBDUMP blob_id filename;

Argument Description

<blob_id>

System-assigned hexadecimal identifier, made up of two
hexadecimal numbers separated by a colon (:)

First number is the ID of the table containing the BLOB
column
Second number is a sequential number identifying a particular
instance of Blob data

<filename> Name of the file into which to place Blob contents

Description: BLOBDUMP stores Blob data identified by <blob_id> in the file specified by <‐
filename>. Because binary files cannot be displayed, BLOBDUMP is useful for viewing or
editing binary data. BLOBDUMP is also useful for saving blocks of text (Blob data) to a file.

To determine the blob_id to supply in the BLOBDUMP statement, issue any SELECT
statement that selects a column of Blob data. When the table’s columns appear, any Blob

•

•

•

Interactive Query

203

http://docwiki.embarcadero.com/InterBase/2020/en/SHOW_SUBSCRIPTION
http://docwiki.embarcadero.com/InterBase/2020/en/Statement_and_Function_Reference_%28Language_Reference_Guide%29

columns contain hexadecimal Blob IDs. The display of Blob output can be controlled using
SET BLOBDISPLAY .

Example: Suppose that Blob ID 58:c59 refers to graphical data in JPEG format. To place this
Blob data into a graphics file named picture.jpg , enter:

BLOBDUMP 58:c59 picture.jpg;

See Also

SET BLOBDISPLAY

6.2. EDIT

Allows editing and re-execution of isql commands.

EDIT [filename];

Argument Description

<filename> Name of the file to edit

Description: The EDIT command enables you to edit commands in:

A source file and then execute the commands upon exiting the editor.
The current isql session, then re-execute them.

On Windows platforms, EDIT calls the text editor specified by the EDITOR environment
variable. If this environment variable is not defined, then EDIT uses the Microsoft Notepad
editor.

On UNIX, EDIT calls the text editor specified by either the VISUAL environment variable or
EDITOR , in that order. If neither variable is defined, then EDIT uses the vi editor.

If given filename as an argument, EDIT places the contents of filename in an edit buffer. If
no file name is given, EDIT places the commands in the current isql session in the edit
buffer.

After exiting the editor, isql automatically executes the commands in the edit buffer.

Filenames with spaces You can optionally delimit the filename with double or single
quotes. This allows you to use filenames with spaces in EDIT statements.

Examples: To edit the commands in a file called start.sql and execute the commands
when done, enter:

EDIT START.SQL;

In the next example, a user wants to enter
SELECT DISTINCT JOB_CODE, JOB_TITLE FROM JOB; interactively: Instead, the user
mistakenly omits the DISTINCT keyword. Issuing the EDIT command opens the statement
in an editor and then executes the edited statement when the editor exits.

SELECT JOB_CODE, JOB_TITLE FROM JOB;
EDIT;

•

•
•

Interactive Query

204

See Also

INPUT
OUTPUT
SHELL

6.3. EXIT

Commits the current transaction, closes the database, and ends the isql session.

EXIT;

Description: Both EXIT and QUIT close the database and end an isql session. EXIT
commits any changes made since the last COMMIT or ROLLBACK , whereas QUIT rolls them
back.

EXIT is equivalent to the end-of-file character, which differs across systems.

Important:
EXIT commits changes without prompting for confirmation. Before using EXIT , be sure
that no transactions need to be rolled back.

See Also

QUIT
SET AUTODDL

6.4. HELP

Displays a list of isql commands and short descriptions.

HELP;

Description: HELP lists the built-in isql commands, with a brief description of each.

Example: To save the HELP screen to a file named isqlhelp.lst , enter:

OUTPUT isqlhelp.lst;
HELP;
OUTPUT;

After issuing the HELP command, use OUTPUT to redirect output back to the screen.

6.5. INPUT

Read and execute commands from the named file.

INPUT filename;

Argument Description

<filename> Name of the file containing SQL statements and SQL commands

Description: INPUT reads commands from <filename> and executes them as a block. In
this way, INPUT enables execution of commands without prompting. <filename> must
contain SQL statements or isql commands.

•
•
•

•
•

Interactive Query

205

Input files can contain their own INPUT commands. Nesting INPUT commands enables
isql to process multiple files. When isql reaches the end of one file, processing returns
to the previous file until all commands are executed.

The INPUT command is intended for noninteractive use. Therefore, the EDIT command
does not work in input files.

Using INPUT <filename> from within an isql session has the same effect as using
-input filename from the command line.

Unless output is redirected using OUTPUT , any results returned by executing filename
appear on the screen.

You can optionally delimit the filename with double or single quotes. This allows you to use
filenames with spaces in INPUT statements.

Examples: For this example, suppose that file add.lst contains the following INSERT
statement:

INSERT INTO COUNTRY (COUNTRY, CURRENCY)
VALUES ('Mexico', 'Peso');

To execute the command stored in add.lst , enter:

INPUT add.lst;

For the next example, suppose that the file, table.lst , contains the following SHOW
commands:

SHOW TABLE COUNTRY;
SHOW TABLE CUSTOMER;
SHOW TABLE DEPARTMENT;
SHOW TABLE EMPLOYEE;
SHOW TABLE EMPLOYEE_PROJECT;
SHOW TABLE JOB;

To execute these commands, enter:

INPUT table.lst;

To record each command and store its results in a file named table.out , enter

SET ECHO ON;
OUTPUT table.out;
INPUT table.lst;
OUTPUT;

See Also

OUTPUT

6.6. OUTPUT

Redirects output to the named file or to standard output.

OUTPUT [filename];

•

Interactive Query

206

Argument Description

<filename>
Name of the file in which to save output; if no file name is given,
results appear on the standard output

Description: OUTPUT determines where the results of isql commands are displayed. By
default, results are displayed on standard output (usually a screen). To store results in a file,
supply a <filename> argument. To return to the default mode, again displaying results on
the standard output, use OUTPUT without specifying a file name.

By default, only data is redirected. Interactive commands are not redirected unless
SET ECHO is in effect. If SET ECHO is in effect, isql displays each command before it is
executed. In this way, isql captures both the results and the command that produced
them. SET ECHO is useful for displaying the text of a query immediately before the results.

Note:
Error messages cannot be redirected to an output file.

Using OUTPUT <filename> from within an isql session has the same effect as using the
option - output filename from the command line.

You can optionally delimit the filename with double or single quotes. This allows you to use
filenames with spaces in OUTPUT statements.

Example: The following example stores the results of one SELECT statement in the file,
sales.out . Normal output processing resumes after the SELECT statement.

OUTPUT sales.out;
SELECT * FROM SALES;
OUTPUT;

See Also

INPUT
SET ECHO

6.7. QUIT

Rolls back the current transaction, closes the database, and ends the isql session.

QUIT;

Description: Both EXIT and QUIT close the database and end an isql session. QUIT
rolls back any changes made since the last COMMIT or ROLLBACK , whereas EXIT commits
the changes.

Important:
QUIT rolls back uncommitted changes without prompting for confirmation. Before using
QUIT , be sure that any changes that need to be committed are committed. For example,
if SET AUTODDL is off, DDL statements must be committed explicitly.

See Also

EXIT
SET AUTODDL

•
•

•
•

Interactive Query

207

6.8. SET

Lists the status of the features that control an isql session.

SET;

Description: isql provides several SET commands for specifying how data is displayed or
how other commands are processed.

The SET command, by itself, verifies which features are currently set. Some SET commands
turn a feature on or off. Other SET commands assign values.

Many isql SET commands have corresponding SQL statements that provide similar or
identical functionality. In addition, some of the isql features controlled by SET
commands can also be controlled using isql command-line options. SET Statements are
used to configure the isql environment from a script file. Changes to the session setting
from SET statements in a script affect the session only while the script is running. After a
script completes, the session settings prior to running the script are restored.

The isql SET statements are:

Statement Description Default

SET AUTODDL
Toggles the commit feature for
DDL statements.

ON

SET BLOBDISPLAY <n>
Turns on the display of Blob
type <n>; the parameter <n> is
required to display Blob types.

OFF

SET COUNT
Toggles the count of selected
rows on or off.

OFF

SET ECHO
Toggles the display of each
command on or off.

OFF

SET LIST <string> Displays columns vertically or
horizontally.

OFF

SET NAMES
Specifies the active character
set.

OFF

SET PLAN
Specifies whether or not to
display the query plan of the
optimizer.

OFF

SET STATS
Toggles the display of
performance statistics on or
off.

OFF

SET TERM <string>

Allows you to change to an
alternate terminator character
(deprecated in InterBase 7 and
later).

;

Interactive Query

208

Statement Description Default

SET TIME
Toggles display of time in
DATE values. ON

By default, all settings are initially OFF except AUTODDL and TIME , and the terminator is a
semicolon (;). Each time you start an isql session or execute an isql script file, settings
begin with their default values.

SET statements are used to configure the isql environment from a script file. Changes to
the session setting from SET statements in a script affect the session only while the script
is running. After a script completes, the session settings prior to running the script are
restored to their values before the script was run. So you can modify the settings for
interactive use, then change them as needed in an isql script, and after running the script
they automatically return to their previous configuration.

Notes:

You cannot enter isql SET statements interactively in the SQL Statement area of
IBConsole isql. You can perform the same functions with menu items.
SET GENERATOR and SET TRANSACTION (without a transaction name) are DSQL
statements and so you can enter them interactively in IBConsole isql or isql . These
statements are not exclusively isql statements, so they are not documented in this
chapter. See the Language Reference Guide for details.
SET DATABASE is exclusively an embedded SQL statement. See the Language
Reference Guide and the Embedded SQL Guide for details.

Example: To display the isql features currently in effect, enter:

SET;
Print statistics: OFF
Echo commands: OFF
List format: OFF
Row count: OFF
Autocommit DDL: OFF
Access plan: OFF
Display BLOB type: 1
Terminator: ;
Time: OFF

The output shows that isql is set to not echo commands, to display Blob data if they are
of subtype 1 (text), to automatically commit DDL statements, and to recognize a semicolon
(;) as the statement termination character.

See Also

SET AUTODDL
SET BLOBDISPLAY
SET COUNT
SET ECHO
SET LIST
SET NAMES
SET PLAN
SET STATS
SET TIME

•

•

•

•
•
•
•
•
•
•
•
•

Interactive Query

209

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

6.9. SET AUTODDL

Specifies whether DDL statements are committed automatically after being executed or
committed only after an explicit COMMIT .

SET AUTODDL [ON | OFF];

Argument Description

ON Turns on automatic commitment of DDL [default]

OFF Turns off automatic commitment of DDL

Description: SET AUTODDL is used to turn on or off the automatic commitment of data
definition language (DDL) statements. By default, DDL statements are automatically
committed immediately after they are executed, in a separate transaction. This is the
recommended behavior.

If the OFF keyword is specified, auto-commit of DDL is then turned off. In OFF mode, DDL
statements can only be committed explicitly through a user’s transaction. This mode is
useful for database prototyping, because uncommitted changes are easily undone by rolling
them back.

SET AUTODDL has a shorthand equivalent, SET AUTO .

Tip:
The ON and OFF keywords are optional. If they are omitted, SET AUTO switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Examples: The following example shows part of an isql script that turns off AUTODDL ,
creates a table named TEMP, then rolls back the work.

. . .
SET AUTO OFF;
CREATE TABLE TEMP (a INT, b INT);
ROLLBACK;
. . .

This script creates TEMP and then rolls back the statement. No table is created. because its
creation was rolled back.

The next script uses the default AUTODDL ON . It creates the table TEMP and then performs
a rollback:

. . .
CREATE TABLE TEMP (a INT, b INT);
ROLLBACK;
. . .

Because DDL is automatically committed, the rollback does not affect the creation of TEMP.

See Also

EXIT
QUIT

•
•

Interactive Query

210

6.10. SET BLOBDISPLAY

Specifies subtype of Blob data to display.

SET BLOBDISPLAY [n | ALL | OFF];

Argument Description

<n>

Integer specifying the Blob subtype to display

Use 0 for Blob data of an unknown subtype
Use 1 for Blob data of a text subtype [default]
Use other integer values for other subtypes

ALL Displays Blob data of all subtypes

OFF Turns off display of Blob data of all subtypes

Description: SET BLOBDISPLAY has the following uses:

To display Blob data of a particular subtype, use SET BLOBDISPLAY <n>. By default,
isql displays Blob data of text subtype (<n> = 1).
To display Blob data of all subtypes, use SET BLOBDISPLAY ALL .
To avoid displaying Blob data, use SET BLOBDISPLAY OFF . Omitting the OFF keyword
has the same effect. Turn Blob display off to make output easier to read.

In any column containing Blob data, the actual data does not appear in the column. Instead,
the column displays a Blob ID that represents the data. If SET BLOBDISPLAY is on, data
associated with a Blob ID appears under the row containing the Blob ID. If
SET BLOBDISPLAY is off, the Blob ID still appears even though its associated data does not.

SET BLOBDISPLAY has a shorthand equivalent, SET BLOB .

To determine the subtype of a BLOB column, use SHOW TABLE .

Examples: The following examples show output from the same SELECT statement. Each
example uses a different SET BLOB command to affect how output appears. The first
example turns off Blob display.

SET BLOB OFF;
SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

With BLOBDISPLAY OFF , the output shows only the Blob ID:

PROJ_NAME PROJ_DESC
==================== =================
Video Database 24:6
DigiPizza 24:8
AutoMap 24:a
MapBrowser port 24:c
Translator upgrade 24:3b
Marketing project 3 24:3d

The next example restores the default by setting BLOBDISPLAY to subtype 1 (text).

SET BLOB 1;
SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

•
•
•

•

•
•

Interactive Query

211

Now the contents of the Blob appear below each Blob ID:

PROJ_NAME PROJ_DESC
==================== =================
Video Database 24:6
==
PROJ_DESC:
Design a video data base management system for
controlling on-demand video distribution.
PROJ_NAME PROJ_DESC
==================== =================
DigiPizza 24:8
==
PROJ_DESC:
Develop second generation digital pizza maker
with flash-bake heating element and
digital ingredient measuring system.
. . .

See Also

BLOBDUMP

6.11. SET COUNT

Specifies whether to display number of rows retrieved by queries.

SET COUNT [ON | OFF];

Argument Description

ON Turns on display of the “rows returned” message

OFF Turns off display of the “rows returned” message [default]

Description: By default, when a SELECT statement retrieves rows from a query, no
message appears to say how many rows were retrieved.

Use SET COUNT ON to change the default behavior and display the message. To restore the
default behavior, use SET COUNT OFF .

Tip:
The ON and OFF keywords are optional. If they are omitted, SET COUNT switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example: The following example sets COUNT ON to display the number of rows returned by
all following queries:

SET COUNT ON;
SELECT * FROM COUNTRY
WHERE CURRENCY LIKE '%FRANC%';

The output displayed would then be:

COUNTRY CURRENCY
=============== ==========
SWITZERLAND SFRANC
FRANCE FFRANC
BELGIUM BFRANC

•

Interactive Query

212

3 rows returned

6.12. SET ECHO

Specifies whether commands are displayed to the isql output area before being
executed.

SET ECHO [ON | OFF];

Argument Description

ON Turns on command echoing [default]

OFF Turns off command echoing

Description: By default, commands in script files are displayed (echoed) in the isql
output area, before being executed. Use SET ECHO OFF to change the default behavior
and suppress echoing of commands. This can be useful when sending the output of a script
to a file, if you want only the results of the script and not the statements themselves in the
output file.

Command echoing is useful if you want to see the commands as well as the results in the
isql output area.

Tip:
The ON and OFF keywords are optional. If they are omitted, SET ECHO switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example: Suppose you execute the following script from IBConsole isql:

. . .
SET ECHO OFF;
SELECT * FROM COUNTRY;
SET ECHO ON;
SELECT * FROM COUNTRY;
EXIT;

The output (in a file or the isql output area) looks like this:

. . .
SET ECHO OFF;
COUNTRY CURRENCY
=========== ========
USA Dollar
England Pound
. . .
SELECT * FROM COUNTRY;
COUNTRY CURRENCY
=========== ========
USA Dollar
England Pound
. . .

The first SELECT statement is not displayed, because ECHO is OFF . Notice also that the
SET ECHO ON statement itself is not displayed, because when it is executed, ECHO is still
OFF . After it is executed, however, the second SELECT statement is displayed.

Interactive Query

213

See Also

INPUT
OUTPUT

6.13. SET LIST

Specifies whether output appears in tabular format or in list format.

SET LIST [ON | OFF];

Argument Description

ON Turns on list format for display of output

OFF Turns off list format for display of output [default]

Description: By default, when a SELECT statement retrieves rows from a query, the output
appears in a tabular format, with data organized in rows and columns.

Use SET LIST ON to change the default behavior and display output in a list format. In list
format, data appears one value per line, with column headings appearing as labels. List
format is useful when columnar output is too wide to fit nicely on the screen.

Tip:
The ON and OFF keywords are optional. If they are omitted, SET LIST switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example: Suppose you execute the following statement in a script file:

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB
WHERE JOB_COUNTRY = 'Italy';

The output is:

JOB_CODE JOB_GRADE JOB_COUNTRY JOB_TITLE
======== ========= =========== ====================
SRep 4 Italy Sales Representative

Now suppose you precede the SELECT with SET LIST ON :

SET LIST ON;
SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB
WHERE JOB_COUNTRY = 'Italy';

The output is:

JOB_CODE SRep
JOB_GRADE 4
JOB_COUNTRY Italy
JOB_TITLE Sales Representative

6.14. SET NAMES

Specifies the active character set to use in database transactions.

•
•

Interactive Query

214

SET NAMES [charset];

Argument Description

<charset> Name of the active character set; default is NONE.

Description: SET NAMES specifies the character set to use for subsequent database
connections in isql . It enables you to override the default character set for a database. To
return to using the default character set, use SET NAMES with no argument.

Use SET NAMES before connecting to the database whose character set you want to
specify. For a complete list of character sets recognized by InterBase, see the Language
Reference.

Choice of character set limits possible collation orders to a subset of all available collation
orders. Given a specific character set, a specific collation order can be specified when data is
selected, inserted, or updated in a column.

Example: The following statement at the beginning of a script file indicates to set the active
character set to ISO8859_1 for the subsequent database connection:

SET NAMES ISO8859_1;
CONNECT 'jupiter:/usr/InterBase/examples/employee.ib';
. . .

See Also

Command-line Options

6.15. SET PLAN

Specifies whether to display the optimizer’s query plan.

SET PLAN [ON | OFF];

Argument Description

ON Turns on display of the optimizer’s query plan

OFF Turns off display of the optimizer’s query plan [default]

Description: By default, when a SELECT statement retrieves rows from a query, isql
does not display the query plan used to retrieve the data.

Use SET PLAN ON to change the default behavior and display the query optimizer plan. To
restore the default behavior, use SET PLAN OFF .

To change the query optimizer plan, use the PLAN clause in the SELECT statement.

Tip:
The ON and OFF keywords are optional. If they are omitted, SET PLAN switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Example: The following example shows part of a script that sets PLAN ON :

•

Interactive Query

215

SET PLAN ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB
WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = 'France';

The output then includes the query optimizer plan used to retrieve the data as well as the
results of the query:

PLAN (JOB INDEX (RDB$FOREIGN3,MINSALX,MAXSALX))
JOB_COUNTRY MIN_SALARY
=============== ======================
France 118200.00

6.16. SET STATS

Specifies whether to display performance statistics after the results of a query.

SET STATS [ON | OFF];

Argument Description

ON Turns on display of performance statistics

OFF Turns off display of performance statistics [default]

Description: By default, when a SELECT statement retrieves rows from a query, isql
does not display performance statistics after the results. Use SET STATS ON to change the
default behavior and display performance statistics. To restore the default behavior, use
SET STATS OFF . Performance statistics include:

Current memory available, in bytes
Change in available memory, in bytes
Maximum memory available, in bytes
Elapsed time for the operation
CPU time for the operation
Number of cache buffers used
Number of reads requested
Number of writes requested
Number of fetches made

Performance statistics can help determine if changes are needed in system resources,
database resources, or query optimization.

Tip:
The ON and OFF keywords are optional. If they are omitted, SET STATS switches from
one mode to the other. Although you can save typing by omitting the optional keyword,
including the keyword is recommended because it avoids potential confusion.

Do not confuse SET STATS with the SQL statement SET STATISTICS , which recalculates
the selectivity of an index.

Example: The following part of a script file turns on display of statistics and then performs a
query:

SET STATS ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

•
•
•
•
•
•
•
•
•

Interactive Query

216

WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = 'France';

The output displays the results of the SELECT statement and the performance statistics for
the operation:

JOB_COUNTRY MIN_SALARY
=============== ======================
France 118200.00

Current memory = 407552
Delta memory = 0
Max memory = 412672
Elapsed time= 0.49 sec
Cpu = 0.06 sec
Buffers = 75
Reads = 3
Writes = 2
Fetches = 441

See Also

SHOW DATABASE

6.17. SET TIME

Specifies whether to display the time portion of a DATE value.

