InterBase: 15

»

Data Definition Guide

(®mbarcadero

© 2025 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or
registered trademarks of Embarcadero Technologies, Inc. All other trademarks are property
of their respective owners.

Embarcadero tools are built for elite developers who build and maintain the world's most
critical applications. Our customers choose Embarcadero because we are the champion of
developers, and we help them build more secure and scalable enterprise applications faster
than any other tools on the market. In fact, ninety of the Fortune 100 and an active
community of more than three million users worldwide have relied on Embarcadero's
award-winning products for over 30 years.

September, 2025

TABLE OF CONTENTS

USING THE DATA DEFINITION GUIDE

What is Data Definition? 7
Who Should Use the Data Definition Guide 8
USING 1Sl oo 8
Using a Data Definition File 8

DESIGNING DATABASES

Overview of Design ISSUBSttt e e e e 10
Design Framework 11
Analyzing RequUIremMENts 12
Collecting and Analyzing Data i 12
Identifying Entities and Attributes 13
Designing Tables 15
Determining Unique Attributes (Designing Databases) 16
Developing a Set of Rules (Designing Databases) i, 17
Establishing Relationships between Objects 20
Planning Security (Designing Databases) 28
Naming ObJeCtSo 28

CREATING DATABASES (DATA DEFINITION GUIDE)

What You Should Know 29
Creating a Database (Data Definition Guide) o i 29
Altering a Database 35
Dropping a Database i 37
Creating a Database Shadow 37
Dropping a Shadow (Creating Databases) 42
Expanding the Size of a Shadow 43
Using isql to Extract Data Definitions 43

SPECIFYING DATA TYPES

About InterBase Data Typeso 45
Where to Specify Data TYpeSot 48
Defining Numeric Data TYpesttt et e e 48
Date and Time Data TYpesSottt e e e e e 56
Character Data TyPesottt e e e e e 58
The BOOLEAN Data TYpe . . oottt et e e e et e e e e e e e e e e e 62
Defining BLOB Data TYPES . . . o oo vttt ettt e e e e e e e et e 64

D iNING A Y S ..ottt 69

Converting Data Types . .. oot 71

WORKING WITH DOMAINS

Creating Domains (Data Definition Guide) i 74
AITEriNg DOMaiNSottt 79
Dropping @ Domain 80

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Before Creating a Table 81
Creating Tables (Data Definition GUIdE) i e 81
Altering Tables 99
Dropping Tableso 107
Global Temporary Tables 108

WORKING WITH INDEXES

INdeX BasiCs ... 111
When to INdeX . ..o 111
Creating INAeXeso 112
Improving Index Performance 119

WORKING WITH VIEWS

INtroduction TO VIeWso 123
Advantages Of VieWs 124
Creating Views (Data Definition Guide) 125
Dropping VIEWS . . . oottt e 130
CHANGE VIEWS
Getting Started with Change Views 131
Creating Subscriptions to Change Views e 133
Statement EXeCULION o 136
Change Views APl SUPPOItt e e e e 137
Change Views SQL Language SUPPOItot 138
Metadata SUPPOIt 140
Ad-hoc Subscriptions and SQL Language Supporto 145
Change Views Requirements and Constraintsot 146
Change Views GloSSary e e e 147

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Overview of Stored ProcedUrest e 148
Working with Procedures 149

Creating Procedures o e 150

Altering and Dropping Stored Procedures 169
Using Stored Procedures 172
Stored Procedure EXCEPtioNs oot 179
Handling Errorso 181

TRIGGERS (DATA DEFINITION GUIDE)

ADOUL TrIgQEIS .« oot eeeeee e 187
Creating TrigQerS . o oottt e e e e 188
ARErING TrHiggerS oottt e e e 197
Dropping TrigQers . . oottt e e e e e e e 199
USING TrigQerS oottt e e e e e e e e e e e 199
Trigger EXCeptioNS . ..ot 203

WORKING WITH GENERATORS

AbOUt GeNerators 205
Creating Generatorst e e 205
Setting or Resetting Generator Values i 206
USING GENEIatorsS . . .ot 206
Dropping GENEratorsttt e 207

PLANNING SECURITY

Overview of SQL Access Privilegeso 208
Granting Privileges 211
Multiple Privileges and Multiple Grantees i 213
Using Roles to Grant Privileges 216
Granting Users the Right to Grant Privileges i ... 217
Granting Privileges to Execute Stored Procedures i, 219
Granting ACCeSS 10 VIBWSottt 220
ReVOKING USEI ACCESS . . . o oottt ettt e e e e e e e e e 222
Using Views to Restrict Data ACCESSottt e 227
ENCRYPTING YOUR DATA
About InterBase Encryption 228
Using isql to Enable and Implement Encryption 233
Encrypting a Database with IBConsole 242
Encrypting Backup Files o 261

CHARACTER SETS AND COLLATION ORDERS

About Character Sets and Collation Orders i 264

Character Set Storage Requirements it 264

InterBase Character Sets 265
Character Sets for DOSo 270
Specifying Defaults 272

Specifying Collation Orders o 273

USING THE DATA DEFINITION GUIDE

USING THE DATA DEFINITION GUIDE

The InterBase Data Definition Guide provides information on the following topics:

» Designing and creating databases

« Working with InterBase structures and objects, including data types, domains, tables,
indexes, and views

« Working with tools and utilities such as stored procedures, triggers, Blob filters, and
generators

* Planning and implementing database security

+ Character sets and collation orders

Note:
For additional information and support on Embarcadero’s products, please refer to the
Embarcadero web site at http://www.embarcadero.com.

1. What is Data Definition?

An InterBase database is created and populated using SQL statements, which can be divided into
two major categories: data definition language (DDL) statements and data manipulation
language (DML) statements.

The underlying structures of the database — its tables, views, and indexes — are created using DDL
statements. Collectively, the objects defined with DDL statements are known as metadata. Data
definition is the process of creating, modifying, and deleting metadata. Conversely, DML
statements are used to populate the database with data, and to manipulate existing data stored
in the structures previously defined with DDL statements. The focus of this book is how to use
DDL statements. For more information on using DML statements, see the Language Reference
Guide.

DDL statements that create metadata begin with the keyword CREATE, statements that modify
metadata begin with the keyword ALTER, and statements that delete metadata begin with the
keyword DROP . Some of the basic data definition tasks include:

* Creating a database (CREATE DATABASE).
» Creating tables (CREATE TABLE).

* Altering tables (ALTER TABLE).

* Dropping tables (DROP TABLE).

InterBase stores database metadata and other information about it in system tables, which are
automatically created when you create a database. All system table names begin with “ RDB$ ".

http://www.embarcadero.com
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

USING THE DATA DEFINITION GUIDE

Examples of system tables include RDBSRELATIONS, which has information about each table in
the database, and RDBSFIELDS, which has information on the domains in the database.

Writing to these system tables without sufficient knowledge can corrupt a database. Therefore,
public users can only select from them. The database owner and SYSDBA user have full read and
write privileges and can assign these privileges to others if they wish. For more information about
the system tables, see the Language Reference Guide.

Important:

If you have permission, you can directly modify columns of a system table, but unless
you understand all of the interrelationships between the system tables, modifying them
directly can adversely affect other system tables and corrupt your database.

2. Who Should Use the Data Definition Guide

The Data Definition Guide is a resource for programmers, database designers, and users who
create or change an InterBase database or its elements.

This book assumes the reader has:

« Previous understanding of relational database concepts.
* Read the 1isql chapter in the InterBase Operations Guide.

3. Using isql

You can use 1isql to interactively create, update, and drop metadata, or you can input a file to
isql that contains data definition statements, which is then executed by disql without
prompting the user. It is usually preferable to use a data definition file because it is easier to
modify the file than to retype a series of individual SQL statements, and the file provides a record
of the changes made to the database.

The 1dsql interface can be convenient for simple changes to existing data, or for querying the
database and displaying the results. You can also use the interactive interface as a learning tool.
By creating one or more sample databases, you can quickly become more familiar with InterBase.

4. Using a Data Definition File

A data definition file can include statements to create, alter, or drop a database, or any other SQL
statement. To issue SQL statements through a data definition file, follow these steps:

1. Use a text editor to create the data definition file. Each DDL statement should be followed by
a COMMIT to ensure its visibility to all subsequent DDL statements in the data definition file.
2. Save the file.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

USING THE DATA DEFINITION GUIDE

3. Input the file into isql. For information on how to input the data definition file using
Windows ISQL, see the Operations Guide. For information on how to input the data
definition file using command-line isql, see the Operations Guide

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

DESIGNING DATABASES

DESIGNING DATABASES

This chapter provides a general overview of how to design an InterBase database-it is not
intended to be a comprehensive description of the principles of database design. This chapter
includes:

« An overview of basic design issues and goals

« A framework for designing the database

« InterBase-specific suggestions for designing your database
« Suggestions for planning database security

1. Overview of Design Issues

A database describes real-world organizations and their processes, symbolically representing
real-world objects as tables and other database objects. Once the information is organized and
stored as database objects, it can be accessed by applications or a user interface displayed on
desktop workstations and computer terminals.

The most significant factor in producing a database that performs well is good database design.
Logical database design is an iterative process which consists of breaking down large,
heterogeneous structures of information into smaller, homogenous data objects. This process is
called normalization. The goal of normalization is to determine the natural relationships between
data in the database. This is done by splitting a table into two or more tables with fewer columns.
When a table is split during the normalization process, there is no loss of data because the two
tables can be put back together with a join operation. Simplifying tables in this manner allows
the most compatible data elements and attributes to be grouped into one table.

1.1. Database Versus Data Model

It is important to distinguish between the description of the database, and the database itself. The
description of the database is called the data model and is created at design time. The model is a
template for creating the tables and columns; it is created before the table or any associated data
exists in the database. The data model describes the logical structure of the database, including
the data objects or entities, data types, user operations, relationships between objects, and
integrity constraints.

In the relational database model, decisions about logical design are completely independent of
the physical structure of the database. This separation allows great flexibility.

* You do not have to define the physical access paths between the data objects at design
time, so you can query the database about almost any logical relationship that exists in it.

* The logical structures that describe the database are not affected by changes in the
underlying physical storage structures. This capability ensures cross-platform portability.

DESIGNING DATABASES

You can easily transport a relational database to a different hardware platform because the
database access mechanisms defined by the data model remain the same regardless of how
the data is stored.

* The logical structure of the database is also independent of what the end-user sees.
The designer can create a customized version of the underlying database tables with views.
A view displays a subset of the data to a given user or group. Views can be used to hide
sensitive data, or to filter out data that a user is not interested in. For more information on
views, see Working with Views.

1.2. Design Goals

Although relational databases are very flexible, the only way to guarantee data integrity and
satisfactory database performance is a solid database design—there is no built-in protection
against poor design decisions. A good database design:

» Satisfies the users’ content requirements for the database. Before you can design the
database, you must do extensive research on the requirements of the users and how the
database will be used.

* Ensures the consistency and integrity of the data. When you design a table, you define
certain attributes and constraints that restrict what a user or an application can enter into
the table and its columns. By validating the data before it is stored in the table, the database
enforces the rules of the data model and preserves data integrity.

* Provides a natural, easy-to-understand structuring of information. Good design makes
queries easier to understand, so users are less likely to introduce inconsistencies into the
data, or to be forced to enter redundant data. This facilitates database updates and
maintenance.

- Satisfies the users’ performance requirements. Good database design ensures better
performance. If tables are allowed to be too large, or if there are too many (or too few)
indexes, long waits can result. If the database is very large with a high volume of
transactions, performance problems resulting from poor design are magnified.

2. Design Framework

The following steps provide a framework for designing a database:

1. Determine the information requirements for the database by interviewing prospective users.

. Analyze the real-world objects that you want to model in your database. Organize the
objects into entities and attributes and make a list.

. Map the entities and attributes to InterBase tables and columns.

. Determine an attribute that will uniquely identify each object.

. Develop a set of rules that govern how each table is accessed, populated, and modified.

. Establish relationships between the objects (tables and columns).

. Plan database security.

N

~N o ol bW

The following sections describe each of these steps in more detail.

DESIGNING DATABASES

3. Analyzing Requirements

The first step in the design process is to research the environment that you are trying to model.
This involves interviewing prospective users in order to understand and document their
requirements. Ask the following types of questions:

« Will your applications continue to function properly during the implementation phase? Will
the system accommodate existing applications, or will you need to restructure applications
to fit the new system?

» Whose applications use which data? Will your applications share common data?

» How do the applications use the data stored in the database? Who will be entering the data,
and in what form? How often will the data objects be changed?

» What access do current applications require? Do your applications use only one database, or
do they need to use several databases which might be different in structure? What access do
they anticipate for future applications, and how easy is it be to implement new access paths?

» Which information is the most time-critical, requiring fast retrieval or updates?

4. Collecting and Analyzing Data

Before designing the database objects—the tables and columns—you need to organize and
analyze the real-world data on a conceptual level. There are four primary goals:

* Identify the major functions and activities of your organization. For example: hiring
employees, shipping products, ordering parts, processing paychecks, and so on.

* Identify the objects of those functions and activities. Building a business operation or
transaction into a sequence of events will help you identify all of the entities and
relationships the operation entails. For example, when you look at a process like “hiring
employees,” you can immediately identify entities such as the JOB, the EMPLOYEE, and the
DEPARTMENT.

« Identify the characteristics of those objects. For example, the EMPLOYEE entity might
include such information as EMPLOYEE_ID, FIRST_NAME, LAST_NAME, JOB, SALARY,
and so on.

« Identify certain relationships between the objects For example, how do the EMPLOYEE,
JOB, and DEPARTMENT entities relate to each other? The employee has one job title and
belongs to one department, while a single department has many employees and jobs.
Simple graphical flow charts help to identify the relationships.

DESIGNING DATABASES

’ DEPARTMENT ’
EMPLOYEE EMPLOYEE EMPLOYEE }
JOB ‘ JOB]

N — N —

5. Identifying Entities and Attributes

Based on the requirements that you collect, identify the objects that need to be in the database
—the entities and attributes. An entity is a type of person, object, or thing that needs to be
described in the database. It might be an object with a physical existence, like a person, a car, or
an employee, or it might be an object with a conceptual existence, like a company, a job, or a
project. Each entity has properties, called attributes, that describe it.

For example, suppose you are designing a database that must contain information about each
employee in the company, departmental-level information, information about current projects,
and information about customers and sales. The example below shows how to create a list of
entities and attributes that organizes the required data.

List of entities and attributes

Entities Attributes

EMPLOYEE Employee Number
Last Name
First Name
Department Number

Job Code

DESIGNING DATABASES

Entities Attributes

Phone Extension
Salary
DEPARTMENT Department Number
Department Name
Department Head Name
Department Head Employee Number
Budget
Location
Phone Number
PROJECT Project ID
Project Name
Project Description
Team Leader
Product
CUSTOMER Customer Number

Customer Name

DESIGNING DATABASES

Entities Attributes

Contact Name
Phone Number
Address

SALES PO Number
Customer Number
Sales Rep
Order Date
Ship Date
Order Status

By listing the entities and associated attributes this way, you can begin to eliminate redundant
entries. Do the entities in your list work as tables? Should some columns be moved from one
group to another? Does the same attribute appear in several entities? Each attribute should
appear only once, and you need to determine which entity is the primary owner of the attribute.

For example, DEPARTMENT HEAD NAME should be eliminated because employee names
(FIRST NAME and LAST NAME) already exist in the EMPLOYEE entity.
DEPARTMENT HEAD EMPLOYEE NUM can then be used to access all of the employee-specific
information by referencing EMPLOYEE NUMBER in the EMPLOYEE entity. For more information
about accessing information by reference, see Establishing Relationships between Objects.

The next section describes how to map your lists to actual database objects—entities to tables
and attributes to columns.

6. Designing Tables

In a relational database, the database object that represents a single entity is a table, which is a
two-dimensional matrix of rows and columns. Each column in a table represents an attribute.
Each row in the table represents a specific instance of the entity. After you identify the entities

DESIGNING DATABASES

and attributes, create the data model, which serves as a logical design framework for creating
your InterBase database. The data model maps entities and attributes to InterBase tables and
columns, and is a detailed description of the database-the tables, the columns, the properties of
the columns, and the relationships between tables and columns.

The example below shows how the EMPLOYEE entity from the entities/attributes list has been
converted to a table.

EMPLOYEE table
LAST N FIRST_N DEPT_N JOB CO
EMP_NO AME AME o DE SALARY
24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500

Each row in the EMPLOYEE table represents a single employee. EMP_NO, LAST_NAME,
FIRST_NAME, DEPT_NO, JOB_CODE, PHONE_EXT, and SALARY are the columns that
represent employee attributes. When the table is populated with data, rows are added to the
table, and a value is stored at the intersection of each row and column, called a field. In the
EMPLOYEE table, "Smith” is a data value that resides in a single field of an employee record.

7. Determining Unique Attributes (Designing Databases)

One of the tasks of database design is to provide a way to uniquely identify each occurrence or
instance of an entity so that the system can retrieve any single row in a table. The values
specified in the primary key of the table distinguish the rows from each other. A PRIMARY KEY
or UNIQUE constraint ensures that values entered into the column or set of columns are unique
in each row. If you try to insert a value in a PRIMARY KEY or UNIQUE column that already exists
in another row of the same column, InterBase prevents the operation and returns an error.

For example, in the EMPLOYEE table, EMP_NO is a unique attribute that can be used to identify
each employee in the database, so it is the primary key. When you choose a value as a primary
key, determine whether it is inherently unique. For example, no two social security numbers or
driver’s license numbers are ever the same. Conversely, you should not choose a name column as
a unique identifier due to the probability of duplicate values. If no single column has this
property of being inherently unique, then define the primary key as a composite of two or more
columns which, when taken together, are unique.

DESIGNING DATABASES

A unique key is different from a primary key in that a unique key is not the primary identifier for
the row, and is not typically referenced by a foreign key in another table. The main purpose of a
unique key is to force a unique value to be entered into the column. You can have only one
primary key defined for a table, but any number of unique keys.

8. Developing a Set of Rules (Designing Databases)

When designing a table, you need to develop a set of rules for each table and column that
establishes and enforces data integrity. These rules include:

« Specifying a data type

» Choosing international character sets

* Creating a domain-based column

« Setting default values and NULL status

» Defining integrity constraints and cascading rules
« Defining CHECK constraints

8.1. Specifying a Data Type

Once you have chosen a given attribute as a column in the table, you must choose a data type
for the attribute. The data type defines the set of valid data that the column can contain. The
data type also determines which operations can be performed on the data, and defines the disk
space requirements for each data item.

The general categories of SQL data types include:

* Character data types.

» Whole number (integer) data types.

« Fixed and floating decimal data types.

« Data types for dates and times.

« A Blob data type to represent data of unspecified length and structure, such as graphics and
digitized voice; blobs can be numeric, text, or binary.

For more information about data types supported by InterBase, see Specifying Data Types.

8.2. Choosing International Character Sets

When you create the database, you can specify a default character set. A default character set
determines:

» What characters can be used in CHAR, VARCHAR, and BLOB text
columns.
« The default collation order that is used in sorting a column.

DESIGNING DATABASES

The collation order determines the order in which values are sorted. The COLLATE clause of
CREATE TABLE allows users to specify a particular collation order for columns defined as CHAR
and VARCHAR text data types. You must choose a collation order that is supported for the given
character set of the column. The collation order set at the column level overrides a collation
order set at the domain level.

Choosing a default character set is primarily intended for users who are interested in providing a
database for international use. For example, the following statement creates a database that uses
the ISO8859_1 character set, typically used to support European languages:

CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET IS08859_1;

You can override the database default character set by creating a different character set for a
column when specifying the data type. The data type specification for a CHAR, VARCHAR, or
BLOB text column definition can include a CHARACTER SET clause to specify a particular
character set for a column. If you do not specify a character set, the column assumes the default
database character set. If the database default character set is subsequently changed, all columns
defined after the change have the new character set, but existing columns are not affected.

If you do not specify a default character set at the time the database is created, the character set
defaults to NONE . This means that there is no character set assumption for the columns; data is
stored and retrieved just as it was originally entered. You can load any character set into a
column defined with NONE, but you cannot load that same data into another column that has
been defined with a different character set. No transliteration will be performed between the
source and the destination character sets.

For a list of the international character sets and collation orders that InterBase supports, see
Character Sets and Collation Orders.

8.3. Specifying Domains

When several tables in the database contain columns with the same definitions and data types,
you can create domain definitions and store them in the database. Users who create tables can
then reference the domain definition to define column attributes locally.

For more information about creating and referencing domains, see Working with Domains.

8.4. Setting Default Values and NULL Status

When you define a column, you have the option of setting a DEFAULT value. This value is used
whenever an INSERT or UPDATE on the table does not supply an explicit value for the column.
Defaults can save data entry time and prevent data entry errors. For example, a possible default

DESIGNING DATABASES

for a DATE column could be today’s date; in a Y/N flag column for saving changes, “Y” could be
the default. Column-level defaults override defaults set at the domain level. Some examples:

stringfld VARCHAR(10) DEFAULT ‘abc’
integerfld INTEGER DEFAULT 1
numfld NUMERIC(15,4) DEFAULT 1.5
datefldl DATE DEFAULT ¢5/5/2005’
datefld2 DATE DEFAULT ‘TODAY’
userfld VARCHAR(12) DEFAULT USER

The last two lines show special InterBase features: ' TODAY ' defaults to the current date, and
USER is the user who is performing an insert to the column.

Assign a NULL default to insert a NULL into the column if the user does not enter a value.
Assign NOT NULL to force the user to enter a value, or to define a default value for the column.
NOT NULL must be defined for PRIMARY KEY and UNIQUE key columns.

8.5. Defining Integrity Constraints

Integrity constraints are rules that govern column-to-table and table-to-table relationships, and
validate data entries. They span all transactions that access the database and are maintained
automatically by the system. Integrity constraints can be applied to an entire table or to an
individual column. A PRIMARY KEY or UNIQUE constraint guarantees that no two values in a
column or set of columns are the same.

Data values that uniquely identify rows (a primary key) in one table can also appear in other
tables. A foreign key is a column or set of columns in one table that contain values that match a
primary key in another table. The ON UPDATE and ON DELETE referential constraints allow you
to specify what happens to the referencing foreign key when the primary key changes or is
deleted.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Working with
Tables. For more information on the reasons for using foreign keys, see Establishing Relationships
between Objects.

8.6. Defining CHECK Constraints

Along with preventing the duplication of values using UNIQUE and PRIMARY KEY constraints,
you can specify another type of data entry validation. A CHECK constraint places a condition or
requirement on the data values in a column at the time the data is entered. The CHECK
constraint enforces a search condition that must be true in order to insert into or update the
table or column.

DESIGNING DATABASES

9. Establishing Relationships between Objects

The relationship between tables and columns in the database must be defined in the design. For
example, how are employees and departments related? An employee can have only one
department (a one-to-one relationship), but a department has many employees (a one-to-many
relationship). How are projects and employees related? An employee can be working on more
than one project, and a project can include several employees (a many-to-many relationship).
Each of these different types of relationships has to be modeled in the database.

The relational model represents one-to-many relationships with primary key/foreign key pairings.
Refer to the following two tables. A project can include many employees, so to avoid duplication
of employee data, the PROJECT table can reference employee information with a foreign key.
TEAM_LEADER is a foreign key referencing the primary key, EMP_NO, in the EMPLOYEE table.

PROJECT table

TEAM_LEADE

PROJ_ID R PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software
EMPLOYEE table

FIE;'II'EN DEI:;I'_N PHE?(I.\: E_ SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Working with
Tables.

DESIGNING DATABASES

9.1. Enforcing Referential Integrity

The primary reason for defining foreign keys is to ensure that the integrity of the data is
maintained when more than one table references the same data-rows in one table must always
have corresponding rows in the referencing table. InterBase enforces referential integrity in the
following ways:

 Before a foreign key can be added, the unique or primary keys that the foreign key
references must already be defined.

« If information is changed in one place, it must be changed in every other place that it
appears. InterBase does this automatically when you use the ON UPDATE option to the
REFERENCES clause when defining the constraints for a table or its columns. You can
specify that the foreign key value be changed to match the new primary key value
(CASCADE), or that it be set to the column default (SET DEFAULT), or to null (SET NULL).
If you choose NO ACTION as the ON UPDATE action, you must manually ensure that the
foreign key is updated when the primary key changes.

For example, to change a value in the EMP_NO column of the EMPLOYEE table (the primary key),
that value must also be updated in the TEAM_LEADER column of the PROJECT table (the
foreign key).

» When a row containing a primary key in one table is deleted, the meaning of any rows in
another table that contain that value as a foreign key is lost unless appropriate action is
taken. InterBase provides the ON DELETE option to the REFERENCES clause of
CREATE TABLE and ALTER TABLE so that you can specify whether the foreign key is
deleted, set to the column default, or set to null when the primary key is deleted. If you
choose NO ACTION as the ON DELETE action, you must manually delete the foreign key
before deleting the referenced primary key.

« InterBase also prevents users from adding a value in a column defined as a foreign key that
does not reference an existing primary key value. For example, to change a value in the
TEAM_LEADER column of the PROJECT table, that value must first be updated in the
EMP_NO column of the EMPLOYEE table.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Working with
Tables.

9.2. Normalizing the Database

After your tables, columns, and keys are defined, look at the design as a whole and analyze it
using normalization guidelines in order to find logical errors. As mentioned in the overview,
normalization involves breaking down larger tables into smaller ones in order to group data
together that is naturally related.

DESIGNING DATABASES

Note:
o A detailed explanation of the normal forms are out of the scope of this document. There
are many excellent books on the subject on the market.

When a database is designed using proper normalization methods, data related to other data
does not need to be stored in more than one place—if the relationship is properly specified. The
advantages of storing the data in one place are:

« The data is easier to update or delete.

« When each data item is stored in one location and accessed by reference, the possibility for
error due to the existence of duplicates is reduced.

» Because the data is stored only once, the possibility for introducing inconsistent data is
reduced.

In general, the normalization process includes::

« Eliminating repeating groups.
» Removing partially-dependent columns.
» Removing transitively-dependent columns.

An explanation of each step follows.

9.2.1. Eliminating Repeating Groups (Normalizing the Database)

When a field in a given row contains more than one value for each occurrence of the primary key,
then that group of data items is called a repeating group. This is a violation of the first normal
form, which does not allow multi-valued attributes.

Refer to the DEPARTMENT table. For any occurrence of a given primary key, if a column can have
more than one value, then this set of values is a repeating group. Therefore, the first row, where
DEPT_NO = "100", contains a repeating group in the DEPT_LOCATIONS column.

DEPARTMENT table

DEPARTMEN DEPT_LOCATI

DEPT_NO HEAD_DEPT BUDGET

T ONS

Monterey, Santa Cruz,

100 Sales 000 1000000 .
Salinas

600 Engineering 120 1100000 San Francisco

DESIGNING DATABASES

DEPAI:_TMEN HEAD_DEPT BUDGET DEP'I('SII;I(;CATI

DEPT_NO

900 Finance 000 400000 Monterey

In the next example, even if you change the attribute to represent only one location, for every
occurrence of the primary key “100", all of the columns contain repeating information except for
DEPT_LOCATION, so this is still a repeating group.

DEPARTMENT table - Repeating Group

DEPT_NO DEPAI:_TMEN HEAD_DEPT BUDGET DEPTBL'\?CATI
100 Sales 000 1000000 Monterey
100 Sales 000 1000000 Santa Cruz
600 Engineering 120 1100000 San Francisco
100 Sales 000 1000000 Salinas

To normalize this table, we could eliminate the DEPT_LOCATION attribute from the
DEPARTMENT table, and create another table called DEPT_LOCATIONS. We could then create a
primary key that is a combination of DEPT_NO and DEPT_LOCATION. Now a distinct row exists
for each location of the department, and we have eliminated the repeating groups.

DEPT_LOCATIONS table

DEPT_NO DEPT_LOCATION

100 Monterey
100 Santa Cruz
600 San Francisco

100 Salinas

DESIGNING DATABASES

9.2.2. Removing Partially-dependent Columns (Normalizing the Database)

Another important step in the normalization process is to remove any non-key columns that are
dependent on only part of a composite key. Such columns are said to have a partial key
dependency. Non-key columns provide information about the subject, but do not uniquely define
it.