SET TIME [ON | OFF];

Argument Description

ON Turns on display of time in DATE value.

OFF Turns off display of time in DATE value [default].

Description: The InterBase Date data type includes a date portion (including day, month,
and year) and a time portion (including hours, minutes, and seconds).

By default, isql displays only the date portion of Date values. SET TIME ON turns on the
display of time values. SET TIME OFF turns off the display of time values.

Tip:
The ON and OFF keywords are optional. If they are omitted, the command toggles time
display from ON to OFF or OFF to ON .

Example: The following example shows the default display of a DATE data type, which is to
display day, month, and year:

SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;
HIRE_DATE

2-MAY-1994

This example shows the effects of SET TIME ON , which causes the hours, minutes and
seconds to be displayed as well:

SET TIME ON;
SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;

•

Interactive Query

217

HIRE_DATE

2-MAY-1994 12:25:00

6.18. SHELL

Allows execution of an operating system command or temporary access to an operating
system shell.

SHELL [os_command];

Argument Description

<os_command>
An operating system command; if no command is specified,
isql provides interactive access to the operating system

Description: The SHELL command provides temporary access to operating system
commands in an isql session. Use SHELL to execute an operating-system command
without ending the current isql session.

If <os_command> is specified, the operating system executes the command and then
returns to isql when complete.

If no command is specified, an operating system shell prompt appears, enabling you to
execute a sequence of commands. To return to isql , type exit . For example, SHELL can
be used to edit an input file and run it at a later time. By contrast, if an input file is edited
using the EDIT command, the input file is executed as soon as the editing session ends.

Using SHELL does not commit transactions before it calls the shell.

This isql statement has no equivalent function in IBConsole isql.

Example: The following example uses SHELL to display the contents of the current
directory:

SHELL DIR;

See Also

EDIT

6.19. SHOW CHECK

Displays all CHECK constraints defined for a specified table.

SHOW CHECK table;

Argument Description

<table> Name of an existing table in the current database

Description: SHOW CHECK displays CHECK constraints for a named table in the current
database. Only user-defined metadata is displayed. To see a list of existing tables, use
SHOW TABLE .

Example: The following example shows CHECK constraints defined for the JOB table. The
SHOW TABLES command is used first to display a list of available tables.

•

Interactive Query

218

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECT JOB
PHONE_LIST PROJECT
PROJ_DEPT_BUDGET SALARY_HISTORY
SALES

SHOW CHECK JOB;
CHECK (min_salary < max_salary)

See Also

SHOW TABLES

6.20. SHOW DATABASE

Displays information about the current database.

SHOW [DATABASE | DB];

Description: SHOW DATABASE displays the current database’s file name, page size and
allocation, and sweep interval.

The output of SHOW DATABASE is used to verify data definition or to administer the
database. For example, use the backup and restore utilities to change page size or
reallocate pages among multiple files, and use the database maintenance utility to change
the sweep interval.

SHOW DATABASE has a shorthand equivalent, SHOW DB .

Example: The following example connects to a database and displays information about it:

CONNECT 'employee.ib';
Database: employee.ib

SHOW DB;
Database: employee.ib
Owner: SYSDBA
PAGE_SIZE 4096
Number of DB pages allocated = 422
Sweep interval = 20000

6.21. SHOW DOMAINS

Lists all domains or displays information about a specified domain.

SHOW {DOMAINS | DOMAIN name};

Argument Description

<name> Name of an existing domain in the current database

Options: To see a list of existing domains, use SHOW DOMAINS without specifying a domain
name. SHOW DOMAIN name displays information about the named domain in the current
database. Output includes a domain’s data type, default value, and any CHECK constraints
defined. Only user-defined metadata is displayed.

Example: The following example lists all domains and then shows the definition of the
domain, SALARY :

•

Interactive Query

219

SHOW DOMAINS;
FIRSTNAME LASTNAME
PHONENUMBER COUNTRYNAME
ADDRESSLINE EMPNO
DEPTNO PROJNO
CUSTNO JOBCODE
JOBGRADE SALARY
BUDGET PRODTYPE
PONUMBER

SHOW DOMAIN SALARY;
SALARY NUMERIC(15, 2) Nullable
DEFAULT 0
CHECK (VALUE > 0)

6.22. SHOW EXCEPTIONS

Lists all exceptions or displays the text of a specified exception.

SHOW {EXCEPTIONS | EXCEPTION name};

Argument Description

<name> Name of an existing exception in the current database

Description: SHOW EXCEPTIONS displays an alphabetical list of exceptions.
SHOW EXCEPTION name displays the text of the named exception.

Examples: To list all exceptions defined for the current database, enter:

SHOW EXCEPTIONS;
Exception Name Used by, Type
================== ==
UNKNOWN_EMP_ID ADD_EMP_PROJ, Stored procedure
Invalid employee number or project ID.
. . .

To list the message for a specific exception and the procedures or triggers that use it, enter
the exception name:

SHOW EXCEPTION CUSTOMER_CHECK;
Exception Name Used by, Type
=========================== =======================================
CUSTOMER_CHECK SHIP_ORDER, Stored procedure
Overdue balance -- can’t ship.

6.23. SHOW FILTERS

Lists all Blob filters or displays information about a specified filter.

SHOW {FILTERS | FILTER name};

Argument Description

<name> Name of an existing Blob filter in the current database

Options: To see a list of existing filters, use SHOW FILTERS . SHOW FILTER name displays
information about the named filter in the current database. Output includes information

Interactive Query

220

previously defined by the DECLARE FILTER statement, the input subtype, output subtype,
module (or library) name, and entry point name.

Example: The following example lists all filters and then shows the definition of the filter,
DESC_FILTER :

SHOW FILTERS;
DESC_FILTER

SHOW FILTER DESC_FILTER;
BLOB Filter: DESC_FILTER
Input subtype: 1 Output subtype -4
Filter library is: desc_filter
Entry point is: FILTERLIB

6.24. SHOW FUNCTIONS

Lists all user-defined functions (UDFs) defined in the database or displays information about
a specified UDF.

SHOW {FUNCTIONS | FUNCTION name};

Argument Description

<name> Name of an existing UDF in the current database

Options: To see a list of existing functions defined in the database, use SHOW FUNCTIONS .
To display information about a specific function in the current database, use
SHOW FUNCTION <function_name>. Output includes information previously defined by the
DECLARE EXTERNAL FUNCTION statement: the name of the function and function library,
the name of the entry point, and the data types of return values and input arguments.

Example: The following UNIX example lists all UDFs and then shows the definition of the
MAXNUM() function:

SHOW FUNCTIONS;
ABS MAXNUM
TIME UPPER_NON_C
UPPER

SHOW FUNCTION maxnum;
Function MAXNUM:
Function library is /usr/InterBase/lib/gdsfunc.so
Entry point is FN_MAX
Returns BY VALUE DOUBLE PRECISION
Argument 1: DOUBLE PRECISION
Argument 2: DOUBLE PRECISION

6.25. SHOW GENERATORS

Lists all generators or displays information about a specified generator.

SHOW {GENERATORS | GENERATOR name};

Argument Description

<name> Name of an existing generator in the current database

Interactive Query

221

Description: To see a list of existing generators, use SHOW GENERATORS . SHOW GENERATOR
name displays information about the named generator in the current database. Output
includes the name of the generator and its next value.

SHOW GENERATOR has a shorthand equivalent, SHOW GEN .

Example: The following example lists all generators and then shows information about
EMP_NO_GEN :

SHOW GENERATORS;
Generator EMP_NO_GEN, Next value: 146
Generator CUST_NO_GEN, Next value: 1016

SHOW GENERATOR EMP_NO_GEN;
Generator EMP_NO_GEN, Next value: 146

6.26. SHOW GRANT

Displays privileges for a database object.

SHOW GRANT object;

Argument Description

<object>
Name of an existing table, view, or procedure in the current
database

Description: SHOW GRANT displays the privileges defined for a specified table, view, or
procedure. Allowed privileges are DELETE , EXECUTE , INSERT , SELECT , UPDATE , or ALL .
To change privileges, use the SQL statements GRANT or REVOKE .

Before using SHOW GRANT , you might want to list the available database objects. Use
SHOW PROCEDURES to list existing procedures; use SHOW TABLES to list existing tables; use
SHOW VIEWS to list existing views.

Example: To display GRANT privileges on the JOB table, enter:

SHOW GRANT JOB;
GRANT SELECT ON JOB TO ALL
GRANT DELETE, INSERT, SELECT, UPDATE ON JOB TO MANAGER

SHOW GRANT can also show role membership:

SHOW GRANT DOITALL;
GRANT DOITALL TO SOCKS

See Also

SHOW PROCEDURES
SHOW TABLES
SHOW VIEWS

6.27. SHOW INDEX

Displays index information for a specified index, for a specified table, or for all tables in the
current database.

•
•
•

Interactive Query

222

SHOW {INDICES | INDEX {index | table} };

Argument Description

<index> Name of an existing index in the current database

<table> Name of an existing table in the current database

Description: SHOW INDEX displays the index name, the index type (for example, UNIQUE
or DESC), and the columns on which an index is defined.

If the index argument is specified, SHOW INDEX displays information only for that index. If
table is specified, SHOW INDEX displays information for all indexes in the named table; to
display existing tables, use SHOW TABLES . If no argument is specified, SHOW INDEX
displays information for all indexes in the current database.

SHOW INDEX has a shorthand equivalent, SHOW IND . SHOW INDICES is also a synonym for
SHOW INDEX . SHOW INDEXES is not supported.

Examples: To display indexes for database employee.ib , enter:

SHOW INDEX;
RDB$PRIMARY1 UNIQUE INDEX ON COUNTRY(COUNTRY)
CUSTNAMEX INDEX ON CUSTOMER(CUSTOMER)
CUSTREGION INDEX ON CUSTOMER(COUNTRY, CITY)
RDB$FOREIGN23 INDEX ON CUSTOMER(COUNTRY)
. . .

To display index information for the SALES table, enter:

SHOW IND SALES;
NEEDX INDEX ON SALES(DATE_NEEDED)
QTYX DESCENDING INDEX ON SALES(ITEM_TYPE, QTY_ORDERED)
RDB$FOREIGN25 INDEX ON SALES(CUST_NO)
RDB$FOREIGN26 INDEX ON SALES(SALES_REP)
RDB$PRIMARY24 UNIQUE INDEX ON SALES(PO_NUMBER)
SALESTATX INDEX ON SALES(ORDER_STATUS, PAID)

See Also

SHOW TABLES

6.28. SHOW PROCEDURES

Lists all procedures or displays the text of a specified procedure.

SHOW {PROCEDURES | PROCEDURE name};

Argument Description

<name> Name of an existing procedure in the current database

Description: SHOW PROCEDURES displays an alphabetical list of procedures, along with the
database objects they depend on. Deleting a database object that has a dependent
procedure is not allowed. To avoid an isql error, delete the procedure (using
DROP PROCEDURE) before deleting the database object.

•

Interactive Query

223

SHOW PROCEDURE name displays the text and parameters of the named procedure.

SHOW PROCEDURE has a shorthand equivalent, SHOW PROC .

Examples: To list all procedures defined for the current database, enter:

SHOW PROCEDURES;
Procedure Name Dependency Type
================= ==================== =======
ADD_EMP_PROJ EMPLOYEE_PROJECT Table
 UNKNOWN_EMP_ID Exception
DELETE_EMPLOYEE DEPARTMENT Table
 EMPLOYEE Table
 EMPLOYEE_PROJECT Table
 PROJECT Table
 REASSIGN_SALES Exception
 SALARY_HISTORY Table
 SALES Table
DEPT_BUDGET DEPARTMENT Table
 DEPT_BUDGET Procedure
. . .

To display the text of the procedure, ADD_EMP_PROJ , enter:

SHOW PROC ADD_EMP_PROJ;
Procedure text:
==

BEGIN
BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (:emp_no,
:proj_id);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;
END
RETURN;
END
===
Parameters:
EMP_NO INPUT SMALLINT
PROJ_ID INPUT CHAR(5)

6.29. SHOW ROLES

Displays the names of SQL roles for the current database.

SHOW {ROLES | ROLE}

Description: SHOW ROLES displays the names of all roles defined for the current database.
To show user membership in roles, use SHOW GRANT <rolename>.

Example:

SHOW ROLES;

DOITALL DONOTHING
DOONETHING DOSOMETHING

See Also

SHOW GRANT•

Interactive Query

224

6.30. SHOW SYSTEM

Displays the names of system tables and system views for the current database.

SHOW SYSTEM [TABLES];

Description: SHOW SYSTEM lists system tables and system views in the current database.
SHOW SYSTEM accepts an optional keyword, TABLES , which does not affect the behavior of
the command.

SHOW SYSTEM has a shorthand equivalent, SHOW SYS .

Example: To list system tables and system views for the current database, enter:

SHOW SYS;
RDB$CHARACTER_SETS RDB$CHECK_CONSTRAINTS
RDB$COLLATIONS RDB$DATABASE
RDB$DEPENDENCIES RDB$EXCEPTIONS
RDB$FIELDS RDB$FIELD_DIMENSIONS
RDB$FILES RDB$FILTERS
RDB$FORMATS RDB$FUNCTIONS
RDB$FUNCTION_ARGUMENTS RDB$GENERATORS
RDB$INDEX_SEGMENTS RDB$INDICES
RDB$LOG_FILES RDB$PAGES
RDB$PROCEDURES RDB$PROCEDURE_PARAMETERS
RDB$REF_CONSTRAINTS RDB$RELATIONS
RDB$RELATION_CONSTRAINTS RDB$RELATION_FIELDS
RDB$ROLES RDB$SECURITY_CLASSES
RDB$TRANSACTIONS RDB$TRIGGERS
RDB$TRIGGER_MESSAGES RDB$TYPES
RDB$USER_PRIVILEGES RDB$VIEW_RELATIONS

See Also

For more information about system tables, see the Language Reference.

6.31. SHOW TABLES

Lists all tables or views, or displays information about a specified table or view.

SHOW {TABLES | TABLE name};

Argument Description

<name> Name of an existing table or view in the current database

Description: SHOW TABLES displays an alphabetical list of tables and views in the current
database. To determine which listed objects are views rather than tables, use SHOW VIEWS .

SHOW TABLE name displays information about the named object. If the object is a table,
command output lists column names and definitions, PRIMARY KEY, FOREIGN KEY , and
CHECK constraints, and triggers. If the object is a view, command output lists column
names and definitions, as well as the SELECT statement that the view is based on.

Examples: To list all tables or views defined for the current database, enter:

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECT JOB
PHONE_LIST PROJECT

Interactive Query

225

PROJ_DEPT_BUDGET SALARY_HISTORY
SALES

To show the definition for the COUNTRY table, enter:

SHOW TABLE COUNTRY;
COUNTRY (COUNTRYNAME) CHAR(15) NOT NULL
CURRENCY CHAR(10) NOT NULL
PRIMARY KEY (COUNTRY)

See Also

SHOW VIEWS

6.32. SHOW TRIGGERS

Lists all triggers or displays information about a specified trigger.

SHOW {TRIGGERS | TRIGGER name};

Argument Description

<name> Name of an existing trigger in the current database

Description: SHOW TRIGGERS displays all triggers defined in the database, along with the
table they depend on. SHOW TRIGGER name displays the name, sequence, type, activation
status, and definition of the named trigger.

SHOW TRIGGER has a shorthand equivalent, SHOW TRIG .

Deleting a table that has a dependent trigger is not allowed. To avoid an isql error, delete
the trigger (using DROP TRIGGER) before deleting the table.

Examples: To list all triggers defined for the current database, enter:

SHOW TRIGGERS;
Table name Trigger name
=========== ============
EMPLOYEE SET_EMP_NO
EMPLOYEE SAVE_SALARY_CHANGE
CUSTOMER SET_CUST_NO
SALES POST_NEW_ORDER

To display information about the SET_CUST_NO trigger, enter:

SHOW TRIG SET_CUST_NO;
Triggers:
SET_CUST_NO, Sequence: 0, Type: BEFORE INSERT, Active
AS
BEGIN
new.cust_no = gen_id(cust_no_gen, 1);
END

6.33. SHOW VERSION

Displays information about software versions.

SHOW VERSION;

•

Interactive Query

226

Description: SHOW VERSION displays the software version of isql , the InterBase engine,
and the on-disk structure (ODS) of the database to which the session is attached.

Certain tasks might not work as expected if performed on databases that were created
using older versions of InterBase. To check the versions of software that are running, use
SHOW VERSION .

SHOW VERSION has a shorthand equivalent, SHOW VER .

Example: To display software versions, enter:

SQL> SHOW VERSION;
isql Version: WI-V7.0.0.168
InterBase/x86/Windows NT (access method), version "WI-V10.0.0.247"
on disk structure version 11.0

See Also

SHOW DATABASE

6.34. SHOW VIEWS

Lists all views or displays information about a specified view.

SHOW

{VIEWS | VIEW name};

Argument Description

<name> Name of an existing view in the current database

Description: SHOW VIEWS displays an alphabetical list of all views in the current database.
SHOW VIEW name displays information about the named view.

Example: To list all views defined for the current database, enter:

SHOW VIEWS;
PHONE_LIST

See Also

SHOW TABLES

7. Using SQL Scripts

The basic steps for using script files are:

Create the script file using a text editor.
Run the file with isql or IBConsole.
View output and confirm database changes.

7.1. Creating an isql Script

You can use any text editor to create a SQL script file, as long as the final file format is plain
text (ASCII).

•

•

1.
2.
3.

Interactive Query

227

Every SQL script file must begin with either a CREATE DATABASE statement or a CONNECT
statement (including username and password) that specifies the database on which the
script file is to operate. The CONNECT or CREATE statement must contain a complete
database file name and directory path.

Note:
You cannot set dialect in a CREATE DATABASE statement. To create a dialect 3 database,
specify isql option -r 3.

A SQL script can contain any of the following elements:

SQL statements, as described in the Language Reference
isql SET commands as described in this chapter
Comments.

Each SQL statement in a script must end with a terminator.

Note:
The SQL statement silently fails if significant text follows the terminator character on the
same line. Whitespace and comments can safely follow the terminator, but other
statements cannot.

Each SQL script file should end with either EXIT to commit database changes made since
the last COMMIT , or QUIT to roll back changes made by the script. If neither is specified,
then database changes are committed by default.

For the full syntax of CONNECT and CREATE DATABASE , see the Language Reference.

7.2. Running a SQL Script

The following steps execute all the SQL statements in the specified script file. The contents
of the script are not displayed in the SQL input area.

7.2.1. To Run a SQL Script Using IBConsole

If you are not already in the SQL window, click the Launch SQL toolbar button or
choose Tools|Interactive SQL.
If you are not running the SQL script on the database to which you are currently
connected, then check that the file begins with a valid, uncommented, CONNECT
or CREATE DATABASE statement.
Choose Query|Load Script.
Enter or locate the desired script filename in the Open dialog, and click Open to
load the script into the SQL input area.
Click the Execute toolbar button, or choose Query|Execute.

If IBConsole encounters an error, an information dialog appears indicating the error. Once
IBConsole finishes executing the script, the script results are displayed in the SQL output
window.

After a script executes, all isql session settings prior to executing the script are restored
as well as the previous database connection, if any. In other words, any isql SET
commands in the script affect only the isql session while the script is running.

•
•
•

1.

2.

3.
4.

5.

Interactive Query

228

7.2.2. To Run a SQL Script Using the Command-line isql Tool

You can run a script from any console prompt using the -input option to isql. Specify the
full path and filename. In the following example, the script does not contain a
CREATE DATABASE statement; it runs against an existing database:

isql database_name -input filename

The following example runs a script that creates a database:

isql -input filename

During an active isql session in which you are already connected to a database, you use
the INPUT command to read and execute a SQL script against that database:

SQL> INPUT filename

See Invoking isql for more about running isql .

7.3. Committing Work in a SQL Script

Changes to the database from data definition (DDL) statements—for example, CREATE and
ALTER statements—are automatically committed by default. This means that other users of
the database see changes as soon as each DDL statement is executed. To turn off automatic
commit of DDL in a script, use SET AUTODDL OFF , or set it in the Query Options dialog. See
Using InterBase Manager to Start and Stop InterBase for more information.

Note:
When creating tables and other database objects with AUTODDL OFF , it is good practice
to put a COMMIT statement in the SQL script after each CREATE statement or group of
related statements. This ensures that other users of the database see the objects
immediately.

Changes made to the database by data manipulation (DML) statements—for example
INSERT and UPDATE —are not permanent until they are committed. Commit changes in a
script with COMMIT . To undo all database changes since the last COMMIT , use ROLLBACK .
For the full syntax of COMMIT and ROLLBACK , see the Language Reference book.

7.4. Adding Comments in an isql Script

There are two different types of comments that you can use:

The simple comment: A comment that starts with a special symbol and ends with
a new line.

Note:
The simple comment syntax is only available starting with database engine
version InterBase 2017.

-- comment text

The bracketed comment: A comment that starts and ends with a special symbol.
It may be multi-line.

1.

2.

Interactive Query

229

/* comment text
more comment text
another line of comment text
*/

Regardless of the type of comment that you use, you may start a comment anywhere in a
line, but with a simple comment you need to keep in mind that the comment area stops
after new line. In order to use the simple comment syntax for a multi-line comment, you
need to start each line with the special symbol. For example:

A multi-line bracketed comment:

/* my multi-line
comment is this
text */

A multi-line simple comment:

-- my multi-line
-- comment is this
-- text

You can place comments on the same line as code, which makes them inline comments.

It is good programming practice to state the input and output parameters of a procedure in
a comment preceding the procedure. It is also often useful to comment local variable
declarations to indicate what each variable is used for.

Examples The following isql samples illustrate some ways to use comments:

/*
* Procedure DELETE_EMPLOYEE : Delete an employee.
*
* Parameters:
* employee number
* Returns:
* --
*/
CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER; -- Number of sales for emp.
BEGIN
. . .

/* This script sets up Change Views Subscriptions
 on the EMPLOYEE table.
*/
CONNECT "emp.ib" user 'SYSDBA' password 'masterkey';
COMMIT;

CREATE SUBSCRIPTION sub ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

-- Create a subscription on Employee table
CREATE SUBSCRIPTION sub1 ON EMPLOYEE FOR ROW (INSERT, UPDATE);
COMMIT;

Simple comment followed by another SLC

•

•

•

Interactive Query

230

-- One more comment
CREATE SUBSCRIPTION sub2 ON EMPLOYEE FOR ROW (INSERT);
COMMIT;

Simple comment followed by another SLC with leading whitespace

-- One more comment followed by leading whitespace before CREATE below
CREATE SUBSCRIPTION sub3 ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

SHOW SUBSCRIPTIONS;

SELECT COUNT(*)
-- inline comment 1
FROM RDB$DATABASE;

SELECT COUNT(*) -- inline comment 2
FROM RDB$DATABASE;

COMMIT;

SET TERM ^;

Create a stored procedure with inline comments

CREATE PROCEDURE test_proc (
p1 INTEGER, -- Param 1
p2 VARCHAR(68) -- Param 2

)
RETURNS (op1 INTEGER) -- Output param
AS
declare variable v1 INTEGER;
declare variable v2 varchar(150); -- Variable 2
BEGIN
-- sample comment 1
-- sample comment 2
-- return input value multiplied by 10
v1 = p1 * 10;
op1 = v1;
SUSPEND;

END^
SET TERM ;^

COMMIT;
SHOW PROCEDURE test_proc;
SELECT op1 from test_proc (2, NULL);

•

•

Interactive Query

231

Database and Server Performance

This chapter describes techniques for designing and operating an InterBase client/server
system for best speed and efficiency.

The guidelines in this chapter are organized into the following categories:

Hardware configuration
Operating system configuration
Network configuration
Database properties
Database design principles
Database tuning tasks
Application design techniques
Application development tools

1. Introduction to Database and Server Performance

One of the most important requirements for a database as part of your application is to
store and retrieve data as quickly as possible. Like any software development technique,
there is always more than one method to implement a given specified software solution,
and it takes knowledge and experience to choose the design that results in the most
efficient operation and the highest performance.

Each project offers unique challenges and requires specific solutions. The suggestions in
this chapter augment your own software engineering discipline, which should include
careful analysis, testing, and experimentation to implement the best design for your specific
project.

2. Hardware Configuration

This section gives guidelines for platform hardware sizing. The suggestions focus on
requirements for a server platform.

2.1. Choosing a Processor Speed

The performance of database systems tends by nature to be bound by I/O bandwidth or
network bandwidth. An application often waits for I/O or network operations, instead of
being computationally intensive. A fast CPU clock speed gives definite performance
advantage, but a 10% increase in CPU clock speed is less important for server performance
than some other hardware factors, such as RAM configuration, I/O system, or network
hardware.

CPU clock speed is often more important on client platforms, because applications that use
data might perform CPU-intensive computational analysis on data, or might render
sophisticated visualization of data in a computationally costly manner.

It’s not appropriate for this document to recommend a specific CPU clock speed for your
server, because it is likely that such a recommendation would be obsolete as you read it.
You should evaluate the benefit of spending more money on a faster CPU, because the
price/performance curve becomes steep for the latest CPU hardware.

•
•
•
•
•
•
•
•

Database and Server Performance

232

2.2. Sizing Memory

It is important to equip your server with a sufficient amount of physical memory to ensure
good performance.

While InterBase can function in a low-profile hardware configuration, with as little as 32MB
of RAM on most operating systems, it is recommended to have at least 64MB of RAM on a
server system. Database servers that experience a high load can benefit from more RAM.

The base RAM requirement of the ibserver executable and for each connected user is
low: approximately 1500KB, plus 28KB for each client connection. ibserver caches
metadata and data for each database to which it connects. User operations such as sorting
temporarily consume additional memory. A heavily loaded server with dozens of clients
performing concurrent queries requires up to 256MB of RAM.

On Windows, you can use the Task Manager, Performance Monitor, and other tools to
monitor the resource use of ibserver . UNIX and Linux servers have similar resource
consumption reporting tools. Add RAM to a system that shows too many page faults.

2.3. Using High-performance I/O Subsystems

A multiuser database server’s hard drives are no place to be thrifty, especially in today’s
market of inexpensive storage. Configuring a relatively high-end I/O system is a cost-
effective way to increase performance.

Slow disk subsystems are often the weak link in an otherwise high-performance server
machine. The top-rated CPU and maximum memory helps. But if a cheap disk I/O interface
limits the data transfer rate, then the money spent on the expensive components is wasted.

It’s not appropriate for this document to recommend a particular configuration. The
technology changes so quickly that any recommendation here would be outdated. When
you specify the machine for a server platform, research the best hardware solution
available.

Read the following guidelines for principles:

Advanced SCSI technology offers superior I/O throughput. The following graph
illustrates the relative maximum throughput of different disk interfaces.
The external interface capacity usually exceeds the internal or sustained transfer rate of
any individual device. Only systems that use multiple disk devices make full use of a
high-capacity I/O interface.
Bus-mastering I/O controllers use less CPU resources. This is particularly important on
I/O-intensive server machines. SCSI is generally bus-mastering, and newer PCI EIDE
interfaces are bus-mastering. IDE is not.
Use a disk controller with built in cache memory. The controller cache reduces the need
for the operating system to use system RAM for disk cache.
Don’t assume all disks of a given size perform equally; research performance ratings
made by independent testing labs.

2.4. Distributing I/O

Disk device I/O is orders of magnitude slower than physical memory accesses or CPU cycles.
There is a delay while the disk device seeks the data requested. While an application is
waiting for data it has requested from a disk device, it is advantageous for the application to
spend the time executing other tasks. One appropriate way to do this is to spread multiple
data requests over multiple devices. While one disk is preparing to return data, the

•

•

•

•

•

Database and Server Performance

233

application requests another disk to start seeking another set of data. This is called
distributed I/O or parallel I/O.

This section describes ways you can persuade InterBase to distribute I/O over multiple disk
devices.

2.4.1. Using RAID

You can achieve up to a ten times performance improvement by using RAID.

RAID (redundant array of inexpensive disks) is a hardware design that is intended to give
benefits to performance and reliability by storing data on multiple physical disk devices. It is
transparent for software applications to use RAID, because it is implemented in the
operating system or at the hardware level. InterBase uses operating system I/O interfaces,
so InterBase supports RAID as would any other application software.

Disk striping (included in RAID levels 0, 3, or 5) provides performance benefits by
distributing I/O across multiple disks.

Hardware RAID is faster than software RAID or software disk mirroring. RAID implemented
with software provides only protection from hard disk failure; it is actually slower than
operating without RAID.

2.4.2. Using Multiple Disks for Database Files

Similarly to RAID, you can distribute files of a multifile InterBase database among multiple
physical disk drives.

For example, if you have a server with four physical disks, C: , D: , E: , and F: , and a
10GB database, you can create your database to take advantage of parallel I/O with the
following database creation statement:

CREATE DATABASE 'C:\data\bigdata1.ib' PAGE_SIZE 4096
FILE 'D:\data\bigdata2.ib' STARTING AT PAGE 1000000
FILE 'E:\data\bigdata3.ib' STARTING AT PAGE 2000000
FILE 'F:\data\bigdata4.ib' STARTING AT PAGE 3000000;

2.4.3. Using Multiple Disk Controllers

If you have so much disk activity on multiple disks that you saturate the I/O bus, you should
equip the server with multiple disk controllers, and connect the multiple drivers to the
controllers as evenly as possible.

For example, if you have sixteen disk devices hosting database files, you might benefit from
using four disk controllers, and attaching four disks to each controller.

2.4.4. Making Drives Specialized

A database server makes heavy use of both the virtual memory page file and of temporary
disk space of the operating system. If possible, equip the server with multiple disks and
configure the virtual memory file, temporary directory, and database files on separate
physical disk devices. This can use parallel I/O to the fullest advantage.

For example, on Windows, you could locate the operating system files and pagefile.sys
on C: , the temporary directory and infrequently-used files on D: , and database files on
drives E: and higher.

Database and Server Performance

234

Change the location of the virtual memory file with:

Control Panel|System|Performance|Virtual Memory.

Change the location of the InterBase temporary directory by either specifying a system
environment variable INTERBASE_TMP , or editing the ibconfig file and specifying the
path of the appropriate directory as a value for the TMP_DIRECTORY entry.

See Also

Configuring Sort Files

2.5. Using High-bandwidth Network Systems

For client/server systems, hardware that supports high network bandwidth is as important
as I/O capacity. The speed of the network often becomes a bottleneck for performance
when many users are making demands on the network simultaneously.

Inexpensive 1000 BASE-T ethernet equipment is common today, but this technology is bare
minimum for LAN configuration. It is recommended to use at least 100 Base-T for a high-
performance network. The following graph illustrates relative bandwidth rates for various
network interface technology.

The maximum bandwidth of gigabit ethernet extends beyond the scale of the graph above.

At the time of this writing, most gigabit ethernet network interface cards (NICs) provide only
600 to 700Mbps bandwidth. Switches, routers, and repeaters also have constrained
capacity. It is expected that the state of this technology will continue to improve.

It is recommended that you research reviews and experiment to learn the true throughput
of all network hardware in your environment. The slowest component ultimately
determines the true throughput.

Tip:
Network cables develop flaws surprisingly frequently. The result can be sporadic lost
packets, for which operating systems compensate by automatically resending packets.
This translates into mysterious network performance degradation. You should test
network cables regularly. Replacing flawed cables is a low-cost way to keep your network
running at peak efficiency.

2.6. Using high-performance Bus

Bus is important for both I/O controllers and network interface hardware.

While 32-bit full-duplex PCI bus is capable of up to 264Mbps, PCI cards actually range from
40Mbps to 130Mbps.

Tip:
Use controllers on an integrated local PCI bus, it’s faster than peripheral cards that plug
into the motherboard.

3. Operating System Configuration

After you have equipped your server hardware appropriately, you should spend time tuning
your operating system for server performance.

•

Database and Server Performance

235

3.1. Sizing a Temporary Directory

When you configure a temporary directory (see Managing Temporary Files), choose a
location that has plenty of free disk space. For some operations such as building an index,
InterBase can use a great deal of space for sorting. InterBase can even use an amount of
space up to twice the size of your database.

The effects of insufficient temporary space include rapid virtual memory page faults, called
thrashing, which causes a dramatic performance penalty. Another possible effect is a series
of “I/O error” related messages printed to the interbase.log file on the server.

3.2. Use a Dedicated Server

Using a server for both workgroup file and print services and as a database server is like
letting another user play a video game on your workstation. It detracts from the
performance of the workstation, and it is not the intended use for the machine.

Use a secondary server as the file and print server, and a new machine for the database
server. Alternately, use the secondary server for InterBase, depending on the relative
priority of these tasks – the database server benefits from having a dedicated machine,
even if it is not the fastest model available. Whatever is the most important service should
be given the best machine as dedicated hardware.

If performance is a high priority, you can spend money more effectively by buying a
dedicated machine instead of trying to increase resources such as RAM on a machine that is
providing another competing service. Compare the cost of the hardware with the cost of
having less than maximum performance.

Similarly, it is best to put a database on a dedicated drive, so that the database I/O does not
compete with the operating system virtual memory paging file or other operating system I/
O. See Making Drives Specialized.

3.3. Optimizing Windows for Network Applications

It is recommended to set the Windows server to optimize for network applications. Without
this setting, you might see the CPU usage of InterBase peak for a few seconds every
InterBase server is configured by default to give priority to filesharing services. You can
change this configuration on the server: Control Panel>Network>Services>Server. In the
Optimization panel, choose Optimize Throughput For Network Applications.

This change can result in a dramatic improvement of performance for InterBase, as well as
other services.

4. Performance Considerations for a Network Configuration

This section describes performance considerations you should know when configuring a
network configuration.

4.1. Choosing a Network Protocol

InterBase supports two protocols: TCP/IP when connecting to any server, and NetBEUI when
connecting to a Windows server. See Network Protocols for more details.

Database and Server Performance

236

4.1.1. NetBEUI

You can use NetBEUI on a network with fewer than 20 users without significant
performance costs. Use TCP/IP if you have more active users on your network
simultaneously.

NetBEUI is a network protocol designed for use on small local area networks. It is commonly
used for filesharing services. It is a connectionless protocol, which means that it broadcasts
packets to the entire network. This causes a growing amount of “noise” on a LAN. Noise,
from the point of view of any given host, can be defined as network traffic that is not
intended for that host. On a LAN with many hosts, enabling NetBEUI can overwhelm the
network and reduce the available bandwidth for everyone to use. On most enterprise
networks, IT experts discourage the use of NetBEUI.

4.1.2. TCP/IP

TCP/IP is a connection-based protocol, which means packets are routed to the intended
recipient. This reduces the saturation of the network and the load on individual hosts. There
is effectively more bandwidth available to all hosts, and a large number of hosts can share
the same network with less performance penalty.

4.2. Configuring Hostname Lookups

Each host on a TCP/IP network has a designated IP address, and TCP/IP traffic is routed to
hosts by address. TCP/IP requires a mechanism for clients to translate hostnames to their
numeric addresses. Each client host can store the hostname/address associations in a file
called hosts . You can alternately store this information on a central server, and the clients
then retrieve the information on demand using a protocol called DNS. The client requests
that the DNS server resolve a hostname, and the server returns the IP address. Then the
client can use the IP address to communicate directly with the intended destination. In this
configuration, the client must keep only one IP address locally: that of the DNS server host.

Depending on the load on the network and the DNS server itself, hostname resolution can
take several seconds. This translates directly into delays when making a network
connection. This is related to the message you might see in a web browser, “Looking up host
name…” followed by, “Connecting to host name…”. This indicates the delay while querying a
DNS server to resolve a hostname.

You can speed up hostname resolution by adding the hostname/address mapping of the
database server to the hosts file on the client computer. The client can resolve the
hostname to its address much faster and more reliably by looking it up in a local file than by
querying a service running on another host over the network. This reduces the hostname
resolution delay when initiating connections to hosts listed in the local hosts file.

Note:
If you use this technique and later change the address of your database server, you must
manually update the hosts files on each client workstation. Depending on the number of
workstations in your enterprise, this can be tedious and time consuming. That is why
DNS was invented, to centralize TCP/IP address administration. The suggestion to keep
the database server address in a local file is intended to provide improved connection
performance, but you should be aware of the administrative workload that it requires.

Tip:
If you object to the general IP address administration tasks required by using TCP/IP

Database and Server Performance

237

(independently from the DNS issue), consider using DHCP to simplify the task of
assigning and tracking IP addresses of each host on the network. InterBase works in a
DHCP environment as long as the client host has some means to resolve the IP address
of the server correctly at the time a client application requests an InterBase connection.

5. Database Properties

Changing database properties can give an improvement in performance without changing
anything in the design of your database. Applications require no change in their coding or
design. Property changes are transparent to the client and database design.

5.1. Choosing a Database Page Size

InterBase pages are 4KB by default. A typical production InterBase database gains 25 to 30
percent performance benefit by using this page size, relative to smaller page sizes. This
page size results in better performance for the following reasons:

Fewer record fragments are split across pages

It is common for records to be larger than a single page. This means that InterBase
fragments records and stores them on multiple pages. Querying a given record requires
multiple page reads from the database.
By increasing the size of a page, InterBase can reduce the number of multiple page reads
and can store record fragments more contiguously.

Index B-trees are more shallow

Indexes are B-trees of pointers to data pages containing instances of specific indexed
values. If the index B-tree is larger than one page, InterBase allocates additional database
pages for the index tree. If the index pages are larger, InterBase needs fewer additional
pages to store the pointers. It is easier for the database cache to store the entire B-tree in
memory, and indexed lookups are much faster.

I/O is more contiguous

It is fairly likely for a query to request successive records in a table. For example, this is done
during a table scan, or query that returns or aggregates all records in a table. InterBase
stores records on the first page that is unused, rather than ensuring that they are stored
near each other in the file. Doing a table scan can potentially require retrieval of data by
seeking all over the database. Seeks take time just as reading data takes time.
Any given page can store records from only one table. This indicates that a larger page is
certain to contain more data from the same table, and therefore reading that page returns
more relevant data.

Default number of cache buffers is a larger amount of memory

InterBase allocates the database cache in number of pages, rather than a fixed number of
bytes. Therefore defining a larger page size increases the cache size. A larger cache is more
likely to have a better hit rate than a smaller cache.

Most operating systems perform low-level I/O in 4096 byte blocks

InterBase performs a page read or write at the OS level by reading in 4096 byte increments
regardless of the size of the database page. Therefore, by defining the database with a page
size of 4096, the database I/O matches the low-level I/O and this results in greater efficiency
when reading and writing pages.

Although 4KB seems to be the best page size for most databases, the optimal size depends
on the structure of the specific metadata and the way in which applications access the data.

•

•

•

•

•

Database and Server Performance

238

For this reason, you should not consider the 4KB page size guideline to be a magic value.
Instead, you should perform testing with your application and database under several
different page sizes to analyze which configuration gives the best performance.

5.2. Setting the Database Page Fill Ratio

Data pages store multiple versions of data records, as applications update data. When a
database is restored, the gbak utility fills pages with data only up to 80 percent of the
capacity of each page, to leave space for new record version deltas to be stored, hopefully
on the same page with the original record. But in a database that is used mostly for reading
data rather than updating it, applications never benefit from this 80 percent fill ratio. In this
case, it makes sense to restore data using the full capacity of each page. By storing 25
percent more data on each page, it reduces the amount of record fragmentation and
increases the amount of data returned in each page read. You can specify the option to use
all the space of every page for storing data during a database restore using the command:

gbak -c -use_all_space backup_file.ibk database_file.ib

5.3. Sizing Database Cache Buffers

InterBase maintains a cache in the server’s RAM of database pages currently in use. If you
have a highly active database, you can gain some performance benefit by raising the default
cache from its default of 2048 database pages. As with any cache system, at some point you
find diminishing returns. Some experimentation with your particular application and
database reveals that point.

See Configuring the Database Cache for details about server cache settings.

The ibserver process running on an InterBase server maintains a cache in memory of
recently used data and index pages. Like any cache, it depends on repeated use of data on a
given page to help speed up subsequent access. In InterBase SuperServer implementations,
the cache is shared by all clients connected to the database.

By default, InterBase allocates enough memory for 2048 pages per database. If the page
size of the current database is 4KB, then ibserver uses 8MB of memory. If the page size is
8KB, then ibserver uses 16MB of RAM for cache. The InterBase API provides a method for
any individual client to request that the size of the cache be higher. You can set a property
on an individual database that establishes a different default cache size when any client
connects to that database:

gfix -buffers 5000 database.ib

The default of 2048 assumes that the server has a sufficient memory configuration to
allocate for 8MB of RAM per database. If memory is less plentiful on your server, or you
have many databases that require simultaneous access, you might need to reduce the
default number of cache buffers.

It is highly recommended to increase the cache size for a database if you have enough
memory to accommodate it. Consider the following points:

It is not useful to raise the cache size so high that the memory used by ibserver starts
to page into virtual memory. That defeats the benefit of caching data from disk in
memory.
It is not useful to raise the cache size higher than the number of pages in the database
(which you can view with View Database Statistics in IBConsole, or with the gstat
command-line program). There is no benefit to this, since any given page from disk
occupies only one page in the cache, and is not duplicated.

•

•

Database and Server Performance

239

One block of memory is allocated for cache per database. If a client connects to two
separate databases on one server, the ibserver process maintains two separate
cache areas of memory. For example, if database1.ib has a default cache size of 8000
pages of 4KB each, and database2.ib has a default cache size of 10,000 pages of 2KB
each, then while both databases have at least one connection, ibserver allocates a
total of 32MB + 20MB of RAM.