For example, suppose you wanted to locate an employee by project, and you created the
PROJECT table with a composite primary key of EMP_NO and PROJ_ID.

PROJECT table

LAST NA PROJ _NA PROJ DES
PROJ ID - - » PRODUCT
- ME ME C

44 DGHPII Smith Automap blob data hardware

47 VBASE Jenner Video database blob data software
Translator

24 HWRII Stevens blob data software
upgrade

The problem with this table is that PROJ_NAME, PROJ_DESC, and PRODUCT are attributes of
PROJ_ID, but not EMP_NO, and are therefore only partially dependent on the EMP_NO/
PROJ_ID primary key. This is also true for LAST_NAME because it is an attribute of EMP_NO,
but does not relate to PROJ_ID. To normalize this table, we would remove the EMP_NO and
LAST_NAME columns from the PROJECT table, and create another table called
EMPLOYEE_PROJECT that has EMP_NO and PROJ_ID as a composite primary key. Now a
unique row exists for every project that an employee is assigned to.

9.2.3. Removing Transitively-dependent Columns (Normalizing the Database)

The third step in the normalization process is to remove any non-key columns that depend upon
other non-key columns. Each non-key column must be a fact about the primary key column. For
example, suppose we added TEAM_LEADER_ID and PHONE_EXT to the PROJECT table, and
made PROJ_ID the primary key. PHONE_EXT is a fact about TEAM_LEADER_ID, a non-key
column, not about PROJ_ID, the primary key column.

PROJECT table

DESIGNING DATABASES

TEAM_LEA PHONE_EX PROJ_NA PROJ_DES

PROJ ID PRODUCT
- DER _ID T ME C
DGPII 44 4929 Automap blob data hardware
VBASE 47 4967 Video database blob data software
Translator
HWRII 24 4668 blob data software
upgrade

To normalize this table, we would remove PHONE_EXT, change TEAM_LEADER_ID to
TEAM_LEADER, and make TEAM_LEADER a foreign key referencing EMP_NO in the EMPLOYEE
table.

PROJECT table

PROJ_ID TEAMRLEADE PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software
EMPLOYEE table

Flii;lrEN SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500

DESIGNING DATABASES

9.2.4. When to Break the Rules

You should try to correct any normalization violations, or else make a conscious decision to
ignore them in the interest of ease of use or performance. Just be sure that you understand the
design trade-offs that you are making, and document your reasons. It might take several
iterations to reach a design that is a desirable compromise between purity and reality, but this is
the heart of the design process.

For example, suppose you always want data about dependents every time you look up an
employee, so you decide to include DEP1_NAME, DEP1_BIRTHDATE, and so on for DEP1
through DEP30, in the EMPLOYEE table. Generally speaking, that is terrible design, but the
requirements of your application are more important than the abstract purity of your design. In
this case, if you wanted to compute the average age of a given employee’s dependents, you
would have to explicitly add field values together, rather than asking for a simple average. If you
wanted to find all employees with a dependent named “Jennifer,” you would have to test 30
fields for each employee instead of one. If those are not operations that you intend to perform,
then go ahead and break the rules. If the efficiency attracts you less than the simplicity, you
might consider defining a view that combines records from employees with records from a
separate DEPENDENTS table.

While you are normalizing your data, remember that InterBase offers direct support for array
columns, so if your data includes, for example, hourly temperatures for twenty cities for a year,
you could define a table with a character column that contains the city name, and a 24 by 366
matrix to hold all of the temperature data for one city for one year. This would result in a table
containing 20 rows (one for each city) and two columns, one NAME column and one
TEMP_ARRAY column. A normalized version of that record might have 366 rows per city, each of
which would hold a city name, a Julian date, and 24 columns to hold the hourly temperatures.

9.3. Choosing Indexes

Once you have your design, you need to consider what indexes are necessary. The basic trade-off
with indexes is that more distinct indexes make retrieval by specific criteria faster, but updating
and storage slower. One optimization is to avoid creating several indexes on the same column.
For example, if you sometimes retrieve employees based on name, department, badge number,
or department name, you should define one index for each of these columns. If a query includes
more than one column value to retrieve, InterBase will use more than one index to qualify
records. In contrast, defining indexes for every permutation of those three columns will actually
slow both retrieval and update operations.

When you are testing your design to find the optimum combination of indexes, remember that
the size of the tables affects the retrieval performance significantly. If you expect to have tables
with 10,000 to 100,000 records each, do not run tests with only 10 to 100 records.

DESIGNING DATABASES

Another factor that affects index and data retrieval times is page size. By increasing the page size,
you can store more records on each page, thus reducing the number of pages used by indexes. If
any of your indexes are more than 4 levels deep, you should consider increasing the page size. If
indexes on volatile data (data that is regularly deleted and restored, or data that has index key
values that change frequently) are less than three levels deep, you should consider reducing your
page size. In general, you should use a page size larger than your largest record, although the
data compression of InterBase will generally shrink records that contain lots of string data, or lots
of numeric values that are 0 or NULL. If your records have those characteristics, you can probably
store records on pages which are 20% smaller than the full record size. On the other hand, if your
records are not compressible, you should add 5% to the actual record size when comparing it to
the page size.

For more information on creating indexes, see Working with Indexes.

9.4. Increasing Cache Size

When InterBase reads a page from the database onto disk, it stores that page in its cache, which
is a set of buffers that are reserved for holding database pages. Ordinarily, the default cache size
of 2,048 buffers is adequate. If your application includes joins of five or more tables, InterBase
automatically increases the size of the cache. If your application is well localized, that is, it uses
the same small part of the database repeatedly, you might want to consider increasing the cache
size so that you never have to release one page from cache to make room for another.

You can use the gfix utility to increase the default number of buffers for a specific database using
the following command:

gfix -buffers n database_name

You can also change the default cache size for an entire server either by setting the value of
DATABASE_CACHE_PAGES in the configuration file or by changing is on the IB Settings page of
the InterBase Server Properties dialog on Windows platforms. This setting is not recommended
because it affects all databases on the server and can easily result in overuse of memory or in
small caches, that are un-usable. It is is better to tune your cache on a per-database basis using
gfix -buffers.

For more information about cache size, see the Embedded SQL Guide. For more information
about using gfix -buffers, see the Operations Guide.

9.5. Creating a Multifile, Distributed Database

If you feel that your application performance is limited by disk bandwidth, you might consider
creating a multifile database and distributing it across several disks. Multifile databases were
designed to avoid limiting databases to the size of a disk on systems that do not support multi-
disk files.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

DESIGNING DATABASES

10. Planning Security (Designing Databases)

Planning security for a database is important. When implementing the database design, you
should answer the following questions:

» Who will have authority to use InterBase?

» Who will have authority to open a particular database?

* Who will have authority to create and access a particular database object within a given
database?

For more information about database security, see Planning Security.

11. Naming Objects

Valid names for InterBase objects must use the 7-bit ASCII character set (character set ID 2) and
must have the following characteristics:

* NO spaces

* not case sensitive

* not InterBase keywords

« a maximum of 68 bytes long: 67 bytes plus a null terminator

Using delimited identifiers you create metadata names that are case sensitive, can contain
spaces, and can be InterBase keywords by placing them double quotes. Such names in double
quotes are called delimited identifiers.

Tip: When you use an object name without double quotes, InterBase maps all the characters to
uppercase. For example, if you create a table with a double-quote delimited name in all
uppercase, you can use the name subsequently without double quotes. For example:

CREATE TABLE “UPPERCASE_NAME”...
SELECT = FROM UPPERCASE_NAME;

CREATING DATABASES (DATA DEFINITION GUIDE)

CREATING DATABASES (DATA DEFINITION GUIDE)

This chapter describes how to:

* Create a database with CREATE DATABASE

* Modify the database with ALTER DATABASE

* Delete a database with DATABASE

« Create an in-sync, online duplication of the database for recovery purposes with
CREATE SHADOW

« Stop database shadowing with DROP SHADOW

* Increase the size of a shadow

« Extract metadata from an existing database

1. What You Should Know
Before creating the database, you should know:

* Where to create the database. Users who create databases need to know only the logical
names of the available devices in order to allocate database storage. Only the system
administrator needs to be concerned about physical storage (disks, disk partitions, operating
system files).

* The tables that the database will contain.

* The record size of each table, which affects what database page size you choose. A record
that is too large to fit on a single page requires more than one page fetch to read or write to
it, so access could be faster if you increase the page size.

« How large you expect the database to grow. The number of records also affects the page size
because the number of pages affects the depth of the index tree. Larger page size means
fewer total pages. InterBase operates more efficiently with a shallow index tree.

» The number of users that will be accessing the database.

2. Creating a Database (Data Definition Guide)

Create a database in 1disql with an interactive command or with the CREATE DATABASE
statement in an dsql script file. For a description of creating a database interactively with
IBConsole, see the Operations Guide.

Although you can create, alter, and drop a database interactively, it is preferable to use a data
definition file because it provides a record of the structure of the database. It is easier to modify a
source file than it is to start over by retyping interactive SQL statements.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

2.1. Database File Naming Conventions

In earlier versions, InterBase database files were given a file extension of gdb by convention.
InterBase no longer recommends using gdb as the extension for database files, since on some
versions of Windows, any file that has this extension is automatically backed up by the System
Restore facility whenever it is touched. On those two platforms, using the gdb extension for
database names can result in a significant detriment to performance. Linux and Solaris are not
affected. InterBase now recommends using ib as the extension for database names. Generally,

InterBase fully supports each file naming conventions of a platform, including the use of node
and path names.

2.2. Creating a Database Using a Data Definition File

A data definition file contains SQL statements, including those for creating, altering, or dropping
a database. To issue SQL statements through a data definition file, follow these steps:

1. Use a text editor to write the data definition file.
2. Save the file.
3. Process the file with isql.

Use -input in command-line +isql or use IBConsole. For more information about
command-line isqgl and IBConsole, see the Operations Guide.

2.3. Using CREATE DATABASE

CREATE DATABASE establishes a new database and populates its system tables, which are the
tables that describe the internal structure of the database. CREATE DATABASE must occur
before creating database tables, views, and indexes.

CREATE DATABASE optionally allows you to do the following:

« Specify a user name and a password

 Change the default page size of the new database
« Specify a default character set for the database

« Add secondary files to expand the database

CREATE DATABASE must be the first statement in the data definition file.

Important:

In DSQL, CREATE DATABASE can be executed only with EXECUTE IMMEDIATE. The
database handle and transaction name, if present, must be initialized to zero prior to
use.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

The syntax for CREATE DATABASE is:

CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] 1int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>]
[WITH ADMIN OPTION];
<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]
<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] 1int
[<fileinfo>]

Important:
Use single quotes to delimit strings such as file names, user names, and passwords.

2.3.1. Creating a Single-file Database

Although there are many optional parameters, CREATE DATABASE requires only one parameter,
<filespec>, which is the new database file specification. The file specification contains the device
name, path name, and database name.

By default, a database is created as a single file, called the primary file. The following example
creates a single-file database, named employee.ib, in the current directory.

CREATE DATABASE 'employee.ib';

For more information about file naming conventions, see the Operations Guide.

Specifying file size for a single-file database

You can optionally specify a file length, in pages, for the primary file. For example, the following
statement creates a database that is stored in one 10,000-page- long file:

CREATE DATABASE 'employee.ib' LENGTH 10000;

If the database grows larger than the specified file length, InterBase extends the primary file
beyond the LENGTH limit until the disk space runs out. To avoid this, you can store a database in
more than one file, called a secondary file.

Note:
Use LENGTH for the primary file only if defining a secondary file in the same statement.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

2.3.2. Creating a Multifile Database

A multifile database consists of a primary file and one or more secondary files. You cannot specify
what information goes into each secondary file because InterBase handles this automatically.
Each secondary file is typically assigned to a different disk than that of the main database. In a
multifile database, InterBase writes to the primary file until it has filled the specified number of
pages, then proceeds to fill the next specified secondary file.

When you define a secondary file, you can choose to specify its size in database pages
(LENGTH), or you can specify the initial page number of the following file (STARTING AT).
InterBase always treats the final file of a multifile database as dynamically sizeable: it grows the
last file as needed. Although specifying a LENGTH for the final file does not return an error, a
LENGTH specification for the last-or only—file of a database is meaningless.

Important:

Whenever possible, create the database locally. If the database is created locally,
secondary file names can include a full file specification, including a host or node names
as well as a path and database file name. If you create the database on a remote server,
secondary file specifications cannot include a node name, and all secondary files must
reside on the same node.

2.3.3. Using LENGTH to Specify a Secondary File

The LENGTH parameter specifies the number of database pages for the file. The eventual
maximum file size is then the number of pages times the page size for the database. (See
Specifying Database Page Size.) The following example creates a database with a primary file and
three secondary files. The primary file and the first two secondary files are each 10,000 pages
long.

CREATE DATABASE 'employee.ib'

FILE 'employee2.ib' STARTING AT PAGE 10001 LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES

FILE 'employee4.1ib';

Note:

e Because file-naming conventions are platform-specific, for the sake of simplicity, none of
the examples provided include the device and path name portions of the file
specification.

http://docwiki.embarcadero.com/InterBase/15/en/Specifying_Database_Page_Size

CREATING DATABASES (DATA DEFINITION GUIDE)

2.3.4. Specifying the Starting Page Number of a Secondary File

If you do not declare a length for a secondary file, then you must specify a starting page number.
STARTING AT specifies the beginning page number for a secondary file. The PAGE keyword is
optional. You can specify a combination of length and starting page numbers for secondary files.

If you specify a STARTING AT parameter that is inconsistent with a LENGTH parameter for the
previous file, the LENGTH specification takes precedence:

CREATE DATABASE 'employee.ib' LENGTH 10000
FILE 'employee2.ib' LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES
FILE 'employee4.ib';

The following example produces exactly the same results as the previous one, but uses a mixture
of LENGTH and STARTING AT:

CREATE DATABASE 'employee.ib'

FILE 'employee2.ib' STARTING AT 10001 LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES

FILE 'employee4.ib';

2.3.5. Specifying User Name and Password (Using CREATE DATABASE)

If provided, the user name and password are checked against valid user name and password
combinations in the security database on the server where the database will reside. Only the first
eight characters of the password are significant.

Important:

Windows client applications must create their databases on a remote server. For these
remote connections, the user name and password are not optional. Windows clients
must provide the USER and PASSWORD options with CREATE DATABASE before
connecting to a remote server.

The following statement creates a database with a user name and password:

CREATE DATABASE 'employee.ib' USER 'SALES' PASSWORD 'mycode';

CREATING DATABASES (DATA DEFINITION GUIDE)

2.3.6. Specifying Database Page Size

You can override the default page size of 4,096 bytes for database pages by specifying a different
PAGE_SIZE . PAGE_SIZE can be 1024, 2048, 4096, 8192, or 16384. The next statement creates a
single-file database with a page size of 2048 bytes:

CREATE DATABASE 'employee.ib' PAGE_SIZE 2048;

When to increase page size

Increasing page size can improve performance for several reasons:

« Indexes work faster because the depth of the index is kept to a minimum.
« Keeping large rows on a single page is more efficient. (A row that is too large to fit on a
single page requires more than one page fetch to read or write to it.)

BLOB data is stored and retrieved more efficiently when it fits on a single page. If most
transactions involve only a few rows of data, a smaller page size might be appropriate, since less
data needs to be passed back and forth and less memory is used by the disk cache.

Changing page size for an existing database

To change a page size of an existing database, follow these steps:

1. Back up the database.
2. Restore the database using the PAGE_SIZE option to specify a new page size.

For more detailed information on backing up the database, see the Operations Guide.

2.3.7. Specifying the Default Character Set

DEFAULT CHARACTER SET allows you to optionally set the default character set for the
database. The character set determines:

» What characters can be used in CHAR, VARCHAR, and BLOB text columns.
« The default collation order that is used in sorting a column.

Choosing a default character set is useful for all databases, even those where international use is
not an issue. Choice of character set determines if transliteration among character sets is
possible. For example, the following statement creates a database that uses the 1SO8859_1
character set, typically used in Europe to support European languages:

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET 'IS08859_1';

For a list of the international character sets and collation orders that InterBase supports, see
Character Sets and Collation Orders.

2.3.8. When there is No Default Character Set

If you do not specify a default character set, the character set defaults to NONE. Using
CHARACTER SET NONE means that there is no character set assumption for columns; data is
stored and retrieved just as you originally entered it. You can load any character set into a
column defined with NONE, but you cannot load that same data into another column that has
been defined with a different character set. No transliteration will be performed between the
source and destination character sets, so in most cases, errors will occur during the attempted
assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);
SET NAMES LATIN1;

INSERT INTO MYDATA (PART_NUMBER) VALUES ('a');

SET NAMES DO0S437;

SELECT * FROM MYDATA;

The data ("a") is returned just as it was entered, without the a being transliterated from the input
character (LATIN1) to the output character (D0S437). If the column had been set to anything
other than NONE, the transliteration would have occurred.

2.4. Creating Read-only Databases

By default, databases are in read-write mode at creation time. Such databases must be on a
writable file system even if they are used only for SELECT, because InterBase writes information
about transaction states to a data structure in the database file.

You have the option of changing a database to read-only mode. Such databases can reside on
read-only file systems. To change the mode of a database to read-only, you can either use gfix
(or the equivalent choice in IBConsole), or you can back up the database and restore it in read-
only mode. See the Operations Guide for details on how to change the mode of a database using
gfix, gbak, or IBConsole.

3. Altering a Database

Use ALTER DATABASE to add one or more secondary files to an existing database. Secondary
files are useful for controlling the growth and location of a database. They permit database files

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

to be spread across storage devices, but must remain on the same node as the primary database
file. For more information on secondary files, see Creating a Multifile Database.

A database can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges.

ALTER DATABASE requires exclusive access to the database. For more information about
exclusive database access, see “Shutting down and restarting databases” in the “Database
Configuration and Maintenance” chapter of the Operations Guide.

The syntax for ALTER DATABASE is:

ALTER {DATABASE | SCHEMA}
{ADD <add_clause> | DROP <drop_clause> | ENCRYPT <key_name> | DECRYPT
<key_name> | SET <set_clause>};

<add_clause> = FILE 'filespec' [fileinfo] [add_clause] | ADMIN OPTION

fileinfo = LENGTH [=] int [PAGE[S]]
| STARTING [AT [PAGE]] int [fileinfo]

<drop_clause> = ADMIN OPTION
<key_name> = ENCRYPT <|> DECRYPT

<set_clause> = {FLUSH INTERVAL <number> | NO FLUSH INTERVAL | GROUP COMMIT | NO
GROUP COMMIT |

LINGER INTERVAL <number> | NO LINGER INTERVAL | PAGE CACHE <number> | RECLAIM
INTERVAL <number> | NO RECLAIM INTERVAL | SYSTEM ENCRYPTION PASSWORD <255-
character_string> | NO SYSTEM ENCRYPTION PASSWORD} | PASSWORD DIGEST
'<digest_name>'}

You must specify a range of pages for each file either by providing the number of pages in each
file, or by providing the starting page number for the file. For more details about the
ALTER DATABASE syntax, see ALTER DATABASE.

(N\

Note:

e It is never necessary to specify a length for the last — or only — file, because InterBase
always dynamically sizes the last file and will increase the file size as necessary until all
the available space is used.

(. J

The first example adds two secondary files to the currently connected database by specifying the
starting page numbers:

ALTER DATABASE
ADD FILE 'employee2.ib' STARTING AT PAGE 10001 LENGTH 10000
ADD FILE 'employee3.ib' STARTING AT PAGE 20001

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/ALTER_DATABASE

CREATING DATABASES (DATA DEFINITION GUIDE)

The next example does nearly the same thing as the previous example, but it specifies the
secondary file length rather than the starting page number. The difference is that in the previous
example, the original file will grow until it reaches 10000 pages. In the second example, InterBase
starts the secondary file at the next available page and begins using it immediately.

ALTER DATABASE
ADD FILE 'employee2.ib' LENGTH 10000
ADD FILE 'employee3.ib'

4. Dropping a Database

DROP DATABASE is the command that deletes the database currently connected to, including
any associated shadow and log files. Dropping a database deletes any data it contains. A
database can be dropped by its creator, the SYSDBA user, and any users with operating system
root privileges.

The following statement deletes the current database:

DROP DATABASE;

5. Creating a Database Shadow

InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called shadowing. This section describes the
various tasks involved in shadowing, as well as the advantages and limitations of shadowing. The
main tasks in setting up and maintaining shadowing are as follows:

« CREATING A SHADOW Shadowing begins with the creation of a shadow. A shadow is an
identical physical copy of a database. When a shadow is defined for a database, changes to
the database are written simultaneously to its shadow. In this way, the shadow always
reflects the current state of the database. For information about the different ways to define
a shadow, see Using CREATE SHADOW.

« DELETING A SHADOW If shadowing is no longer desired, the shadow can be deleted. For
more information about deleting a shadow, see Dropping a Shadow (Creating Databases).

« ADDING FILES TO A SHADOW A shadow can consist of more than one file. As shadows
grow in size, files can be added to accommodate the increased space requirements.

5.1. Advantages of Creating a Database Shadow

Shadowing offers several advantages:

* Recovery is quick: Activating a shadow makes it available immediately.
« Creating a shadow does not require exclusive access to the database.

CREATING DATABASES (DATA DEFINITION GUIDE)

* You can control the allocation of disk space. A shadow can span multiple files on multiple
disks.

» Shadowing does not use a separate process. The database process handles writing to the
shadow.

» Shadowing runs behind the scenes and needs little or no maintenance.

5.2. Limitations of Creating a Database Shadow

Shadowing has the following limitations:

 Shadowing is useful only for recovery from hardware failures or accidental deletion of the
database. User errors or software failures that corrupt the database are duplicated in the
shadow.

* Recovery to a specific point in time is not possible. When a shadow is activated, it takes over
as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

 Shadowing can occur only to a local disk. InterBase does not support shadowing to an NFS
file system, mapped drive, tape, or other media.

5.3. Before Creating a Shadow

Before creating a shadow, consider the following questions:
» Where will the shadow reside?

A shadow should be created on a different disk from where the main database resides. Because
shadowing is intended as a recovery mechanism in case of disk failure, maintaining a database
and its shadow on the same disk defeats the purpose of shadowing.

» How will the shadow be distributed?

A shadow can be created as a single disk file called a shadow file or as multiple files called a
shadow set. To improve space allocation and disk 1/0O, each file in a shadow set can be placed on
a different disk.

« If something happens that makes a shadow unavailable, should users be allowed to access
the database?

If a shadow becomes unavailable, InterBase can either deny user access until shadowing is
resumed, or InterBase can allow access even though database changes are not being shadowed.
Depending on which database behavior is desired, the database administrator (DBA) creates a
shadow either in auto mode or in manual mode. For more information about these modes, see
Auto Mode and Manual Mode (Using CREATE SHADOW).

« If a shadow takes over for a database, should a new shadow be automatically created?

http://docwiki.embarcadero.com/InterBase/15/en/Auto_Mode_and_Manual_Mode_%28Using_CREATE_SHADOW%29

CREATING DATABASES (DATA DEFINITION GUIDE)

To ensure that a new shadow is automatically created, create a conditional shadow. For more
information, see Conditional Shadows.

5.4. Using CREATE SHADOW

Use the CREATE SHADOW statement to create a database shadow. Because this does not require
exclusive access, it can be done without affecting other users. A shadow can be created using a
combination of the following options:

« Single-file or multifile shadows
» Auto or manual shadows
» Conditional shadows

These options are not mutually exclusive. For example, you can create a single-file, manual,
conditional shadow.

The syntax of CREATE SHADOW is:

CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]
"filespec' [LENGTH [=] int [PAGE[S]]] [<secondary_file>];

Where:

<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]
<fileinfo> = {LENGTH[=]int [PAGE[S]] | STARTING [AT [PAGE]] int } [<fileinfo>]

5.4.1. Creating a Single-file Shadow (Using CREATE SHADOW)

To create a single-file shadow for the database employee.ib, enter:

CREATE SHADOW 1 'employee.shd';

The shadow is associated with the currently connected database, employee.ib . The name of
the shadow file is employee.shd, and it is identified by a shadow set number, 1, in this
example. The shadow set number tells InterBase that all of the shadow files listed are grouped
together under this identifier.

To verify that the shadow has been created, enter the isql command SHOW DATABASE :

SHOW DATABASE;
Database: employee.ib Shadow 1: '/usr/interbase/employee.shd' auto PAGE_SIZE
1024 Number of DB pages allocated = 392 Sweep interval = 20000

CREATING DATABASES (DATA DEFINITION GUIDE)

The page size of the shadow is the same as that of the database.
5.4.2. Shadow Location (Using CREATE SHADOW)

On non-NFS systems, which includes all Microsoft Windows machines, the shadow must reside
on the same host as the database. You cannot specify a different host name or a mapped drive as
the location of the shadow.

On UNIX systems, it is possible to place the shadow on any NFS-mounted directory, but you run
the risk of losing the shadow if you experience problems with NFS, so this is not a recommended
procedure.

5.4.3. Creating a Multifile Shadow (Using CREATE SHADOW)

You can create multifile shadows, similarly to the way you create multifile databases. To create a
multifile shadow, specify the name and size of each file in the shadow set. File specifications are
platform-specific.

The following examples illustrate the creation of a multifile shadow on a UNIX platform. They
create the shadow files on the A, B, and C drives of the IB_bckup node.

The first example creates a shadow set consisting of three files. The primary file, employee.shd,
is 10,000 database pages in length and the first secondary file is 20,000 database pages long. The
final secondary file, as always, grows as needed.

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000
FILE 'D:/shadows/employee2.shd' LENGTH 5000
FILE 'D:/shadows/employee3.shd';

Instead of specifying the page length of secondary files, you can specify their starting pages. The
previous example could be entered as follows:

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000
FILE 'D:/shadows/employee2.shd' STARTING AT 10000
FILE 'D:/shadows/employee3.shd' STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and starting
pages for the shadow just created:

SHOW DATABASE;

Database: employee.ib

Owner: SYSDBA

Shadow 1: "D:\SHADOWS\EMPLOYEE.SHD" auto length 10000
file D:\SHADOWS\EMPLOYEE2.SHD starting 10000

file D:\SHADOWS\EMPLOYEE3.SHD starting 30000

CREATING DATABASES (DATA DEFINITION GUIDE)

PAGE_SIZE 1024
Number of DB pages allocated = 462
Sweep interval = 20000

Note:

e The page length allocated for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

(. J

5.4.4. Auto Mode and Manual Mode (Using CREATE SHADOW)

A shadow can become unavailable for the same reasons a database becomes unavailable: disk
failure, network failure, or accidental deletion. If a shadow becomes unavailable, and it was
created in AUTO mode, database operations continue automatically without shadowing. If a
shadow becomes unavailable, and it was created in MANUAL mode, further access to the
database is denied until the database administrator intervenes. The benefits of AUTO mode and
MANUAL mode are compared in the following table:

Mode Advantage Disadvantage

Creates a temporary period when the
database is not shadowed; the DBA might

AUTO Database operation is uninterrupted . .
P P be unaware that the database is operating
without a shadow.
Prevents the database from running Halts database operation until the problem
MANUAL
unintentionally without a shadow is fixed; needs intervention of the DBA

Auto Mode (Using CREATE SHADOW)

The AUTO keyword directs the CREATE SHADOW statement to create a shadow in AUTO mode:
CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation continues even if the shadow becomes inoperable. If the
original shadow was created as a conditional shadow, a new shadow is automatically created. If
the shadow was not conditional, you must create a new shadow manually. For more information
about conditional shadows, see Conditional Shadows.

CREATING DATABASES (DATA DEFINITION GUIDE)

Manual mode (Using CREATE SHADOW)

The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in manual
mode:

CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
connections to the database are prevented. To allow database connections again, the database
administrator must remove the old shadow file, delete references to it, and create a new shadow.

5.4.5. Conditional Shadows (Using CREATE SHADOW)

A shadow can be defined so that if it replaces a database, a new shadow will be automatically
created, allowing shadowing to continue uninterrupted. A shadow defined with this behavior is
called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the CREATE SHADOW
statement. For example:

CREATE SHADOW 3 CONDITIONAL 'employee.shd';

Creating a conditional file directs InterBase to automatically create a new shadow. This happens
in either of two cases:

» The database or one of its shadow files becomes unavailable.
» The shadow takes over for the database due to hardware failure.

6. Dropping a Shadow (Creating Databases)

To stop shadowing, use the shadow number as an argument to the DROP SHADOW statement.
DROP SHADOW deletes shadow references from a database’s metadata, as well as the physical
files on disk.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating system
root privileges.

DROP SHADOW Syntax:

DROP SHADOW set_num;

CREATING DATABASES (DATA DEFINITION GUIDE)

The following example drops all of the files associated with the shadow set
number 1:

DROP SHADOW 1;

If you need to look up the shadow number, use the isql command SHOW DATABASE .

SHOW DATABASE;
Database: employee.ib Shadow 1: 'employee.shd' auto PAGE_SIZE 1024 Number of DB
pages allocated = 392 Sweep interval = 20000

7. Expanding the Size of a Shadow

If a database is expected to increase in size, or if the database is already larger than the space
available for a shadow on one disk, you might need to expand the size of the shadow. To do this,
drop the current shadow and create a new one containing additional files. To add a shadow file,
first use DROP SHADOW to delete the existing shadow, then use CREATE SHADOW to recreate it
with the desired number of secondary files.

The page length allocated for secondary shadow files need not correspond to the page length of
the database’s secondary files. As the database grows and its first shadow file becomes full,
updates to the database automatically overflow into the next shadow file.

8. Using isql to Extract Data Definitions

isgl enables you to extract data definition statements from a database and store them in an
output file. All keywords and objects are extracted into the file in uppercase.

The output file enables users to:

« Examine the current state of the system tables of a database. This is especially useful when
the database has changed significantly since its creation.

» Create a database with schema definitions that are identical to the extracted database.

» Make changes to the database, or create a new database source file with a text editor.

8.1. Extracting an InterBase 4.0 Database

You can use Windows ISQL on a Windows client PC to extract data definition statements. On
some servers, you can also use command-line isql on the server platform to extract data
definition statements. For more information on using Windows 1SQL and command-line isql,
see the Operations Guide.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CREATING DATABASES (DATA DEFINITION GUIDE)

8.2. Extracting a 3.x Database

To extract metadata from a 3.x database, use command-line isql on the server. Use the -a
switch instead of -x. The difference between the -x option and the -a option is that the -x
option extracts metadata for SQL objects only, and the -a option extracts all DDL for the named
database. The syntax can differ depending upon operating system requirements.

The following command extracts the metadata from the employee.ib database into the file,
newdb.sql:

isql -a employee.ib -o newdb.sql

For more information on using command-line isql, see the Operations Guide.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

SPECIFYING DATA TYPES

SPECIFYING DATA TYPES

This chapter describes the following:

« All of the data types that are supported by InterBase, and the allowable operations on each
type.

» Where to specify the data type, and which data definition statements reference or define the
data type.

 How to specify a default character set.

» How to create each data type, including BLOB data.

« How to create arrays of data types.

« How to perform data type conversions.

1. About InterBase Data Types

When creating a new column in an InterBase table, the primary attribute that you must define is
the data type, which establishes the set of valid data that the column can contain. Only values
that can be represented by that data type are allowed. Besides establishing the set of valid data
that a column can contain, the data type defines the kinds of operations that you can perform on
the data. For example, numbers in INTEGER columns can be manipulated with arithmetic
operations, while CHARACTER columns cannot.

The data type also defines how much space each data item occupies on the disk. Choosing an
optimum size for the data value is an important consideration when disk space is limited,
especially if a table is very large. InterBase supports the following data types:

¢ INTEGER and SMALLINT

* FLOAT and DOUBLE PRECISION

* NUMERIC and DECIMAL

* DATE, TIME, and TIMESTAMP

* CHARACTER and VARYING CHARACTER
 BOOLEAN

* BLOB

InterBase provides the Blob data type to store data that cannot easily be stored in one of the
standard SQL data types. A BLOB is used to store data objects of indeterminate and variable
size, such as bit-mapped graphics images, vector drawings, sound files, video segments, chapter
or book-length documents, or any other kind of multimedia information. InterBase also supports
arrays of most data types. An array is a matrix of individual items composed of any single
InterBase data type (except BLOB). An array can have from 1 to 16 dimensions. An array can be
handled as a single entity, or manipulated item-by-item.

SPECIFYING DATA TYPES

A TIMESTAMP data type is supported that includes information about year, month, day of the
month, and time. The TIMESTAMP data type is stored as two long integers, and requires
conversion to and from InterBase when entered or manipulated in a host-language program. The
DATE data type includes information on the year, month, and day of the month. The TIME data
type includes information about time in hours, minutes, seconds, and tenths, hundredths, and
thousandths of seconds.

The following table describes the data types supported by InterBase:

Range/
Precision

Description

» Dynamically sizable
data type for storing
large data such as
graphics, text, and

» None digitized voice
BLOB Variable * Blob segment size is or -
. « Basic structural unit is
limited to 64K
the segment
* Blob subtype
describes Blob
contents
* Represents truth
values TRUE,
" TRUE FALSE d
. ,an
BOOLEAN 16 bits * FALSE
UNKNOWN
e UNKNOWN

» Requires ODS 11 or
higher, any dialect

 1to0 32,767 bytes
« Character set
character size
CHAR (<n>) <n> characters determines the
maximum number of

* Fixed length CHAR or
text string type
« Alternate keyword:

. CHARACTER
characters that can fit
in 32K
1Jan 100 a.d. « Stores a date as a 32-
DATE 32 bits .
to 29 Feb 32768 a.d. bit longword
« <precision> = 1 to .
P o * Number with a
18; specifies at least . .
. . . decimal point <scale>
<precision> digits of - .
. . digits from the right
Variable precision to store .
. . » Example: DECIMAL
DECIMAL (<precision>, <scale>) (16, 32, or « <scale> = 0to 18;
. o (10,3) holds numbers
64 bits) specifies number of

accurately in the
following format:

PPPPPPp-SSS

decimal places must
be less than or equal
to <precision>

SPECIFYING DATA TYPES

Range/
Precision

Description

DOUBLE PRECISION

FLOAT

INTEGER

NUMERIC (<precision>, <scale>)

SMALLINT

TIME

TIMESTAMP

VARCHAR (<n>)

64 bits'

32 bits

32 bits

Variable (16, 32, or
64 bits)

16 bits

32 bits

64 bits

<n> characters

2225 x 107398 15 1,797 x
10308

1.175 x 10738 to 3.402 x
1038

-2,147,483,648 to
2,147,483,647

* <precision> = 1 to
18; specifies exactly
<precision> digits of
precision to store

. <scale> = 0to 18;
specifies number of
decimal places and
must be less than or
equal to <precision>

—-32,768 to 32,767

0:00 AM-23:59:59.9999
PM

1 Jan 100 a.d.
to 29 Feb 32768 a.d.

 1to 32,765 bytes

« Character set
character size
determines the
maximum number of
characters that can fit
in 32K

IEEE double precision: 15
digits

IEEE single precision: 7
digits

Signed long (longword)

* Number with a
decimal point <scale>
digits from the right

 Example: NUMERIC
(10,3) holds numbers
accurately in the
following format:

pPPPPPP-SSs

Signed short (word)

Unsigned integer of
InterBase type
ISC_TIME : time of day,
in units of 0.0001
seconds since midnight

InterBase type
ISC_TIMESTAMP ;
combines DATE and
TIME information

« Variable length CHAR
or text string type

* Alternate keywords:
CHAR VARYING,

CHARACTER VARYIN
G

1. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

SPECIFYING DATA TYPES

2. Where to Specify Data Types
A data type is assigned to a column in the following situations:

* Creating a table using CREATE TABLE.

» Adding a new column to a table or altering a column using ALTER TABLE .
» Creating a global column template using CREATE DOMAIN.

» Modifying a global column template using ALTER DOMAIN .

The syntax for specifying the data type with these statements is provided here for reference.

<data_type> =

{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION} [<array_dim>]
| {DATE | TIME | TIMESTAMP} [<array_dim>]

| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int
| subtype_name}] [SEGMENT SIZE -int]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]

For more information on how to create a data type using CREATE TABLE and ALTER TABLE,
see Working with Tables. For more information on using CREATE DOMAIN to define data types,
see Working with Domains.

3. Defining Numeric Data Types

The numeric data types that InterBase supports include integer numbers of various sizes
(INTEGER and SMALLINT), floating-point numbers with variable precision (FLOAT,
DOUBLE PRECISION), and formatted, fixed-decimal numbers (DECIMAL and NUMERIC).

3.1. Integer Data Types

Integers are whole numbers. InterBase supports two integer data types: SMALLINT and
INTEGER. SMALLINT is a signed short integer with a range from —32,768 to 32,767. INTEGER
is a signed long integer with a range from -2,147,483,648 to 2,147,483,647. Both are exact
numerics.

The next two statements create domains with the SMALLINT and INTEGER data types:

CREATE DOMAIN EMPNO
AS SMALLINT;
CREATE DOMAIN CUSTNO

SPECIFYING DATA TYPES

AS INTEGER
CHECK (VALUE > 99999);

You can perform the following operations on the integer data types:

« Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators such
as CONTAINING, STARTING WITH, and LIKE perform string comparisons on numeric
values.

« Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

 Conversions. When performing arithmetic operations that involve mixed data types,
InterBase automatically converts between INTEGER, FLOAT, and CHAR data types. For
operations that involve comparisons of numeric data with other data types, InterBase first
converts the data to a numeric type, then performs the arithmetic operation or comparison.

« Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. You can sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

3.2. Fixed-decimal Data Types

InterBase supports two SQL data types, NUMERIC and DECIMAL, for handling numeric data with
a fixed decimal point, such as monetary values. You can specify optional precision and scale
factors for both data types. These data types are also referred to as exact numerics.

* Precision is the total number or maximum number of digits, both significant and fractional,
that can appear in a column of these data types. The allowable range for precision is from 1
to a maximum of 18.

« Scale is the number of digits to the right of the decimal point that comprise the fractional
portion of the number. The allowable range for scale is from zero to precision; in other
words, scale must be less than or equal to precision.

The syntax for NUMERIC and DECIMAL is as follows:

NUMERIC[(precision [, scale])]
DECIMAL[(precision [, scale])]

You can specify NUMERIC and DECIMAL data types without precision or scale, with precision
only, or with both precision and scale.

NUMERIC data type

NUMERIC(x,y)

SPECIFYING DATA TYPES

In the syntax above, InterBase stores exactly <x> digits. Of that number, exactly <y> digits are to
the right of the decimal point. For example,

NUMERIC(5,2)

declares that a column of this type always holds numbers with exactly five digits, with exactly two
digits to the right of the decimal point: ppp.ss.

DECIMAL data type

DECIMAL (x,y)

In the syntax above, InterBase stores at least <x> digits. Of that number, exactly <y> digits are
to the right of the decimal point. For example,

DECIMAL(5,2)

declares that a column of this type must be capable of holding at least five but possibly more
digits and exactly two digits to the right of the decimal point: ppp.ss.

How fixed-decimal Data Types are Stored

When you create a domain or column with a NUMERIC or DECIMAL data type, InterBase
determines which data type to use for internal storage based on the precision and scale that you
specify and the dialect of the database.

* NUMERIC and DECIMAL data types that are declared without either precision or scale are
stored as INTEGER.

* Defined with precision, with or without scale, they are stored as SMALLINT,
INTEGER, DOUBLE PRECISION or 64-bit integer. Storage type depends on both the
precision and the dialect of the database.

Precision Dialect 1 Dialect 3

e SMALLINT for NUMERIC data
1to4 types SMALLINT
« INTEGER for DECIMAL data types

5to9 INTEGER INTEGER

SPECIFYING DATA TYPES

Precision Dialect 1 Dialect 3

10 to 18 DOUBLE PRECISION INT64

NUMERIC and DECIMAL data types with precision greater than 10 always produce an error
when you create a dialect 2 database. This forces you to examine each instance during a
migration. For more about migrating exact numerics, see Migrating Databases with NUMERIC
and DECIMAL Data Types. For a broader discussion of migration issues, see the migration
appendix in the InterBase Operations Guide.

The following table summarizes how InterBase stores NUMERIC and DECIMAL data types based
on precision and scale:

Data type specified as... Data type stored as...

NUMERIC INTEGER
NUMERIC(4) SMALLINT
NUMERIC(9) INTEGER

« DOUBLE PRECISION in dialect 1

NUMERIC(10 . .

(10) e INT64 in dialect 3
NUMERIC(4,2) SMALLINT
NUMERIC(9,3) INTEGER

« DOUBLE PRECISION in dialect 1

NUMERIC(10,4 i i
(10,4) INT64 in dialect3

DECIMAL INTEGER
DECIMAL (4) INTEGER
DECIMAL(9) INTEGER

« DOUBLE PRECISION in dialect 1

DECIMAL (10 i i
(10) INT64 indialect3

http://docwiki.embarcadero.com/InterBase/15/en/Migrating_Databases_with_NUMERIC_and_DECIMAL_Data_Types
http://docwiki.embarcadero.com/InterBase/15/en/Migrating_Databases_with_NUMERIC_and_DECIMAL_Data_Types
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

SPECIFYING DATA TYPES

Data type specified as... Data type stored as...

DECIMAL (4,2) INTEGER

DECIMAL(9,3) INTEGER

e DOUBLE PRECISION in dialect 1

DECIMAL (10,4 i i
(10,4) e INT64 in dialect3

Specifying NUMERIC and DECIMAL with Scale and Precision

When a NUMERIC or DECIMAL data type declaration includes both precision and scale, values
containing a fractional portion can be stored, and you can control the number of fractional digits.
InterBase stores such values internally as SMALLINT, INTEGER, or 64-bit integer data,
depending on the precision specified. How can a number with a fractional portion be stored as
an integer value? For all SMALLINT and INTEGER data entered, InterBase stores a scale factor,
a negative number indicating how many decimal places are contained in the number, based on
the power of 10. A scale factor of -1 indicates a fractional portion of tenths; a -2 scale factor
indicates a fractional portion of hundredths. You do not need to include the sign; it is negative by
default.

For example, when you specify NUMERIC (4,2), InterBase stores the number internally as a
SMALLINT. If you insert the number 25.253, it is stored as a decimal 25.25, with 4 digits of
precision, and a scale of 2.

The number is divided by 10 to the power of <scale> (number/10 <scale>) to produce a
number without a fractional portion.

See the Language Reference Guidefor information about arithmetic operations using exact and
approximate numerics.

Numeric Input and Exponents

Any numeric string in DSQL or isql that can be stored as a DECIMAL(18,S) is evaluated exactly,
without the loss of precision that might result from intermediate storage as a DOUBLE. A numeric
string is recognized by the DSQL parser as a floating-point value only if it contains an “e” or "E”
followed by an exponent, which may be zero. For example, DSQL recognizes 4.21 as a scaled
exact integer, and passes it to the engine in that form. On the other hand, DSQL recognizes

4.21E0 as a floating-point value.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

SPECIFYING DATA TYPES

Specifying Data Types Using Embedded Applications

DSQL applications such as isql can correct for the scale factor for SMALLINT and INTEGER
data types by examining the XSQLVAR sqlscale field and dividing to produce the correct
value.

Important: Embedded applications cannot use or recognize small precision NUMERIC or
DECIMAL data types with fractional portions when they are stored as SMALLINT or INTEGER
types. To avoid this problem, create all NUMERIC and DECIMAL data types that are to be
accessed from embedded applications with a precision of 10 or more, which forces them to be
stored as 64-bit integer types. Remember to specify a scale if you want to control the precision
and scale.

Both SQL and DSQL applications handle NUMERIC and DECIMAL types stored as 64-bit integer
without problem.

Considering Migration for NUMERIC and DECIMAL Data Types

NUMERIC and DECIMAL data types that have a precision greater than 9 are stored differently in
dialect 1 and dialect 3 databases. As you migrate your databases to dialect 3, consider the
following questions about columns defined with NUMERIC and DECIMAL data types:

* Is the precision less than 10? There is no issue. You can migrate without taking any action
and there will be no change in the database and no effect on clients.

e For NUMERIC and DECIMAL columns with precision equal to or greater than 10, is
DOUBLE PRECISION an appropriate way to store your data?

*In many cases, the answer is “yes.” If you want to continue to store your data as
DOUBLE PRECISION, change the audiotape of the column to DOUBLE PRECISION either
before or after migrating your database to dialect 3. This doesn’t change any functionality in
dialect 3, but it brings the declaration into line with the storage mode. In a dialect 3
database, newly-created columns of this type are stored as INT64, but migrated columns
are still stored as DOUBLE PRECISION . Changing the declaration avoids confusion.

« DOUBLE PRECISION might not be appropriate or desirable for financial applications and
others that are sensitive to rounding errors. In this case, you need to take steps to migrate
your column so that it is stored as INT64 in dialect 3. As you make this decision, remember
that INT64 does not store the same range as DOUBLE PRECISION . Check whether you will
lose information in this conversion and whether this is acceptable.

SPECIFYING DATA TYPES

Migrating Databases with NUMERIC and DECIMAL Data Types

Read the “considering migration” section above to decide whether you have columns in a dialect
1 database that would be best stored as 64-bit INT values in a dialect 3 database. If this is the
case, follow these steps for each column:

1.

Back up your original database. Read the “migration” appendix in the Operations Guide to
determine what preparations you need to make before migrating the database. Typically,
this includes detecting metadata that uses double quotes around strings. After making
necessary preparations as indicated in the migration chapter, back up the database using its
current gbak version and restore it using the latest InterBase.

.Use gfix -set_db_SQL_dialect 3 to change the database to dialect 3.
.Use the ALTER COLUMN clause of the ALTER DATABASE statement to change the name of

each affected column to something different from its original name. If column position is
going to be an issue with any of your clients, use ALTER COLUMN to change the positions
as well.

. Create a new column for each one that you are migrating. Use the original column names

and if necessary, positions. Declare each one as a DECIMAL or NUMERIC with precision
greater than 9.

. Use UPDATE to copy the data from each old column to its corresponding new column:

UPDATE tablename
SET new_col_name = old_col_name;

. Check that your data has been successfully copied to the new columns and drop the old

columns.

Using Exact Numeric Data Types in Arithmetic

In SQL dialect 1, when you divide two integers or two DECIMAL(9,2) values, the quotient has type
DOUBLE PRECISION; in other words, it is a floating-point value.

In SQL dialect 3, the quotient of two exact numeric values (SMALLINT, INTEGER, NUMERIC(n,m)
or DECIMAL(n.m)) is an exact numeric, with scale factor equal to the sum of the scales of the
dividend and divisor. Because a SMALLINT or INTEGER has a scale of 0, the quotient of two
INTEGERs is an INTEGER, the quotient of a DECIMAL(9,2) and a DECIMAL(12,3) is a
DECIMAL(18,5).

In dialect 1, the fraction 1/3 is 0.33333333333333e0; in dialect 3 it is 0. When an application does
something that causes a CHECK condition to be checked, or a stored procedure to be executed,
or a trigger to fire, the processing that takes place is based on the dialect under which the check,

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

SPECIFYING DATA TYPES

stored procedure, or trigger was defined, not the dialect in effect when the application causes the
check, stored procedure, or trigger to be executed.

For example, suppose that a database is migrated from InterBase 5 and thus has dialect 1; that
MYCOL1 and MYCOL2 are SQL INTEGERs; and that a table definition includes the following:

CHECK (MYCOL1/MYCOL2>0.5)

which was defined using client dialect 1.

Now suppose that a dialect 3 client tries to insert a row in which MYCOL1 is 3 and MYCOL?2 is 5;
because the CHECK was defined in dialect 1, the quotient will be 0.600000000000e0 and the row
will pass the check condition, even though in the current client’s dialect 3, the quotient would
have been the integer 0 and the row would have failed the check, so the insertion would have
been refused.

3.3. Floating-point Data Types

InterBase provides two floating-point data types, FLOAT and DOUBLE PRECISION; the only
difference is their size. FLOAT specifies a single-precision, 32-bit data type with a precision of
approximately 7 decimal digits. DOUBLE PRECISION specifies a double-precision, 64-bit data
type with a precision of approximately 15 decimal digits.

The precision of FLOAT and DOUBLE PRECISION is fixed by their size, but the scale is not, and
you cannot control the formatting of the scale. With floating numeric data types, the placement
of the decimal point can vary; the position of the decimal is allowed to “float.” For example, in the
same column, one value could be stored as 25.33333, and another could be stored as 25.333.

Use floating-point numbers when you expect the placement of the decimal point to vary, and for
applications where the data values have a very wide range, such as in scientific calculations.

If the value stored is outside of the range of the precision of the floating-point number, then it is
stored only approximately, with its least-significant digits treated as zeros. For example, if the
type is FLOAT, you are limited to 7 digits of precision. If you insert a 10-digit number
25.33333312 into the column, it is stored as 25.33333.

The next statement creates a column, PERCENT_CHANGE , using a DOUBLE PRECISION type:

CREATE TABLE SALARY_HISTORY
o o <
PERCENT_CHANGE DOUBLE PRECISION

DEFAULT ©

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),

)

SPECIFYING DATA TYPES

You can perform the following operations on FLOAT and DOUBLE PRECISION data types:

« Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators such
as CONTAINING, STARTING WITH, and LIKE perform string comparisons on the integer
portion of floating data.

« Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

» Conversions. When performing arithmetic operations that involve mixed data types,
InterBase automatically converts between INTEGER, FLOAT, and CHAR data types. For
operations that involve comparisons of numeric data with other data types, such as
CHARACTER and INTEGER, InterBase first converts the data to a numeric type, then
compares them numerically.

« Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. Sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

The following CREATE TABLE statement provides an example of how the different numeric
types can be used: an INTEGER for the total number of orders, a fixed DECIMAL for the dollar
value of total sales, and a FLOAT for a discount rate applied to the sale.

CREATE TABLE SALES
o o <
QTY_ORDERED INTEGER
DEFAULT 1
CHECK (QTY_ORDERED >= 1),
TOTAL_VALUE DECIMAL (9,2)
CHECK (TOTAL_VALUE >= 0),
DISCOUNT FLOAT
DEFAULT ©
CHECK (DISCOUNT >= O AND DISCOUNT <= 1));

4. Date and Time Data Types
InterBase supports DATE, TIME and TIMESTAMP data types.

« DATE stores a date as a 32-bit longword. Valid dates are from January 1, 100 a.d. to
February 29, 32768 a.d.

» TIME stores time as a 32-bit longword. Valid times are from 00:00 AM to 23:59.9999 PM.

« TIMESTAMP is stored as two 32-bit longwords and is a combination of DATE and TIME.

The following statement creates TIMESTAMP columns in the SALES table:

CREATE TABLE SALES
o o <

ORDER_DATE TIMESTAMP

DEFAULT 'now'

SPECIFYING DATA TYPES

NOT NULL,
SHIP_DATE TIMESTAMP
CHECK (SHIP_DATE >= ORDER_DATE OR SHIP_DATE IS NULL),

s
In the previous example, NOW returns the system date and time.

4.1. Converting to the DATE, TIME, and TIMESTAMP Data Types

Most languages do not support the DATE, TIME and TIMESTAMP data types. Instead, they
express them as strings or structures. These data types requires conversion to and from InterBase
when entered or manipulated in a host-language program. For example, you could convert to
the DATE data type in one of the following ways:

« Create a string in a format that InterBase understands (for example, 1-JAN-1999). When you
insert the date into a DATE column, InterBase automatically converts the text into the
internal DATE format.

*Use the «call interface routines provided by InterBase to do the conversion.
isc_decode_date() converts from the InterBase internal DATE format to the C time
structure. isc_encode_date() converts from the C time structure to the internal InterBase
DATE format.

Note:

The string conversion described in the first bullet does not work in the other direction.
To read a date in an InterBase format and convert it to a C date variable, you must call
isc_decode_date() .

A J/

For more information about how to convert DATE, TIME and TIMESTAMP data types in C, and
how to use the CAST() function for type conversion using SELECT statements, refer to “Using
CAST() to convert dates and times” in "Working with Dates and Times” in the Embedded SQL
Guide.

4.2. How InterBase Stores Date Values

InterBase stores all date values correctly, including those after the year 2000. InterBase always
stores the full year value in a DATE or TIMESTAMP column, never the two-digit abbreviated
value. When a client application enters a two-digit year value, InterBase uses the “sliding window”
algorithm, described below, to make an inference about the century and stores the full date value
including the century. When you retrieve the data, InterBase returns the full year value including
the century information. It is up to client applications to display the information with two or four
digits.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

SPECIFYING DATA TYPES

InterBase uses the following sliding window algorithm to infer a century:

» Compare the two-digit year number entered to the current year modulo 100.
« If the absolute difference is greater than 50, then infer that the century of the number
entered is 20, otherwise it is 19.

For a more detailed explanation of the InterBase algorithm and how it is applied, see the
“Working with Dates and Times” chapter in the Embedded SQL Guide.

5. Character Data Types
InterBase supports four character string data types:

1. A fixed-length character data type, called CHAR (<n>) or CHARACTER (<n>), where <n> is
the exact number of characters stored.

2. A variable-length character type, called VARCHAR (<n>) or CHARACTER VARYING (<n>),
where <n> is the maximum number of characters in the string.

3. An NCHAR (<n>) or NATIONAL CHARACTER (<n>) or NATIONAL CHAR (<n>) data type,
which is a fixed-length character string of <n> characters which uses the 1SO8859_1
character set.

4. An NCHAR VARYING (<n>) or NATIONAL CHARACTER VARYING (<n>) or
NATIONAL CHAR VARYING (<n>) data type, which is a variable-length national character
string up to a maximum of <n> characters.

5.1. Specifying a Character Set

When you define the data type for a column, you can specify a character set for the column with
the CHARACTER SET argument. This setting overrides the database default character set that is
assigned when the database is created.

You can also change the default character set, either with SET NAMES in command-line 1isql,

or with IBConsole using the Edit | Options selection to open the SQL options window where you
can specify a character set on the Options tab. For details about using interactive SQL in either
environment, see the Operations Guide.

The character set determines:

» What characters can be used in CHAR, VARCHAR, and BLOB text columns.
« The collation order to be used in sorting the column.

For example, the following statement creates a column that uses the I1SO8859_1 character set,
which is typically used in Europe to support European languages:

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

SPECIFYING DATA TYPES

CREATE TABLE EMPLOYEE
(FIRST_NAME VARCHAR(10) CHARACTER SET IS08859_1,

)3

Note:
Collation order does not apply to BLOB data.

For a list of the international character sets and collation orders that are supported by InterBase,
see Character Sets and Collation Orders.

5.1.1. Characters vs. Bytes

InterBase limits a character column definition to 32,767 bytes. VARCHAR columns are restricted
to 32,765 bytes. In the case of a single-byte character column, one character is stored in one
byte, so you can define 32,767 (or 32,765 for VARCHAR) characters per single-byte column
without encountering an error.

For multi-byte character sets, to determine the maximum number of characters allowed in a
column definition, divide the internal byte storage limit for the data type by the number of bytes
for each character. Thus, two-byte character sets have a character limit of 16,383 per field, and
three-byte character sets have a limit of 10,922 characters per field. For VARCHAR columns, the
numbers are 16,382 and 10.921 respectively.

The following examples specify a CHAR data type using the UNICODE_FSS character set, which
has a maximum size of three bytes for a single character:

CHAR (10922) CHARACTER SET UNICODE_FSS; /* succeedsx*/
CHAR (10923) CHARACTER SET UNICODE_FSS; /* fails */

5.1.2. Using CHARACTER SET NONE

If a default character set was not specified when the database was created, the character set
defaults to NONE. Using CHARACTER SET NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally entered it. You can
load any character set into a column defined with NONE, but you cannot load that same data
into another column that has been defined with a different character set. No transliteration will
be performed between the source and destination character sets, so in most cases, errors will
occur during the attempted assignment.