You should experiment with larger cache sizes and analyze the performance improvements.
At some point, you will observe diminishing returns. A typical application can achieve up to
30% performance increase from proper cache sizing.

See Also

Various InterBase Limits

5.4. Buffering Database Writes

InterBase on Windows platforms implements a write-through cache by default. Every write
operation to a page in cache is immediately written out to the disk I/O of the operating
system, which itself might have a cache.

By contrast, a write-back cache defers flushing of the contents of a given cache page until a
later time. InterBase performs multiple writes to a cache page in RAM before it writes the
page out to disk. This results in better response time for the majority of write operations.
Write-back cache consolidates I/O efficiently, and therefore it is much faster than write-
through cache.

InterBase offers write-back cache as the default on UNIX and Linux, and as an option on
Windows platforms. You can configure this at the database level using
gfix -write async or by disabling forced writes for the database in IBConsole (Database
Properties|General tab|Options).

The real benefit of using asynchronous writes (write-back cache) is about four times
performance in the typical case. Some users have reported up to 20 times performance
improvement from configuring asynchronous writes, in applications that make heavy use of
write operations (INSERT , UPDATE , DELETE). The more writing an application does to the
database—including write operations spawned by triggers—the more benefit the
application gains.

The risk of asynchronous writes is that data in cache might be lost if the server has a power
loss, or if ibserver exits abnormally for any reason. Write-through cache protects against
data loss, at some performance cost. If you test your server host and client/server
application thoroughly and they are not susceptible to crashes, then it is highly
recommended to use asynchronous writes.

Tip:
Use an uninterruptible power supply (UPS) to help protect your server against sudden
power loss. A modest UPS is inexpensive relative to the cost of losing your data, and easy
to install. This can allow you to gain the benefits of the asynchronous I/O mode in safety.

6. Database Design Principles

This section presents guidelines for database design techniques that benefit performance.

•

•

Database and Server Performance

240

6.1. Defining Indexes

Proper use of indexes is an important factor in database performance. Effective policies for
defining and maintaining indexes can be the key to a very high performance client/server
system. The self-tuning nature of indexes in InterBase greatly benefits performance, but you
can gain some additional benefit by periodic maintenance tasks.

6.1.1. What is an Index?

An index in InterBase is a Balanced-Tree data structure stored inside the database file that
provides a quick lookup mechanism for the location of specific values in a table. Queries
make use of appropriate indexes automatically by means of the cost-based optimizer, which
analyzes the tables and columns used in a given query and chooses indexes that speed up
the searching, sorting, or joining operations.

Defining indexes for some columns is part of designing a production database. Indexes
dramatically improve performance of SELECT queries. The greater the number of rows in
the table, the greater the benefit of using an index. Intelligently analyzing your database and
defining indexes appropriately always improves performance.

Indexes incur a small cost to maintain the index B-tree data structure during INSERT and
UPDATE operations. Because of this cost, it is not recommended to be overly liberal with
index definitions. Do not create redundant indexes, and do not make an index on every
column as a substitute for database usage analysis.

You should not define an index for columns that have few distinct data values. For example,
a column FISCAL_QUARTER might have only four distinct values over a potentially very
large data set. An index does not provide much benefit for retrieval of data with this kind of
distribution of values, and the work required to maintain the index tree might outweigh the
benefits.

6.1.2. What Queries Use an Index?

InterBase uses indexes to speed up data fetching for the following query elements:

Primary and foreign keys
Join keys
Sort keys, including DISTINCT and GROUP BY
Search criteria (WHERE)

In general, you should define indexes on all columns that you use in JOIN criteria or as
sorting keys in an ORDER BY clause. You do not have to define indexes on primary or
foreign key columns, because these table constraints implicitly create indexes.

6.1.3. What Queries Don’t Use Indexes?

InterBase does not employ an index in the following operations, even if an index exists for
the specified columns:

Search criteria for CONTAINING , LIKE , and < > inequality operations
Columns used in aggregate functions, like COUNT()
Other expressions, like UPPER()

•
•
•
•

•
•
•

Database and Server Performance

241

6.1.4. Directional Indexes

Indexes are defined as either ASCENDING or DESCENDING . To sort in both directions, you
need one index of each type. This is also very important if you are using a scrolling list in a
Delphi form, or when using the TTable.Last method.

6.2. Normalizing Databases

Design your database with proper normalization of data. Records that have lots of repeating
groups of fields are larger than they need to be. Large records can increase the cost of
sorting, and also cause records to span more pages than is necessary, resulting in more
page fragmentation and needlessly large databases.

Denormalized table design can be more convenient for some types of client applications.
You can use InterBase views and stored procedures to in effect store a denormalized query
on the server, for convenient access from client applications. Meanwhile, the physical
storage of the data is kept in a more efficient, normalized form.

See the Data Definition Guide for details on views and stored procedures.

6.3. Choosing Blob Segment Size

A Blob is a data type with an unbounded size. It can be many megabytes in size, much larger
than any database interface can handle in a single I/O transfer. Therefore, Blobs are defined
as a series of segments of uniform size, and the I/O interface transfers Blobs one segment
at a time.

Blobs are a special case because there is a special Blob page type, on which other data
types cannot be stored. The data page for a record containing a Blob stores a Blob ID, which
indicates which Blob page the Blob is stored on. A Blob is stored on the same page as the
primary record version, if it fits. If it does not fit on that page, special pages are allocated for
the Blob–as many as are required–and an index is stored on the primary page. Blob pages
are never shared; either a Blob is on a normal data page, or it has a page to itself.

It is advantageous to define a Blob with a segment size equal to the page size. If both the
page size and the Blob segment size are 4096 bytes, queries of large Blobs can achieve a
data transfer rate of up to 20MB per second. InterBase ceases to be any kind of bottleneck
in this situation; it is more likely that the hardware I/O bus, the network bandwidth, or the
middleware are the limiting factors for throughput.

7. Database Tuning Tasks

This section describes ways you can perform periodic maintenance on your database to
keep it running with the best performance.

7.1. Tuning Indexes

Periodic maintenance of indexes can improve their performance benefit. You can write SQL
scripts to automate these tasks. See Using SQL Scripts.

7.1.1. Rebuilding Indexes

Periodically, a B-tree data structure might become imbalanced, or it might have some values
in the tree that have been deleted from the database (this should not happen in InterBase
versions later than 5, due to index garbage collection).

Database and Server Performance

242

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

You should periodically rebuild indexes by turning them off and on:

ALTER INDEX name INACTIVE;
ALTER INDEX name ACTIVE;

7.1.2. Recalculating Index Selectivity

The selectivity of an index is an indicator of its uniqueness. The optimizer uses selectivity in
its cost-based analysis algorithm when deciding whether to use a given index in a query
execution plan. If the selectivity is out of date and does not accurately represent the state of
the index, the optimizer might use or discount the index inappropriately. This does usually
not have a great performance penalty unless the selectivity is highly out of date.

You should recalculate the index selectivity if a change to the table affects the average
distribution of data values. InterBase calculates index selectivity automatically only when an
index is created or activated, or under user request using
SET STATISTICS INDEX <index_name> . Bulk data updates on the underlying table can
put an index selectivity value out of sync with reality.

The ris.sql SQL script helps users recompute index selectivity on demand for various sets of
indices via the stored procedure COMPUTE_INDEX_SELECTIVITY which recomputes index
selectivity for a given range of indices. You can find ris.sql on
%ProgramData%\Embarcadero\InterBase\gds_db\examples . The stored procedure
accepts the following parameters:

index_scope (string) can accept the following values:

DATABASE - All user indices for the whole database.
TABLE - All indices for a given table name.
INDEX - Just the given index name.
SYSTEM - All system indices except for the ones on RDB$ENCRYPTIONS .
Run the following as SYSDSO user if you want to reset selectivity on RDB$ENCRYPTIONS
indices.

UPDATE RDB$INDICES SET RDB$STATISTICS = -1.0
WHERE RDB$RELATION_NAME = 'RDB$ENCRYPTIONS'
COMMIT;

entity_name - Name of the table or index. If you are not using quoted identifier names,
make sure you provide the entity name in upper case ASCII. This should be NULL if the
index_scope specified is database-wide ('DATABASE', or, 'SYSTEM')

Make sure you execute a COMMIT after executing the stored procedure.

Limitations

You need to have database ownership/sysdba rights to execute this procedure for the
whole database.
Since the stored procedure uses EXECUTE STATEMENT, this script can only be used with
InterBase XE or later versions.

Examples

Recompute selectivity for all user indices in the database.

•

•

•

Database and Server Performance

243

EXECUTE PROCEDURE COMPUTE_INDEX_SELECTIVITY ('DATABASE', NULL);
COMMIT;

Recompute selectivity for a particular table. This is useful when a particular table has
undergone bulk data insert/update/delete operation.

EXECUTE PROCEDURE COMPUTE_INDEX_SELECTIVITY ('TABLE', 'EMPLOYEE');
COMMIT;

Recompute selectivity for a particular index.

EXECUTE PROCEDURE COMPUTE_INDEX_SELECTIVITY ('INDEX', 'RDB$PRIMARY2');
COMMIT;

Recompute selectivity for all system indices in the database.

EXECUTE PROCEDURE COMPUTE_INDEX_SELECTIVITY ('SYSTEM', NULL);
COMMIT;

SQL to check index selectivity for user indices.

select cast (RDB$RELATION_NAME as varchar(32)) AS TABLE_NAME,
cast (RDB$INDEX_NAME as varchar(32)) AS INDEX_NAME,
RDB$STATISTICS

from rdb$indices
where coalesce (rdb$system_flag, 0) = 0
order by RDB$STATISTICS;

7.2. Performing Regular Backups

There are several performance-related benefits to doing periodic backup and restore of an
InterBase database. See About InterBase backup and restore options.

7.2.1. Increasing Backup Performance

Disable garbage collection if you are just going to replace the database immediately
anyway; this can make the backup execute faster.
Back up to a different disk drive.

7.2.2. Increasing Restore Performance

Restore from a different disk drive.
Disable indexes on restore; this makes the restore execute faster, so you have a usable
database quickly. You must then have to activate manually the indexes after the restore
is complete.

Tip:
Create a SQL script with all the ALTER INDEX statements necessary to activate your
indexes, and keep that handy. Use it like a batch file with isql -i script.sql to help
automate this procedure. You can create this script with this query:

SELECT 'ALTER INDEX ' || RDB$INDEX_NAME || ' ACTIVE;'
FROM RDB$INDICES
WHERE RDB$SYSTEM_FLAG = 0 OR RDB$SYSTEM_FLAG IS NULL;

•

•

•

•

•

•

•
•

Database and Server Performance

244

You can get the database up and restored more quickly, and then activate indexes
afterwards. The data is accessible even if the indexes are inactive, but it is slower to query
the tables.

7.3. Facilitating Garbage Collection

By default, InterBase databases have a built-in function to automatically sweep old record
versions when they become too numerous. However, sweeping is partially inhibited by
outstanding active transactions. If the server cannot do complete garbage collection, it has
to do extra work to maintain each client’s snapshot of the database.

Design your client applications to explicitly start and COMMIT transactions promptly, to
reduce the number of outstanding transactions.

See Overview of Sweeping for more details on sweeping, garbage collection, and the
database snapshot.

8. Application Design Techniques

This section describes general application programming methods for InterBase, that help to
create high-performance clients.

8.1. Using Transaction Isolation Modes

InterBase multigenerational architecture requires that any query or other operation be
associated with an active transaction. Without a transaction, an operation has no context
with which to maintain its snapshot of the database. IBConsole tools do a certain amount of
automatic transaction management, but it is helpful for performance to manually start and
finish transactions.

In the InterBase server engine, a snapshot is generated by making a copy of the state of all
other transactions in the database. This snapshot is static for the current transaction. This
means that any data committed to the database after the snapshot is created is not visible
to operations using that snapshot. This is the repeatable read transaction mode. Two
identical queries made at different times are guaranteed to get the same result set, even if
other clients are updating data in the database.

Starting a transaction and making a snapshot data structure for the new transaction incurs
some amount of overhead. This overhead is magnified when using automatic transaction-
handling, because the typical automatic transaction behavior is to start a new transaction
and commit it for every statement executed against the database.

8.2. Using Correlated Subqueries

Subqueries are SELECT statements which are included as a clause or expression within
another statement. They are typically used to generate a value or result set that are used in
conditions of the superior query.

A correlated subquery is one in which the conditions of the subquery are different for each
row in the parent query, because they depend on values that y from row to row. InterBase
executes the subquery many times, once for each row in the parent query. Evaluating each
row has a large cost in performance relative to a non-correlated subquery. InterBase
optimizes non-correlated subqueries out of the loop, executes once, and uses the result as
a fixed dataset.

Example as correlated subquery:

Database and Server Performance

245

SELECT * FROM DEPARTMENT D
WHERE EXISTS (SELECT * FROM EMPLOYEE E
WHERE E.EMP_NO = D.MNGR_NO AND E.JOB_COUNTRY = 'England')

Example as join:

SELECT D.*
FROM DEPARTMENT D JOIN EMPLOYEE E
ON D.MNGR_NO = E.EMP_NO WHERE E.JOB_COUNTRY = 'England'

InterBase optimizer executes a non-correlated subquery once, and uses the result set as
many times as necessary in the parent query.

Sometimes a correlated subquery is necessary, given the semantics of the SQL language.
However, these types of queries should be used with care and with the understanding that
their performance is geometric in relation to the size of the dataset on which they operate.

8.3. Preparing Parameterized Queries

Any dynamic SQL (DSQL) statement must go through a cycle of parse, prepare, and execute.
You can submit a DSQL statement to go through this process for each invocation, or you can
separate the steps. If you have a situation where you execute the same statement multiple
times, or the same form of statement with different parameters, you should explicitly
prepare the statement once, then execute it as your looping action.

With parameterized queries, you can prepare a statement, but defer supplying the specific
values for certain elements of the query.

InterBase supports parameterized queries in DSQL, for cases when a given statement is to
be executed multiple times with different values. For example, loading a table with data
might require a series of INSERT statements with values for each record inserted. Executing
parameterized queries has a direct performance benefit, because the InterBase engine
keeps the internal representation and optimization of the query after preparing it once.

Use parameterized DSQL queries in Delphi by following these steps:

Place a named parameter in the statement with the Delphi :PARAMETER syntax. in
place of a constant value in a query. InterBase supports parameters in place
constants. Tables and column names cannot be parameterized.
Prepare the statement. Use the TQuery method Prepare . Delphi automatically
prepares a query if it is executed without first being prepared. After execution,
Delphi unprepares the query. When a query will be executed a number of times,
an application should always explicitly prepare the query to avoid multiple and
unnecessary prepares and unprepares.
Specify parameters. For example, with the TQuery component, use the
ParamByName method to supply values for each parameter in the query.
Execute the statement. SELECT statements should use the Open method of
TQuery. INSERT , UPDATE , and DELETE statements should use the ExecSQL
method. These methods prepares the statement in SQL property for execution if it
has not already been prepared. To speed performance, an application should
ordinarily call Prepare before calling ExecSQL for the first time.
Repeat steps 3 and 4 as needed.
Unprepare the query.

In some real-world cases involving repetitive operations, using parameterized queries has
increased performance 100%.

1.

2.

3.

4.

5.
6.

Database and Server Performance

246

8.4. Designing Query Optimization Plans

The optimization plan describes the way the optimizer has chosen to execute a query. For
certain types of queries, the optimizer might not select the truly optimal plan. A human can
analyze different alternate plans and specify a plan overriding the analysis of the optimizer.
The result can be amazing improvements in performance for some types of queries. In
some dramatic cases, this has been used to reduce a 15 minute query to three seconds.

The elements of plan selection are:

Assigning indexes
Combining indexes
Determining join order
Generating rivers
Cost estimation
Sort merges

InterBase supports syntax with the SELECT expression in embedded SQL and DSQL to
allow the user to specify the PLAN for a query. The syntax also works with SELECT
statements in the body of a view, a stored procedure, or a trigger.

It is beyond the scope of this chapter to describe in detail the syntax of the PLAN clause for
specifying the execution plan, or techniques for analyzing queries manually. The section on
SELECT in the Language Reference includes some examples of using PLAN .

8.5. Deferring Index Updates

Inserting and updating data requires indexes to be updated, which can cause performance
to suffer during INSERT or UPDATE operations.

To minimize the performance hit during INSERT or UPDATE operations, consider
temporarily disabling indexes during high-volume INSERT operations. Make sure to re-
enable the indexes afterwards. This approach only requires the indexes to rebalance once
for all the inserted data.

9. Application Development Tools

This section describes ways you can develop applications that are efficient, using various
popular development environments and tools.

9.1. InterBase Express™ (IBX)

For more information on IBX refer to Getting Started with InterBase Express.

9.2. IB Objects

for more information on IB Objects refer to http://www.ibobjects.com .

9.3. Visual Components

This section describes visual components that developers commonly use in Delphi and C+
+Builder to access data from InterBase. Follow the recommendations below for better
client/server performance.

•
•
•
•
•
•

Database and Server Performance

247

http://docwiki.embarcadero.com/RADStudio/Berlin/en/Getting_Started_with_InterBase_Express
http://www.ibobjects.com

9.3.1. Understanding Fetch-all Operations

In a client/server configuration, a “fetch-all” is the nadir of performance, because it forces
BDE to request that the database generate a dataset again and send it over the network.

InterBase and most relational databases do not keep datasets in cache on the server in case
the client requests a refresh. InterBase must execute the SQL query again when the BDE
requests a refresh. If the query involves a large quantity of data, or complex joining or
sorting operations, it is likely to take a long time to generate the dataset.

It is also costly for the server to transfer a large dataset across a network interface. It is
more costly by far than it is for a desktop database like Paradox to return a dataset,
because a desktop database typically runs locally to the application

It is often the case that software developers choose to use a relational database like
InterBase because they are managing a larger amount of data than a desktop database like
Paradox can handle efficiently. Naturally, larger datasets take more time to generate and to
send over a network.

The person using the client application perceives that it has better performance if the user
does not have to wait for refreshes. The less often the client application requests a refresh
of the dataset, the better it is for the user.

Important:
A principle of client/server application design is therefore to reduce the number of costly
refresh operations as much as possible.

9.3.2. TQuery

CachedUpdates = False

Allows the server to handle updates, deletes, and conflicts.

RequestLive = False

Setting RequestLive to False can prevent the VCL from keeping a client-side copy of rows;
this has a benefit to performance because it reduces the network bandwidth requirement

Below are some operations in which a TQuery perform a fetch-all. Avoid these as much
as possible, or be aware of the cost of such operations.

Using the Locate method:

You should use Locate only on local datasets.

Using the RecordCount property:

It’s convenient to get the information on how many records are in a dataset, but when using
InterBase, calculation of the RecordCount itself forces a fetch-all. For this reason,
referencing the RecordCount property takes as much time as fetching the entire result
dataset of the query.

A common use of RecordCount is to determine if the result set of an opened TQuery
contains any records, or if it contains zero records. If this is the case, you can determine this
without performing a fetch-all by testing for both EOF and BOF states. If both end of file
and beginning of file are true for the dataset, then no records are in the result set. These
operations do not involve a fetch-all.

•

•

•

Database and Server Performance

248

For example, for a given TQuery instance called qryTest :

qryTest.Open;
if qryTest.BOF and qryTest.EOF then begin
// There are no result set records.
end
else begin
// There are some result set records.
end;

Using the Constraints property:

Let the server enforce the constraint.

Using the Filter property:

For the TQuery to filter records, it must request a much larger dataset than that which it
subsequently displays. The InterBase server can perform the filtering in a much more
efficient manner before returning the filtered dataset. You should use a WHERE clause in
your SQL query. Even if you use a WHERE clause, any use of the TQuery.Filter property
still forces a fetch-all.

9.3.3. TTable

The TTable component is designed for use on relatively small tables in a local database,
accessed in core memory. TTable gathers information about the metadata of the table
and tries to maintain a cache of the dataset in memory. TTable refreshes its client-side
copy of data when you issue the TTable.post method and when you use the
TDatabase.rollback method. This incurs a huge network overhead for client/server
databases, which tend to have larger datasets and are accessed over a network. You can
observe the activity of TTable with the SQL Monitor tool. This reports all calls to the BDE
and InterBase API.

Though TTable is very convenient for its RAD Studio methods and its abstract data-aware
model, you should use it sparingly with InterBase or any other client/server database.
TTable was not designed to be used for client/server applications.

Database and Server Performance

249

Migrating to InterBase

InterBase is a mature product that was originally architected before current standards came
into existence. As the standards evolved, it became clear that bringing InterBase into
compliance with them would produce a somewhat challenging migration path.

With the advent of InterBase 6, InterBase 6 introduced an increased compliance with the
SQL-92 standard, but migrating older (InterBase 5 and earlier) clients and databases might,
in some cases, require considerable attention to detail.