For example:

SPECIFYING DATA TYPES

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);
SET NAMES LATINI1;

INSERT INTO MYDATA (PART_NUMBER) VALUES('a');

SET NAMES D0S437;

SELECT = FROM MYDATA;

The data (“a") is returned just as it was entered, without the a being transliterated from the input
character (LATIN1) to the output character (D0S437). If the column had been set to anything
other than NONE, the transliteration would have occurred.

5.1.3. About Collation Order

Each character set has its own subset of possible collation orders. The character set that you
choose when you define the data type limits your choice of collation orders. The collation order
for a column is specified when you create the table.

For a list of the international character sets and collation orders that InterBase supports, see
Character Sets and Collation Orders.

5.2. Fixed-length Character Data

InterBase supports two fixed-length string data types: CHAR (<n>), or alternately CHARACTER
(<n>), and NCHAR (<n>), or alternately NATIONAL CHAR (<n>).

5.2.1. CHAR(n) or CHARACTER(n)

The CHAR (<n>) or CHARACTER (<n>) data type contains character strings. The number of
characters <n> is fixed. For the maximum number of characters allowed for the character set that
you have specified, see Character Sets and Collation Orders.

When the string to be stored or read contains less than <n> characters, InterBase fills in the
blanks to make up the difference. If a string is larger than <n>, then the value is truncated. If you
do not supply <n>, it will default to 1, so CHAR is the same as CHAR (1). The next statement
illustrates this:

CREATE TABLE SALES
(. . .

PAID CHAR

DEFAULT 'n'

CHECK (PAID IN ('y', 'n'), .);

Trailing blanks InterBase compresses trailing blanks when it stores fixed-length strings, so data
with trailing blanks uses the same amount of space as an equivalent variable-length string. When

SPECIFYING DATA TYPES

the data is read, InterBase reinserts the blanks. This saves disk space when the length of the data
items varies widely.

5.2.2. NCHAR(n) or NATIONAL CHAR(n)

NCHAR (<n>) is exactly the same as CHARACTER (<n>), except that it uses the IS08859_1
character set by definition. Using NCHAR (<n>) is a shortcut for using the CHARACTER SET
clause to specify the ISO8859_1 character set for a column.

The next two CREATE TABLE examples are equivalent:

CREATE TABLE EMPLOYEE

(.
FIRST_NAME NCHAR(10),

LAST_NAME NCHAR(15), ..);
CREATE TABLE EMPLOYEE

(.
FIRST_NAME CHAR(10) CHARACTER SET 'IS08859_1',

LAST_NAME CHAR(15) CHARACTER SET 'IS08859_1', ..);

5.3. Variable-length Character Data

InterBase supports two variable-length string data types: VARCHAR (<n>), or alternately CHAR
(<n>) VARYING, and NCHAR (<n>), or alternately NATIONAL CHAR (<n>) VARYING.

Note:
InterBase provides SQL syntax that allows you to use BLOBs and VARCHAR data
interchangeably. For more information, see Using BLOBs with VARCHAR Data.

5.3.1. VARCHAR(n)

VARCHAR (<n>) — also called CHAR VARYING (<n>), or CHARACTER VARYING (<n>) — allows
you to store the exact number of characters that is contained in your data, up to a maximum of
<n>. You must supply <n>; there is no default to 1.

If the length of the data within a column varies widely, and you do not want to pad your
character strings with blanks, use the VARCHAR (<n>) or CHARACTER VARYING (<n>) data type.

InterBase converts from variable-length character data to fixed-length character data by adding
spaces to the value in the varying column until the column reaches its maximum length <n>.
When the data is read, InterBase removes the blanks.

The main advantages of using the VARCHAR (<n>) data type are that it saves disk space, and
since more rows fit on a disk page, the database server can search the table with fewer disk 1/0

SPECIFYING DATA TYPES

operations. The disadvantage is that table updates can be slower than using a fixed-length
column in some cases.

The next statement illustrates the VARCHAR (<n>) data type:

CREATE TABLE SALES

(e
ORDER_STATUS VARCHAR(7)

DEFAULT 'new'

NOT NULL

CHECK (ORDER_STATUS IN ('new', 'open',
'shipped', 'waiting')), ..);

5.3.2. NCHAR VARYING(n)

NCHAR VARYING (<n>) - also called NATIONAL CHARACTER VARYING (<n>) or
NATIONAL CHAR VARYING (<n>) — is exactly the same as VARCHAR (<n>), except that the
ISO8859_1 character set is used. Using NCHAR VARYING (<n>) is a shortcut for using the
CHARACTER SET clause of CREATE TABLE, CREATE DOMAIN, or ALTER TABLE to Specify
the ISO8859 1 character set.

6. The BOOLEAN Data Type

The BOOLEAN data type is a 16-bit data type that represents TRUE and FALSE values in a
column. When not prohibited by a NOT NULL constraint, it also supports the UNKNOWN truth
value.

For ESQL and DSQL, the following types are defined in ibase.h:

#define SQL_BOOLEAN 590

C data type or

SQL Data Type Macro expression sglind used?
yp P typedef 9
BOOLEAN SQL_BOOLEAN Signed short NO
BOOLEAN SQL_BOOELAN + 1 Signed short YES

In ISQL and IBConsole, the output for a BOOLEAN, regardless of values given, is always TRUE,
FALSE or UNKNOWN . However, using API function calls, UNKNOWN is treated as NULL, TRUE
returns 1, and FALSE returns 0.

SPECIFYING DATA TYPES

Note:
InterBase looks for Booleans of the form “literal <relop> literal” that evaluate to FALSE
and returns a false Boolean inversion node to short-circuit data retrieval.

Examples: The following code illustrates the use of the BOOLEAN data type.

« SQL statements:

CREATE TABLE AWARDS_1 (isEligible BOOLEAN, name VARCHAR(20));
INSERT INTO AWARDS_1 VALUES (TRUE, '3Jim Smith');

INSERT INTO AWARDS_1 VALUES (FALSE, '3John Buttler');

SELECT = FROM AWARDS_1;

Result:

ISELIGIBLE NAME

TRUE Jim Smith
FALSE John Buttler

» SQL statement:

SELECT * FROM AWARDS_1 WHERE -isEligible = TRUE;

Result:

ISELTIGIBLE NAME

« SQL statement:
SELECT * FROM AWARDS_1 WHERE isEligible;
Result:

ISELIGIBLE NAME

» SQL statement:

SELECT *x FROM AWARDS_1 WHERE NOT -1isEligible;

SPECIFYING DATA TYPES

Result:

ISELIGIBLE NAME

FALSE John Buttler

7. Defining BLOB Data Types

InterBase supports a dynamically sizable data type called a BLOB to store data that cannot easily
be stored in one of the standard SQL data types. A Blob is used to store very large data objects
of indeterminate and variable size, such as bit-mapped graphics images, vector drawings, sound
files, video segments, chapter or book-length documents, or any other kind of multimedia
information. Because a Blob can hold different kinds of information, it requires special processing
for reading and writing. For more information about Blob handling, see the Embedded SQL
Guide.

The BLOB data type provides the advantages of a database management system, including
transaction control, maintenance by database utilities, and access using SELECT, INSERT,
UPDATE, and DELETE statements. Use the BLOB data type to avoid storing pointers to non-
database files.

7.1. BLOB Columns

You define BLOB columns in database tables just as you do non- BLOB columns. For example,
the following statement creates a table with a BLOB column:

CREATE TABLE PROJECT

(PROJ_ID PROJNO NOT NULL,

PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,
PROJ_DESC BLOB,

TEAM_LEADER EMPNO,

PRODUCT PRODTYPE,

)

Rather than storing BLOB data directly, a BLOB column stores a BLOB ID. A BLOB ID is a
unique numeric value that references BLOB data. The BLOB data is stored elsewhere in the
database, in a series of BLOB segments, which are units of BLOB data that are read and written in
chunks. InterBase writes data to a BLOB one segment at a time. Similarly, it reads a BLOB one
segment at a time.

The following diagram shows the relationship between a BLOB column containing a BLOB ID,
and the BLOB data referenced by the BLOB ID:

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

SPECIFYING DATA TYPES

7.2. BLOB Segment Length

When a BLOB column is defined in a table, the BLOB definition can specify the expected size of
BLOB segments that are written to the column. Actually, for SELECT, INSERT, and UPDATE
operations, BLOB segments can be of varying length. For example, during insertion, a BLOB
might be read in as three segments, the first segment having length 30, the second having length
300, and the third having length 3.

The length of an individual segment should be specified when it is written. For example, the
following code fragment inserts a BLOB segment. The segment length is specified in the host
variable, segment_length:

INSERT CURSOR BCINS VALUES (:write_segment_buffer
:segment_length);

7.2.1. Defining Segment Length

gpre, the InterBase precompiler, is used to process embedded SQL statements inside
applications. The segment length setting, defined for a BLOB column when it is created, is used
to determine the size of the internal buffer where the BLOB segment data will be written. This
setting specifies (to gpre) the maximum number of bytes that an application is expected to
write to any segment in the column. The default segment length is 80. Normally, an application
should not attempt to write segments larger than the segment length defined in the table; doing
so overflows the internal segment buffer, corrupting memory in the process.

The segment length setting does not affect InterBase system performance. Choose the segment
length most convenient for the specific application. The largest possible segment length is 32
kilobytes (32,767 bytes).

7.2.2. Segment Syntax

The following statement creates two BLOB columns, BLOB1, with a default segment size of 80,
and BLOB2, with a specified segment length of 512:

CREATE TABLE TABLE2 (BLOB1 BLOB,BLOB2 BLOB SEGMENT SIZE 512);

7.3. BLOB Subtypes

When you define a BLOB column, you have the option of specifying a subtype. A BLOB subtype
is a positive or negative integer that describes the nature of the BLOB data contained in the
column. InterBase provides two predefined subtypes, O, signifying that a BLOB contains binary

SPECIFYING DATA TYPES

data, the default, and 1, signifying that a BLOB contains ASCII text. User-defined subtypes must
always be represented as negative integers. Positive integers are reserved for use by InterBase.

Blob subtype Description

0 Unstructured, generally applied to binary data or data of
an indeterminate type

1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of the current metadata of a table

Description of multi-database transaction that finished

6 :
irregularly
Note:
TEXT is a keyword and can be used in a BLOB column declaration instead of the subtype
number.

For example, the following statement defines three BLOB columns: BLOB1 with subtype O (the
default), BLOB2 with InterBase subtype 1 (TEXT), and BLOB3 with user-defined subtype —1:

CREATE TABLE TABLE2
(BLOB1 BLOB,

BLOB2 BLOB SUB_TYPE 1,
BLOB3 BLOB SUB_TYPE -1);

The application is responsible for ensuring that data stored in a BLOB column agrees with its
subtype. For example, if subtype —10 denotes a certain data type in a particular application, then
the application must ensure that only data of that data type is written to a BLOB column of
subtype —10. InterBase does not check the type or format of BLOB data.

To specify both a default segment length and a subtype when creating a BLOB column, use the
SEGMENT SIZE option after the SUB_TYPE option, as in the following example:

SPECIFYING DATA TYPES

CREATE TABLE TABLE2
(BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100 CHARACTER SET D0S437);

7.4. BLOB Filters

BLOB subtypes are used in conjunction with BLOB filters. A BLOB filter is a routine that
translates BLOB data from one subtype to another. InterBase includes a set of special internal
BLOB filters that convert from subtype O to subtype 1 (TEXT), and from InterBase system
subtypes to subtype 1 (TEXT). In addition to using the internal text filters, programmers can
write their own external filters to provide special data translation. For example, an external filter
might automatically translate from one bit-mapped image format to another.

Associated with every filter is an integer pair that specifies the input subtype and the output
subtype. When declaring a cursor to read or write BLOB data, specify FROM and TO subtypes
that correspond to a particular BLOB filter. InterBase invokes the filter based on the FROM and
TO subtype specified by the read or write cursor declaration.

The display of BLOB subtypes in isql can be specified with SET BLOBDISPLAY in command-
line isql or with the Session | Advanced Settings command in Windows ISQL.

For more information about Windows ISQL and command-line isql, see the Operations Guide.
For more information about creating external BLOB filters, see the Embedded SQL Guide.

7.5. Using BLOBs with VARCHAR Data

All BLOB sub-types can be used interchangeably with VARCHAR data. However, with BLOB
SUB_TYPE 1, the BLOB is considered to have a character type, essentially making the BLOB a
CLOB data type. For BLOB columns of SUB_TYPE 1, the server converts character data to the
column’s character type before inserting, updating or comparing the data. For all other sub-
types, the BLOB data type accepts character input and treats it just as it would all other binary
data. Hence, the BLOB data type treats all textual data as an array of bytes. Text data used in ISQL
has a character set associated with it. This will most likely be the character encoding of the
machine running ISQL (or any other client).

The server does not perform any character set conversion in these cases. Again, the server treats
the data as an array of bytes. To convert or store the textual data to a particular encoding (other
than the system encoding), cast the character data to the required character set.

7.5.1. About Text BLOB Syntax

The general syntax for the SQL SELECT statement with a BLOB data type is:

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

SPECIFYING DATA TYPES

SELECT CAST (<blob-column-name> as CHAR[<n>]) FROM <table-name>;

To make text blobs interchangeable with VARCHAR data, you can use the following SQL syntax:

INSERT INTO <table-name> values (<text values>, ...);
UPDATE <table_name> set <blob column name> = <text value>;

And:

SELECT CAST (<blob column name> as CHAR[128]) from table;

SELECT x from <table name> where cast (<blob column> as VARCHAR[10]) =
“SMISTRY”;

In addition, store procedures which accept a BLOB can now accept a text value as a parameter
and implicitly be converted to a text blob. For example:

CREATE PROCEDURE MYTEST (AINT INTEGER, INBLOB BLOB)
AS

Declare variable var_blob blob;

begin

insert

var_blob

This procedure can now be called using the following syntax:

Execute procedure mytest (1, ‘hello world’);

You can use the SELECT CAST, UPDATE, and INSERT INTO statements with the InterBase Client
APIs. In such cases, InterBase returns the values as C structures. Specifically, the returned
XSQLVARS would be of the type SQLVARYING, with the length of the text followed by the text
data.

The following example demonstrates the use of the new SQL syntax for text BLOBs.

Example:

/* Same syntax to create a table... */

/* Note all sub-types are supported; SUB_TYPE 1 forces conversion */
/* to the column’s character data type. x/

CREATE TABLE BLOB_TEST (B_ID INT, BLOB_CL BLOB SUB_TYPE 1);
COMMIT;

/* New functionality for the INSERT statement...

*/

INSERT INTO BLOB_TEST VALUES (1, ‘Fellowship of the Ring’);
INSERT INTO BLOB_TEST VALUES (2, ‘The Two Towers’);

INSERT INTO BLOB_TEST VALUES (3, ‘Return of the Jedi’);

/* New syntax for UPDATE... */

SPECIFYING DATA TYPES

UPDATE BLOB_TEST SET BLOB_CL=’Return of the King’ WHERE B_ID=3;

COMMIT;

/* New syntax for SELECT. The BLOB will be returned as a TEXT string. x/
SELECT B_ID, CAST (BLOB_CL AS VARCHAR(25)) FROM BLOB_TEST;

The following table illustrates the result of these statements in ISQL:

Text BLOB Example Result

B_ID BLOB_CL
1 Fellowship of the Ring
2 The Two Towers
3 Return of the King

8. Defining Arrays

InterBase allows you to create arrays of data types. Using an array enables multiple data items to
be stored in a single column. InterBase can perform operations on an entire array, effectively
treating it as a single element, or it can operate on an array slice, a subset of array elements. An
array slice can consist of a single element, or a set of many contiguous elements.

Using an array is appropriate when:

« The data items naturally form a set of the same data type.

* The entire set of data items in a single database column must be represented and controlled
as a unit, as opposed to storing each item in a separate column.

» Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of any
InterBase data type except BLOB, and cannot be an array of arrays. All of the elements of a
particular array are of the same data type.

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an array
column is just like defining any other column, except that the array dimensions must also be
specified. For example, the following statement defines both a regular character column, and a
single-dimension, character array column containing four elements:

EXEC SQL

CREATE TABLE TABLE1
(NAME CHAR(10),
CHAR_ARR CHAR(10)[41);

SPECIFYING DATA TYPES

Array dimensions are always enclosed in square brackets following a data type specification of a
column.

For a complete discussion of CREATE TABLE and array syntax, see the Language Reference. To
learn more about the flexible data access provided by arrays, see the Embedded SQL Guide.

8.1. Multi-dimensional Arrays

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For example, the
following statement defines three INTEGER array columns with two, three, and four dimensions
respectively:

EXEC SQL

CREATE TABLE TABLE1
(INT_ARR2 INTEGER[4,5],
INT_ARR3 INTEGER[4,5,6],
INT_ARR4 INTEGER[4,5,6,7]);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for a total of 20
integer elements, INT_ARR3 allocates 120 elements, and INT_ARR4 allocates 840 elements.

Important:

InterBase stores multi-dimensional arrays in row-major order. Some host languages,
such as FORTRAN, expect arrays to be in column-major order. In these cases, care must
be taken to translate element ordering correctly between InterBase and the host
language.

8.2. Specifying Subscript Ranges for Array Dimensions

In InterBase, array dimensions have a specific range of upper and lower boundaries, called
subscripts. In many cases, the subscript range is implicit. The first element of the array is element
1, the second element 2, and the last is element <n>. For example, the following statement
creates a table with a column that is an array of four integers:

EXEC SQL
CREATE TABLE TABLE1l
(INT_ARR INTEGER[4]);

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly defined
when an array column is created. For example, C programmers, familiar with arrays that start with
a lower subscript boundary of zero, might want to create array columns with a lower boundary of
zero as well.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

SPECIFYING DATA TYPES

To specify array subscripts for an array dimension, both the lower and upper boundaries of the
dimension must be specified using the following syntax:

lower :upper

For example, the following statement creates a table with a single-dimension array column of
four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL
CREATE TABLE TABLE1
(INT_ARR INTEGER[0:3]);

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate the set of
subscripts of each dimension from the next with commas. For example, the following statement
creates a table with a two-dimensional array column where each dimension has four elements
with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLE1
(INT_ARR INTEGER[0:3, 0:3]);

9. Converting Data Types

Normally, you must use compatible data types to perform arithmetic operations, or to compare
data in search conditions. If you need to perform operations on mixed data types, or if your
programming language uses a data type that is not supported by InterBase, then data type
conversions must be performed before the database operation can proceed. InterBase either
automatically (dialect 1) converts the data to an equivalent data type (an implicit type
conversion), or you can use the CAST() function (dialect 3) in search conditions to explicitly
translate one data type into another for comparison purposes.

You cannot convert array data to any other data type, nor can any data type be converted to an
array. Individual elements of an array, however, behave like members of the array’'s base data
type. To see how BLOBs can be converted to VARCHARS, see Using BLOBs with VARCHAR Data.

9.1. Implicit Type Conversions

InterBase supports several types of implicit type conversion. For example, comparing a DATE or
TIMESTAMP column to '6/7/2000" causes the string literal '6/7/2000" to be converted implicitly to
a DATE entity. An expression mixing integers with scaled numeric types or float types implicitly
converts the integer to a like type.

SPECIFYING DATA TYPES

However, InterBase dialect 3 differs from dialect 1 in this respect: in dialect 3, implicit string-to-
integer conversion is not supported. For example, in the following operation:

3+ '1 =4

* InterBase dialect 1 automatically converts the character “1” to an INTEGER for the addition.
« InterBase dialect 3 returns an error.

In dialect 3, an explicit type conversion is needed:

3 + CAST(¢1’ AS INT)

The next example returns an error in either dialect, because InterBase cannot convert the “a" to
an INTEGER:

3+ 'a' =4

9.2. Explicit Type Conversions

When InterBase cannot do an implicit type conversion, you must perform an explicit type
conversion using the CAST () function. Use CAST() to convert one data type to another inside
a SELECT statement. Typically, CAST() is used in the WHERE clause to compare different data
types. The syntax is:

CAST (value
| NULL AS data_type)

Use CAST() to translate the following data types:

* DATE, TIME, or TIMESTAMP data type into a CHARACTER data type.
* CHARACTER data type into a DATE, TIME, or TIMESTAMP data type.
« TIMESTAMP data type into a TIME or DATE data type.

« TIME or DATE data type into a TIMESTAMP data type.

e BOOLEAN intoa CHAR or VARCHAR.

BLOB subtype 1 into a VARCHAR.

For example, in the following WHERE clause, CAST() is used to translate a CHAR data type,
INTERVIEW_DATE, to a DATE data type in order to compare against a DATE data type,
HIRE_DATE:

.. WHERE HIRE_DATE = (CAST(INTERVIEW_DATE AS DATE);

SPECIFYING DATA TYPES

In the next example, CAST() is used to translate a DATE data type into a CHAR data type:

.. WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

You can use CAST() to compare columns with different data types in the same table, or across

tables. For more information, refer to "Working with Dates and Times" in the Embedded SQL
Guide.

Converting a numeric data type to a character type requires a minimum length for the character
type, as listed below.

Data type Minimum length for converted character type
Decimal 20
Double 22
Float 13
Integer 11
Numeric 22

Smallint 6

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

WORKING WITH DOMAINS

WORKING WITH DOMAINS

This chapter covers the following topics:

» Creating Domains (Data Definition Guide)
« Altering Domains
* Dropping a Domain

1. Creating Domains (Data Definition Guide)

When you create a table, you can use a global column definition, called a domain, to define a
column locally. Before defining a column that references a domain, you must first create the
domain definition in the database with CREATE DOMAIN. CREATE DOMAIN acts as a template
for defining columns in subsequent CREATE TABLE and ALTER TABLE statements. For more
information on creating and modifying tables, see Working with Tables.

Domains are useful when many tables in a database contain identical column definitions.
Columns based on a domain definition inherit all characteristics of the domain; some of these
attributes can be overridden by local column definitions.

Note:
You cannot apply referential integrity constraints to a domain.

When you create a domain in the database, you must specify a unique name for the domain and
specify the data type. Optionally, you provide default values and NULL status, CHECK
constraints, and a collation order.

The syntax for CREATE DOMAIN is:

CREATE DOMAIN domain [AS] <data_type>
[DEFAULT {literal

| NULL | USER}]

[NOT NULL] [CHECK (<dom_search_condition>)]
[COLLATE collation];

1.1. Specifying the Domain Data Type

The <data_type> is the only required attribute that must be set for the domain, all other
attributes are optional. The <data_type> defines the set of valid data that the column can
contain. The <data_type> also determines the set of allowable operations that can be
performed on the data, and defines the disk space requirements for each data item.

WORKING WITH DOMAINS

1.1.1. Syntax

<data_type> =

{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION} [<array_dim>]

| {DATE|TIME|TIMESTAMP} [<array_dim>]

| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)][<array_dim>]
[CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}[VARYING] [(int)] [<array_dim>]

| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE -+int][CHARACTER SET
charname]

| BLOB [(seglen [, subtype])]

| BOOLEAN

<array_dim> = [x:y [, x1l:y1l ...]]

Note:
The <data_type> is the SQL data type for any column based on a domain. You cannot
override the domain data type with a local column definition.

The general categories of SQL data types include:

« Character data types.

* Integer data types.

« Decimal data types, both fixed and floating.

« A DATE data type to represent the date, a TIME data type to represent the time, and a
TIMESTAMP data type to represent both date and time.

A BLOB data type to represent unstructured binary data, such as graphics and digitized
voice.

« Arrays of data types (except for BLOB data).

See About InterBase Data Types for a complete list and description of data types that InterBase
supports.

For more information about data types, see Specifying Data Types.

The following statement creates a domain that defines an array of CHARACTER data type:

CREATE DOMAIN DEPTARRAY AS CHAR(67) [4:5];

The next statement creates a BLOB domain with a text subtype that has an assigned character
set:

WORKING WITH DOMAINS

CREATE DOMAIN DESCRIPT AS BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SIJIS;

1.2. Specifying Domain Defaults

You can set an optional default value that is automatically entered into a column if you do not
specify an explicit value. Defaults set at the column level with CREATE TABLE or ALTER TABLE
override defaults set at the domain level. Defaults can save data entry time and prevent data
entry errors. For example, a possible default fora DATE column could be today's date, or in a (Y/
N) flag column for saving changes, “Y" could be the default.

Default values can be:

« literal: The default value is a user-specified string, numeric value, or date value.

* NULL : If the user does not enter a value, a NULL value is entered into the column.

« USER: The default is the name of the current user. If your operating system supports the use
of 8- or 16-bit characters in user names, then the column into which USER will be stored
must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the default.
The next statement creates a table that includes a column, ENTERED_BY, based on the
USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20) DEFAULT USER;
CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,

ORDER_AMT DECIMAL(8,2));
INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT = FROM ORDERS;
1-MAY-93 JSMITH 512.36

1.3. Specifying NOT NULL

You can optionally specify NOT NULL to force the user to enter a value. If you do not specify
NOT NULL, then NULL values are allowed for any column that references this domain.
NOT NULL specified on the domain level cannot be overridden by a local column definition.

Important:
If you have already specified NULL as a default value, be sure not to create

WORKING WITH DOMAINS

contradictory constraints by also assigning NOT NULL to the domain, as in the
following example:

CREATE DOMAIN DOM1 INTEGER DEFAULT NULL, NOT NULL;

1.4. Specifying Domain CHECK Constraints

You can specify a condition or requirement on a data value at the time the data is entered by
applying a CHECK constraint to a column. The CHECK constraint in a domain definition sets a
search condition (<dom_search_condition>) that must be true before data can be entered into
columns based on the domain.

The syntax of the search condition is:

<dom_search_condition> =
VALUE <operator> <val>

I
I
I
I
I
(0]

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

(<dom_
NOT <dom_search_condition>

<dom_search_condition> OR <dom_search_condition>
<dom_search_condition> AND <dom_search_condition>

[NOT] BETWEEN <val> AND <val>
[NOT] LIKE <val> [ESCAPE <val>]
[NOT] IN (<val> [, <val> ..])

IS [NOT] NULL

[NOT] CONTAINING <val>

[NOT] STARTING [WITH] <val>
search_condition>)

<operator> = {= | < | > | <= | >= | I< | > | <> | !=}

The following restrictions apply to CHECK constraints:

« A CHECK constraint cannot reference any other domain or column name.

« A domain can have only one CHECK constraint.

e You cannot override the domain’s CHECK constraint with a local CHECK constraint. A
column based on a domain can add additional CHECK constraints to the local column
definition.

1.5. Using the VALUE Keyword

VALUE defines the set of values that is valid for the domain. VALUE is a placeholder for the
name of a column that will eventually be based on the domain. The search condition can verify
whether the value entered falls within a certain range, or match it to any one value in a list of
values.

WORKING WITH DOMAINS

Note:
If NULL values are allowed, they must be included in the CHECK constraint, as in the
following example:

CHECK ((VALUE IS NULL) OR (VALUE > 1000));

The next statement creates a domain where value must be > 1,000:

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 1000);

The following statement creates a domain that must have a positive value greater than 1,000,
with a default value of 9,999.

CREATE DOMAIN CUSTNO
AS INTEGER

DEFAULT 9999

CHECK (VALUE > 1000);

The next statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

When a problem cannot be solved using comparisons, you can instruct the system to search for a
specific pattern in a character column. For example, the next search condition allows only cities in
California to be entered into columns that are based on the CALIFORNIA domain:

CREATE DOMAIN CALIFORNIA
AS VARCHAR (25)
CHECK (VALUE LIKE '%, CA');

1.6. Specifying Domain Collation Order

The COLLATE clause of CREATE DOMAIN allows you to specify a particular collation order for
columns defined as CHAR or VARCHAR text data types. You must choose a collation order that is
supported for the column’s given character set. The character set is either the default character
set for the entire database, or you can specify a different set in the CHARACTER SET clause of
the data type definition. The collation order set at the column level overrides a collation order set
at the domain level.

WORKING WITH DOMAINS

For a list of the collation orders available for each character set, see Character Sets and Collation
Orders.

In the following statement, the domain, TITLE, overrides the database default character set,
specifying a DOS437 character set with a PDOX_INTL collation order:

CREATE DOMAIN TITLE AS
CHAR(50) CHARACTER SET D0S437 COLLATE PDOX_INTL;

2. Altering Domains

ALTER DOMAIN changes any aspect of an existing domain except its NOT NULL setting.
Changes that you make to a domain definition affect all column definitions based on the domain
that have not been overridden at the table level.