The feature areas affected are: the use of double quotes, which are now reserved for
delimited identifiers; the meaning of the DATE data type; the behavior of exact numeric
data types, and the existence of new keywords that might conflict with older metadata
names.

This document describes how to plan and execute a smooth migration from earlier versions
of InterBase to InterBase 6 or later.

The earlier pages of this guide discuss the issues involved in the migration. Near the end,
you will find detailed, step-by-step instructions for both in-place migration and for migrating
an old database to a new one. See Migrating Servers and Databases,

1. Migration Process

These are the steps you must take to migrate servers, databases, and clients. Each is
discussed in detail in later sections:

1.1. Server and Database Migration

Backup all databases to be migrated.
Install the latest InterBase server.
Restore databases to be migrated using the most recent gbak ; at this point, you
have dialect 1 databases.
Validate migrated databases.
Migrate databases to SQL dialect 3 (Migrating Databases to Dialect 3).

1.2. Client Migration

Identify the clients that must be upgraded.
Identify areas in your application which may need upgrading.
Install the InterBase client to each machine that requires it.
Upgrade SQL applications to SQL dialect 3.

2. Migration Issues

Before migrating your databases, you need to learn about InterBase SQL dialects and
understand their effect on servers, clients, and the use of certain features introduced in
InterBase 6 and later.

2.1. InterBase SQL Dialects

InterBase recognizes different client and database dialects to allow users more mobility in
how their legacy databases are used, accessed, and updated. Beginning with InterBase 6,
each client and database has a SQL dialect: an indicator that instructs an InterBase 6 or later

1.
2.
3.

4.
5.

1.
2.
3.
4.

Migrating to InterBase

250

server how to interpret transition features: those features whose meanings have changed
between InterBase versions. The following transition features have different meanings
based on the dialect used by the client applications:

Double quote (“): changed from a synonym for the single quote (‘) to the delimiter for an
object name.
DECIMAL and NUMERIC data types with precision greater than 9: now stored as INT64
data types instead of DOUBLE PRECISION.
DATE , TIME , and TIMESTAMP data types: DATE has changed from a 64-bit quantity
containing both date and time information to a 32-bit quantity containing only date
information. TIME is a 32-bit quantity containing only time information, while
TIMESTAMP is a 64-bit quantity containing both date and time information (the same as
DATE in pre-Version 6 SQL).

2.2. Clients and Databases

Clients and databases each have dialects. Servers do not themselves have a dialect, but they
interpret data structures and client requests based on the dialect of each. Applications
using an older version of the InterBase client work with InterBase 6 and later servers and
their databases with some restrictions:

Version 5 clients cannot access dialect 3 columns that are stored as INT64 , TIME , or
DATE . (DECIMAL and NUMERIC columns with precision greater than 9 are stored as
INT64 .)
Version 5 clients cannot display new data types in metadata using the SHOW command,
or any equivalent.
Version 5 clients interpret the DATE data type as TIMESTAMP , since that was the
definition of DATE prior to InterBase 6.
Version 5 clients cannot access any object named with a delimited identifiers.

2.3. Keywords Used as Identifiers

Version 5 clients have one advantage over version 6 clients: If you migrate an older
database that uses some version 6 keywords as identifiers to version 6 dialect 1, these older
version 5 clients can still access those keyword objects. Version 6 dialect 1 cannot do so.
Dialect 3 clients can access these keyword objects if the objects are delimited in double
quotes.

If version 5 clients use any InterBase 6 or 7 keywords as object names, the InterBase 6
server permits this without error because it recognizes that these clients were created at a
time when these were not keywords.

Example: For example, the following statement uses the new keyword word TIME :

SELECT TIME FROM atable;

This statement, when executed via a pre-InterBase 6 client returns the information as it did
in previous versions. If this same query is issued using a version 6 or 7 client, an error is
returned since TIME is now a reserved word. See the New InterBase Keywords.

2.4. Understanding SQL Dialects

Below are explanations of server and client behavior with SQL dialects 1, 2, and 3.

•

•

•

•

•

•

•

Migrating to InterBase

251

2.4.1. Dialect 1 Clients and Databases

In dialect 1, the InterBase 6 and later servers interpret transition features exactly as an
InterBase 5 server does:

Double quoted text is interpreted as a string literal. Delimited identifiers are not
available.
The DATE data type contains both time and date information and is interpreted as
TIMESTAMP ; the name has changed but the meaning has not. Dialect 1 clients expect
the entire timestamp to be returned. In dialect 1, DATE and TIMESTAMP are identical.
The TIME data type is not available.
Dialect 1 databases store DECIMAL and NUMERIC data types with precision greater
than 9 as DOUBLE PRECISION , not INT64 .
Dialect 1 clients expect information stored DECIMAL and NUMERIC data types to be
returned as double precision; such clients cannot create database fields to hold 64-bit
integers.

InterBase 6 and later servers recognize all the other InterBase features in dialect 1 clients
and databases.

2.4.2. Dialect 2 Clients

Dialect 2 is available only on the client side. It is intended for assessing possible problems in
legacy metadata that is being migrated to dialect 3. To determine where the problem spots
are when you migrate a database from dialect 1 to dialect 3, you extract the metadata from
the database, set isql to dialect 2, and then run that metadata file through isql . isql
issues warning whenever it encounters double quotes, DATE data types, or large exact
numerics to alert you to places where you might need to change the metadata in order to
make a successful migration to dialect 3.

To detect problem areas in the metadata of a database that you are migrating, extract the
metadata and run it through a dialect 2 client, which will report all instances of transition
features. For example:

isql -i v5metadata.sql

Do not assign dialect 2 to databases.

2.4.3. Dialect 3 Clients and Databases

In dialect 3, the InterBase server interprets transition features as InterBase 6 SQL 92-
compliant:

Double quoted strings are treated as delimited identifiers.
Dialect 3 DATE data type fields contain only date information. Dialect 3 clients expect
only date information from a field of data type DATE .
The TIME data type is available, and stores only time information.
Dialect 3 databases store DECIMAL and NUMERIC data types with precision greater
than 9 as INT64 if, and only if, they are in columns that were created in dialect 3.
Dialect 3 clients expect DECIMAL and NUMERIC data types with precision greater than
9 to be returned as INT64 .

To learn how to migrate older data to INT64 storage, see Do you really need to migrate
your NUMERIC and DECIMAL Data Types? and Migrating NUMERIC and DECIMAL Data Types.

•

•

•
•

•

•
•

•
•

•

Migrating to InterBase

252

3. Setting SQL Dialects

You can set the SQL dialect for a server or client in a variety of ways. For example, the
IBConsole user interface has menu options for specifying the SQL dialect. See Using
IBConsole and Tools for a complete explanation of using IBConsole. This section explores
the command-line methods for setting a dialect.

3.1. Setting the isql Client Dialect

To use isql to create a database in a particular dialect, first set isql to the desired
dialect and then use it to create the database.You can set isql dialect in the following
ways:

On the command line, start isql with option - sql_dialect n , where <n> is 1, 2, or
3.

isql -sql_dialect <n>

Within an isql session or in a SQL script, you can issue this statement:

SET SQL DIALECT <n>

The following table shows the precedence for setting isql dialect:

Ranking How dialect is set

Lowest Dialect of an attached Version 6 and later database

Next lowest
Dialect specified on the command line:
isql -sql_dialect n

Next highest
Dialect specified during the session:
SET SQL DIALECT n;

Highest Dialect of an attached Version 5 database (=1)

In InterBase 6 and later, isql has the following behavior with respect to dialects:

If you start isql and attach to a database without specifying a dialect, isql takes on
the dialect of the database.
If you specify a dialect on the command line when you invoke isql , it retains that
dialect after connection unless explicitly changed.
When you change the dialect during a session using SET SQL DIALECT <n>,

isql continues to operate in that dialect until explicitly changed.

When you create a database using isql , the database is created with the dialect of
the isql client; for example, if isql has been set to dialect 1, when you create a
database, it is a dialect 1 database.
If you create a database without first specifying a dialect for the isql client or
attaching to a database, isql creates the database in dialect 3.

The statements above are true whether you are running isql as a command-line utility or
are accessing it through IBConsole, InterBase new interface.

•

•

•

•

•

•

•

Migrating to InterBase

253

http://docwiki.embarcadero.com/InterBase/2020/en/Using_IBConsole_and_Tools
http://docwiki.embarcadero.com/InterBase/2020/en/Using_IBConsole_and_Tools

Important:
Any InterBase 6 and later isql client that attaches to a version 5 database resets to
dialect 1.

3.2. Setting the gpre Dialect

In InterBase 6 and later, default behavior of gpre is to take on the dialect of the database
to which it is connected. This enables gpre to parse pre-Version 6 source files without
moderation.

There are two ways to change the dialect of gpre :

Start gpre with option -sql_dialect n . For example, this command sets gpre to
dialect 3:

gpre -sql_dialect 3

Specify dialect within the source, for example:

EXEC SQL
SET SQL DIALECT n

The dialect precedence for gpre is as follows:

Lowest

Middle

Highest

Dialect of an attached database

Command line specification:

gpre -sql_dialect n

Dialect explicitly specified within the source, for
example

EXEC SQL
SET SQL DIALECT n

3.3. Setting the Database Dialect

To set the dialect of an ODS 10 or later database, attach to the database as either the owner
or SYSDBA. Use gfix with the command-line option - sql_dialect n , where n is 1 or 3.
For example, the following statement sets mydb.ib to dialect 3:

gfix -sql_dialect 3 mydb.ib

See Migrating Databases to Dialect 3 for details about issues to consider before you issue
the command.

4. Features and Dialects

Many of the features introduced in InterBase 6 and later operate without reference to
dialect. Other features are dialect-specific. The dialect-specific features are discussed below:

4.1. Features Available in All Dialects

The following new features are available in both dialect 1 and dialect 3:

•

•

Migrating to InterBase

254

4.1.1. IBConsole, InterBase’s Graphical Interface

IBConsole, InterBase graphical user interface, combines the functionality of the older Server
Manager and InterBase Windows isql. You now create and maintain databases, configure
and maintain servers, and execute interactive SQL from one integrated interface.

4.1.2. Read-only Databases Feature

You can make InterBase 6 and later databases be read-only. This permits distribution on
read-only media such as CDROMs and reduces the chance of accidental or malicious
changes to databases.

4.1.3. Altering Column Definitions

The ALTER COLUMN clause of the ALTER TABLE statement can change a name, data type,
or position of a column.

4.1.4. Altering Domain Definitions

ALTER DOMAIN now includes the ability to change the name or data type of a domain
definition.

4.1.5. The EXTRACT() Function

The new EXTRACT () function extracts information from the new DATE , TIMESTAMP , and
TIME data types. In dialect 1, you can use it to extract information from the TIMESTAMP
data type.

Note: DATE is new in the sense that it has a different meaning in dialect 3 databases than it
did previously.

4.1.6. SQL Warnings

The InterBase API function set now returns warnings and informational messages along
with error messages in the status vector.

4.1.7. The Services API, Install API, and Licensing API

InterBase now provides three new function libraries. The Services API, which is part of the
InterBase client library, provides functions for database maintenance tasks, software
activation, requesting information about the configuration of databases and server, and
working with user entries in the security database.

4.1.8. New gbak Functionality

In InterBase 6 and later, the functionality of gbak has been extended. gbak can now
perform all of the following actions:

Back up to multiple files and restore to multiple files.
Perform server-side backups and restores using the - service switch.
Set databases to read-only mode when restoring.

•
•
•

Migrating to InterBase

255

4.1.9. InterBase Express™ (IBX) Feature

IBX provides native Delphi components for InterBase data access, services, and installation.
Embarcadero C++Builder also can access IBX components.

4.2. Features Available Only in Dialect 3 Databases

The following features are available only in dialect 3 clients and databases because they
conflict with dialect 1 usage.

4.2.1. Delimited Identifiers Feature

Identifiers can now be keywords, contain spaces, be case sensitive, and contain non-ASCII
characters. Such identifiers must be delimited by double quotes. String constants must be
delimited by single quotes.

4.2.2. INT64 Data Storage

In dialect 3 databases, data stored in DECIMAL and NUMERIC columns is stored as INT64
when the precision is greater than 9. This is true only for columns that are created in dialect
3. These same data types are stored as DOUBLE PRECISION in dialect 1 and in all older
InterBase versions. This change in storage also requires different arithmetic algorithms.

4.2.3. DATE and TIME Data Types

In dialect 3, the DATE data type holds only date information. This is a change from earlier
InterBase versions in which it stored the whole timestamp.

Dialect 3 allows the use of the TIME data type, which only holds the time portion of the
timestamp.

See Also

Delimited Identifiers
DATE, TIME, and TIMESTAMP Data Types
DECIMAL and NUMERIC Data Types

4.3. New InterBase Keywords

These keywords are reserved words in all dialects.

Beginning with InterBase 6, you cannot create objects in a dialect 1 database that have
any of these keywords as object names (identifiers).
You can migrate a version 5 database that contains these keywords used as identifiers
to version 6 or later dialect 1 without changing the object names: a column could be
named “YEAR”, for instance.

Version 5 clients can access these keyword identifiers without error.
Version 6 and later clients cannot access keywords that are used as identifiers. In a
dialect 1 database, you must change the names so that they are not keywords.

•
•
•

•

•

•
•

Migrating to InterBase

256

If you migrate directly to dialect 3, you can retain the names, but you must delimit them
with double quotes. To retain accessibility for older clients, put the names in all upper
case. Delimited identifiers are case sensitive.

Although TIME is a reserved word in version 6 and later dialect 1, you cannot use it as a
data type because such databases guarantee data type compatibility with version 5
clients.
In dialect 3 databases and clients, any reserved word can be used as an identifier as
long as it is delimited with double quotes.

ACTION ACTIVE ADD ADMIN

AFTER ALL ALTER AND

ANY AS ASC ASCENDING

AT AUTO AUTODDL AVG

BASED BASENAME BASE_NAME BEFORE

BEGIN BETWEEN BLOB BLOBEDIT

BOOLEAN BUFFER BY CACHE

CASCADE CASE CAST CHAR

CHARACTER CHARACTER_LENGTH CHAR_LENGTH CHECK

CHECK_POINT_LEN CHECK_POINT_LENGTH COALESCE COLLATE

COLLATION COLUMN COMMIT COMMITTED

COMPILETIME COMPUTED CLOSE CONDITIONAL

CONNECT CONSTRAINT CONTAINING CONTINUE

COUNT CREATE CSTRING CURRENT

CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP CURSOR

DATABASE DATE DAY DB_KEY

DEBUG DEC DECIMAL DECLARE

DECRYPT DEFAULT DELETE DESC

DESCENDING DESCRIBE DESCRIPTOR DISCONNECT

DISPLAY DISTINCT DO DOMAIN

DOUBLE DROP ECHO EDIT

ELSE ENCRYPT ENCRYPTION END

ENTRY_POINT ESCAPE EVENT EXCEPTION

EXECUTE EXISTS EXIT EXTERN

EXTERNAL EXTRACT FALSE FETCH

FILE FILTER FLOAT FOR

FOREIGN FOUND FREE_IT FROM

FULL FUNCTION GDSCODE GENERATOR

GEN_ID GLOBAL GOTO GRANT

GROUP GROUP_COMMIT_WAIT
GROUP_COMMIT_WAIT_
TIME HAVING

HELP HOUR IF IMMEDIATE

IN INACTIVE INDEX INDICATOR

INIT INNER INPUT INPUT_TYPE

INSERT INT INTEGER INTO

•

•

•

Migrating to InterBase

257

IS ISOLATION ISQL JOIN

KEY LC_MESSAGES LC_TYPE LEFT

LENGTH LEV LEVEL LIKE

LOGFILE LOG_BUFFER_SIZE LOG_BUF_SIZE LONG

MANUAL MAX MAXIMUM MAXIMUM_SEGMENT

MAX_SEGMENT MERGE MESSAGE MIN

MINIMUM MINUTE MODULE_NAME MONTH

NAMES NATIONAL NATURAL NCHAR

NO NOAUTO NOT NULL

NULLIF NUMERIC NUM_LOG_BUFS NUM_LOG_BUFFERS

OCTET_LENGTH OF ON ONLY

OPEN OPTION OR ORDER

OUTER OUTPUT OUTPUT_TYPE OVERFLOW

PAGE PAGELENGTH PAGES PAGE_SIZE

PARAMETERS PASSWORD PERCENT PLAN

POSITION POST_EVENT PRECISION PREPARE

PRESERVE PROCEDURE PROTECTED PRIMARY

PRIVILEGES PUBLIC QUIT

RAW_PARTITIONS RDB$DB_KEY READ REAL

RECORD_VERSION REFERENCES RELEASE RESERV

RESERVING RESTRICT RETAIN RETURN

RETURNING_VALUES RETURNS REVOKE RIGHT

ROLE ROLLBACK ROW ROWS

RUNTIME SCHEMA SECOND SEGMENT

SELECT SET SHADOW SHARED

SHELL SHOW SINGULAR SIZE

SMALLINT SNAPSHOT SOME SORT

SQLCODE SQLERROR SQLWARNING STABILITY

STARTING STARTS STATEMENT STATIC

SUSPEND TABLE TABLESPACE TEMPORARY

TERMINATOR THEN TIES TIME

TIMESTAMP TO TRANSACTION TRANSLATE

TRANSLATION TRIGGER TRIM TRUE

TYPE UNCOMMITTED UNION UNIQUE

UNKNOWN UPDATE UPPER USER

USING VALUE VALUES VARCHAR

VARIABLE VARYING VERSION VIEW

WAIT WEEKDAY WHEN WHENEVER

WHERE WHILE WITH WORK

WRITE YEAR YEARDAY

Note: The following keywords are specific to InterBase and are not part of the SQL
standard.

Migrating to InterBase

258

WEEKDAY YEARDAY

4.4. Delimited Identifiers

To increase compliance with the SQL 92 standard, InterBase 6 and later introduces delimited
identifiers. An identifier is the name of any database object; for instance a table, a column, or
a trigger. A delimited identifier is an identifier that is enclosed in double quotes. Because
the quotes delimit the boundaries of the name, the possibilities for object names are greatly
expanded from previous versions of InterBase. Object names can now:

mimic keywords
include spaces (except trailing spaces)
be case sensitive

4.4.1. How Double Quotes have Changed

Up to and including version 5, InterBase allowed the use of either single or double quotes
around string constants. The concept of delimited identifiers did not exist. Beginning with
InterBase 6 (dialect 3), anything in single quotes is interpreted as a string constant and
anything in double quotes is interpreted as a delimited identifier. Here is the summary:

In all versions of InterBase, anything inside single quotes is treated as a string constant.
In InterBase version 5 and older, anything within double quotes is treated as a string
constant, because those versions do not have the concept of a delimited identifier.
Version 6 dialect 1 is a transition mode that behaves like older versions of InterBase
with respect to quote marks: it interprets strings within either single or double quotes
as string constants.
Beginning with version 6 dialect 3, InterBase interprets anything inside double quotes
as a delimited identifier. Anything inside single quotes is interpreted as a string
constant.
When InterBase servers version 6 or later detect that the client is dialect 1, they permit
client DML (data manipulation) statements to contain double quotes and they correctly
handle these as string constants. However, they do not permit double quotes in client
DDL (data definition) statements because that metadata would not be allowed in dialect
3. Version 6 servers all insist that string constants be delimited with single quotes when
clients create new metadata.

See Also

Features Available Only in Dialect 3 Databases

4.5. DATE, TIME, and TIMESTAMP Data Types

InterBase 6 and later dialect 3 replace the old InterBase DATE data type, which contains
both date and time information, with SQL-92 standard TIMESTAMP , DATE , and TIME data
types. The primary migration problem exists in the source code of application programs
that use the InterBase 5 DATE data type. In InterBase 6 and later, the DATE keyword
represents a date-only data type, while a Version 5 DATE represents a date-and-time data
type.

Columns and domains that are defined as DATE data type in InterBase 5 DATE appear as
TIMESTAMP columns when the database is restored in InterBase 6. However, a TIMESTAMP
data type has four decimal points of precision, while a Version 5 DATE data type has only
two decimal points of precision.

•
•
•

•
•

•

•

•

•

Migrating to InterBase

259

If you migrate your database to dialect 3 and you require only date or only time information
from a TIMESTAMP column, you can use ALTER COLUMN to change the data type to DATE
or TIME . These columns each take only four bytes, whereas TIMESTAMP and the InterBase
5 DATE columns each take eight bytes. If your TIMESTAMP column holds both date and
time information, you cannot change it to an InterBase 6 and later DATE or TIME column
using ALTER COLUMN , because ALTER COLUMN does not permit data loss. Dialect use also
enforces certain rules:

In dialect 1, only TIMESTAMP is available. TIMESTAMP is the equivalent of the DATE
data type in previous versions. When you back up an older database and restore it in
version 6 and later, all the DATE columns and domains are automatically restored as
TIMESTAMP . DATE and TIMESTAMP data types are both available and both mean the
same thing in dialect 1.
In dialect 3, TIMESTAMP functions as in dialect 1, but two additional data types are
available: DATE and TIME . These data types function as their names suggest: DATE
holds only date information and TIME holds only time.
In dialect 3, DATE and TIME columns require only four bytes of storage, while
TIMESTAMP columns require eight bytes.

The following example shows the differences between dialect 1 and dialect 3 clients when
date information is involved.

Example: CREATE TABLE table1 (fld1 DATE, fld2 TIME);

INSERT INTO table1 VALUES (CURRENT_DATE, CURRENT_TIME);

Using dialect 1 clients :

SELECT * FROM table1;
Statement failed, SQLCODE = -804
Dynamic SQL Error
-SQL error code = -804
-datatype unknown
-Client SQL dialect 1 does not support reference to TIME data type

SELECT fld1 FROM table1;
Statement failed, SQLCODE = -206
Dynamic SQL Error
-SQL error code = -206
-Column unknown
-FLD1
-Client SQL dialect 1 does not support reference to DATE data type

Using dialect 3 clients :

SELECT * FROM table1;
FLD1 FLD2
=========== =============
1999-06-25 11:32:30.0000
SELECT fld1 FROM table1;
FLD1
===========
1999-06-25

Example: CREATE TABLE table1 (fld1 TIMESTAMP) ;

INSERT INTO table1 (fld1) VALUES (CURRENT_TIMESTAMP);
SELECT * FROM table1;

In dialect 1 :

•

•

•

Migrating to InterBase

260

FLD1
===========
25-JUN-1999

In dialect 3 :

FLD1
=========================
1999-06-25 10:24:35.0000

Example: SELECT CAST (fld1 AS CHAR(5)) FROM table1;

In dialect 1 :

======
25-JU

In dialect 3 :

Statement failed, SQLCODE = -802
arithmetic exception, numeric overflow, or string truncation

4.5.1. Converting TIMESTAMP Columns to DATE or TIME

Once you have migrated a database to dialect 3, any columns that previously had the DATE
data type will have the TIMESTAMP data type. If you want to store that data in a DATE or
TIME column, follow these steps:

Use ALTER TABLE to create a new column of the desired type.
Insert the values from the original column into the new column:

UPDATE tablename SET new_field = CAST (old_field AS new_field);

Use ALTER TABLE to drop the original column.
Use ALTER TABLE … ALTER COLUMN to rename the new column.

4.5.2. Casting Date/time Data Types

InterBase 6 and later dialect 3 no longer allow the use of the CAST operator to remove the
date portion of a timestamp by casting the timestamp value to a character value. When you
cast a TIMESTAMP to a CHAR or CHAR in dialect 3, the destination type must be at least 24
characters in length or InterBase will report a string overflow exception. This is required by
the SQL3 standard.

You can use the CAST() function in SELECT statements to translate between date/time
data types and various character-based data types. The character data type must be at least
24 characters in length. You can, however, cast a TIMESTAMP to a DATE and then cast the
DATE to a CHAR of less than 24 characters. For example:

SELECT CAST (CAST (timestamp_col AS DATE) AS CHAR(10)) FROM table1;

It is not possible to cast a date/time data type to or from BLOB , SMALLINT , INTEGER ,
FLOAT , DOUBLE PRECISION , NUMERIC , or DECIMAL data types.

For more information, refer to “Using CAST() to convert dates and times” in the Embedded
SQL Guide.

1.
2.

3.
4.

Migrating to InterBase

261

http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

The table below outlines the results of casting to date/time data types:

Cast From
To

TIMESTAMP DATE TIME

CHAR (<n>)

CHARACTER (<n>)

CSTRING (<n>)

String must be in format

YYYY-MM-DD
HH:MM:SS.thousands

See below.
String must be in format

HH:MM:SS.thousands

TIMESTAMP Always succeeds Date portion of timestamp Time portion of timestamp

DATE
Always succeeds; time
portion of timestamp set
to 0:0:0.0000

Always succeeds Error

TIME
Always succeeds; date
portion of timestamp set
to current date

Error Always succeeds

Casting DATE to string results in YYYY-MM-DD where “MM” is a two-digit month. If the
result does not fit in the string variable, a string truncation exception is raised. In earlier
versions, this case results in DD-Mon-YYYY HH:mm:SS.hundreds where “Mon” was a 3-letter
English month abbreviation. Inability to fit in the string variable resulted in a silent
truncation.

Casting a string to a date now permits strings of the form:

'yyyy-mm-dd' 'yyyy/mm/dd' 'yyyy mm dd' 'yyyy:mm:dd' 'yyyy.mm.dd'

In all of the forms above, you can substitute a month name or 3-letter abbreviation in
English for the 2-digit numeric month. However, the order must always be 4-digit year, then
month, then day.

In previous versions of InterBase, you could enter date strings in a number of forms,
including ones that had only two digits for the year. Those forms are still available in
InterBase 6 and later. If you enter a date with only two digits for the year, InterBase uses its
“sliding window” algorithm to assign a century to the years.

The following forms were available in earlier versions of InterBase and are still permitted in
InterBase 6 and later:

'mm-dd-yy' 'mm-dd-yyyy' 'mm/dd/yy' 'mm/dd/yyyy'
'mm dd yy' 'mm dd yyyy' 'mm:dd:yy' 'mm:dd:yyyy'
'dd.mm.yy' 'dd.mm.yyyy'

If you write out the month name in English or use a three-character English abbreviation,
you can enter either the month or the day first. In the following examples, “xxx” stands for
either a whole month name or a three-letter abbreviation. All of the following forms are
acceptable:

'dd-xxx-yy' 'dd-xxx-yyyy' 'xxx-dd-yy' 'xxx-dd-yyyy'
'dd xxx yy' 'dd xxx yyyy' 'xxx dd yy' 'xxx dd yyyy'
'dd:xxx:yy' 'dd:xxx:yyyy' 'xxx:dd:yy' 'xxx:dd:yyyy'

Migrating to InterBase

262

For example, the following INSERT statements all insert the date “January 22, 1943”:

INSERT INTO t1 VALUES ('1943-01-22');
INSERT INTO t1 VALUES ('01/22/1943');
INSERT INTO t1 VALUES ('22.01.1943');
INSERT INTO t1 VALUES ('jan 22 1943');

The following statement would enter the date “January 22, 2043”:
INSERT INTO t1 VALUES ('01/22/43'); The table below outlines the results of casting
from date/time data types:

Cast From
To CHAR(<n>), CHARACTER (<n>) , or

CSTRING(<n>)

TIMESTAMP
Succeeds if <n> is 24 or more. Resulting string is in
format YYYY-MM-DD HH:MM:SS.thousands.

DATE
Succeeds if <n> is 10 or more. Resulting string is in the
format YYYY-MM-DD.

TIME
Succeeds if <n> is 13 or more. Resulting string is the
format HH:MM:SS.thousands.

4.5.3. Adding and Subtracting Datetime Data Types

The following table shows the result of adding and subtracting DATE , TIME , TIMESTAMP ,
and numeric values. “Numeric value” refers to any value that can be cast as an exact
numeric value by the database engine (for example, INTEGER , DECIMAL , or NUMERIC).

Operand1 Operator Operand2 Result

DATE + DATE Error

DATE + TIME
TIMESTAMP

(concatenation)

DATE + TIMESTAMP Error

DATE + Numeric value
DATE + number of days:

fractional part ignored

TIME + DATE
TIMESTAMP

(concatenation)

TIME + TIME Error

TIME + TIMESTAMP Error

TIME + Numeric value
TIME + number of

seconds: 24-hour modulo
arithmetic

Migrating to InterBase

263

Operand1 Operator Operand2 Result

TIMESTAMP + DATE Error

TIMESTAMP + TIME Error

TIMESTAMP + TIMESTAMP Error

TIMESTAMP + Numeric value

TIMESTAMP : DATE +
number of days;

TIME + fraction of day
converted to seconds

DATE – DATE
DECIMAL (9,0)

representing the number
of days

DATE – TIME Error

DATE – TIMESTAMP Error

DATE – Numeric value
DATE: number of days;
fractional part ignored

TIME – DATE Error

TIME – TIME
DECIMAL (9,4)

representing number of
seconds

TIME – TIMESTAMP Error

TIME – Numeric value
TIME : number of

seconds; 24-hour modulo
arithmetic

TIMESTAMP – DATE Error

TIMESTAMP – TIME Error

TIMESTAMP – TIMESTAMP
DECIMAL (18,9)

representing days and
fraction of day

TIMESTAMP – Numeric value

TIMESTAMP : DATE –
number of days;

TIME : fraction of day
converted to seconds

Migrating to InterBase

264

Note:
Numeric value + DATE , TIME , or TIMESTAMP is symmetric to DATE , TIME , or
TIMESTAMP + numeric value.

4.5.4. Using Date/time Data Types with Aggregate Functions

You can use the date/time data types with the MIN() , MAX() , COUNT() functions, the
DISTINCT argument to those functions, and the GROUP BY argument to the SELECT()
function. An attempt to use SUM() or AVG() with date/time data types returns an error.

4.5.5. Default Clauses

CURRENT_DATE , CURRENT_TIME , and CURRENT_TIMESTAMP can be specified as the default
clause for a domain or column definition.

4.5.6. Extracting Date and Time Information

The EXTRACT() function extracts date and time information from databases. In dialect 3,
the EXTRACT operator allows you to return different parts of a TIMESTAMP value. The
EXTRACT operator makes no distinction between dialects when formatting or returning the
information. EXTRACT() has the following syntax:

EXTRACT (<part> FROM <value>)

The value passed to the EXTRACT() expression must be DATE , TIME , or TIMESTAMP .
Extracting a part that doesn’t exist in a data type results in an error. For example:

EXTRACT (TIME FROM aTime)

A statement such as EXTRACT (YEAR from aTime) would fail.

The data type of EXTRACT() expressions depends on the specific part being extracted:

Extract
Resulting
data type

Representing

YEAR SMALLINT Year, range 0-5400

MONTH SMALLINT Month, range 1-12

DAY SMALLINT Day, range 1-31

HOUR SMALLINT Hour, range 1-23

MINUTE SMALLINT Minute, range 1-59

SECOND DECIMAL(6,4) Second, range 0-59.9999

WEEKDAY SMALLINT
Day of the week, range 0-6
(0 = Sunday, 1 = Monday, and so on)

Migrating to InterBase

265

Extract
Resulting
data type

Representing

YEARDAY SMALLINT Day of the year, range 1-366

SELECT EXTRACT (YEAR FROM timestamp_fld) FROM table_name;
=======
1999
SELECT EXTRACT (YEAR FROM timestamp_fld) FROM table_name;
=======
1999
SELECT EXTRACT (MONTH FROM timestamp_fld) FROM table_name;
=======
6
SELECT EXTRACT (DAY FROM timestamp_fld) FROM table_name;
=======
25
SELECT EXTRACT (MINUTE FROM timestamp_fld) FROM table_name;
=======
24
SELECT EXTRACT (SECOND FROM timestamp_fld) FROM table_name;
============
35.0000
SELECT EXTRACT (WEEKDAY FROM timestamp_fld) FROM table_name;
=======
5
SELECT EXTRACT (YEARDAY FROM timestamp_fld) FROM table_name;
=======
175
SELECT EXTRACT (MONTH FROM timestamp_fld) ||
'-' || EXTRACT (DAY FROM timestamp_fld) ||
'-' || EXTRACT (YEAR FROM timestamp_fld) FROM table_name;
====================
6-25-1999

4.6. DECIMAL and NUMERIC Data Types

The following sections highlight some of the changes introduced by InterBase 6 and later
when dealing with numeric values. They need to be considered carefully when migrating
your database from dialect 1 to dialect 3. When considering these issues, keep in mind that
in order to make use of the new functionality, the statements must be created with a client
dialect setting of 3.

The most notable migration issues involve using the division operator and the AVG()
function (which also implies division) with exact numeric operands. Exact numeric refers to
any of the following data types: INTEGER , SMALLINT , DECIMAL , NUMERIC . NUMERIC and
DECIMAL data types that have a precision greater than 9 are called “large exact numerics”
in this discussion. Large exact numerics are stored as DOUBLE PRECISION in dialect 1 and
as INT64 in columns created in dialect 3.

Important:
When you migrate an exact numeric column to dialect 3 it is still stored as
DOUBLE PRECISION . The migration does not change the way the data is stored because
INT64 cannot store the whole range that DOUBLE PRECISION can store. There is
potential data loss, so InterBase does not permit direct conversion. If you decide that you
want your data stored as INT64 , you must create a new column and copy the data. Only
exact numeric columns that are created in dialect 3 are stored as INT64 . The details of
the process are provided in Migrating Databases to Dialect 3.

You might or might not want to change exact numeric columns to INT64 when you migrate
to dialect 3. See Do you really need to migrate your NUMERIC and DECIMAL Data Types? for
a discussion of issues.

Migrating to InterBase

266

Dialect 3 features and changes include

Support for 64 bit integers.
Overflow protection. In dialect 1, if the product of two integers was bigger than 31 bits,
the product was returned modulo 232. In dialect 3, the true result is returned as a 64-bit
integer. Further, if the product, sum, difference, or quotient of two exact numeric
values is bigger than 63 bits, InterBase issues an arithmetic overflow error message and
terminates the operation. (Previous versions sometimes returned the least-significant
portion of the true result.). The stored procedure bignum below demonstrates this.

Operations involving division return an exact numeric if both operands are exact numerics
in dialect 3. When the same operation is performed in dialect 1, the result is a
DOUBLE PRECISION .

To obtain a DOUBLE PRECISION quotient of two exact numeric operands in dialect 3,
explicitly cast one of the operands to DOUBLE PRECISION before performing the division:

CREATE TABLE table 1 (n1 INTEGER, n2 INTEGER);
INSERT INTO table 1 (n1, n2) VALUES (2, 3);
SELECT n1 / n2 FROM table1;
======================
0

Similarly, to obtain a double precision value when averaging an exact numeric column, you
must cast the argument to double precision before the average is calculated:

SELECT AVG(CAST(int_col AS DOUBLE PRECISION))FROM table1;

4.7. Compiled Objects

The behavior of a compiled object such as a stored procedure, trigger, check constraint, or
default value depends on the dialect setting of the client at the time the object is compiled.
Once compiled and validated by the server the object is stored as part of the database and
its behavior is constant regardless of the dialect of the client that calls it.

Example: Consider the following procedure:

CREATE PROCEDURE exact1 (a INTEGER, b INTEGER) RETURNS (c INTEGER)
AS BEGIN
c = a / b;
EXIT;
END;

When created by a dialect 1 client:

EXECUTE PROCEDURE exact 1 returns 1 when executed by either a dialect 1 or dialect 3
client.

When created by a dialect 3 client:

EXECUTE PROCEDURE exact 1 returns 0 when executed by either a dialect 1 or dialect 3
client.

Example: Consider the following procedure:

CREATE PROCEDURE bignum (a INTEGER, b INTEGER) RETURNS (c NUMERIC(18,0)
AS BEGIN
c = a * b;

•
•

Migrating to InterBase

267

EXIT;
END;

When created by a dialect 1 client:

EXECUTE PROCEDURE bignum (65535, 65535) returns –131071.0000 when executed by
either a dialect 1 or dialect 3 client.

When created by a dialect 3 client:

EXECUTE PROCEDURE bignum (65535, 65535) returns *ERROR* can’t access INT64
when executed by a dialect 1 client.

EXECUTE PROCEDURE bignum (65535, 65535) returns 4294836225 when executed by a
dialect 3 client.

4.8. Generators

InterBase 6 and later generators return a 64-bit value, and only wrap around after 264

invocations (assuming an increment of 1), rather than after 232 as in InterBase 5.
Applications should use an ISC_INT64 variable to hold the value returned by a generator.
A client using dialect 1 receives only the least significant 32 bits of the updated generator
value, but the entire 64-bit value is incremented by the engine even when returning a 32-bit
value to a client that uses dialect 1. If your database was using an INTEGER field for holding
generator values, you need to recreate the field so that it can hold 64-bit integer values.

4.9. Miscellaneous Issues

IN clauses have a limit of 1500 elements

Resolution If you have more than 1500 elements, place the values in a temporary table and
use a SELECT subquery in place of the list elements.

Arithmetic operations on character fields are no longer permitted in client dialect 3.

Resolution Explicitly cast the information before performing arithmetic calculations.

Using isql to select from a TIMESTAMP column displays all information when client
dialect is 3.

Resolution In versions of InterBase prior to 6.0, the time portion of a timestamp displayed
only if SET TIME ON was in effect. In 6.0 and later client dialect 3, the time portion of the
timestamp always displays.

5. Migrating Servers and Databases

You can migrate your servers and applications to InterBase 6 at and later different times.
They are separate migrations. Bear the following issues in mind as you plan your migration:

Older clients can still access databases that have been migrated to InterBase 6 and
later. You must be aware, however, that they cannot access new data types or data
stored as INT64, and they always handle double quoted material as strings.
InterBase strongly recommends that you establish a migration testbed to check your
migration procedures before migrating production servers and databases. The testbed
does not need to be on the same platform as the production clients and servers that
you are migrating.

The migration path varies somewhat depending on whether you are replacing an existing
server or installing a new server and moving old databases there. Upgrading an existing

•

•

•

•

•

Migrating to InterBase

268

server costs less in money, but may cost more in time and effort. The server and all the
databases you migrate with it are unavailable during the upgrade. If you have hardware
available for a new InterBase 6 and later server, the migration can be done in parallel,
without interrupting service more than very briefly. This option also offers an easier return
path if problems arise with the migration.

5.1. “In-place” Server Migration

This section describes the recommended steps for replacing an InterBase 5 server with an
InterBase 6 server.

Shut down each database before backup to ensure that no transactions are in
progress.
Back up all databases on the version 5 server. Include isc4.ib if you want to
preserve your configured user IDs.
As a precaution, you should validate your databases before backing up and then
restore each database to ensure that the backup file is valid.
Shut down the version 5 server. If your current server is a Superserver, you are
not required to uninstall the server if you intend to install over it, although
uninstalling is always good practice. You cannot have multiple versions of
InterBase on the same machine. If your current server is Classic, you must
uninstall before installing InterBase 6.
Install the version 6 server.

Note:
The install does not overwrite isc4.ib or isc4.gbk .

Start the new server.
On UNIX/Linux platforms, issue the following command to start the InterBase
Superserver as user “InterBase”:
echo "/usr/InterBase/bin/ibmgr -start -forever" | su InterBase
Note that InterBase can run only as user “root” or user “InterBase” on UNIX.

To restore the list of valid users, follow these steps:
Restore isc4.gbk to isc4_old.ib .
Shut down the server.
Copy isc4_old.ib over isc4.gdb .
Copy isc4_old.gbk over isc4.gbk .
Restart the server.

Delete each older database file. Restore each database from its backup file. This
process creates databases in the current version. For databases that were 5.x or
older when they were backed up, the dialect is 1. For later databases, the dialect is
preserved.
Perform a full validation of each database.

After performing these steps, you have an InterBase 6 and later server and InterBase 6 and
later, dialect 1 databases. See About InterBase 6 and Later, Dialect 1 Databases to
understand more about these databases. See Migrating Databases to Dialect 3 for a
description of how to migrate databases to dialect 3. See Migrating Clients for an
introduction to client migration.

5.2. Migrating to a New Server

This section describes the recommended steps for installing InterBase 6 or newer as a new
server and then migrating databases from a previous InterBase 5 or older installation. The
process differs only slightly from an in-line install.

1.

2.

3.

4.

5.
•

6.
1.
2.
3.
4.
5.

7.

8.

Migrating to InterBase

269

In the following steps, older refers to databases that are on a version 5 or older InterBase
server. Newer and new refer to an InterBase version 6 or newer server.

Shut down the older databases before backup to ensure that no transactions are
in progress.
Back up all databases that are on the older server. Include isc4.ib if you want to
preserve your configured user IDs.
Install the new server.
Start the new server.

On UNIX/Linux platforms, issue the following command to start the InterBase
Superserver as user “InterBase”:

echo "/usr/{{Product}}/bin/ibmgr -start -forever" | su {{Product}}

Note that InterBase can run only as user “root” or user “InterBase” on UNIX.
Copy the database backup files to the new server and restore each database from
its backup file. This process creates databases that have the current version, ODS,
and dialect. (Note: In later versions of InterBase, it creates the appropriate current
ODS, but always dialect 1.)
Save your backup files until your migration to dialect 3 is complete.
To restore the list of valid users, follow these steps:

Restore isc4.gbk to isc4_old.ib
Shut down the server.
Copy isc4_old.ib over isc4.gdb .
Copy isc4_old.gbk over isc4.gbk .
Restart the server.

Perform a full validation of each database on the new server.

After performing these steps, you have an InterBase 6 and later server and InterBase 6 and
later, dialect 1 databases. See About InterBase 6 and Later, Dialect 1 Databases to
understand more about these databases. See Migrating Databases to Dialect 3 for a
description of how to migrate databases to dialect 3. See Migrating Clients for an
introduction to client migration.