Note:
To change the NOT NULL setting of a domain, drop the domain and recreate it with the
desired combination of features.

A domain can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges.

ALTER DOMAIN allows you to:

* Drop an existing default value

« Set a new default value

* Drop an existing CHECK constraint

« Add a new CHECK constraint

* Modify the domain name and data type
« Modify the data type of a column

The syntax for ALTER DOMAIN is:

ALTER DOMAIN { name | old_name TO new_name } {
[SET DEFAULT {literal | NULL
| USER}]
| [DROP DEFAULT]
| [ADD [CONSTRAINT] CHECK (<dom_search_condition>)]

| [DROP CONSTRAINT]
| new_col_name
| TYPE data_type

b5

The following statement sets a new default value for the CUSTNO domain:

WORKING WITH DOMAINS

ALTER DOMAIN CUSTNO SET DEFAULT 9999;

The following statement changes the name of the CUSTNO domain to CUSTNUM :

ALTER DOMAIN CUSTNO TO CUSTNUM;

The following statement changes the data type of the CUSTNUM domain to CHAR(20) :

ALTER DOMAIN CUSTNUM TYPE CHAR(20);

The TYPE clause of ALTER DOMAIN does not allow you to make data type conversions that could
lead to data loss. For example, it does not allow you to change the number of characters in a
column to be less than the largest value in the column.

3. Dropping a Domain
DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP operation fails.
To prevent failure, delete the columns based on the domain with ALTER TABLE before
executing DROP DOMAIN.

A domain can be dropped by its creator, the SYSDBA, and any users with operating system root
privileges.

The syntax of DROP DOMAIN is:

DROP DOMAIN name;

The following statement deletes a domain:

DROP DOMAIN COUNTRYNAME;

WORKING WITH TABLES (DATA DEFINITION GUIDE)

WORKING WITH TABLES (DATA DEFINITION GUIDE)

This chapter describes:

« What to do before creating a table
» How to create database tables

* How to alter tables

» How to drop tables

1. Before Creating a Table
Before creating a table, you should:

« Design, normalize, create, and connect to a database

* Determine what tables, columns, and column definitions to create

« Create the domain definitions in the database

* Declare the table if an embedded SQL application both creates a table and populates the
table with data in the same program

For information on how to create, drop, and modify domains, see Working with Domains. The
DECLARE TABLE statement must precede CREATE TABLE . For the syntax of DECLARE TABLE,
see the Language Reference.

2. Creating Tables (Data Definition Guide)

You can create tables in the database with the CREATE TABLE statement. The syntax for
CREATE TABLE is:

CREATE TABLE table [EXTERNAL [FILE] 'filespec']
(<col_def> [, <col_def> | <tconstraint> ...]);

The first argument that you supply to CREATE TABLE is the table name, which is required, and
must be unique among all table and procedure names in the database. You must also supply at
least one column definition.

For the complete syntax, see CREATE TABLE in the “SQL Statement and Function Reference”
chapter of the Language Reference. This SQL reference is also available in HTML format.

InterBase automatically imposes the default SQL security scheme on the table. The person who
creates the table (the owner), is assigned all privileges for it, including the right to grant
privileges to other users, triggers, and stored procedures. For more information on security, see
Planning Security.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Metadata name length Database object names, including table, column, and domain names can
be up to 68 types in length: 67 bytes plus a NULL terminator.

For a detailed specification of CREATE TABLE syntax, see the Language Reference.

2.1. Defining Columns

When you create a table in the database, your main task is to define the various attributes and
constraints for each of the columns in the table. The syntax for defining a column is:

<col_def> = col {data_type

| COMPUTED [BY] (<expr>)

| domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [<col_constraint>]
[COLLATE collation]

The next sections list the required and optional attributes that you can define for a column.

2.1.1. Required Attributes

You are required to specify:

* A column name, which must be unique among the columns in the table.
* One of the following:

« A SQL data type (<data_type>).
« An expression (<expr>) for a computed column.
« A domain definition (<domain>) for a domain-based column.

2.1.2. Optional Attributes

You have the option to specify:

» A default value for the column.
« Integrity constraints. Constraints can be applied to a set of columns (a table-level constraint),
or to a single column (a column-level constraint). Integrity constraints include:

« The PRIMARY KEY column constraint, if the column is a PRIMARY KEY, and the
PRIMARY KEY constraint is not defined at the table level. Creating a PRIMARY KEY

requires exclusive database access.
« The UNIQUE constraint, if the column is not a PRIMARY KEY, but should still disallow

duplicate and NULL values.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

« The FOREIGN KEY constraint, if the column references a PRIMARY KEY in another table.
Creating a FOREIGN KEY requires exclusive database access. The foreign key constraint
includes the ON UPDATE and ON DELETE mechanisms for specifying what happens to the
foreign key when the primary key is updated (cascading referential integrity).

« A NOT NULL attribute does not allow NULL values. This attribute is required if the column
isa PRIMARY KEY or UNIQUE key.

« A CHECK constraint for the column. A CHECK constraint enforces a condition that must be
true before an insert or an update to a column or group of columns is allowed.

« A CHARACTER SET can be specified for a single column when you define the data type. If
you do not specify a character set, the column assumes the database character set as a
default.

2.1.3. Specifying the Data Type

When creating a table, you must specify the data type for each column. The data type defines the
set of valid data that the column can contain. The data type also determines the set of allowable
operations that can be performed on the data, and defines the disk space requirements for each
data item.

Syntax

<data type> =

{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION} [<array_dim>]

| {DATE|TIME|TIMESTAMP} [<array_dim>]

| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)][<array_dim>]
[CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}[VARYING] [(int)] [<array_dim>]

| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE -+int][CHARACTER SET
charname]

| BLOB [(seglen [, subtypel])]

| BOOLEAN

<array_dim> = [x:y [, x1l:y1l ...]]

Note:

<subtype_name> can be a TEXT value.

Note:

The outermost brackets must be included when declaring arrays.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Supported data types

The general categories of data types that are supported include:

* Character data types.

* Integer data types.

« Decimal data types, both fixed and floating.

« A DATE data type to represent the date, a TIME data type to represent the time, and a
TIMESTAMP data type to represent both the date and time.

« A BOOLEAN data type.

« A BLOB data type to represent unstructured binary data, such as graphics and digitized
voice.

« Arrays of data types (except for BLOB data).

See About InterBase Data Types for a complete list and description of data types that InterBase
supports.

2.1.4. Casting Data Types

If your application programming language does not support a particular data type, you can let
InterBase automatically convert the data to an equivalent data type (an implicit type conversion),
or you can use the CAST() function in search conditions to explicitly translate one data type
into another for comparison purposes. For more information about specifying data types and
using the CAST() function, see Specifying Data Types.

2.1.5. Defining a Character Set

The data type specification for a CHAR, VARCHAR, or BLOB text column definition can include a
CHARACTER SET clause to specify a particular character set for a column. If you do not specify a
character set, the column assumes the default database character set. If the database default
character set is subsequently changed, all columns defined after the change have the new
character set, but existing columns are not affected. For a list of available character sets
recognized by InterBase, see Character Sets and Collation Orders.

2.1.6. The COLLATE Clause

The collation order determines the order in which values are sorted. The COLLATE clause of
CREATE TABLE allows you to specify a particular collation order for columns defined as CHAR
and VARCHAR text data types. You must choose a collation order that is supported for the given
character set of the column. The character set is either the default character set for the entire

WORKING WITH TABLES (DATA DEFINITION GUIDE)

database, or you can specify a different set in the CHARACTER SET clause of the data type
definition. The collation order set at the column level overrides a collation order set at the
domain level.

In the following statement, BOOKNO keeps the default collating order for the default character
set of the database. The second (TITLE) and third (EUROPUB) columns specify different
character sets and collating orders.

CREATE TABLE BOOKADVANCE (BOOKNO CHAR(6),
TITLE CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_INTL,
EUROPUB CHAR(50) CHARACTER SET IS08859_1 COLLATE FR_FR);

For a list of the available characters sets and collation orders that InterBase recognizes, see
Character Sets and Collation Orders.

2.1.7. Defining Domain-based Columns

When you create a table, you can set column attributes by using an existing domain definition
that has been previously stored in the database. A domain is a global column definition. Domains
must be created with the CREATE DOMAIN statement before you can reference them to define
columns locally. For information on how to create a domain, see Working with Domains.

Domain-based columns inherit all the characteristics of a domain, but the column definition can
include a new default value, additional CHECK constraints, or a collation clause that overrides
the domain definition. It can also include additional column constraints. You can specify a
NOT NULL setting if the domain does not already define one.

Note:
You cannot override the domain’s NOT NULL setting with a local column definition.

For example, the following statement creates a table, COUNTRY, referencing the domain,
COUNTRYNAME , which was previously defined with a data type of VARCHAR (15):

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

2.1.8. Defining Expression-based Columns

A computed column is one whose value is calculated each time the column is accessed at run
time. The syntax is:

<col_name> COMPUTED [BY] (<expr>);

WORKING WITH TABLES (DATA DEFINITION GUIDE)

If you do not specify the data type, InterBase calculates an appropriate one. <expr> is any
arithmetic expression that is valid for the data types in the columns; it must return a single value,
and cannot be an array or return an array. Columns referenced in the expression must exist
before the COMPUTED [BY] clause can be defined.

For example, the following statement creates a computed column, FULL_NAME, by
concatenating the LAST_NAME and FIRST_NAME columns.

CREATE TABLE EMPLOYEE
(FIRST_NAME VARCHAR(10) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME));

The next example creates a table with a calculated column (NEW_SALARY) using the previously
created EMPNO and SALARY domains.

CREATE TABLE SALARY_HISTORY (EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,

OLD_SALARY SALARY NOT NULL,

PERCENT_CHANGE DOUBLE PRECISION

DEFAULT ©

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),
NEW_SALARY COMPUTED BY

(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO)
ON UPDATE CASCADE

ON DELETE CASCADE);

Note:
e Constraints on computed columns are not enforced, but InterBase does not return an
error if you do define such a constraint.

2.1.9. Specifying Column Default Values

You can set an optional default value that is automatically entered into a column if you do not
specify an explicit value. Defaults set at the column level with CREATE TABLE or ALTER TABLE
override defaults set at the domain level. Defaults can save data entry time and prevent data
entry errors. For example, a possible default for a DATE column could be today's date, or in a (Y/
N) flag column for saving changes, “"Y" could be the default.

Default values can be:

« <literal>—The default value is a user-specified string, numeric value, or date value.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

* NULL —If the user does not enter a value, a NULL value is entered into the column.

* USER —The default is the name of the current user. If your operating system supports the
use of 8- or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the default.
The next statement creates a table that includes a column, ENTERED_BY, based on the
USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)
DEFAULT USER;
CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,

ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT = FROM ORDERS;

2.1.10. Specifying NOT NULL Columns

You can optionally specify NOT NULL to force the user to enter a value. If you do not specify
NOT NULL, then NULL values are allowed in the column. You cannot override a NOT NULL
setting that has been set at a domain level with a local column definition.

(N\

Note:

e If you have already specified NULL as a default value, be sure not to create
contradictory constraints by also specifying the NOT NULL attribute, as in the following
example:

CREATE TABLE MY_TABLE (COUNT INTEGER DEFAULT NULL NOT NULL);

2.2. Defining Integrity Constraints on a Table

InterBase allows you to optionally apply certain constraints to a column, called integrity
constraints, which are the rules that govern column-to-table and table-to-table relationships, and
validate data entries. They span all transactions that access the database and are automatically
maintained by the system. Integrity constraints can be applied to an entire table or to an
individual column.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

2.2.1. PRIMARY KEY and UNIQUE Constraints

The PRIMARY KEY and UNIQUE integrity constraints ensure that the values entered into a

column or set of columns are unique in each row. If you try to insert a duplicate value in a
PRIMARY KEY or UNIQUE column, InterBase returns an error. When you define a UNIQUE or
PRIMARY KEY column, determine whether the data stored in the column is inherently unique.
For example, no two social security numbers or driver's license numbers are ever the same. If no
single column has this property, then define the primary key as a composite of two or more
columns which, when taken together, are unique.

The EMPLOYEE table

EMP_NO LAST_NAME FIRST_NAME JOB_TITLE PHONE_EXT
10335 Smith John Engineer 4968
21347 Carter Catherine Product Manager 4967
13314 Jones Sarah Senior Writer 4800

In the EMPLOYEE table, EMP_NO is the primary key that uniquely identifies each employee.
EMP_NO is the primary key because no two values in the column are alike. If the EMP_NO
column did not exist, then no other column is a candidate for primary key due to the high
probability for duplication of values. LAST_NAME, FIRST_NAME, and JOB_TITLE fail because
more than one employee can have the same first name, last name, and job title. In a large
database, a combination of LAST_NAME and FIRST_NAME could still result in duplicate values.
A primary key that combines LAST_NAME and PHONE_EXT might work, but there could be two
people with identical last names at the same extension. In this table, the EMP_NO column is
actually the only acceptable candidate for the primary key because it guarantees a unique
number for each employee in the table.

A table can have only one primary key. If you define a PRIMARY KEY constraint at the table
level, you cannot do it again at the column level. The reverse is also true; if you define a
PRIMARY KEY constraint at the column level, you cannot define a primary key at the table level.
You must define the NOT NULL attribute for a PRIMARY KEY column in order to preserve the
uniqueness of the data values in that column.

Like primary keys, a unique key ensures that no two rows have the same value for a specified
column or ordered set of columns. You must define the NOT NULL attribute for a UNIQUE
column. A unique key is different from a primary key in that the UNIQUE constraint specifies
alternate keys that you can use to uniquely identify a row. You can have more than one unique

WORKING WITH TABLES (DATA DEFINITION GUIDE)

key defined for a table, but the same set of columns cannot make up more than one
PRIMARY KEY or UNIQUE constraint for a table. Like a primary key, a unique key can be
referenced by a foreign key in another table.

2.2.2. Using the FOREIGN KEY to Enforce Referential Integrity

A foreign key is a column or set of columns in one table that correspond in exact order to a
column or set of columns defined as a primary key in another table. For example, in the
PROJECT table, TEAM_LEADER is a foreign key referencing the primary key, EMP_NO in the
EMPLOYEE table.

The PROJECT table

TEAM_LEADE

PROJ_ID R

PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware
VBASE 47 Video database blob data software
HWRII 24 Translator upgrade blob data software

The EMPLOYEE table

FIRST_N DEPT_N PHONE_

AME o EXT SALARY

24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500

The primary reason for defining foreign keys is to ensure that data integrity is maintained when
more than one table uses the same data: rows in the referencing table must always have
corresponding rows in the referenced table.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

InterBase enforces referential integrity in the following ways:

« The unique or primary key columns must already be defined before you can create the
foreign key that references them.

« Referential integrity checks are available in the form of the ON UPDATE and ON DELETE
options to the REFERENCES statement. When you create a foreign key by defining a
column or table REFERENCES constraint, you can specify what should happen to the
foreign key when the referenced primary key changes. The options are:

Action specified Effect on foreign key
RESTRICT [Default]
The foreign key does not change (can cause the primary key update or delete
NO ACTION . N .
to fail due to referential integrity checks)
AR The corresponding foreign key is updated or deleted as appropriate to the new

value of the primary key

Every column of the corresponding foreign key is set to its default value; fails if

SET DEFAULT
the default value of the foreign key is not found in the primary key

SET NULL Every column of the corresponding foreign key is set to NULL

« If you do not use the ON UPDATE and ON DELETE options when defining foreign keys, you
must make sure that when information changes in one place, it changes in all referencing
columns as well. Typically, you write triggers to do this. For example, to change a value in the
EMP_NO column of the EMPLOYEE table (the primary key), that value must also be updated
in the TEAM_LEADER column of the PROJECT table (the foreign key).

« If you delete a row from a table that is a primary key, you must first delete all foreign keys
that reference that row. If you use the ON DELETE CASCADE option when defining the
foreign keys, InterBase does this for you.

When you specify SET DEFAULT as the action, the default value used is the one in effect when
the referential integrity constraint was defined. When the default for a foreign key column is
changed after the referential integrity constraint is set up, the change does not have an effect on
the default value used in the referential integrity constraint.

* You cannot add a value to a column defined as a foreign key unless that value exists in the
referenced primary key. For example, to enter a value in the TEAM_LEADER column of the
PROJECT table, that value must first exist in the EMP_NO column of the EMPLOYEE table.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

The following example specifies that when a value is deleted from a primary key, the
corresponding values in the foreign key are set to NULL . When the primary key is updated, the
changes are cascaded so that the corresponding foreign key values match the new primary key
values.

CREATE TABLE PROJECT {

TEAM LEADER INTEGER REFERENCES EMPLOYEE (EMP_NO)
ON DELETE SET NULL
ON UPDATE CASCADE

.13

2.2.3. Referencing Tables Owned by Others

If you want to create a foreign key that references a table owned by someone else, that owner
must first use the GRANT command to grant you REFERENCES privileges on that table.
Alternately, the owner can grant REFERENCES privileges to a role and then grant that role to
you. See Planning Security and the Language Reference for more information on granting
privileges to users and roles. See the Language Reference for more on creating and dropping
roles.

2.2.4. Circular References

When two tables reference each other’s foreign keys and primary keys, a circular reference exists
between the two tables. In the following illustration, the foreign key in the EMPLOYEE table,
DEPT_NO, references the primary key, DEPT_NO, in the DEPARTMENT table. Therefore, the
primary key, DEPT_NO must be defined in the DEPARTMENT table before it can be referenced by
a foreign key in the EMPLOYEE table. In the same manner, EMP_NO, which is the primary key of
the EMPLOYEE table, must be created before the DEPARTMENT table can define EMP_NO as its
foreign key.

The problem with circular referencing occurs when you try to insert a new row into either table.
Inserting a new row into the EMPLOYEE table causes a new value to be inserted into the
DEPT_NO (foreign key) column, but you cannot insert a value into the foreign key column unless
that value already exists in the DEPT_NO (primary key) column of the DEPARTMENT table. It is
also true that you cannot add a new row to the DEPARTMENT table unless the values placed in
the EMP_NO (foreign key) column already exist in the EMP_NO (primary key) column of the
EMPLOYEE table. Therefore, you are in a deadlock situation because you cannot add a new row
to either table!

WORKING WITH TABLES (DATA DEFINITION GUIDE)

InterBase gets around the problem of circular referencing by allowing you to insert a NULL value
into a foreign key column before the corresponding primary key value exists. The following
example illustrates the sequence for inserting a new row into each table:

* Insert a new row into the EMPLOYEE table by placing “1” in the EMP_NO primary key
column, and a NULL inthe DEPT_NO foreign key column.

* Insert a new row into the DEPARTMENT table, placing “2" in the DEPT_NO primary key
column, and "1" in the foreign key column.

« Use ALTER TABLE to modify the EMPLOYEE table. Change the DEPT_NO column from
NULL to “2."

2.2.5. How to Declare Constraints

When declaring a table-level or a column-level constraint, you can optionally name the constraint
using the CONSTRAINT clause. If you omit the CONSTRAINT clause, InterBase generates a
unique system constraint name which is stored in the RDBSRELATION_CONSTRAINTS system

table.

Tip:

To ensure that the constraint names are visible in RDBSRELATION_CONSTRAINTS,
commit your transaction before trying to view the constraint in the
RDBSRELATION_CONSTRAINTS system table.

The syntax for a column-level constraint is:

<col_constraint> = [CONSTRAINT constraint] <constraint_def>
[<col_constraint> ...]

<constraint_def> =

UNIQUE | PRIMARY KEY
| CHECK (<search_condition>)

| REFERENCES other_table [(other_col [, other_col ..])]
[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULLZ}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULLZ}]
</pre>

The syntax for a table-level constraint is:

<source lang=sql>
<tconstraint> = [CONSTRAINT constraint] <tconstraint_def>
[<tconstraint> ...]
<tconstraint_def> = {PRIMARY KEY | UNIQUE} (col [, col ..])
| FOREIGN KEY (col [, col ..])
REFERENCES other_table [(other_col [, other_col ..])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULLZ}]

WORKING WITH TABLES (DATA DEFINITION GUIDE)

[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (<search_condition>)

Tip:

Although naming a constraint is optional, assigning a descriptive name with the
CONSTRAINT clause can make the constraint easier to find for changing or dropping,
and easier to find when its name appears in a constraint violation error message.

The following statement illustrates how to create a simple, column-level PRIMARY KEY
constraint:

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

The next example illustrates how to create a UNIQUE constraint at both the column level and the
table level:

CREATE TABLE STOCK

(MODEL SMALLINT NOT NULL UNIQUE,

MODELNAME CHAR(10) NOT NULL,

ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

2.3. Defining a CHECK Constraint

You can specify a condition or requirement on a data value at the time the data is entered by
applying a CHECK constraint to a column. Use CHECK constraints to enforce a condition that
must be true before an insert or an update to a column or group of columns is allowed. The
search condition verifies whether the value entered falls within a certain permissible range, or
matches it to one value in a list of values. The search condition can also compare the value
entered with data values in other columns.

(N\

Note:

A CHECK constraint guarantees data integrity only when the values being verified are in
o the same row that is being inserted and deleted. If you try to compare values in different

rows of the same table or in different tables, another user could later modify those

values, thus invalidating the original CHECK constraint that was applied at insertion

time.

A /

In the following example, the CHECK constraint is guaranteed to be satisfied:

CHECK (VALUE (COL_1 > COL_2));
INSERT INTO TABLE_1 (COL_1, COL_2) VALUES (5,6);

WORKING WITH TABLES (DATA DEFINITION GUIDE)

The syntax for creating a CHECK constraint is:

CHECK (<search condition>);
<search_condition> =
<val> <operator> {<val> | (<select_one>)}

| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]

| <val> [NOT] IN (<val> [, <val> ...] | <select_list>)

| <val> IS [NOT] NULL

| <val>

{INOT] {= | < | >} | >= | <=}

{ALL | SOME | ANY} (<select_list>)

| EXISTS (<select_expr>)
| SINGULAR (<select_expr>)

<val> [NOT] CONTAINING <val>
<val> [NOT] STARTING [WITH] <val>
(<search_condition>)

NOT <search_condition>

| <search_condition> OR <search_condition>
| <search_condition> AND <search_condition>
</pre>

When creating <source enclose="none" lang="sql">CHECK

constraints, the following restrictions apply:

¢ A CHECK constraint cannot reference a domain.

* A column can have only one CHECK constraint.

* On a domain-based column, you cannot override a CHECK constraint imposed by the
domain with a local CHECK constraint. A column based on a domain can add additional
CHECK constraints to the local column definition.

In the next example, a CHECK constraint is placed on the SALARY domain. VALUE is a
placeholder for the name of a column that will eventually be based on the domain.

CREATE DOMAIN BUDGET
AS NUMERIC(12,2)
DEFAULT ©
CHECK (VALUE > 0);

The next statement illustrates PRIMARY KEY, FOREIGN KEY, CHECK, and the referential
integrity constraints ON UPDATE and ON DELETE. The PRIMARY KEY constraint is based on
three columns, so it is a table-level constraint. The FOREIGN KEY column (JOB_COUNTRY)

WORKING WITH TABLES (DATA DEFINITION GUIDE)

references the PRIMARY KEY column (COUNTRY) in the table, COUNTRY . When the primary key
changes, the ON UPDATE and ON DELETE clauses guarantee that the foreign key column will
reflect the changes. This example also illustrates using domains (JOBCODE, JOBGRADE,
COUNTRYNAME, SALARY) and a CHECK constraint to define columns:

CREATE TABLE JOB

(JOB_CODE JOBCODE NOT NULL,

JOB_GRADE JOBGRADE NOT NULL,

JOB_COUNTRY COUNTRYNAME NOT NULL,

JOB_TITLE VARCHAR(25) NOT NULL,

MIN_SALARY SALARY NOT NULL,

MAX_SALARY SALARY NOT NULL,

JOB_REQUIREMENT BLOB(400,1),

LANGUAGE_REQ VARCHAR(15) [5],

PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
ON UPDATE CASCADE

ON DELETE CASCADE,

CHECK (MIN_SALARY &1lt; MAX_SALARY));

2.4. Using the EXTERNAL FILE Option

The EXTERNAL FILE option creates a table for which the data resides in an external table or
file, rather than in the InterBase database. External files are ASCII text that can also be read and
manipulated by non-InterBase applications. In the syntax for CREATE TABLE, the <filespec>
that accompanies the EXTERNAL keyword is the fully qualified file specification for the external
data file. You can modify the external file outside of InterBase, since InterBase accesses it only
when needed.

Note:
The 2GB external file size limit has been removed from InterBase XE onward.

Use the EXTERNAL FILE option to:

« Import data from a flat external file in a known fixed-length format into a new or existing
InterBase table. This allows you to populate an InterBase table with data from an external
source. Many applications allow you to create an external file with fixed-length records.

» SELECT from the external file as if it were a standard InterBase table.

« Export data from an existing InterBase table to an external file. You can format the data from
the InterBase table into a fixed-length file that another application can use.

Important:
For security reasons, it is extremely important that you not place files with sensitive
content in the same directory with external tables.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

2.4.1. Restrictions

The following restrictions apply to using the EXTERNAL FILE option:

« The default location for external files is <InterBase_home>/ext . InterBase can always find
external files that you place here. If you want to place them elsewhere, you must specify the
location in the ibconfig configuration file using the EXTERNAL_FILE_DIRECTORY entry.

Note:

If you are migrating from InterBase 6.x or older to InterBase 7.x or newer, and your
database includes external table files, you must either move these files to
<InterBase_home>/ext or note their locations in dibconfig using the
EXTERNAL_FILE_DIRECTORY entry.

A /

* You must create the external file before you try to access the external table inside of the
database.

« Each record in the external file must be of fixed length. You cannot put BLOB or array data
into an external file.

« When you create the table that will be used to import the external data, you must define a
column to contain the end-of-line (EOL) or new-line character. The size of this column must
be exactly large enough to contain an EOL symbol of a particular system (usually one or two
bytes). For most versions of UNIX; it is 1 byte. For Microsoft Windows, it is 2 bytes.

» While it is possible to read in numeric data directly from an external table, it is much easier
to read it in as character data, and convert using the CAST() function.

» Data to be treated as VARCHAR in InterBase must be stored in an external file in the
following format:

<2-byte unsigned short><string of character bytes>

where the two-byte unsigned short indicates the number of bytes in the actual string, and the
string immediately follows. Because it is not readily portable, using VARCHAR data in an external
file is not recommended.

* You can perform only INSERT and SELECT operations on an external table. You cannot
perform UPDATE or DELETE operations on it; if you try to do so, InterBase returns an error
message.

* Inserting into and selecting from an external table are not under standard transaction
control because the external file is outside of the database. Therefore, changes are
immediate and permanent — you cannot roll back your changes. If you want your table to be
under transaction control, create another internal InterBase table, and insert the data from
the external table into the internal one.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

* If you use DROP DATABASE to delete the database, you must also remove the external file —
it will not be automatically deleted as a result of DROP DATABASE .

2.4.2. Importing External Files

The following steps describe how to import an external file into an InterBase table:

1. Create an InterBase table that allows you to view the external data. Declare all columns as
CHAR . The text file containing the data must be on the server. In the following example, the
external file exists on a UNIX system, so the EOL character is one byte. If the example file was
on a Windows platform, you would need two characters for NEW_LINE.

CREATE TABLE EXT_TBL EXTERNAL FILE 'file.txt'
(FNAME CHAR(10),

LNAME CHAR(20),

HDATE CHAR(8),

NEWLINE CHAR(1));
COMMIT;

2. Create another InterBase table that will eventually be your working table. If you expect to
export data from the internal table back to an external file at a later time, be sure to create a
column to hold the newline. Otherwise, you do not need to leave room for the newline
character(s). In the following example, a column for the newline is provided:

CREATE TABLE PEOPLE
(FIRST_NAME CHAR(10),
LAST_NAME CHAR(20),
HIRE_DATE CHAR(8),
NEW_LINE CHAR(1));

COMMIT;

3. Create and populate the external file. You can create the file with a text editor, or you can
create an appropriate file with an application such as Paradox for Windows or dBASE for
Windows. If you create the file with a text editor, make each record the same length, pad the
unused characters with blanks, and insert the EOL character(s) at the end of each record. The
number of characters in the EOL is platform-specific. You need to know how many characters
are contained in the EOL of your platform (typically one or two) in order to correctly format
the columns of the tables and the corresponding records in the external file. In the following
example, the record length is 36 characters. “b" represents a blank space, and “n” represents
the EOL: When exporting data to or from an external file, the file must already exist before
you begin the operation. Also, you must specify a directory path whenever you reference the
external file.