5.3. About InterBase 6 and Later, Dialect 1 Databases

When you back up a version 5 database and restore it in InterBase 6, what do you have?

A version 5 client can access everything in the database with no further changes.
If there are object names – column or table names, for instance – that include any of
the 17 new keywords, you must change these names in order to access these objects
with a version 6 dialect 1 client. The new ALTER COLUMN clause of ALTER TABLE
makes it easy to implement column name changes.

Version 5 clients can still access the columns.
Dialect 3 clients can access these columns as long as they delimit them with double
quotes.

The 17 new keywords are reserved words. However, the new data types TIME and
DATE are not available to use as data types. DATE columns have the old meaning—
both date and time. The new meaning of DATE – date only – is available only in dialect
3.
All columns that were previously DATE data type are now TIMESTAMP data type.
TIMESTAMP contains exactly the information that DATE did in previous versions.
Exact numeric columns – those that have a DECIMAL or NUMERIC data type with
precision greater than 9 – are still stored as DOUBLE PRECISION data types. All

1.

2.

3.
4.

•

5.

6.
1.
2.
3.
4.
5.

7.

•
•

•
•

•

•

•

Migrating to InterBase

270

arithmetic algorithms that worked before on these columns still work as before. It is not
possible to store data as INT64 in dialect 1.

6. Migrating Databases to Dialect 3

There are four major areas of concern when migrating a database from dialect 1 to dialect
3:

Double quotes
The DATE data type
Large exact numerics (for purposes of this discussion, NUMERIC and DECIMAL data
types that have a precision greater than 9)
Keywords

The process varies somewhat depending on whether you can create an application to move
data from your original database to an empty dialect 3 database. If you do not have access
to such a utility, you need to perform an in-place migration of the original database.

6.1. Overview

In either method, you begin by extracting the metadata from your database, examining it
for problem areas, and fixing the problems.

If you are performing an in-place migration, you copy corrected SQL statements from
the metadata file into a new script file, modify them, and run the script against the
original database. Then you set the database to dialect 3. There are some final steps to
take in the dialect 3 database to store old data as INT64 .
If you have a utility for moving data from the old database to a newly created empty
database, you use the modified metadata file to create a new dialect 3 database and
use the utility to transfer data from the old database to the new.

In both cases, you must make changes to the new database to accommodate migrated
columns that must be stored as INT64 and column constraints and defaults that originally
contained double quotes.

The two methods are described below.

6.2. Method One: In-place Migration

If you have not migrated the database to version 6 and later, dialect 1, do so first.
Back up the database again.
Extract the metadata from the database using isql -x . If you are migrating
legacy databases that contain GDML, see Migrating Older Databases.
Prepare an empty text file to use as a script file. As you fix data structures in the
metadata files, you will copy them to this file to create a new script.

Note:
You could also proceed by removing unchanged SQL statements from the
original metadata file, but this is more likely to result in problems from
statements that were left in error. Embarcadero recommends creating a new
script file that contains only the statements that need to be run against the
original database.

For the remaining steps, use a text editor to examine and modify the metadata and
script files. Place copied statements into the new script file in the same order they
occur in the metadata file to avoid dependency errors.

•
•
•

•

•

•

1.

2.

3.

Migrating to InterBase

271

Search for each instance of double quotes in the extracted metadata file. These
can occur in triggers, stored procedures, views, domains, table column defaults,
and constraints. Change each double quote that delimits a string to a single quote.
Make a note of any tables that have column-level constraints or column defaults in
double quotes.
Copy each changed statement to your script file, but do not copy ALTER TABLE
statements whose only double quotes are in column-level constraints or column
defaults.

Important:
When copying trigger or stored procedure code, be sure to include any
associated SET TERM statements.

Quoted quotes If there is any chance that you have single or double quotes inside
of strings, you must search and replace on a case-by-case basis to avoid
inappropriate changes. The handling of quotation marks within strings is as
follows:

String: In "peg" mode

Double-quoted: "In ""peg"" mode"

Single-quoted: 'In "peg" mode'

String: O'Reilly

Double-quoted: "O'Reilly"

Single-quoted: 'OReilly'

In the new script file, search for occurrences of the TIMESTAMP data type. In most
cases, these were DATE data types in your pre-6 database. For each one, decide
whether you want it to be TIME , TIMESTAMP , or DATE in your dialect 3 database.
Change it as needed.
Repeat step 5 in the metadata file. Copy each changed statement to your new
script file.
In the new script file, search for occurrences of reserved words that are used as
object names and enclose them in double quotes; that makes them delimited
identifiers.
Repeat step 7 in the metadata file. Copy each changed statement to your new
script file.
In each of the two files, search for each instance of a DECIMAL or NUMERIC data
type with a precision greater than 9. Consider whether or not you want data
stored in that column or with that domain to be stored as DOUBLE PRECISION or
INT64 . See Do you really need to migrate your NUMERIC and DECIMAL Data
Types? for a discussion of issues. For occurrences that should be stored as
DOUBLE PRECISION , change the data type to that. Leave occurrences that you
want to be stored as INT64 alone for now. Copy each changed statement that
occurs in the metadata file to your new script file.

Perform the following steps in your new script file:

Locate each CREATE TRIGGER and CREATE DOMAIN statement and change it to
ALTER TRIGGER or ALTER DOMAIN as appropriate.

4.

5.

6.

7.

8.

9.

10.

Migrating to InterBase

272

Locate each CREATE VIEW statement. Precede it by a corresponding DROP
statement. For example, if you have a CREATE VIEW <foo> statement, put a
DROP VIEW <foo> statement right before it, so that when you run this script
against your database, each view first gets dropped and then re-created.
If you have any ALTER TABLE statements that you copied because they contain
named table-level constraints, modify the statement so that it does nothing except
drop the named constraint and then add the constraint back with the single
quotes.
Check that stored procedure statements are ALTER PROCEDURE statements. This
should already be the case.
At the beginning of the script, put a CONNECT statement that connects to the
original database that you are migrating.
Make sure your database is backed up and run your script against the database.
Use gfix to change the database dialect to 3.
gfix -sql_dialect 3 <database.ib>

Note:
To run gfix against a database, you must attach as either the database owner
or SYSDBA .

At this point, DECIMAL and NUMERIC columns with a precision greater than 9 are
still stored as DOUBLE PRECISION . To store the data as INT64 , read Do you
really need to migrate your NUMERIC and DECIMAL Data Types? and, if necessary,
follow the steps in Migrating NUMERIC and DECIMAL Data Types.
Validate the database using either IBConsole or gfix .

That’s it. You have got a dialect 3 database. There is a little more work to do if you want your
NUMERIC and DECIMAL columns with a precision of greater than 9 to be stored as INT64 .
At this point, they are still stored as DOUBLE PRECISION . To decide whether you want to
change the way data is stored in these columns, read Do you really need to migrate your
NUMERIC and DECIMAL Data Types? and Migrating NUMERIC and DECIMAL Data Types.

In addition, there are some optional steps you can take that are described in the following
sections, Column Defaults and Column Constraints and Unnamed Table Constraints.

Important:
If you ever extract metadata from the dialect 3 database that you created using the steps
above, and if you plan to use that metadata to create a new database, check to see if the
extracted metadata contains double quotes delimiting string constants in column
defaults, column constraints, or unnamed table constraints. Change any such
occurrences to single quotes before using the metadata to create the new database.

6.2.1. Column Defaults and Column Constraints

The steps on the parent page permitted you to retain double quoted string constants in
column defaults, column constraints, and unnamed table constraints. This is possible
because, once created, InterBase stores them in binary form.

Following the steps above creates a dialect 3 database that is fully functional, but if it
contains double quoted string constants in column defaults, column constraints, or
unnamed column constraints, inconsistencies are visible when you SHOW metadata or
extract it. You can choose to resolve these inconsistencies by following these steps:

Back up the database.
Examine the metadata to detect each occurrence of a column default or column
constraint that uses double quotes.

11.

12.

13.

14.

15.
16.

17.

18.

1.
2.

Migrating to InterBase

273

For each affected column, use the ALTER COLUMN clause of the ALTER TABLE
statement to give the column a temporary name. If column position is likely to be
an issue with any of your clients, change the position as well.
Create a new column with the desired data type, giving it the original column
name and position.
Use UPDATE to copy the data from old column to the new column:

UPDATE table_name
 SET new_col = old_col;

Drop the old column.

6.2.2. Unnamed Table Constraints

Read the first two paragraphs under Column Defaults and Column Constraints to
understand why you do not always need to change constraints with double quotes to single-
quoted form, and why you might want to change them.

To bring unnamed table constraints that contain double quotes into compliance with the
dialect 3 standard, follow these steps:

Back up the database.
Examine the metadata to detect each occurrence of an unnamed table constraint
that uses double quotes.
For each occurrence, use SHOW TABLE to see the name that InterBase has
assigned to the constraint.
Use ALTER TABLE to drop the old constraint, using the name given in the
SHOW TABLE output and add a new constraint. For ease in future handling, give
the constraint a name.
If SHOW TABLE shows that InterBase stores the unnamed constraint as
“ INTEG_2 ”, then issue the following statement to change the constraint:

ALTER TABLE foo
 DROP CONSTRAINT INTEG_2,
 ADD CONSTRAINT new_name
 CHECK (col_name IN ('val1', 'val2', 'val3'));

6.2.3. About NUMERIC and DECIMAL Data Types

If you back up a NUMERIC or DECIMAL column with a precision greater than 9 (for example,
NUMERIC (12,2)) in an InterBase 5 or earlier database and restore the database as InterBase
6 and later, the column is still stored as DOUBLE PRECISION . Because InterBase does not
allow data type conversions that could potentially result in data loss, you cannot use the
ALTER COLUMN statement to change the column data type from DOUBLE PRECISION to
INT64 . To migrate a DOUBLE PRECISION column to an INT64 column, you must create a
new INT64 column and copy the contents of the older column into it.

In InterBase 6 and later dialect 3, when you create a NUMERIC or DECIMAL column with a
precision of greater than 9, data in it is automatically stored as an INT64 exact numeric.

If you want NUMERIC and DECIMAL data types with a precision greater than 9 to be stored
as exact numerics, you must take some extra steps after migrating to dialect 3. The
following sections tell you how to decide whether you really need to take these steps and
how to perform them if you decide you want the exact numerics.

3.

4.

5.

6.

1.
2.

3.

4.

Migrating to InterBase

274

Do you really need to migrate your NUMERIC and DECIMAL Data Types?

As you migrate your databases to dialect 3, consider the following questions about columns
defined with NUMERIC and DECIMAL data types:

Is the precision less than 10? If so, there is no issue. You can migrate without taking any
action and there will be no change in the database and no effect on clients.
For NUMERIC and DECIMAL columns with precision greater than 9, is
DOUBLE PRECISION an appropriate way to store your data?

In many cases, the answer is “yes.” If you want to continue to store your data as
DOUBLE PRECISION , change the data type of the column to DOUBLE PRECISION either
before or after migrating your database to dialect 3. This does not change any
functionality in dialect 3, but it brings the declaration into line with the storage mode. In
a dialect 3 database, newly-created columns of this type are stored as INT64, but
migrated columns are still stored as DOUBLE PRECISION . Changing the declaration
avoids confusion.
DOUBLE PRECISION may not be appropriate or desirable for financial applications and
others that are sensitive to rounding errors. In this case, you need to take steps to
migrate your column so that it is stored as INT64 in dialect 3. As you make this
decision, remember that INT64 does not store the same range as DOUBLE PRECISION .
Check whether you will experience data loss and whether this is acceptable.

Migrating NUMERIC and DECIMAL Data Types

Read Do you really need to migrate your NUMERIC and DECIMAL Data Types? to decide
whether you have columns in a dialect 1 database that would be best stored as 64-bit
integers in a dialect 3 database. If this is the case, follow these steps for each column:

Migrate your database to InterBase 6 and later as described in Method One: In-
place Migration.
Use the ALTER COLUMN clause of the ALTER DATABASE statement to change the
name of each affected column to something different from its original name. If
column position is going to be an issue with any of your clients, use
ALTER COLUMN to change the positions as well.
Create a new column for each one that you are migrating. Use the original column
names and if necessary, positions. Declare each one as a DECIMAL or NUMERIC
with precision greater than 9.
Use UPDATE to copy the data from each old column to its corresponding new
column:

UPDATE tablename
SET new_col = old_col;

Check that your data has been successfully copied to the new columns and drop
the old columns.

6.3. Method Two: Migrating to a New Database

If you can create a data transfer utility that copies data between databases, the process of
migrating a database to dialect 3 is considerably simplified.

•

•

•

•

1.

2.

3.

4.

5.

Migrating to InterBase

275

Overview Extract the metadata from your database, examine it for problem areas, and fix
the problems. Use the modified metadata file to create a new dialect 3 database and use an
application to transfer data from the old database to the new.

If you have not migrated the database to version 6, dialect 1, do so first. Back up
the database again.
Extract the metadata from the database using isql . If you are migrating a
database that contains data structures created with GDML, see Migrating Older
Databases.

For the following steps, use a text editor to examine and modify the metadata file.

Search for each occurrence of the TIMESTAMP data type. In most cases, these
were DATE data types in your pre-6 database. Decide whether you want it to be
TIME , TIMESTAMP , or DATE in your dialect 3 database. Change it as needed.
Find all instances of reserved words that are used as object names and enclose
them in double quotes to make them delimited identifiers.
Search for each instance of double quotes in the extracted metadata file. These
can occur in triggers, stored procedures, views, domains, exceptions, table column
defaults, and constraints. Change each double quote to a single quote.
Search for each instance of a DECIMAL or NUMERIC data type with a precision
greater than 9. Consider whether or not you want that data stored as
DOUBLE PRECISION or INT64 . See Do you really need to migrate your NUMERIC
and DECIMAL Data Types? for a discussion of issues. For occurrences that should
be stored as DOUBLE PRECISION , change the data type to that. Leave
occurrences that you want stored as INT64 alone for now.
At the beginning of the file, enter SET SQL DIALECT 3 . On the next line,
uncomment the CREATE DATABASE statement and edit it as necessary to create a
new database.
Run the metadata file as a script to create a new database.
Use your data transfer utility to copy data from the old database to the new
dialect 3 database. In the case of a large database, allow significant time for this.
Validate the database using gfix .
At this point, DECIMAL and NUMERIC columns with a precision greater than 9 are
still stored as DOUBLE PRECISION . To store the data as INT64 , read Do you
really need to migrate your NUMERIC and DECIMAL Data Types? and, if necessary,
follow the steps in Migrating NUMERIC and DECIMAL Data Types.

6.4. Migrating Older Databases

If you have legacy databases in which some data structures were created with GDML, you
may need to extract metadata in a slightly different way.

Try extracting metadata as described in Step 2 on page Method One: In-place
Migration and examine it to see if all tables and other DDL structures are present.
If they are not, delete the metadata file and extract using the -a switch instead of
the -x switch. This extracts objects created in GDML.
You may have to change some of the code to SQL form. For example, the following
domain definition

CREATE DOMAIN NO_INIT_FLAG AS SMALLINT
 (no_init_flag = 1 or
 no_init_flag = 0 or
 no_init_flag missing);

needs to be translated to:

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.
11.

1.

2.

Migrating to InterBase

276

CREATE DOMAIN NO_INIT_FLAG AS SMALLINT
 CHECK (VALUE = 1 OR VALUE = 0 OR VALUE IS NULL);

Some code may be commented out. For example:

CREATE TABLE BOILER_PLATE (BOILER_PLATE_NAME NAME,
DATE DATE,
CREATED_DATE COMPUTED BY /* Date */);

needs to be changed to:

CREATE TABLE BOILER_PLATE (BOILER_PLATE_NAME NAME,
"DATE" DATE,
CREATED_DATE COMPUTED BY "DATE");

7. Migrating Clients

It is good practice to recompile and relink the application and make note of field names,
data type use, and so on in the new application. When you recompile, state the dialect
explicitly:

 SET SQL DIALECT n;

Important:
If you have databases that use any of the new 2020 keywords as object identifiers and
you are not migrating those databases to dialect 3, you might consider not migrating any
older version clients. If you migrate them to 2020 dialect 1, you lose the ability to access
those keyword columns. See InterBase Keywords.

When you recompile an existing gpre client, you must recompile it with the
gpre -sql_dialect n switch.

There are several paths that allow you to create dialect 3 clients that access all new
InterBase features:

In Delphi, make calls to functions in the InterBase Express (IBX) package.
To write embedded SQL applications that address all InterBase 2020 dialect 3
functionality, compile them using gpre -sql_dialect 3 .

Client How to migrate

Older applications such as InterBase version 5
applications

Dialect is 1; there is no way to change the dialect.
A version 5 client application becomes version 6
dialect 1 client whenever the InterBase 2020 client is
installed on the machine with the client.

isql

Issue the following command-line option:

-sql_dialect n

Or issue this command:

SET SQL DIALECT n;

3.

•
•

•
•

•

•

Migrating to InterBase

277

http://docwiki.embarcadero.com/InterBase/2020/en/InterBase_Keywords

Client How to migrate

GPRE

Issue the following command line option:

-sql_dialect n

Or issue this command:

EXEC SQL SET SQL DIALECT n;

BDE
All applications use SQL dialect 1. To access InterBase
dialect 3 features from Delphi, use the IBX
components.

InterClient

InterBase 6: All applications use SQL dialect 1.

InterBase 7 introduced InterClient 3, which is a dialect
3 client.

Direct API calls

When you call
isc_dsql_execute_immediate() ,

isc_dsql_exec_immed2() or
, isc_dsql_prepare() , set the dialect parameter to

the desired dialect value: 1 or 3.

8. Migrating Data from Other DBMS Products

If you have a large amount of data in another DBMS such as Paradox, the most efficient way
to bring the data into InterBase is to export the data from the original DBMS into InterBase
external file format. (See the Data Definition Guide for more information about InterBase
external files.) Then insert the data from the external files into the internal tables. It is best
not to have any constraints on new internal tables; you can validate the database more
easily once the data is in InterBase. If constraints do exist, you will need triggers to massage
the incoming data.

•

•

Migrating to InterBase

278

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

InterBase Limits

This appendix defines the limits of a number of InterBase characteristics. The values the
following table lists are design limits, and in most cases are further restricted by finite
resource restrictions in the operating system or computer hardware.

1. Various InterBase Limits

Characteristic Value

Maximum number of clients connected to one server

There is no single number for the maximum number of
clients the InterBase server can serve – it depends on a
combination of factors including capability of the
operating system, limitations of the hardware, and the
demands that each client puts on the server.
Applications that engage in high levels of contention or
that perform complex or high-volume operations could
cause the practical number of clients to be fewer. In
applications that do not generate much contention,
InterBase can support a large number of users, where
“large” is not well-defined.

Maximum database size

No limit is imposed by InterBase; maximum size is
defined by the operating system.

Limit depends on database page size:

1KB page size: largest DB is 2TB
2KB page size: largest DB is 4TB
4KB page size: largest DB is 8TB
8KB page size: largest DB is 16TB
16KB page size: largest DB is 32TB

Limits for a database with 254 secondary tablespaces.

1KB page size: largest DB is 510TB
2KB page size: largest DB is 1PB
4KB page size: largest DB is 2PB
8KB page size: largest DB is 4PB
16KB page size: largest DB is 8PB

Maximum number of tablespaces
The maximum number of tablespaces is 254, not
including the PRIMARY tablespace contained by the
main database file(s).

Maximum number of files
per database

By design, 32,767 + 254(1 file per secondary
tablespace) , because we use a signed 16-bit integer.
Shadow files count toward this limit.

This is a design parameter of InterBase, but most
operating systems have a much lower limit on the
number of files that a single process can have open
simultaneously. In some cases, the OS provides a
means to raise this limit. Refer to your OS
documentation for the default open files limit, and the
means to raise this limit.

•
•
•
•
•

•
•
•
•
•

•

InterBase Limits

279

Characteristic Value

Maximum number of cache pages per database

750,000. Not all database page sizes will be able to
accommodate this limit in a 32-bit address space.
When applying a large cache, other considerations
must be taken into account such as the number of
connections, statements or other database using
memory at the same time. A large cache size will
depend on whether a 32-bit executable is running on a
64-bit OS or how a 32-bit OS has been configured.

This number depends on system memory, OS,
InterBase version and DB page size:

750,000 pages for 32-bit InterBase
75,000,000 pages for 64-bit InterBase

Maximum number of databases open in one
transaction

No restriction. The parameters in a transaction
parameter buffer comprise a linked list, so there is no
limit except that imposed by system resources.

Maximum number of tables
per database

32,640

Maximum table size

Limit depends on database page size. Note that the
total size for all tables cannot exceed maximum
database size.

1KB page size: largest table is 2TB
2KB page size: largest table is 4TB
4KB page size: largest table is 8TB
8KB page size: largest table is 16TB
16KB page size: largest table is 32TB

Maximum versions per table
255; then no more metadata changes until the
database has been backed up and restored.