4. At this point, when you do a SELECT statement from table EXT_TBL, you will see the

records from the external file:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

WORKING WITH TABLES (DATA DEFINITION GUIDE)

FNAME LNAME HDATE
Robert Brickman 12-JUN-1992
Sam Jones 13-DEC-1993

5. Insert the data into the destination table.

INSERT INTO PEOPLE SELECT FNAME, LNAME, CAST(HDATE AS DATE),
NEWLINE FROM EXT_TBL;

Now if you SELECT from PEOPLE, the data from your external table will be there.

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE FROM PEOPLE;

FIRST_NAME LAST_NAME HIRE_DATE

Robert Brickman 12-JUN-1992

Sam Jones 13-DEC-1993
Note:

InterBase allows you to store the date as an integer by converting from a CHAR(8)
to DATE using the CAST() function.</blockquote>

2.4.3. Exporting InterBase Tables to an External File

If you add, update, or delete a record from an internal table, the changes will not be reflected in
the external file. So in the previous example, if you delete the “Sam Jones” record from the
PEOPLE table, and do a subsequent SELECT from EXT_TBL, you would still see the “Sam
Jones” record.

e N\

Note:

When exporting data to or from an external file, the file must already exist before you
begin the operation. Also, you must specify a directory path whenever you reference the
external file.

(. J

This section explains how to export InterBase data to an external file. Using the example
developed in the previous section, follow these steps:

1. Open the external file in a text editor and remove everything from the file. If you then do a
SELECT on EXT_TBL, it should be empty.

2.Use an INSERT statement to copy the InterBase records from PEOPLE into the external
file, file.txt. Be sure to specify the file directory.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

INSERT INTO EXT_TBL SELECT FIRST_NAME, LAST_NAME, HIRE_DATE,
NEW_LINE FROM PEOPLE WHERE FIRST_NAME LIKE 'Rob%"';

3. Now if you do a SELECT from the external table, EXT_TBL, only the records you inserted
should be there. In this example, only a single record should be displayed:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

FNAME LNAME HDATE
Robert Brickman 12-JUN-1992
Important:

Make sure that all records that you intend to export from the internal table to the
external file have the correct EOL character(s) in the newline column.

3. Altering Tables
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE allows you to:

» Add a new column to a table.

* Drop a column from a table.

« Drop integrity constraints from a table or column.
» Modify the column name, data type, and position.

You can perform any number of the above operations with a single ALTER TABLE statement. A
table can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges.

Note:
Any one table (and its triggers) can be altered at most 255 times before you must back
up and restore the database.

3.1. Before using ALTER TABLE

Before modifying or dropping columns in a table, you need to do three things:

1. Make sure you have the proper database privileges.
2. Save the existing data.
3. Drop any constraints on the column.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

3.1.1. Saving Existing Data

Before modifying an existing column definition using ALTER TABLE, you must preserve existing
data, or it will be lost.

Preserving data in a column and modifying the definition for a column is a five-step process:

1. Add a temporary column to the table whose definition mirrors the current column to be
changed (the "old" column).

2. Copy the data from the old column to the temporary column.

3. Modify the old column.

4. Copy the data from the temporary column to the old column.

5. Drop the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold a
data type of CHAR (3), and suppose that the size of the column needs to be increased by one.

An example:
The following example describes each step and provides sample code:

First, create a temporary column to hold the data in OFFICE_NO during the modification
process:

ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);
Move existing data from OFFICE_NO to TEMP_NO to preserve it:

UPDATE EMPLOYEE
SET TEMP_NO = OFFICE_NO;

Modify OFFICE_NO, specifying the data type and new size:
ALTER TABLE ALTER OFFICE_NO TYPE CHAR(4);

Move the data from TEMP_NO to OFFICE_NO:

UPDATE EMPLOYEE
SET OFFICE_NO = TEMP_NO;

Finally, drop the TEMP_NO column:

ALTER TABLE DROP TEMP_NO;

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Note:

This is the safest, most conservative method for altering a column, following the rule

that you should always save existing data before modifying metadata. But for
e experienced InterBase users, there is a faster, one-step process. You can alter the column

without first copying the data, for example:
ALTER TABLE EMPLOYEE ALTER COLUMN OFFICE_NO TYPE CHAR(4) which
achieves the same end as the five-step process example.

3.1.2. Dropping Columns

Before attempting to drop or modify a column, you should be aware of the different ways that
ALTER TABLE can fail:

* The person attempting to alter data does not have the required privileges.

« Current data in a table violates a PRIMARY KEY or UNIQUE constraint definition added to
the table; there is duplicate data in columns that you are trying to define as PRIMARY KEY
or UNIQUE.

* The column to be dropped is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint.

 The column is used in a CHECK constraint. When altering a column based on a domain, you
can supply an additional CHECK constraint for the column. Changes to tables that contain
CHECK constraints with sub-queries can cause constraint violations.

« The column is used in another view, trigger, or in the value expression of a computed
column.

Important:

You must drop the constraint or computed column before dropping the table column.
You cannot drop PRIMARY KEY and UNIQUE constraints if they are referenced by
FOREIGN KEY constraints. In this case, drop the FOREIGN KEY constraint before
dropping the PRIMARY KEY or UNIQUE key it references. Finally, you can drop the
column.

Important:
When you alter or drop a column, all data stored in it is lost.

3.2. Using ALTER TABLE

ALTER TABLE allows you to make the following changes to an existing table:

« Add new column definitions. To create a column using an existing name, you must drop
existing column definitions before adding new ones.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

« Add new table constraints. To create a constraint using an existing name, you must drop
existing constraints with that name before adding a new one.

» Drop existing column definitions without adding new ones.

« Drop existing table constraints without adding new ones.

» Modify column names, data types, and position

For a detailed specification of ALTER TABLE syntax, see the Language Reference.

3.2.1. Adding a New Column to a Table

The syntax for adding a column with ALTER TABLE is:

ALTER TABLE table ADD <col_def>
<col_def> = col {<data_type>
| [COMPUTED [BY] (<expr>)
| domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [<col_constraint>]

[COLLATE collation]
<col_constraint> = [CONSTRAINT constraint] <constraint_def>
[<col_constraint>]
<constraint_def> =
PRIMARY KEY
| UNIQUE
| CHECK (<search_condition>)
| REFERENCES other_table [(other_col [, other_col ..])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table using the
EMPNO domain:

ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

You can add multiple columns to a table at the same time. Separate column definitions with
commas. For example, the following statement adds two columns, EMP_NO, and FULL_NAME, to
the EMPLOYEE table. FULL_NAME is a computed column, a column that derives it values from
calculations based on two other columns already defined for the EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);

WORKING WITH TABLES (DATA DEFINITION GUIDE)

You can also define integrity constraints for columns that you add to the table. For example, the
next statement adds two columns, CAPITAL and LARGEST_CITY, to the COUNTRY table, and
defines a UNIQUE constraint on CAPITAL:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25) UNIQUE,
ADD LARGEST_CITY VARCHAR(25) NOT NULL;

3.2.2. Adding New Table Constraints

You can use ALTER TABLE to add a new table-level constraint. The syntax is:

ALTER TABLE name ADD [CONSTRAINT constraint] <tconstraint_opt>;

where <tconstraint_opt> is a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint.
For example:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT DEPT_NO UNIQUE(PHONE_EXT);

3.2.3. Dropping an Existing Column from a Table

You can use ALTER TABLE to delete a column definition and its data from a table. A column can
be dropped only by the owner of the table. If another user is accessing a table when you attempt
to drop a column, the other user’s transaction will continue to have access to the table until that
transaction completes. InterBase postpones the drop until the table is no longer in use.

The syntax for dropping a column with ALTER TABLE is:

ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE table:

ALTER TABLE EMPLOYEE DROP EMP_NO;

Multiple columns can be dropped with a single ALTER TABLE statement.

ALTER TABLE EMPLOYEE
DROP EMP_NO,
DROP FULL_NAME;

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Important:

You cannot delete a column that is part of a UNIQUE, PRIMARY KEY, or FOREIGN
KEY constraint. In the previous example, EMP_NO is the PRIMARY KEY for the
EMPLOYEE table, so you cannot drop this column unless you first drop the
PRIMARY KEY constraint.

3.2.4. Dropping Existing Constraints from a Column

You must drop constraints from a column in the correct sequence. See the following
CREATE TABLE example. Because there is a foreign key in the PROJECT table that references
the primary key (EMP_NO) of the EMPLOYEE table, you must first drop the foreign key reference
before you can drop the PRIMARY KEY constraint in the EMPLOYEE table.

CREATE TABLE PROJECT

(PROJ_ID PROJINO NOT NULL,

PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,

PROJ_DESC BLOB(800,1),

TEAM_LEADER EMPNO,

PRODUCT PRODTYPE,

PRIMARY KEY (PROJ_ID),

CONSTRAINT TEAM_CONSTRT FOREIGN KEY (TEAM_LEADER) REFERENCES
EMPLOYEE (EMP_NO));

The proper sequence is:

ALTER TABLE PROJECT

DROP CONSTRAINT TEAM_CONSTRT;
ALTER TABLE EMPLOYEE

DROP CONSTRAINT EMP_NO_CONSTRT;
ALTER TABLE EMPLOYEE

DROP EMP_NO;

Note:
Constraint names are in the system table, RDBSRELATION_CONSTRAINTS.

In addition, you cannot delete a column if it is referenced by another column’s CHECK
constraint. To drop the column, first drop the CHECK constraint, then drop the column.

3.2.5. Modifying Columns in a Table

The syntax for modifying a column with ALTER TABLE is:

WORKING WITH TABLES (DATA DEFINITION GUIDE)

ALTER TABLE table ALTER [COLUMN]simple_column_name alter_rel_field
alter_rel_field = new_col_name | new_col_type | new_col_pos
new_col_name = TO simple_column_name

new_col_type = TYPE data_type_or_domain

new_col_pos = POSITION -integer

For the complete syntax of ALTER TABLE, see Language Reference Guide.

For example, the following statement moves a column, EMP_NO, from the third position to the
second position in the EMPLOYEE table:

ALTER TABLE EMPLOYEE ALTER EMP_NO POSITION 2;

You could also change the name of the EMP_NO column to EMP_NUM as in the following
example:

ALTER TABLE EMPLOYEE ALTER EMP_NO TO EMP_NUM;

The next example shows how to change the data type of the EMP_NUM column to CHAR(20) :

ALTER TABLE EMPLOYEE ALTER EMP_NUM TYPE CHAR(20);

Conversions from non-character to character data are allowed with the following restrictions:

* Blob and array types are not convertible.

« Field types (character or numeric) cannot be shortened.

 The new field definition must be able to hold the existing data (for example, the new field
has too few CHAR values or the data type conversion is not supported) or an error is
returned.

Note:
Conversions from character data to non-character data are not allowed.

Important:
Any changes to the field definitions may require the indexes to be rebuilt.

The table below graphs all valid conversions; if the conversion is valid (converting from the item
on the side column to the item in the top row) it is marked with an X.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Blob

Boole X X X
an

Char X X X
Date X X X

Decim X X X X
al

Doubl X X X X
e

Float X X X X
Intege

; X X X X X X
Nume X X X
ric

Timest X X X

amp

Time X X X

Smalli

nt

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Varcha
r

3.2.6. Summary of ALTER TABLE Arguments

When you use ALTER TABLE to add column definitions and constraints, you can specify all of
the same arguments that you use in CREATE TABLE; all column definitions, constraints, and
data type arguments are the same, with the exception of the <operation> argument. The
following operations are available for ALTER TABLE .

« Add a new column definition with ADD <col_def>.
« Add a new table constraint with ADD <table_constraint>.
* Drop an existing column with DROP <col>.

 Drop an existing constraint with DROP CONSTRAINT <constraint>.
* Modify column names, data types, and positions

4. Dropping Tables

Use DROP TABLE to delete an entire table from the database.

Note:
If you want to drop columns from a table, use ALTER TABLE.

4.1. Dropping a Table

Use DROP TABLE to remove the data, metadata, and indexes of a table from a database. It also
drops any triggers that are based on the table. A table can be dropped by its creator, the SYSDBA
user, or any user with operating system root privileges.

You cannot drop a table that is referenced in a computed column, a view, integrity constraint, or
stored procedure. You cannot drop a table that is being used by an active transaction until the
table is no longer in use.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

DROP TABLE fails and returns an error if;

* The person who attempts to drop the table is not the owner of the table.

 The table is in use when the drop is attempted. The drop is postponed until the table is no
longer in use.

*« The table has a UNIQUE or PRIMARY KEY defined for it, and the PRIMARY KEY s
referenced by a FOREIGN KEY in another table. First drop the FOREIGN KEY constraints in
the other table, then drop the table.

» The table is used in a view, trigger, stored procedure, or computed column. Remove the
other elements before dropping the table.

* The table is referenced in the CHECK constraint of another table.

Note:
DROP TABLE does not delete external tables; it removes the table definition from the
database. You must explicitly delete the external file.

4.2. DROP TABLE Syntax
DROP TABLE name;

The following statement drops the table, COUNTRY :

DROP TABLE COUNTRY;

5. Global Temporary Tables

Use global temporary tables to allow an application to pass intermediate result sets from one
section of an application to another section of the same application.

5.1. Creating a Global Temporary Table

A global temporary table is declared to a database schema via the normal CREATE TABLE
statement with the following syntax:

CREATE GLOBAL TEMPORARY TABLE {{Placeholder|table}}
({{Placeholder|<col_def>}} [, {{Placeholder|<col_def>}} | {{Placeholder|
<tconstraint>}} ...])
 [ON COMMIT {PRESERVE | DELETE} ROWS];

The first argument that you supply CREATE GLOBAL TEMPORARY TABLE is the temporary table
name, which is required and must be unique among all table and procedure names in the
database. You must also supply at least one column definition.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

The ON COMMIT clause describes whether the rows of the temporary table are deleted on each
transaction commit (ON COMMIT DELETE) or are left in place (ON COMMIT PRESERVE) to be
used by other transactions in the same database attachment. If the ON COMMIT is not specified
then the default behavior is to DELETE ROWS on transaction commit.

There is a change in behavior in the GLOBAL TEMPORARY TABLE Support with the InterBase
XE3U2 release. When an SQL script is executed ISQL reported a "deadlock" if EXIT is called
without COMMIT/ROLLBACK on a global temporary table. To resolve this issue, the GLOBAL
TEMPORARY TABLES function has been redesigned which changes the behavior and corrects the
deadlock error.

It is no longer possible for transactions emanating from the same connection to see each other's
rows in a transaction-specific (ON COMMIT DELETE) temporary table. To do that, you must use a
session-specific (ON COMMIT PRESERVE) temporary table that makes all rows visible to
transactions starting in the same session. This is still not the same in that the rows will persist
until the connection is finished.

An Global temporary table is dropped from a database schema using the normal DROP TABLE
statement.

5.2. Altering a Global Temporary Table

A temporary table can be altered in the same way as a permanent base table although there is
no official support to toggle the behavior of the ON COMMIT clause. The specification offers an
ALTER TABLE syntax to toggle that behavior.

ALTER TABLE <table> ON COMMIT {PRESERVE | DELETE} ROWS
{RESTRICT CASCADE}

RESTRICT will report an error if there are dependencies by other temporary tables on the current
table scope. CASCADE will automatically propagate this table scope change to other temporary
tables to maintain compliance. The default action is RESTRICT.

For example, assume that TT1 is a temporary table with ON COMMIT PRESERVE and has a
foreign reference to temporary table TT2 which is also ON COMMIT PRESERVE. If an attempt is
made to modify TT2 to ON COMMIT DELETE, an error is raised because an ON COMMIT
PRESERVE table is not allowed by the SQL standard to have a referential constraint on an ON
COMMIT DELETE table. RESTRICT returns this error while CASCADE would also alter TT1 to have
ON COMMIT DELETE. Thus, CASCADE implements transitive closure when ON COMMIT behavior
is modified.

WORKING WITH TABLES (DATA DEFINITION GUIDE)

Note:
e This specification of ALTER TABLE extension does not allow a table to be toggled
between temporary and persistent.

5.3. Requirements and Constraints (Global Temporary Tables)

A transaction which has been specified as READ ONLY is allowed to update temporary tables.
Granting privileges on a temporary table to an entity must specify all privileges.

There are some semantic restrictions between how permanent tables and temporary tables are
allowed to interact. For the most part, general constraints and referential integrity constraints
require that for a given table on which those constraints are defined, the tables those constraints
reference must have the same table scope as that of the source table. Permanent tables can only
have referential and check constraints to other permanent tables, and temporary tables can only
have constraints against other temporary tables.

Another example is the check constraint with a subquery component; the table on which the
check constraint is defined must match in table scope the table referenced in the subquery.

Domains are not allowed to reference temporary tables in check constraints.

gbak backs up a temporary tables’ metadata only, not its data. isql adds an ON COMMIT
descriptive line in the SHOW TABLE command. isql extract adds GLOBAL TEMPORARY and ON
COMMIT clauses when extracting temporary tables. GRANT privileges are always extracted as ALL
PRIVILEGES.

WORKING WITH INDEXES

WORKING WITH INDEXES

This chapter explains the following:

* Index basics
* When and how to create indexes
« How to improve index performance

1. Index Basics

An index is a mechanism that is used to speed the retrieval of records in response to certain
search conditions, and to enforce uniqueness constraints on columns. Just as you search an index
in a book for a list of page numbers to quickly find the pages that you want to read, a database
index serves as a logical pointer to the physical location (address) of a row in a table. An index
stores each value of the indexed column or columns along with pointers to all of the disk blocks
that contain rows with that column value.

When executing a query, the InterBase engine first checks to see if any indexes exist for the
named tables. It then determines whether it is more efficient to scan the entire table, or to use an
existing index to process the query. If the engine decides to use an indey, it searches the index to
find the key values requested, and follows the pointers to locate the rows in the table containing
the values.

Data retrieval is fast because the values in the index are ordered, and the index is relatively small.
This allows the system to quickly locate the key value. Once the key value is found, the system
follows the pointer to the physical location of the associated data. Using an index typically
requires fewer page fetches than a sequential read of every row in the table.

An index can be defined on a single column or on multiple columns of a table. The engine will
use an index to look up a subset of columns, as long as that subset of columns forms a prefix of a
multi-column index definition.

2. When to Index

An index on a column can mean the difference between an immediate response to a query and a
long wait, as the length of time it takes to search the whole table is directly proportional to the
number of rows in the table. So why not index every column? The main drawbacks are that
indexes consume additional disk space, and inserting, deleting, and updating data takes longer
on indexed columns than on non-indexed columns. The reason is that the index must be
updated each time the data in the indexed column changes, and each time a row is added to or
deleted from the table.

WORKING WITH INDEXES

Nevertheless, the overhead of indexes is usually outweighed by the boost in performance for
data retrieval queries. You should create an index on a column when:

« Search conditions frequently reference the column.
« Join conditions frequently reference the column.
« ORDER BY statements frequently use the column to sort data.

You do not need to create an index for:

 Columns that are seldom referenced in search conditions.
* Frequently updated non-key columns.
¢ Columns that have a small number of possible values.

3. Creating Indexes

Indexes are either created by the user with the CREATE INDEX statement, or they are created
automatically by the system as part of the CREATE TABLE statement. InterBase allows users to
create as many as 64 indexes on a given table. To create indexes you must have authority to
connect to the database.

(N\

Note:

To see all indexes defined for the current database, use the isql command
SHOW INDEX. To see all indexes defined for a specific table, use the command,
SHOW INDEX <tablename>. To view information about a specific index, use
SHOW INDEX <indexname>.

A /

InterBase automatically generates system-level indexes on a column or set of columns when
tables are defined using PRIMARY KEY, FOREIGN KEY, and UNIQUE constraints. Indexes on
PRIMARY KEY and FOREIGN KEY constraints preserve referential integrity.

3.1. Using CREATE INDEX

The CREATE INDEX statement creates an index on one or more columns of a table. A single-
column index searches only one column in response to a query, while a multi-column index
searches one or more columns. Options specify:

* The sort order for the index.
» Whether duplicate values are allowed in the indexed column.

Use CREATE INDEX to improve speed of data access. For faster response to queries that require
sorted values, use the index order that matches the query’s ORDER BY clause. Use an index for
columns that appear in a WHERE clause to speed searching.

WORKING WITH INDEXES

Note:

When working with encrypted columns, the MIN, MAX, BETWEEN and ORDER BY
e operations cannot use an index based on those fields due to the nature of the index key

that is formed from the encrypted field value. So while the index is not useful for the

above operations, it is still userful for equality matches and JOIN operations.

(. J

To improve index performance, use SET STATISTICS to recompute index selectivity, or rebuild
the index by making it inactive, then active with sequential calls to ALTER INDEX. For more
information about improving performance, see SET STATISTICS: Recomputing Index Selectivity.

The syntax for CREATE INDEX is:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
INDEX index ON table (col [, col ...]);

3.1.1. Preventing Duplicate Entries

No two rows can be alike when a UNIQUE index is specified for a column or set of columns. The
system checks for duplicate values when the index is created, and each time a row is inserted or
updated. InterBase automatically creates a UNIQUE index on a PRIMARY KEY column, forcing
the values in that column to be unique identifiers for the row. Unique indexes only make sense
when uniqueness is a characteristic of the data itself. For example, you would not define a unique
index on a LAST_NAME column because there is a high probability for duplication. Conversely, a
unique index is a good idea on a column containing a social security number.

To define an index that disallows duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique ascending index (PRODTYPEX) on
the PRODUCT and PROJ_NAME columns of the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

Tip:

InterBase does not allow you to create a unique index on a column that already contains
duplicate values. Before defining a UNIQUE index, use a SELECT statement to ensure
there are no duplicate keys in the table. For example:

SELECT PRODUCT, PROJ_NAME FROM PROJECT
GROUP BY PRODUCT, PROJ_NAME
HAVING COUNT(x) > 1;

WORKING WITH INDEXES

3.1.2. Specifying Index Sort Order

Specify a direction (low to high or high to low) by using the ASCENDING or DESCENDING
keyword. By default, InterBase creates indexes in ascending order. To make a descending index
on a column or group of columns, use the DESCENDING keyword to define the index. The
following statement creates a descending index (DESC_X) on the CHANGE_DATE column of the
SALARY_HISTORY table:

CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY (CHANGE_DATE);

Note:
To retrieve indexed data from this table in descending order, use ORDER BY
CHANGE_DATE DESCENDING inthe SELECT statement.

If you intend to use both ascending and descending sort orders on a particular column, define
both an ascending and a descending index for the same column. The following example
illustrates this:

CREATE ASCENDING INDEX ASCEND_X ON SALARY_HISTORY (CHANGE_DATE)
CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY (CHANGE_DATE);

3.1.3. Using Expression Index

InterBase 2017 Update 1 introduces Expression Index support, which can enhance the index
definition and optimization of queries. For more information and examples refer to the next
section: Expression Index

3.1.4. Expression Index

For: 2017 Update 1 and above only.

This section describes support for creating and using expression based index definition in
databases to help improve performance of queries with expressions. Since index definitions or
usage are not part of the SQL standard, database vendors enable various forms of index
definitions to enhance and enforce various features in their products.

An index is typically defined in InterBase on a set of columns in a table. An index is later used by
the query optimizer to identify candidate queries that can be sped up by accessing the index
instead of doing a natural scan on the base table to service the query. InterBase also uses an
index to enforce any referential integrity so declared via PRIMARY, UNIQUE or FOREIGN KEY

http://docwiki.embarcadero.com/InterBase/15/en/What%27s_New_in_InterBase_2017_Update_1

WORKING WITH INDEXES

definitions. InterBase 2017 and earlier versions only allow index definitions on a set of fields, as a
simple index on one field, or, a compound (composite) index on a set of fields. Index definitions
were not allowed on an expression entailing any fields from the same base table.

Support for Expression Indices (called El in short henceforth) enhance the index definition and
optimization of queries. Such an El definition is open to any valid expressions containing any
field(s) from the same base table with normal expression operators that InterBase users are used
to provide either as part of a column result set or in WHERE expressions in SELECT statements.

The InterBase DDL syntax for El allows the index definition to persist in the database through
database backup/restore as well, and will be duly used to optimize queries that can benefit from
a similar expression use semantically. Some expressions, like addition and multiplication, are
commutative in nature; hence, the index will also be used if the expression used in the query is
compatible with the index definition.

In addition to the above, this feature also enables defining an index on an existing
COMPUTED BY column in the table. This allows developers to define a COMPUTED BY column
once, but not have to reproduce the expression in the index definition again. Previous releases of
InterBase did not allow this.

Usability

Index definitions for El syntax closely follow the CREATE INDEX syntax that is currently
available. In place of a set of columns in the table, one uses a single expression. You can further
use ALTER INDEX to alter an index state to ACTIVE/INACTIVE, and, DROP INDEX to drop an
existing index respectively. Refer to CREATE INDEX definition for more information.

syntax:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index>
ON <table> (<col> [, <col> ..] | COMPUTED BY <expression>);

<col> ::= column 1in table to index

Index definition using a COMPUTED BY <expression>

/* Explicit Expression Index using COMPUTED BY clause */
CREATE TABLE t1 (

dummy® -integer,

fl integer not null,

f2 integer not null,

http://docwiki.embarcadero.com/InterBase/15/en/CREATE_INDEX
http://docwiki.embarcadero.com/InterBase/15/en/CREATE_INDEX

WORKING WITH INDEXES

f3 dinteger not null,

f3_min_f2 computed by (f3 - f2),
first_name VARCHAR(10) DEFAULT 'Give me ',
last_name VARCHAR(10) DEFAULT 'a name'

)

CREATE INDEX didx_expr_tl_mul ON t1 COMPUTED BY (fl1 *x f2);
CREATE INDEX -qidx_expr_tl_udf ON t1l COMPUTED BY (UPPER(first_name) ||
UPPER(last_name));

Index definition on a COMPUTED BY column

/* Implicit Expression index via a COMPUTED BY column */
CREATE INDEX -ddx_expr_tl_comp_fld ON t1 (f3_min_f2);

/* PRIMARY KEY on COMPUTED BY column
* Please note PRIMARY KEY by itself can only be on a set of base columns, or, on
ONE COMPUTED BY column.
* PRIMARY KEY definition can also not be on an explicit expression.
* Also, you cannot mix and match base/computed columns together to form a
composite index.
*/
CREATE TABLE t2 (
fl integer not null,
f2 integer not null,
f3 computed by (f1 x f2),
PRIMARY KEY (f3)

)3

Sample queries:

The query optimizer in InterBase will try to match up the index, where applicable, to expressions
in the query that match the index definitions. Some of the expressions are commutative (like a
single addition (@ + b == b + a), or, multiplication (a * b == b * a); the optimizer will do a best
effort to match such expressions with any compatible commutative index definition as well.
Expressions in ORDER BY, GROUP BY, and JOIN conditions via ON clause, are also optimized to
use an expression index, where applicable.

/* Following sample queries are optimized to use the expression index; SET PLAN
ON to see the plan. */

/* Multiplication x/

select x from tl where f1 x f2 = 1;
select * from tl where (f1 * f2) = 1;

/* Multiplication Commutative property; axb=bxa x/
select x from tl where (f2 * f1) = 4;

WORKING WITH INDEXES

/* UDF x/
select x from tl where (UPPER(first_name) || UPPER(last_name)) = 'THREE
MUSKETEERS';

/% ORDER BY x/

select f1, f2, f1 » f2 from tl1 ORDER BY (fl x f2);

select (f1 * f2), (fi1 + f2) from t1 WHERE f1 * f2 = 100 ORDER BY 1, 2;
select f1 * f2 from t1 PLAN (T1 ORDER IDX_EXPR_T1_MUL) ORDER BY 1;

/* GROUP BY */

-- by ordinal position

select f1 x f2, count(x) from tl GROUP BY 1;

-- by expression

select (f1 * f2), count(*) from tl1 GROUP BY (f1 * f2);

/* JOIN with commutative expression x/
select a.fl, a.f2, (a.fl x a.f2), (b.f2 * b.f1)
from t1 a JOIN t1 b ON (a.fl x a.f2) = (b.f2 x b.f1);
select a.fl, a.f2, (a.fl x a.f2), (b.f2 * b.f1)
from tl1 a LEFT OUTER JOIN t1 b ON (a.fl * a.f2) = (b.f2 *x b.f1l);

Requirements and Constraints

« An Expression index can only include column names from a single base table in an
expression.