Maximum row size

64KB. Each Blob and array contributes eight bytes to
this limit in the form of their Blob handle.

Systems tables (tables maintained by the InterBase
engine for system data) have a row size limit of 128KB.

Maximum number of rows and columns per table

By design, 264 rows, are enumerated with a 64-bit
unsigned integer per table, current implementation

limits the numbe rof rows to 240. Number of columns
in a row depends on data types used. One row can be
64K. For example, you can define 16,384 columns of
type INTEGER (four bytes each) in one table.

Depends on row characteristics and compression, but
as many rows as can be stored in maximum table size.
The highest row number is 2**38 - 1 (274,877,906,943).

Maximum number of indexes per table

It is possible to create 255 indexes on a single table in
InterBase.

A larger DB page size always enables more index
definitions than smaller DB page sizes. If your DB page
size is not sufficient, you will receive the error “cannot
add index, index root page is full.”

•
•

•
•
•
•
•

InterBase Limits

280

Characteristic Value

Maximum number of indexes per database

By design, 232, because you can create 216 tables per

database, and each table can have 216 indexes.

Maximum number of tables x Maximum number of
indexes per table
32,640 x 64 = 2,089,960

Maximum index key size

With the ODS 15 databases the maximum index key
size limit is increased. Now larger column data can use
this for both single-byte character sets and multi-byte
(such as UTF8) columns.

Because InterBase supports UTF8 and multiple other
multi-byte character sets, the limit has been increased.
For example, a single-column key using 4-byte UTF8
character would calculate to 1020/4 = 254 UTF8
characters with a 4KB page size.

ODS 15 and above databases automatically allow
index definitions where the underlying key size is
now a factor of the database page size. An index key
can now be up to 4 bytes less than 1/4th the page
size.
By default, InterBase databases are created with a
4KB page size. This can be overridden up to 16KB
page size by the database developer.
The 4KB page size database would allow indexes that
can accommodate 1020 bytes per key.
A 16KB page size can accommodate a 4092 bytes per
key and so on.

Caution: Databases created with engines enabled with
this functionality cannot be moved back to older
versions of InterBase.

Also a database restore to a smaller page size will fail if
indexes with large key size cannot fit within the limit
specified above.

No user interface or actions are required by the user to
enable this functionality. Each time a database restore
is performed, the indices are recreated.

Only ODS 15 and later databases have support for
larger index keys. If you want to use this facility,
restore your database to ODS 15. Other indices that
use a smaller size than 252 bytes continue to have the
same on-disk storage without any penalty.

Note that multibyte character sets must fit within the
key by counting bytes, not by counting characters.

It is good practice to keep index keys as small as
possible. This limits the depth of indexes and increases
their efficiency.

Maximum number of events
per stored procedure

No restriction by design, but there is a practical limit,
given that there is a limit on the length of code in a
stored procedure or trigger (see below).

Maximum stored procedure
or trigger code size

48KB of BLR , the bytecode language compiled from
stored procedure or trigger language.

•

•

•

•

InterBase Limits

281

Characteristic Value

Maximum Blob size

The size of the largest single Blob depends on the
database page size:
1KB page size: largest Blob is 64MB
2KB page size: largest Blob is 512MB
4KB page size: largest Blob is 4GB
8KB page size: largest Blob is 32GB
16KB page size: largest Blob is 256GB

A Blob is a stream of many segments. The maximum
Blob segment size is 64KB.

Maximum tables in a JOIN

No restriction by design, but the task of joining tables
is exponential in relation to number of tables in the
join.

The largest practical number of tables in a JOIN is
about 16, but experiment with your application and a
realistic volume of data to find the most complex join
that has acceptable performance.

Maximum levels of nested queries

There is no restriction by design.

The practical limit depends on the type of queries you
nest. Experiment with your application and a realistic
volume of data to find the deepest nested query that
has acceptable performance.

Maximum number of columns per one composite
index

16

Levels of nesting
per stored procedure or trigger

750 on Windows platforms
1000 for UNIX platforms

Maximum size of key
in SORT clause 32 KB

Maximum size of external table file
64-bit file offset allows up to 16 Exabytes of
information.

Range of date values January 1, 100 a.d. to February 29, 32768 a.d.

Transaction Limits

Databases with ODS <=15 need to be backed up and
restored before they hit the 2 Billion transaction ID
limit.
Databases with ODS >=16 can continue to be online
beyond 2 billion transactions since they support 64-
bit Transaction ID. A benefit of this is you can have
your databases online to service your applications
closer to a 24/7 scenario without having to backup/
restore due to this earlier 32-bit limit.

Maximum number of generators per database

The maximum number of generators in a database is
32,767. However, the number of user defined
generators is lower because system tables use some
generator IDs for internal use from the same ID
namespace.

•
•

•

•

•

InterBase Limits

282

	Introduction to Operations
	Who Should Use this Guide
	Topics Covered in this Guide
	System Requirements and Server Sizing
	Primary InterBase Features
	SQL SUPPORT
	Multiuser Database Access
	Transaction Management
	Multigenerational Architecture
	Optimistic Row-level Locking
	Database Administration
	Managing Server Security
	Backing Up and Restoring Databases
	Maintaining a Database
	Viewing Statistics

	About InterBase SuperServer Architecture
	Overview of Command-line Tools
	isql
	gbak
	gfix
	gsec
	gstat
	iblockpr (gds_lock_print)
	ibmgr

	Licensing (Operations Guide)
	InterBase License Options
	Server Edition
	Developer Edition
	Desktop Edition
	ToGo Edition

	Using the License Manager
	Accessing the License Manager

	Server Configuration
	Configuring Server Properties
	The General Tab
	The Alias Tab

	Multi-Instance
	Windows Server Setup
	Accessing Remote Databases
	Client Side Settings to Access Remote Databases
	Remote Servers

	Accessing Local Databases
	Automatic Rerouting of Databases
	Server Side Setup
	Client Side Settings for Automatic Rerouting of Databases

	Startup Parameters

	SMP Support
	Expanded Processor Control: CPU_AFFINITY
	ibconfig Parameter: MAX_THREADS
	ibconfig Parameter: THREAD_STACK_SIZE_MB 2

	Hyper-threading Support on Intel Processors
	Using InterBase Manager to Start and Stop InterBase
	Starting and Stopping the InterBase Server on UNIX
	Using ibmgr to Start and Stop the Server
	Starting the Server
	Stopping the Server
	Starting the Server Automatically

	The Attachment Governor
	Server Configuration Using Environment Variables
	ISC_USER and ISC_PASSWORD
	The INTERBASE Environment Variables
	INTERBASE
	INTERBASE_TMP
	INTERBASE_LOCK and INTERBASE_MSG
	IB_PROTOCOL

	The TMP Environment Variable
	UNIX and Linux Host Equivalence

	Managing Temporary Files
	Configuring History Files
	Configuring Sort Files

	Configuring Parameters in ibconfig
	Viewing the Server Log File

	Network Configuration
	Network Protocols
	Connecting to Servers and Databases
	Adding a Server
	Logging in to a Server
	Logging Out from a Server
	Removing a Server
	Adding a Database
	Connecting to a New Database
	Connecting to a Database Using Connect
	Connecting to a Database Using Connect As

	Disconnecting a Database
	Un-registering a Database
	Connection-specific Examples

	Encrypting Network Communication
	Requirements and Constraints for Encrypted Network Communications
	Setting up OTW Encryption
	Generating Security Certificates
	Setting up the Client Side
	About the “c_rehash” command

	Setting up the Server Side
	Changing the ibss_config file
	Generating the dhparameter files

	Sample OTW Configurations
	Sample 1: Setting up the Client and Server Without Client Verification by the Server
	Setting up the server
	Setting up the client

	Sample 2: Setting up the Client and Server for Verifying the Client
	Setting up the server
	Setting up the client

	Sample 3: Setting up a JDBC Client and InterBase Server for Verifying the Client

	Connection Troubleshooting
	Connection Refused Errors
	Is there low-level network access between the client and server?
	Can the client resolve the server’s hostname?
	Is the server behind a firewall?
	Are the client and server on different subnets?
	Can you connect to a database locally?
	Can you connect to a database loopback?
	Is the server listening on the InterBase port?
	Is the services file configured on client and server?

	Connection Rejected Errors
	Did you get the correct path to the database?
	Is UNIX host equivalence established?
	Is the database on a networked file system?
	Are the user and password valid?
	Does the server have permissions on the database file?
	Does the server have permissions to create files in the InterBase install directory?

	Other Errors
	Unknown Win32 error 10061
	Unable to complete network request to host

	Communication Diagnostics
	DB Connection Tab
	To Run a DB Connection Test
	Sample output (local connection)

	TCP/IP Tab
	NetBEUI Tab

	Database User Management
	Security Model
	The SYSDBA User
	Other Users
	Users on UNIX

	The InterBase Security Database
	Implementing Stronger Password Protection
	Requirements/Constraints
	Getting Started with Implementing Stronger Password Protection

	Enabling Embedded User Authentication
	Check if EUA is Active with isc_database Info API
	Enabling EUA Using iSQL
	Enabling EUA Using IBConsole
	Adding and Modifying Users in a EUA-enabled Database

	System Table Security
	Older Databases
	Scripts for Changing Database Security
	System Table Security Migration Issues

	SQL Privileges
	Groups of Users
	SQL Roles
	UNIX Groups

	Other Security Measures
	Restriction on Using InterBase Tools
	Protecting your Databases

	User Administration with IBConsole
	Displaying the User Information Dialog
	Adding a User
	Modifying User Configurations
	Deleting a User

	User Administration With the InterBase API
	Using gsec to Manage Security
	Running gsec Remotely
	Running gsec with Embedded Database User Authentication
	Using gsec Commands
	Displaying the Security
	Adding Entries to the Security Database
	Modifying the Security Database
	Deleting Entries from the Security Database

	Using gsec from a Windows Command Prompt

	Using gsec to Manage Database Alias
	gsec Error Messages

	Database Configuration and Maintenance
	Database Files
	Database File Size
	Dynamic File Sizing
	Database File Preallocations
	isql -extract PREALLOCATE
	GSTAT (Database File Size)|GSTAT
	API DPB Parameter

	External Files
	Temporary Files
	File Naming Conventions
	Primary File Specifications
	Secondary File Specifications

	Multifile Databases
	Adding Database Files
	Altering Database File Sizes
	Maximum Number of Files
	Application Considerations
	Reorganizing File Allocation

	Networked File Systems

	On-disk Structure (ODS)
	Read-write and Read-only Databases
	Read-write Databases
	Read-only Databases
	Properties of Read-only Databases
	Making a Database Read-only
	Read-only with Older InterBase Versions

	Creating Databases
	Database Options
	Page Size (Database Options)
	Default Character Set
	SQL Dialect

	Dropping Databases
	Backup File Properties
	Removing Database Backup Files
	Shadowing
	Tasks for Shadowing
	Advantages of Shadowing
	Limitations of Shadowing
	Creating a Shadow
	Creating a Single-file Shadow
	Creating a Multifile Shadow
	Auto Mode and Manual Mode
	Auto mode
	Manual mode

	Conditional Shadows

	Activating a Shadow
	Dropping a Shadow
	Adding a Shadow File

	Setting Database Properties
	Alias Tab
	General Tab

	Sweep Interval and Automated Housekeeping
	Fast Sweep
	Overview of Sweeping
	Garbage Collection
	Automatic Housekeeping
	Configuring Sweeping

	Setting the Sweep Interval
	Disabling Automatic Sweeping
	Performing an Immediate Database Sweep

	Configuring the Database Cache
	Default Cache Size Per Database
	Default Cache Size Per isql Connection
	Setting Cache Size in Applications
	Default Cache Size Per Server
	Verifying Cache Size

	Forced Writes vs. Buffered Writes
	Validation and Repair
	Validating a Database
	Validating a Database Using gfix
	Validating a Database using IBConsole

	Repairing a Corrupt Database

	Shutting Down and Restarting Databases
	Shutting Down a Database
	Shutdown Timeout Options
	Shutdown Options
	Deny new connections while waiting
	Deny new transactions while waiting
	Force Shutdown After Timeout

	Restarting a Database

	Limbo Transactions
	Recovering Transactions
	Transaction Tab
	Details Tab

	Viewing the Administration Log
	gfix Command-line Tool
	gfix Error Messages
	gfix Fixing a database

	Database Backup and Restore
	About InterBase backup and restore options
	InterBase backup and restore tools
	The difference between logical and physical backups
	Database ownership
	Restoring the ODS

	Performing backups and restores using the gbak command
	General guidelines for using gbak
	Initiating multi- and single-file backups
	Creating incremental backups
	Incremental backup guidelines
	Executing an incremental backup
	Over-writing Incremental backups
	Timestamp Changes
	Database parameter blocks used by an incremental backup
	Page Appendix File
	Preallocating database space with gbak
	Using the switch -PR(EALLOCATE) argument

	Restoring a database with gbak
	Using gbak with InterBase Service Manager
	The user name and password
	Some backup and restore examples
	Database backup examples
	Database restore examples
	Database restore examples

	gbak error messages

	Performing backups and restores using IBConsole
	Performing a full backup using IBConsole
	About IBConsole backup options
	Format
	Metadata Only
	Garbage Collection
	Transactions in limbo
	Checksums
	Convert to Tables
	Performing a Full Backup with Verbose Output
	Transferring databases to servers running different operating systems

	Performing an incremental backup using IBConsole
	Restoring a database using IBConsole
	Restore options
	Restoring Page Size Options
	Overwrite
	Restore Type
	Commit After Each Table
	Create Shadow Files
	Deactivate Indexes
	Validity Conditions
	Use All Space
	Restoring a Backup Using Verbose Output

	Journaling and Disaster Recovery
	About Journals, Journal Files, and Journal Archives
	How Journaling Works
	How Journal Archiving Works

	Configuring your System to Use Journaling and Journal Archiving
	Additional Considerations

	Enabling Journaling and Creating Journal Files
	About Preallocating Journal Space
	Tips for Determining Journal Rollover Frequency
	Tips for Determining Checkpoint Intervals
	Displaying Journal Information
	Using IBConsole to Initiate Journaling
	Disabling Journal Files

	Using Journal Archiving
	The command that Activates Journal Archiving
	The Command that Archives Journal Files
	The Command that Performs Subsequent Archive Dumps
	How Often Should you Archive Journal Files?
	Disabling a Journal Archive

	Using a Journal Archive to Recover a Database
	Managing Archive Size
	About Archive Sequence Numbers and Archive Sweeping
	Tracking the Archive State

	Journaling Tips and Best Practices
	Designing a Minimal Configuration
	Creating a Sample Journal Archive

	Database Statistics and Connection Monitoring
	Monitoring with System Temporary Tables
	Querying System Temporary Tables
	Refreshing the Temporary Tables
	Listing the Temporary Tables
	Security
	Examples of Querying System Temporary Tables

	Updating System Temporary Tables
	Making single changes
	Making global changes

	Viewing Statistics using IBConsole
	Database Statistics Options
	All Options
	Data Pages
	Database Log
	Header Pages
	Index Pages
	System Relations

	Monitoring Client Connections with IBConsole
	The gstat Command-line Tool
	Viewing Lock Statistics
	Retrieving Statistics with isc database info()

	Interactive Query
	Managing isql Temporary Files
	Executing SQL Statements
	Executing SQL Interactively
	Preparing SQL Statements
	Valid SQL Statements
	Executing a SQL Script File

	Using Batch Updates to Submit Multiple Statements
	Using the Batch Functions in isql
	Committing and Rolling Back Transactions
	Saving isql Input and Output
	Saving SQL Input
	Saving SQL Output

	Inspecting Database Objects
	Viewing Object Properties
	Viewing Metadata
	Extracting Metadata

	Command-line isql Tool
	Invoking isql
	Command-line Options
	Using Warnings
	Examples of Invoking isql
	Exiting isql after invoking isql
	Connecting to a Database Using isql

	Setting isql Client Dialect
	Transaction Behavior in isql
	Extracting Metadata Using isql
	isql Commands
	SHOW Commands
	SET Commands
	Other isql Commands
	QUIT and EXIT Commands

	Error Handling in isql

	isql Command Reference
	BLOBDUMP
	EDIT
	EXIT
	HELP
	INPUT
	OUTPUT
	QUIT
	SET
	SET AUTODDL
	SET BLOBDISPLAY
	SET COUNT
	SET ECHO
	SET LIST
	SET NAMES
	SET PLAN
	SET STATS
	SET TIME
	SHELL
	SHOW CHECK
	SHOW DATABASE
	SHOW DOMAINS
	SHOW EXCEPTIONS
	SHOW FILTERS
	SHOW FUNCTIONS
	SHOW GENERATORS
	SHOW GRANT
	SHOW INDEX
	SHOW PROCEDURES
	SHOW ROLES
	SHOW SYSTEM
	SHOW TABLES
	SHOW TRIGGERS
	SHOW VERSION
	SHOW VIEWS

	Using SQL Scripts
	Creating an isql Script
	Running a SQL Script
	To Run a SQL Script Using IBConsole
	To Run a SQL Script Using the Command-line isql Tool

	Committing Work in a SQL Script
	Adding Comments in an isql Script

	Database and Server Performance
	Introduction to Database and Server Performance
	Hardware Configuration
	Choosing a Processor Speed
	Sizing Memory
	Using High-performance I/O Subsystems
	Distributing I/O
	Using RAID
	Using Multiple Disks for Database Files
	Using Multiple Disk Controllers
	Making Drives Specialized

	Using High-bandwidth Network Systems
	Using high-performance Bus

	Operating System Configuration
	Sizing a Temporary Directory
	Use a Dedicated Server
	Optimizing Windows for Network Applications

	Performance Considerations for a Network Configuration
	Choosing a Network Protocol
	NetBEUI
	TCP/IP

	Configuring Hostname Lookups

	Database Properties
	Choosing a Database Page Size
	Setting the Database Page Fill Ratio
	Sizing Database Cache Buffers
	Buffering Database Writes

	Database Design Principles
	Defining Indexes
	What is an Index?
	What Queries Use an Index?
	What Queries Don’t Use Indexes?
	Directional Indexes

	Normalizing Databases
	Choosing Blob Segment Size

	Database Tuning Tasks
	Tuning Indexes
	Rebuilding Indexes
	Recalculating Index Selectivity
	Examples

	Performing Regular Backups
	Increasing Backup Performance
	Increasing Restore Performance

	Facilitating Garbage Collection

	Application Design Techniques
	Using Transaction Isolation Modes
	Using Correlated Subqueries
	Preparing Parameterized Queries
	Designing Query Optimization Plans
	Deferring Index Updates

	Application Development Tools
	InterBase Express™ (IBX)
	IB Objects
	Visual Components
	Understanding Fetch-all Operations
	TQuery
	TTable

	Migrating to InterBase
	Migration Process
	Server and Database Migration
	Client Migration

	Migration Issues
	InterBase SQL Dialects
	Clients and Databases
	Keywords Used as Identifiers
	Understanding SQL Dialects
	Dialect 1 Clients and Databases
	Dialect 2 Clients
	Dialect 3 Clients and Databases

	Setting SQL Dialects
	Setting the isql Client Dialect
	Setting the gpre Dialect
	Setting the Database Dialect

	Features and Dialects
	Features Available in All Dialects
	IBConsole, InterBase’s Graphical Interface
	Read-only Databases Feature
	Altering Column Definitions
	Altering Domain Definitions
	The EXTRACT() Function
	SQL Warnings
	The Services API, Install API, and Licensing API
	New gbak Functionality
	InterBase Express™ (IBX) Feature

	Features Available Only in Dialect 3 Databases
	Delimited Identifiers Feature
	INT64 Data Storage
	DATE and TIME Data Types

	New InterBase Keywords
	Delimited Identifiers
	How Double Quotes have Changed

	DATE, TIME, and TIMESTAMP Data Types
	Converting TIMESTAMP Columns to DATE or TIME
	Casting Date/time Data Types
	Adding and Subtracting Datetime Data Types
	Using Date/time Data Types with Aggregate Functions
	Default Clauses
	Extracting Date and Time Information

	DECIMAL and NUMERIC Data Types
	Compiled Objects
	Generators
	Miscellaneous Issues

	Migrating Servers and Databases
	“In-place” Server Migration
	Migrating to a New Server
	About InterBase 6 and Later, Dialect 1 Databases

	Migrating Databases to Dialect 3
	Overview
	Method One: In-place Migration
	Column Defaults and Column Constraints
	Unnamed Table Constraints
	About NUMERIC and DECIMAL Data Types
	Do you really need to migrate your NUMERIC and DECIMAL Data Types?
	Migrating NUMERIC and DECIMAL Data Types

	Method Two: Migrating to a New Database
	Migrating Older Databases

	Migrating Clients
	Migrating Data from Other DBMS Products

	InterBase Limits
	Various InterBase Limits