* You cannot mix and match base/computed columns together to form a composite
expression index.

» An Expression Index can have only ONE key segment, by design. i.e. only ONE expression
can be part of a single Expression Index.

« A PRIMARY KEY definition using a COMPUTED BY column can only use ONE COMPUTED BY
column. PRIMARY KEY definition can also not be on an explicit expression; it has to be using
a defined column.

Migration issues

« If a database has newly defined Expression Index entities, such databases cannot be used
with InterBase versions 2017 (13.0.0) and earlier versions. Such index definitions have to be
declared INACTIVE before the database is restored or used in older InterBase versions which
can use such ODS versions.

3.2. When to Use a Multi-column Index

The main reason to use a multi-column index is to speed up queries that often access the same
set of columns. You do not have to create the query with the exact column list that is defined in

WORKING WITH INDEXES

the index. InterBase will use a subset of the components of a multi-column index to optimize a
query if the:

» Subset of columns used in the ORDER BY clause begins with the first column in the multi-
column index. Unless the query uses all prior columns in the list, InterBase cannot use that
index to optimize the search. For example, if the index column list is A1, A2, and A3, a query

using A1 and A2 would be optimized using the index, but a query using A2 and A3 would
not.

« Order in which the query accesses the columns in an ORDER BY clause matches the order

of the column list defined in the index. (The query would not be optimized if its column list
were A2, A1)

Tip:

If you expect to issue frequent queries against a table where the queries use the OR
operator, it is better to create a single-column index for each condition. Since multi-
column indices are sorted hierarchically, a query that is looking for any one of two or
more conditions would, of course, have to search the whole table, losing the advantage
of an index.

3.3. Examples Using Multi-column Indexes

The first example creates a multi-column index, NAMEX , on the EMPLOYEE table:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

The following query will be optimized against the index because the ORDER BY clause
references all of the indexed columns in the correct order:

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > 40000
ORDER BY LAST_NAME, FIRST_NAME;

The next query will also process the following query with an index search (using
LAST_NAME from NAMEX) because although the ORDER BY clause only references one of the
indexed columns (LAST_NAME), it does so in the correct order.

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > 40000
ORDER BY LAST_NAME;

Conversely, the following query will not be optimized against the index because the ORDER BY
clause uses FIRST_NAME , which is not the first indexed column in the NAMEX column list.

WORKING WITH INDEXES

SELECT LASTNAME, SALARY FROM EMP
WHERE SALARY > 40000
ORDER BY FIRST_NAME;

The same rules that apply to the ORDER BY clause also apply to queries containing a WHERE
clause. The next example creates a multi-column index for the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The following query will be optimized against the PRODTYPEX index because the WHERE clause
references the first indexed column (PRODUCT) of the index:

SELECT * FROM PROJECT
WHERE PRODUCT ='software';

Conversely, the next query will not be optimized against the index because PROJ_NAME is not
the first indexed column in the column list of the PRODTYPEX index:

SELECT = FROM PROJECT
WHERE PROJ_NAME ='InterBase 4.0';

4. Improving Index Performance

Indexes can become unbalanced after many changes to the database. When this happens,
performance can be improved using one of the following methods:

* Rebuild the index with ALTER INDEX.

» Recompute index selectivity with SET STATISTICS.

* Delete and recreate the index with DROP INDEX and CREATE INDEX.
» Back up and restore the database with gbak .

4.1. ALTER INDEX: Deactivating an Index

The ALTER INDEX statement deactivates and reactivates an index. Deactivating and reactivating

an index is useful when changes in the distribution of indexed data cause the index to become
unbalanced.

To rebuild the index, first use ALTER INDEX INACTIVE to deactivate the index, then set
ALTER INDEX ACTIVE to reactivate it again. This method recreates and balances the index.

Note:
You can also rebuild an index by backing up and restoring the database with the gbak

WORKING WITH INDEXES

utility. gbak stores only the definition of the index, not the data structure, so when you
o restore the database, gbak rebuilds the indexes.

Tip:

Before inserting a large number of rows, deactivate a table's indexes during the insert,
then reactivate the index to rebuild it. Otherwise, InterBase incrementally updates the
index each time a single row is inserted.

The syntax for ALTER INDEX is:

ALTER INDEX name
{ACTIVE | INACTIVE};

The following statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;
ALTER INDEX BUDGETX ACTIVE;

Note:
The following restrictions apply to altering an index:

« In order to alter an index, you must be the creator of the index, a SYSDBA user, or a user
with operating system root privileges.

* You cannot alter an index if it is in use in an active database. An index is in use if it is
currently being used by a compiled request to process a query. All requests using an index
must be released to make it available.

* You cannot alter an index that has been defined with a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint. If you want to modify the constraints, you must use
ALTER TABLE . For more information about ALTER TABLE, see the Language Reference.

* You cannot use ALTER INDEX to add or drop index columns or keys. Use DROP INDEX to
delete the index and then redefine it with CREATE INDEX.

4.2. SET STATISTICS: Recomputing Index Selectivity

For tables where the number of duplicate values in indexed columns radically increases or
decreases, periodically recomputing index selectivity can improve performance.
SET STATISTICS recomputes the selectivity of an index.

Index selectivity is a calculation that is made by the InterBase optimizer when a table is accessed,
and is based on the number of distinct rows in a table. It is cached in memory, where the
optimizer can access it to calculate the optimal retrieval plan for a given query.

The syntax for SET STATISTICS is:

WORKING WITH INDEXES

SET STATISTICS INDEX name;

The following statement recomputes the selectivity for an index:

SET STATISTICS INDEX MINSALX;

Note:
The following restrictions apply to the SET STATISTICS statement:

* In order to use SET STATISTICS, you must be the creator of the index, a SYSDBA user, or
a user with operating system root privileges.
» SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

4.3. Dropping a User-defined Index

DROP INDEX removes a user-defined index from the database. System-defined indexes, such as
those created on columns defined with UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints
cannot be dropped.

To alter an index, first use the DROP INDEX statement to delete the index, then use the
CREATE INDEX statement to recreate the index (using the same name) with the desired
characteristics.

The syntax for DROP INDEX is:

DROP INDEX name;

The following statement deletes an index:

DROP INDEX MINSALX;

Note:
The following restrictions apply to dropping an index:

« To drop an index, you must be the creator of the index, a SYSDBA user, or a user with
operating system root privileges.

« An index in use cannot be dropped until it is no longer in use. If you try to alter or drop an
index while transactions are being processed, the results depend on the type of transaction
in operation. In a WAIT transaction, the ALTER INDEX or DROP INDEX operation waits
until the index is not in use. In a NOWAIT transaction, InterBase returns an error.

WORKING WITH INDEXES

 If an index was automatically created by the system on a column having a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint, you cannot drop the index. To drop an index
on a column defined with those constraints, drop the constraint, the constrained column, or
the table. To modify the constraints, use ALTER TABLE. For more information about
ALTER TABLE, see the Language Reference.

WORKING WITH VIEWS

WORKING WITH VIEWS

This chapter describes:

« What views are and the reasons for using them
» How to create and drop views
« How to modify data through a view

1. Introduction to Views

Database users typically need to access a particular subset of the data that is stored in the
database. Further, the data requirements within an individual user or group are often quite
consistent. Views provide a way to create a customized version of the underlying tables that
display only the clusters of data that a given user or group of users is interested in.

Once a view is defined, you can display and operate on it as if it were an ordinary table. A view
can be derived from one or more tables, or from another view. Views look just like ordinary
database tables, but they are not physically stored in the database. The database stores only the
view definition, and uses this definition to filter the data when a query referencing the view
occurs.

Important:

It is important to understand that creating a view does not generate a copy of the data
stored in another table; when you change the data through a view, you are changing the
data in the actual underlying tables. Conversely, when the data in the base tables is
changed directly, the views that were derived from the base tables are automatically
updated to reflect the changes. Think of a view as a movable “window” or frame through
which you can see the actual data. The data definition is the “frame.” For restrictions on
operations using views, see Types of Views: Read-only and Update-able.

A view can be created from:

* A vertical subset of columns from a single table For example, the table, JOB, in the
employee.ib database has 8 columns: JOB_CODE, JOB_GRADE, JOB_COUNTRY,
JOB_TITLE, MIN_SALARY, MAX_SALARY, JOB_REQUIREMENT, and LANGUAGE_REQ. The
following view displays a list of salary ranges (subset of columns) for all jobs (all rows) in the
JOB table:

WORKING WITH VIEWS

CREATE VIEW JOB_SALARY_RANGES AS
SELECT JOB_CODE, MIN_SALARY, MAX_SALARY FROM JOB;

* A horizontal subset of rows from a single table The next view displays all of the columns
in the JOB table, but only the subset of rows where the MAX_SALARY is less than $15,000:

CREATE VIEW LOW_PAY AS
SELECT = FROM JOB
WHERE MAX_SALARY < 15000;

« A combined vertical and horizontal subset of columns and rows from a single table
The next view displays only the JOB_CODE and JOB_TITLE columns and only those jobs

where MAX_SALARY is less than $15,000:

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE FROM JOB
WHERE MAX_SALARY < 15000;

* A subset of rows and columns from multiple tables (joins) The next example shows a
view created from both the JOB and EMPLOYEE tables. The EMPLOYEE table contains 11
columns: EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, HIRE_DATE, DEPT_NO,
JOB_CODE, JOB_GRADE, JOB_COUNTRY, SALARY, FULL_NAME. It displays two columns
from the JOB table, and two columns from the EMPLOYEE table, and returns only the rows
where SALARY is less than $15,000:

CREATE VIEW ENTRY_LEVEL_WORKERS AS

SELECT JOB_CODE, JOB_TITLE, FIRST_NAME, LAST_NAME

FROM JOB, EMPLOYEE

WHERE JOB.JOB_CODE = EMPLOYEE.JOB_CODE AND SALARY < 15000;

2. Advantages of Views
The main advantages of views are:

« Simplified access to the data. Views enable you to encapsulate a subset of data from one or
more tables to use as a foundation for future queries without requiring you to repeat the
same set of SQL statements to retrieve the same subset of data.

« Customized access to the data. Views provide a way to tailor the database to suit a variety of
users with dissimilar skills and interests. You can focus on the information that specifically
concerns you without having to process extraneous data.

- Data independence. Views protect users from the effects of changes to the underlying
database structure. For example, if the database administrator decides to split one table into
two, a view can be created that is a join of the two new tables, thus shielding the users from
the change.

WORKING WITH VIEWS

« Data security. Views provide security by restricting access to sensitive or irrelevant portions
of the database. For example, you might be able to look up job information, but not be able
to see associated salary information.

3. Creating Views (Data Definition Guide)

The CREATE VIEW statement creates a virtual table based on one or more underlying tables in
the database. You can perform select, project, join, and union operations on views just as if they
were tables.

The user who creates a view is its owner and has all privileges for it, including the ability to
GRANT privileges to other users, triggers, and stored procedures. A user can be granted
privileges to a view without having access to its base tables.

The syntax for CREATE VIEW is:

CREATE VIEW name [(view_col [, view_col ..])]
AS <select> [WITH CHECK OPTION];

Note:
You cannot define a view that is based on the result set of a stored procedure.

3.1. Specifying View Column Names

« <view_col> names one or more columns for the view. Column names are optional unless
the view includes columns based on expressions. When specified, view column names
correspond in order and number to the columns listed in the SELECT statement, so you
must specify view column names for every column selected, or do not specify names at all.

 Column names must be unique among all column names in the view. If column names are
not specified, the view takes the column names from the underlying table by default.

« If the view definition includes an expression, <view_col> names are required. A <view_col>
definition can contain one or more columns based on an expression.

Note:
isql does not support view definitions containing UNION clauses. You must write an

embedded application to create this type of view.

WORKING WITH VIEWS

3.2. Using the SELECT Statement

The SELECT statement specifies the selection criteria for the rows to be included in the view.
SELECT does the following:

« Lists the columns to be included from the base table. When SELECT * is used rather than a
column list, the view contains all columns from the base table, and displays them in the
order in which they appear in the base table. The following example creates a view,
MY_VIEW, that contains all of the columns in the EMPLOYEE table:

CREATE VIEW MY_VIEW AS
SELECT * FROM EMPLOYEE;

« Identifies the source tables in the FROM clause. In the MY_VIEW example, EMPLOYEE is the
source table.

« Specifies, if needed, row selection conditions in a WHERE clause. In the next example, only
the employees that work in the USA are included in the view:

CREATE VIEW USA_EMPLOYEES AS
SELECT * FROM EMPLOYEE
WHERE JOB_COUNTRY = 'USA';

« If WITH CHECK OPTION is specified, it prevents INSERT or UPDATE operations on an
otherwise update-able view, if the operation violates the search condition specified in the
WHERE clause. For more information about using this option, see Using WITH CHECK
OPTION. For an explanation of views that can be updated, see Types of Views: Read-only and

Update-able.

Important:
The SELECT statement used to create a view cannot include an ORDER BY clause.

3.3. Using Expressions to Define Columns

An expression can be any SQL statement that performs a comparison or computation, and
returns a single value. Examples of expressions are concatenating character strings, performing
computations on numeric data, doing comparisons using comparison operators (<, >, <=, and so
on) or Boolean operators (AND, OR, NOT). The expression must return a single value, and
cannot be an array or return an array. Any columns used in the value expression must exist
before the expression can be defined.

For example, suppose you want to create a view that displays the salary ranges for all jobs that
pay at least $60,000. The view, GOOD_JOB, based on the JOB table, selects the pertinent jobs
and their salary ranges:

WORKING WITH VIEWS

CREATE VIEW GOOD_JOB (JOB_TITLE, STRT_SALARY, TOP_SALARY) AS
SELECT JOB_TITLE, MIN_SALARY, MAX_SALARY FROM JOB
WHERE MIN_SALARY > 60000;

Suppose you want to create a view that assigns a hypothetical 10% salary increase to all
employees in the company. The next example creates a view that displays all of the employees
and their new salaries:

CREATE VIEW 10%_RAISE (EMPLOYEE, NEW_SALARY) AS
SELECT EMP_NO, SALARY %1.1 FROM EMPLOYEE;

Note:
Remember, unless the creator of the view assigns INSERT or UPDATE privileges, the
users of the view cannot affect the actual data in the underlying table.

3.4. Types of Views: Read-only and Update-able

When you update a view, the changes are passed through to the underlying tables from which
the view was created only if certain conditions are met. If a view meets these conditions, it is
update-able. If it does not meet these conditions, it is read-only, meaning that writes to the view
are not passed through to the underlying tables.

g N

Note:

The terms update-able and read-only refer to how you access the data in the underlying
tables, not to whether the view definition can be modified. To modify the view definition,
you must drop the view and then recreate it.

A /

A view is update-able if all of the following conditions are met:

« It is a subset of a single table or another update-able view.

« All base table columns excluded from the view definition allow NULL values.

« The SELECT statement of the view does not contain sub-queries, a DISTINCT predicate, a
HAVING clause, aggregate functions, joined tables, user-defined functions, or stored
procedures.

If the view definition does not meet all of these conditions, it is considered read-only.

(N\

Note:

e Read-only views can be updated by using a combination of user-defined referential
constraints, triggers, and unique indexes. For information on how to update read-only
views using triggers, see Working with Triggers.

WORKING WITH VIEWS

3.4.1. View Privileges

The creator of the view must have the following privileges:

« To create a read-only view, the creator needs SELECT privileges for any underlying tables.
« To create an update-able view, the creator needs ALL privileges to the underlying tables.

For more information on SQL privileges, see Planning Security.

3.4.2. Examples of Views

The following statement creates an update-able view:

CREATE VIEW EMP_MNGRS (FIRST, LAST, SALARY) AS
SELECT FIRST_NAME, LAST_NAME, SALARY

FROM EMPLOYEE

WHERE JOB_CODE = 'Mngr';

The next statement uses a nested query to create a view, so the view is read-only:

CREATE VIEW ALL_MNGRS AS

SELECT FIRST_NAME, LAST_NAME, JOB_COUNTRY FROM EMPLOYEE
WHERE JOB_COUNTRY 1IN

(SELECT JOB_COUNTRY FROM JOB

WHERE JOB_TITLE = 'manager');

The next statement creates a view that joins two tables, and so it is also read-only:

CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO.

3.5. Inserting Data through a View

Rows can be inserted and updated through a view if the following conditions are met:

* The view is update-able.
* A user or stored procedure has INSERT privilege for the view.
* The view is created using WITH CHECK OPTION.

Tip:
You can simulate updating a read-only view by writing triggers that perform the

WORKING WITH VIEWS

appropriate writes to the underlying tables. For an example of this, see Updating Views
with Triggers.

3.5.1. Using WITH CHECK OPTION

WITH CHECK OPTION specifies rules for modifying data through views. This option can be
included only if the views are update-able. Views that are created using WITH CHECK OPTION
enable InterBase to verify that a row inserted or updated through a view can be seen through the
view before allowing the operation to succeed. Values can only be inserted through a view for
those columns named in the view. InterBase stores NULL values for un-referenced columns.

WITH CHECK OPTION prevents you from inserting or updating values that do not satisfy the
search condition specified in the WHERE clause of the SELECT portion of the CREATE VIEW
statement.

3.5.2. Examples

Suppose you want to create a view that allows access to information about all departments with
budgets between $10,000 and $500,000. The view, SUB_DEPT, is defined as follows:

CREATE VIEW SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO, LOW_BUDGET) AS
SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET

FROM DEPARTMENT WHERE BUDGET BETWEEN 10000 AND 500000

WITH CHECK OPTION;

The SUB_DEPT view references a single table, DEPARTMENT . If you are the creator of the view or
have INSERT privileges, you can insert new data into the DEPARTMENT, DEPT_NO,
HEAD_DEPT, and BUDGET columns of the base table, DEPARTMENT. WITH CHECK OPTION
assures that all values entered through the view fall within the range prescribed for each column
in the WHERE clause of the SUB_DEPT view.

The following statement inserts a new row for the Publications Department through the
SUB_DEPT view:

INSERT INTO SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO, LOW_BUDGET)
VALUES ('Publications', '7735', '670', 250000);

InterBase inserts NULL values for all other columns in the DEPARTMENT base table that are not
available directly through the view.

WORKING WITH VIEWS

4. Dropping Views

The DROP VIEW statement enables a view's creator to remove a view definition from the
database. It does not affect the base tables associated with the view. You can drop a view only if:

* You created the view.
 The view is not used in another view, a stored procedure, or CHECK constraint definition.

You must delete the associated database objects before dropping the view.

The syntax for DROP VIEW is:

DROP VIEW name;

The following statement removes a view definition:

DROP VIEW SUB_DEPT;

Note:
You cannot alter a view directly. To change a view, drop it and use the CREATE VIEW

statement to create a view with the same name and the features you want.

CHANGE VIEWS

CHANGE VIEWS

The Change Views™ feature uses InterBase multigenerational architecture to capture changes to
data. This feature allows you to quickly answer the question, "What data has changed since | last
viewed it?"

Previously it involved triggers, logging, and/or transaction write-ahead log scraping. This was
time-consuming for the developer and affected the database performance for a certain
transaction load or change volume. Now with Change Views, there is no performance overhead
on existing transactions because it maintains a consistent view of changed data observable by
other transactions.

The Change Views mechanism is not dependent on its own underlying data, but is based on data
already stored for existing base tables or views derived from base tables. This implicit view
mechanism is temporal based and returns data that have changed since the prior transaction in
which the implicit view was observed.

Change Views can be subscribed to (Create Subscriptions to Implement Change Views) in order
to view data that has changed across database connections. The effect is a long-lived transaction
spanning multiple database connections.

« Specifically, the subscription tracks all row inserts, updates, and deletes to one or more
tables at a column-level granularity over a disconnected, extended period of time.

« The InterBase SQL query language is modified to search on columns where data has
changed since the prior observation.

* These data changes are tracked at a column granularity.

1. Getting Started with Change Views

1.1. ODS Platform Updates

» Change Views requires underlying modification of InterBase ODS, so existing databases must
be backed up and restored to the ODS version that supports this feature. Due to the new
ODS format, the restored database will not be attachable by older InterBase editions.

1.2. Migration Issues and Dependencies

* A subscription defined with FOR ROW (.., DELETE) returns a row with column values that
existed before the row was deleted. Exercise caution in reporting applications on existing
data to not have such a subscription bound to the transaction. Otherwise, the resultset will
include data that no longer exists.

CHANGE VIEWS

1.3. Requirements and Constraints

1.3.1. Requirements

* It is required to use the "odd-numbered" SQL DATA TYPES (SQLVAR variable, sqltype) when
working with change views. This allows the SQL indicator variable in the SQLVAR to receive
status on the returned column data.

« It is required to use transaction SNAPSHQOT isolation level when selecting from a change
view. Any isolation level can be used when modifying data in a change view.

* InterBase tables can have up to 256 record format versions. When a subscription references
a table, this results in a new record format for the table. When issuing a large number of
CREATE SUBSCRIPTION statements, disable autocommit DDL operation so that a single
record format can be constructed from multiple table references from many subscriptions.

1.3.2. Constraints

* TRANSACTION ID AS PROXY FOR SUBSCRIPTION TIMESTAMP

 The feature relies heavily on transaction ID as a proxy for last observed timestamp of a
changed data view and assuring that changed data results are not resent in duplicate.
Currently, database backup does not save transaction IDs of committed data and restores a
database with next transaction ID reset to zero. A 32-bit transaction ID space can be and has
been exhausted at customer sites, which necessitates a database backup and restore.

« This project assumes conversion to 64-bit (more likely 48-bit) transaction IDs with the
assumption they could not be exhausted in a reasonable time frame. For example, a
database with a 4KB page size could run continuously in excess of 10,000 tps for 100 years
with a 48-bit transaction ID. In addition to supporting changed data views, it also ensures
that an InterBase database never has to be shutdown for backup and restore because
transaction IDs have been exhausted.

1.3.3. Backup/Restore Considerations

* A logical backup/restore will backup and restore all subscription definitions. But, data that
tracks subscribers using those subscriptions will not be backed up or restored. Subscribers
need to initiate/activate their subscriptions on new (or restored) databases.

1.3.4. Deferred Constraint Checking

The sequence or order of changes in the source database is not captured by changed data views.
This statement is true with regard to changes across different tables as well as within a single
table. It would be possible to approximate the sequence by exposing a pseudo-column

CHANGE VIEWS

RECORD_VERSION or TRANSACTION_ID and sorting a changed data resultset on that column.
However, this does not guarantee the correct order of changes in all use cases. The order of
changes can be important for satisfying constraint checking when using one or more
subscriptions as a sync mechanism. InterBase only supports IMMEDIATE constraint checking and
it may be a requirement to support DEFERRED constraint checking to allow subscription changes
to be applied to a destination database with various constraints in place.

1.3.5. Trigger Inactivation

InterBase allows a named trigger to be declared inactive. It may be that triggered actions should
be prevented when subscribed changes are applied to a destination database; this is an
application-dependent decision. But the scope of trigger inactivity as described here should be
restricted to the single database session. InterBase makes the trigger inactive across all database
sessions for the database. The same requirement of limited scope of operation would be true of
DEFERRED constraint if it were to be implemented.

1.3.6. Database Restore from a Backup

If the database is restored from a logical backup file or physical dump file, subscribers may
retrieve subscription changes that they have already received. There is metadata
RDB$SUBSCRIPTIONS.RDB$CHECK_OUT_TIMESTAMP that a subscriber could save to help with
the issue of duplicate change processing.

2. Creating Subscriptions to Change Views

To establish interest in observing changed data on a set of tables beyond the natural boundary of
a database connection, a subscription must be created on a list of tables (base tables or views):

Syntax for CREATE SUBSCRIPTION

CREATE SUBSCRIPTION <subscription_name> ON<

<table_name>[(column_name_comma_list)][FOR ROW (CHANGE | {INSERT, UPDATE,
DELETE})]

[, <table_name>[(column_name_comma_list)][FOR ROW (CHANGE | {INSERT,
UPDATE, DELETE})] ...]

[DESCRIPTION user-description];

« The FOR ROW clause describes what types of row modifications will cause column-level
changes to be tracked for the subscription.

« If the FOR ROW clause is omitted, then the behavior defaults to FOR ROW (CHANGE) . The
CHANGE option tracks INSERT and UPDATE data changing operations and returns a row
as soon as any tracked columns changes value.

« When INSERT, UPDATE, and DELETE are specified, then change status on every tracked
column is determined. This is called "deep record introspection” and the CHANGE option is

CHANGE VIEWS

called "shallow record introspection”. It is expected that Change Views performance is faster
with the CHANGE option, but that the INSERT, UPDATE, and DELETE combinations are
more complete. DELETE is not tracked by default, unless explicitly specified.

« Deep record introspection is required when it is necessary to account for every tracked
column and to know exactly which operation(s) caused a column's value change.

« Shallow record introspection is for the use case where it is only necessary to know that one
or more columns changed and not how every tracked column value changed or if they even
changed value at all; it indicates that the row changed somehow with respect to the
subscription.

« If a table alone is specified then all columns of the table are tracked.

« If only a subset of columns is desired to be tracked, then an optional list of columns can be
specified by the subscription. For example,

Sample for CREATE SUBSCRIPTION

CREATE SUBSCRIPTION sub_employee_changes ON EMPLOYEE (EMP_NO, DEPT_NO, SALARY)
DESCRIPTION 'Subscribe to changes in EMPLOYEE table';

CREATE SUBSCRIPTION sub_customer_deletes ON CUSTOMER FOR ROW (DELETE)
DESCRIPTION 'Subscribe to deletes in CUSTOMER table';

CREATE SUBSCRIPTION sub_various_changes
ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE),
CUSTOMER FOR ROW (INSERT, UPDATE, DELETE),
SALES FOR ROW (UPDATE),
DEPARTMENT (LOCATION) FOR ROW (UPDATE)
DESCRIPTION 'Subscribe to various changes on multiple tables';

An optional list of columns is specified for the EMPLOYEE table so that only changes on those
columns are tracked. Since no FOR ROW clause is specified for EMPLOYEE table, the default for
FOR ROW is the CHANGE option, which causes all insert, update, and delete changes are tracked
by the subscription and that any change will return the row. The CUSTOMER table clause
specifies that only row deletions are tracked.

2.1. DROP SUBSCRIPTION

Note:
This new function was introduced with InterBase XE7 Update 1.

To eliminate interest in observing a set of change views, a subscription must be dropped.

« If RESTRICT is specified, then a check of existing subscribers is performed. If there are
subscribers, then an error is returned without dropping the subscription.

« If CASCADE is specified, then all subscribers of this subscription are also dropped.

« If neither RESTRICT nor CASCADE is specified, then RESTRICT is assumed.

CHANGE VIEWS

Syntax for DROP SUBSCRIPTION

DROP SUBSCRIPTION <subscription_name> [RESTRICT | CASCADE];

2.2. Grant Subscribe

A user is then granted SUBSCRIBE privilege to subscribe to the subscription in order to track
changes on the listed tables:

Syntax for GRANT SUBSCRIBE

GRANT SUBSCRIBE ON SUBSCRIPTION <subscription_name> TO <user_name>;
REVOKE SUBSCRIBE ON SUBSCRIPTION <subscription_name> FROM <user_name>;

2.3. Set Subscription

To set a subscription as active, an application issues a SET SUBSCRIPTION statement. The
SET SUBSCRIPTION statement allows multiple subscriptions to be activated and includes an AT
clause to denote a destination or device name as a recipient of subscribed changes. The
subscriber user name is implied by the user identity of the database connection.

The notion of multiple subscriptions against the same schema object for a user, via the AT clause,
is motivated by two observations:

« First, each subscription for a user might connote a separate device among many that have a
disconnected interest in a change set that is queried independently at different times for
different purposes.

« Second, some multiuser applications use pooled database connections under the umbrella
of a single user name (e.g. CRM_User or even SYSDBA). In these cases, an alternate identifier
must be provided to distinguish which subscription should be used to query a change set.
That additional identifier can be loosely thought of as a destination or a "device name".

The SET SUBSCRIPTION statement activates/deactivates a subscription for a subscriber and
binds/unbinds that subscription to the transaction that executed the command. All subscribed
tables in a subscription behave as change views for table references in user-level queries when
executed by a transaction with bound subscriptions. At transaction termination, the subscription
is necessarily unbound, so it is necessary to issue a SET SUBSCRIPTION in subsequent
transactions if a change view is still wanted.

At transaction commit, the subscriber transaction state is updated to allow the subscriber to see
changes that occur after the commit, but not the former changes. A transaction rollback keeps
the subscriber transaction state unchanged, so the change view still sees the former changes but
cannot see newer changes. If a transaction does not read any subscribed tables from a bound
subscription then the subscriber transaction context for that subscription is not updated.

CHANGE VIEWS

SET SUBSCRIPTION; syntax and example

SET SUBSCRIPTION [<subscription_name> [, <subscription_name> ...]] [AT
<destination>] {ACTIVE | INACTIVE};

SET SUBSCRIPTION sub_employee_changes, sub_customer_deletes AT 'smartphone_123'
ACTIVE;

SELECT EMP_NO, DEPT_NO, SALARY FROM EMPLOYEE;

SELECT * FROM CUSTOMER;

COMMIT or COMMIT RETAIN;

This example activates two subscription and returns changed data sets from the subscribed
tables.

« The COMMIT updates all subscriptions for schema objects referenced during the transaction
to set the last observed timestamp and transaction context.

« The COMMIT RETAIN does not change the last observed state and maintains the current
snapshot as always. The subscription is unbound for the transaction at commit, which makes
any subsequent queries against subscribed schema objects return normal data sets, without
regard to changed data status. Any number of subscriptions can be activated simultaneously
by a transaction.

3. Statement Execution

Once a statement is prepared, it is unnecessary to re-prepare the statement due to subscription
activation or deactivation. A statement dynamically adjusts to the subscription environment of
the transaction when it begins execution. Statement execution is also consistent in that once it
begins, it returns change view result sets even if the subscription is deactivated before the full
resultset has been fetched.

PREPARE Q; PREPARE Q

SET SUBSCRIPTION ... ACTIVE EXECUTE Q

EXECUTE Q FETCH Q

FETCH Q SET SUBSCRIPTION ... ACTIVE
SET SUBSCRIPTION ... INACTIVE FETCH Q

FETCH Q CLOSE Q

CLOSEQ

Subscribed table references in statement Q will return change view rows even after the
subscription has been made inactive. The converse also holds in that a regular (non-change view)
resultset will remain consistent when the FETCH of the resultset is interspersed with subscription
activation.

CHANGE VIEWS

4. Change Views API Support

Change Views API support is provided through the extended SQLVAR structure, XSQLVAR, via a
new interpretation of the SQLIND member. To review, a developer places a pointer to a variable
in XSQLVAR.SQLIND to request NULL state. When the query is executed, InterBase places a zero
at that pointer address if the column value for the returned row is non-NULL and sets it to -1 if it
is NULL.

Under the new interpretation, the dual concepts of NULL state and CHANGE state are overlayed
in the SQLIND member variable. The lower bits of the SQLIND variable are reserved as column
change indicators: Bit 0 indicates INSERT; Bit 1 indicates UPDATE; Bit 2 indicates DELETE and Bit 3
designates CHANGE. To check for a NULL state, a developer should check if SQLIND is less than 0
rather than for an explicit -1 value. A value greater than or equal to 0 stored at the SQLIND
address indicates a non-NULL value.

NOT NULL NULL CHANGE STATUS

Legacy SQLIND values returned
when Change Views and

SQLIND =0 SQLIND = -1 Subscriptions not used. Change
status is undefined.
New SQLIND values. Change status

SQLIND >=0 SQLIND < 0 may be present and can be tested
(as below.

SQLIND > 0 SQLIND < -1 Change status is present.

Once it is determined that the SQLIND value contains change status, it is necessary to clear the
possible presence of the SQLIND_NULL bit before testing for specific state. The following
SQLIND_xxxxxx defintions are included in <ibase.h>. By performing various bitwise OR
operations on these definitions it is possible to test for interesting change status.

SQLIND VALUE CHANGE STATUS

The column value is <same> value; it did not

SQLIND_CHANGE_VIEW
change.

It is <unknown> whether the column value

SQLIND_CHANGE_VIEW | SQLIND_CHANGE
changed.

SQLIND_CHANGE_VIEW | [SQLIND_CHANGE] | o .
Some combination of SQL operations changed the

{ SQLIND_INSERT | SQLIND_UPDATE | SQLIND_DELETE } column value.

SQLIND_CHANGE_VIEW is a tag bit to indicate the presence of change status. The remaining
definitions correspond to the FOR ROW clause options of CHANGE, INSERT, UPDATE, and

CHANGE VIEWS

DELETE respectively. The CHANGE option can cause <unknown> change state because a
changed row is returned as soon as the presence of any column value change is detected. Those
column values that did change return definite state, while the others return <unknown> state.

Changes in data made by a subscription is not visible by that subscription when observed at a
later time. This is a bow to a possible application of change views as a component in bi-
directional replication. When one side of a replication pair updates the other side with their local
changes, that side does not want those changes to be reflected back when the other side
replicates in the reverse direction.

5. Change Views SQL Language Support

The following example shows a retooling of the ISQL command-line utility that supports change
views.

To display a list of subscriptions defined in the database, you can execute the SHOW
SUBSCRIPTIONS command. To display details for a particular subscription, you can execute
SHOW SUBSCRIPTION <name>

ISQL SHOW SUBSCRIPTION

SHOW SUBSCRIPTIONS;
Subscription Name

SUB_CUSTOMER_DELETES
SUB_EMPLOYEE_CHANGES
SUB_VARIOUS_CHANGES

SHOW SUBSCRIPTION sub_employee_changes;

Subscription name: SUB_EMPLOYEE_CHANGES

Owner: SYSDBA

Description: Subscribe to changes in EMPLOYEE table
EMPLOYEE (SALARY, DEPT_NO, EMP_NO)

SHOW SUBSCRIPTION sub_customer_deletes;

Subscription name: SUB_CUSTOMER_DELETES

Owner: SYSDBA

Description: Subscribe to deletes in CUSTOMER table
CUSTOMER FOR ROW (DELETE)

SHOW SUBSCRIPTION sub_various_changes;
Subscription name: SUB_VARIOUS_CHANGES
Owner: SYSDBA
Description: Subscribe to various changes on multiple tables
EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE),
CUSTOMER FOR ROW (INSERT, UPDATE, DELETE),
SALES FOR ROW (UPDATE),
DEPARTMENT (LOCATION) FOR ROW (UPDATE)

ISQL SET CHANGES Command

CHANGE VIEWS

ISQL has a collection of SET statements that toggle a display set. The SET CHANGES display
toggle alternates between showing the column data value with its change status as a
subordinated annotation. The <change> column is a pseudo column that shows the type of DML
statement that modified the value of a column. All of this change state is returned by the
XSQLVAR.SQLIND member of the new XSQLDA structure.

Retrieving Change Views from ISQL

<Another user reassigns an existing employee to another department and gives
another employee a raise>

SET SUBSCRIPTION sub_employee_changes ACTIVE;
SELECT EMP_NO, DEPT_NO, SALARY FROM EMPLOYEE;

EMP_NO DEPT_NO SALARY
37 120 50000
109 600 75000

SET CHANGES;

SELECT EMP_NO, DEPT_NO, SALARY FROM EMPLOYEE;

EMP_NO <change> DEPT_NO <change> SALARY <change>

37 <same> 120 <update> 50000 <same>

109 <same> 600 <same> 75000 <update>
COMMIT;

For further information on using SET SUBSCRIPTION and its options, please refer to Set
Subscription

SQL Extensions for Change Views

Note:
This function was introduced with InterBase XE7 Update 1.

InterBase SQL provides support for Change Views with the IS [NOT] {CHANGED | INSERTED |
UPDATED | DELETED} clause as the following example illustrates:

Using IS [NOT] UPDATED in SELECT queries

SET SUBSCRIPTION sub_employee_changes ACTIVE;
SELECT EMP_NO, DEPT_NO, SALARY FROM EMPLOYEE WHERE SALARY IS UPDATED;
EMP_NO DEPT_NO SALARY

CHANGE VIEWS

We see that EMP_NO=37 employee's department reassignment is not returned since he received
no compensation adjustment for a lateral move. The IS CHANGED clause will detect the
modification of a column due to any kind of SQL operation.

6. Metadata Support

Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique
key on RDB$SUBSCRIPTION_NAME, RDB$SUBSCRIBER NAME, RDB$DESTINATION.
Additional fields store control information to facilitate "check in" and "check out" of changed
data. This includes transaction IDs, timestamps, and transactional context of the last observation
of changed data on the schema object.

* The term "check out" denotes SELECT of changed columns of rows from subscribed tables
when a subscription has been activated.

« The term "check in" refers to INSERT, UPDATE, and DELETE of changed columns of rows
from subscribed tables when a subscription has been activated.

« A subscription becomes activated during a database session with the execution of
SET SUBSCRIPTION ACTIVE.

* It is deactivated with the execution of SET SUBSCRIPTION INACTIVE.

6.0.3. Subscription/Subscriber Tables

This topic covers the new and updated columns for the implementation of the Change Views
feature. RDB$SUBSCRIPTIONS and RDB$SUBSCRIBERS are new tables covering the
subscription/subscriber elements. The other tables listed show columns that have been updated
or added to an existing table.

RDB$SUBSCRIPTIONS

This is a new system relation/table starting in ODS version 16:

Column Name Data type Length Description

RDB$SUBSCRIPTION_NAME CHAR 67 Name of subscription.

Counter to track multiple
RDB$RELATION_COUNTER SMALLINT 2 line items inside one
subscription.

RDB$RELATION_NAME CHAR 67 Name of relation or view.
RDBS$FIELD_NAME CHAR 67 Name of field.

CHANGE VIEWS

Column Name

RDB$DESCRIPTION

RDB$SECURITY_CLASS

RDB$SOWNER_NAME

RDBS$RUNTIME

RDB$FLAGS
RDBS$INSERT
RDB$UPDATE
RDB$DELETE

RDB$CHANGE

RDB$SUBSCRIBERS

Data type

BLOB

CHAR

CHAR

BLOB

SMALLINT
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

67

67

[NSJENEN NS IR \ S I \O)

Length

Description

Subtype text: Text
description of the
subscription.

Security class of the
subscription (the owner for
SQL security purposes).

User who created the
subscription.

Run-time binary
information to enhance
performance.

Inserts are tracked.
Updates are tracked.
Deletes are tracked

Tracks all operations, but
returns as soon as any
column changes.

This is a new system relation/table starting in ODS version 16. The required Subscriber

information is stored in a system relation table:

Column Name

RDB$SUBSCRIBER_NAME
RDB$SUBSCRIPTION_NAME
RDBS$DESTINATION
RDB$FLAGS

RDB$CHECK_OUT_TRANSA
CTION_ID

RDB$CHECK_OUT_TIMESTA
MP

RDB$CHECK_OUT_OLDEST_
TRANSACTION_ID

Data type

CHAR
CHAR
CHAR
SMALLINT

INT64

TIMESTAMP

INT64

31
67
32

Length

Description
Name of subscribing user
Name of subscription

Destination of subscriber

Transaction ID of last
subscription check out

Date and time of last
subscription check out

Transaction of oldest active
transaction at check out

CHANGE VIEWS

Column Name Data type Length Description

RDB$CHECK_OUT TRANSA Set of active transaction IDs

CTIONS BLOB at last transaction check
out
RDB$CHECK_IN_TRANSACT INT64 3 Transaction ID of last
ION_ID subscription check in
RDB$CHECK_IN_TIMESTAM TIMESTAMP 8 Date a.nd'tlme of Ia§t
P subscription check in
RDB$CHECK_IN_TRANSACT BLOB Set of check in transaction
IONS IDs by this subscription
RDB$ENCRYPTIONS

RDB$ENCRYPTIONS describes the characteristics of encryptions stored in the database. The
column name RDB$FLAGS was updated and RDB$ENCRYPTION_ID was added:

Column Name Data type Length Description

« 1 random initialization
vector defined for cipher
block chaining encryption
mode.

+ 2 random padding of plain

RDB$FLAGS SMALLINT 2 text.

* 4 encryption is marked for
deletion.

« 32 indicates one or more
subscriptions on the

relation.
RDB$ENCRYPTION_ID SMALLINT AR TeCIEEr Y2 i
Encryption Key.
RDBS$FIELDS

RDBS$FIELDS defines the characteristics of a column. Each domain or column has a corresponding
row in RDB$FIELDS. A NEW column name RDB$SUBSCRIBE_FLAG was added:

Column Name Data type Length Description

Indicates one or more

RDB$SUBSCRIBE_FLAG SMALLINT 2 subscriptions of the field.

CHANGE VIEWS

RDB$TRIGGERS

This table defines triggers. The column name RDB$PRIVILEGE was added with a new subscribe
value:

Column Name Data type Length Description

Identifies the privilege
granted to the user listed in
the RDB$USER column,
above. The character stored
in the field corresponds to
the valid values listed
below.

Valid values are:

RDBS$PRIVILEGE CHAR 6
« ALL (A)

« SELECT (S)

« DELETE (D)

« INSERT (1)

« UPDATE (U)

« REFERENCE (R)

« MEMBER OF (for roles) (M)
« DECRYPT (T)

« ENCRYPT (E)

« SUBSCRIBE (B)

There are also changes to existing metadata relations:

RDBS$RELATIONS

RDB$RELATIONS defines some of the characteristics of tables and views. The column name
RDB$FLAGS was updated as follows:

CHANGE VIEWS

Column Name Data type Length Description

1 = SQL-defined table.

2 = Global temporary table.
4 = <reserved for future
use>.

8 = Delete temporary rows
on commit.

RDB$FLAGS SMALLINT 2 16 = Preserve temporary
rows on commit; rows are
deleted on database
detach.

32 = Indicates one or more
subscriptions on the
relation.

RDB$RELATION_FIELDS

For database tables, RDB$RELATION_FIELDS lists columns and describes column characteristics
for domains. Four column names have been added: RDB$FLAGS, RDB$FIELD NAME,
RDBS$RELATION_NAME,, and RDB$FIELD SOURCE, as follows:

Column Name Data type Length Description
RDB$FIELD_NAME CHAR 67 Column name defined by
the user.
RDB$RELATION_NAME CHAR 67 Iaszlre TG B se) |2 i
Internal Column name that
matches up with
RDB$FIELD_SOURCE CHAR 67 RDB$FIELDS.RDBS$FIELD _NA
ME.
1 = One or more
RDB$FLAGS SMALLINT 2

subscriptions on the field.

RDB$USER_PRIVILEGES

RDB$USER_PRIVILEGES keeps track of the privileges assigned to a user through a SQL GRANT
statement. The column names RDB$USER and RDB$GRANTOR have been updated from a
length of 31 to 67:

CHANGE VIEWS

Column Name Data type Length Description

Names the user who was
granted the privilege listed

RDBSUSER CHAR 67 in the RDB$PRIVILEGE
column.

RDB$GRANTOR CHAR 67 Names the user who
granted the privilege.

RDB$PRIVILEGE CHAR 6 Subscribe (B)

7. Ad-hoc Subscriptions and SQL Language Support

Change Views can be subscribed to on a temporary basis using ad-hoc subscriptions. An ad-hoc
subscription runs for the duration of a connection. The user subscribes directly to a schema
object instead of a named subscription. This subscription is valid until the database connection is
terminated or the user deactivates the temporary subscription during the connection. The
following example shows a retooling of the ISQL command-line utility that supports changed
data views.

A user must be granted temporary subscribe privileges on the schema object (i.e., a base table).

7.1. GRANT TEMPORARY SUBSCRIBE

Syntax for GRANT TEMPORARY SUBSCRIBE

GRANT TEMPORARY SUBSCRIBE[(<column_comma-1ist>)] ON <table_name> TO <user_name>;
REVOKE TEMPORARY SUBSCRIBE[(<column_comma-1list>)] ON <table_name> FROM
<user_name>;

The user issues a SET SUBSCRIPTION command as usual giving the name of the base table
instead of a subscription name.

RETRIEVING CHANGED DATA VIEWS FROM ISQL

SET SUBSCRIPTION "Employees" ACTIVE;
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
COMMIT;

<Another user reassigns an existing employee to another department and gives
another employee a raise>

SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<CHANGE> NAME DEPARTMENT SALARY

update joe sales 50000
update mary finance 75000

CHANGE VIEWS

SET SAME;

SELECT NAME, DEPARTMENT, SALARY FROM "Employees";

<CHANGE> NAME DEPARTMENT SALARY

update <same> sales <same>

update <same> <same> 75000
COMMIT;

SET SUBSCRIPTION "Employees" INACTIVE;

ISQL has a collection of SET statements that toggle a display set. The SET SAME display toggle
alternates between showing the column data value or its changes state of <same> or the
changed data value. The CHANGE column is a pseudo column that is showing the type of DML
statement that modified the column value(s). All of this change state is returned by the
XSQLVAR.SQLIND member of the new XSQLDA structure.

Minimal support for changed data views is provided by InterBase SQL with the addition of a IS
SAME or IS NOT SAME clause as the following example illustrates:

Using IS NOT SAME in SELECT queries

<SELECT NAME, DEPARTMENT, SALARY FROM "Employees'" WHERE SALARY IS NOT SAME;

<CHANGE> NAME DEPARTMENT SALARY
update mary finance 75000

We see that Joe's department reassignment is not returned since he received no compensation
adjustment for a lateral move.

8. Change Views Requirements and Constraints
8.1. Deferred Constraint Checking

The sequence or order of changes in the source database is not captured by the Change Views
feature. This statement applies to changes across different tables as well as within a single table.
It would be possible to approximate the sequence by exposing a pseudo-column
RECORD_VERSION or TRANSACTION_ID and sorting a changed data result set on that column.
However, this does not guarantee the correct order of changes in all use cases. The order of
changes can be important for satisfying constraint checking when using one or more
subscriptions as a sync mechanism. InterBase only supports IMMEDIATE constraint checking and
it may be a requirement to support DEFERRED constraint checking to allow subscription changes
to be applied to a destination database with various constraints in place.

CHANGE VIEWS

8.2. Trigger Inactivation

InterBase allows a named trigger to be declared inactive. It may be that triggered actions should
be prevented when subscribed changes are applied to a destination database; this is an
application-dependent decision. But the scope of trigger inactivity as described here should be
restricted to the single database session. InterBase makes the trigger inactive across all database
sessions for the database. The same requirement of limited scope of operation would be true of
DEFERRED constraint if it were to be implemented.

9. Change Views Glossary

» Ad hoc usage

« Alternate Identifier
« AT Clause

* Logical backup file
« ODS

« Physical dump file
« Set Subscription

« Transaction ID

» Trigger Inactivation

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

WORKING WITH STORED PROCEDURES (DATA DEFINITION
GUIDE)

This chapter describes the following:

» How to create, alter, and drop procedures

« The InterBase procedure and trigger language
« How to use stored procedures

» How to create, alter, drop, and raise exceptions
» How to handle errors

1. Overview of Stored Procedures

A stored procedure is a self-contained program written in InterBase procedure and trigger
language, and stored as part of a the database metadata.

Once you have created a stored procedure, you can invoke it directly from an application, or
substitute the procedure for a table or view in a SELECT statement. Stored procedures can receive
input parameters from and return values to applications.

InterBase procedure and trigger language includes SQL data manipulation statements and some
powerful extensions, including IF .. THEN .. ELSE, WHILE .. DO, FOR SELECT .. DO,
exceptions, and error handling.

The advantages of using stored procedures include:
» Modular design:

Applications that access the same database can share stored procedures, eliminating duplicate
code and reducing the size of the applications.

» Streamlined maintenance:

When a procedure is updated, the changes are automatically reflected in all applications that use
it without the need to recompile and re-link them; applications are compiled and optimized only
once for each client.

* Improved performance:

Stored procedures are executed by the server, not the client, which reduces network traffic, and
improves performance, especially for remote client access.
See Also

» No Rows or Data Returned

http://docwiki.embarcadero.com/InterBase/15/en/EXECUTE_STATEMENT#No_Rows_or_Data_Returned

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

2. Working with Procedures

With isql, you can create, alter, and drop procedures and exceptions. Each of these operations is
explained in the corresponding sections in this chapter.

There are two ways to create, alter, and drop procedures with isql:

* Interactively
 With an input file containing data definition statements

It is usually preferable to use data definition files, because they are easier to modify and provide
separate documentation of the procedure. For simple changes to existing procedures or
exceptions, the interactive interface can be convenient.

The user who creates a procedure is the owner of the procedure, and can grant the privilege to
execute the procedure to other users, triggers, and stored
procedures.

2.1. Working with Procedures Using a Data Definition File

To create or alter a procedure through a data definition file, follow these steps:

1. Use a text editor to write the data definition file.
2. Save the file.
3. Process the file with isql. Use this command:

isql -input filename database_name

where <filename> is the name of the data definition file and <database name> is the
name of the database to use. Alternatively, from within isql, you can process the file using
the command:

SQL> dnput filename;

If you do not specify the database on the command line or interactively, the data definition file
must include a statement to create or open a database.

The data definition file can include:

« Statements to create, alter, or drop procedures. The file can also include statements to
create, alter, or drop exceptions. Exceptions must be created before they can be referenced
in procedures.

» Any other isql statements.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

2.2. Calling Stored Procedures

Applications can call stored procedures from SQL and DSQL. You can also use stored procedures
in isql. For more information on calling stored procedures from applications, see the Embedded

SQL Guide.
There are two types of stored procedures:

» SELECT procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values (output
parameters), or an error results.

« Executable procedures that an application can call directly with the EXECUTE PROCEDURE
statement. An executable procedure can optionally return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the same
syntax. The difference is in how the procedure is written and how it is intended to be used. Select
procedures can return more than one row, so that to the calling program they appear as a table
or view. Executable procedures are routines invoked by the calling program, which can optionally
return values.

In fact, a single procedure conceivably can be used as a select procedure or as an executable
procedure, but in general a procedure is written specifically to be used in a SELECT statement (a
select procedure) or to be used in an EXECUTE PROCEDURE statement (an executable
procedure).

2.3. Privileges for Stored Procedures

To use a stored procedure, a user must be the creator of the procedure or must be given
EXECUTE privilege for it. An extension to the GRANT statement assigns the EXECUTE privilege,
and an extension to the REVOKE statement eliminates the privilege.

Stored procedures themselves sometimes need access to tables or views for which a user does
not—or should not—have privileges. For more information about granting privileges to users
and procedures, see Planning Security.

3. Creating Procedures

You can define a stored procedure with the CREATE PROCEDURE statement in isql. You cannot

create stored procedures in embedded SQL. A stored procedure is composed of a header and a
bodly.

The header contains:

« The name of the stored procedure, which must be unique among procedure, view, and table
names in the database.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

 An optional list of input parameters and their data types that a procedure receives from the

calling program.
« If the procedure returns values to the calling program, RETURNS followed by a list of output

parameters and their data types.
The procedure body contains:

 An optional list of local variables and their data types.
* A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END . A block can itself include other blocks, so that there can be many levels of nesting.

3.1. CREATE PROCEDURE syntax

CREATE PROCEDURE name

[(param data_type [, param data_type ..])]

[RETURNS (param data_type [, param data_type ..])]
AS

<procedure_body>;

<procedure_body> = [<variable_declaration_1list>]

<block>
<variable_declaration_list> =

DECLARE VARIABLE var data_type;

[DECLARE VARIABLE var data_type; ..]
<block> =

BEGIN

<compound_statement>

[<compound_statement> ..]

END

<compound_statement> = {<block> | statement;}

Argument Description

Name of the procedure; must be unique among procedure, table, and view

<name>)
names in the database.

Input parameters that the calling program uses to pass values to the
procedure.

<param> <data_type>
 <param>: Name of the input parameter, unique for variables in the

procedure.
- <data_type>: An InterBase data type

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Argument Description

Output parameters that the procedure uses to return values to the calling
program

RETURNS « <param>: Name of the output parameter, unique for variables within the
<param data_type> procedure.

« <data_type>: An InterBase data type
« The procedure returns the values of output parameters when it reaches a
SUSPEND statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body.

Declares local variables used only in the procedure
DECLARE VARIABLE

<var> <data_type> « Each declaration must be preceded by DECLARE VARIABLE and followed

by a semicolon (;).
« <var>: Name of the local variable, unique for variables in the procedure.

* Any single statement in InterBase procedure and trigger language.
<statement> « Each statement except BEGIN and END must be followed by a semicolon

G-
3.2. Procedure and Trigger Language

The InterBase procedure and trigger language is a complete programming language for stored
procedures and triggers. It includes:

» SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
Cursors are allowed.

« SQL operators and expressions, including UDFs linked with the database server and
generators.

« Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in different ways and for different purposes,
they both use the procedure and trigger language. Both triggers and stored procedures can use
any statements in the procedure and trigger language, with some exceptions:

» Context variables are unique to triggers.
* Input and output parameters, and the SUSPEND and EXIT statements, which return values
and are unique to stored procedures.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre. The following statement types are not supported in triggers or stored
procedures:

« Data definition language statements: CREATE, ALTER, DROP, DECLARE
EXTERNAL FUNCTION, and DECLARE FILTER

« Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

. Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

« CONNECT/DISCONNECT, and sending SQL statements to another database

¢ GRANT/REVOKE

e SET GENERATOR

e EVENT INIT/WAIT

e BEGIN/END DECLARE SECTION

* BASED ON

* WHENEVER

e DECLARE CURSOR

* OPEN

e FETCH

The following table summarizes the language extensions for stored procedures.

Statement Description

Defines a block of statements that executes as one; the BEGIN keyword
BEGIN ... END starts the block, the END keyword terminates it. Neither should be
followed by a semicolon.

Assignment statement which assigns the value of <expression> to

<variable> = <expression> . . .
<variable>, a local variable, input parameter, or output parameter.

/* comment_text x/

Programmer’s comment. See Comment for more information and

or
examples.

-- comment_text

EXCEPTION Raises the named exception.

<exception_name> Exception: A user-defined error that can be handled with WHEN .

http://docwiki.embarcadero.com/InterBase/15/en/Comment

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Statement Description

Executes stored procedure, <proc_name>, with the input arguments
listed following the procedure name, returning values in the output

EXECUTE PROCEDURE <proc_name> arguments listed following RETURNING_VALUES .
[<var> [, <var> ..]]
[RETURNING_VALUES var Enables nested procedures and recursion.

[, <var> ..]] .) _
Input and output parameters must be variables defined within the
procedure.

EXIT Jumps to the final END statement in the procedure.

Repeats the statement or block following DO for every qualifying row

FOR <select statement> retrieved by <select_statement>.

DO <compound_statement>. <select_statement>: a normal SELECT statement, except that the

INTO clause is required and must come last.

Either a single statement in procedure and trigger language or a block of

SR statements bracketed by BEGIN and END .

Tests <condition> and if itis TRUE , performs the statement or block
following THEN . Otherwise, performs the statement or block following
ELSE, if present.

IF (<condition>)
THEN <compound_statement>

[ELSE <compound statement>]. <condition>: a Boolean expression (TRUE , FALSE , or UNKNOWN),

generally two expressions as operands of a comparison operator.

POST_EVENT <event_name> Posts the event, <event_name>.

Ina SELECT procedure:

Suspends execution of procedure until next FETCH is issued by the
SUSPEND calling application.

Returns output values, if any, to the calling application.

Not recommended for executable procedures.

While <condition> is TRUE , keep performing
WHILE (<condition>) <compound_statement>. First <condition> is tested, and if it is TRUE ,
DO <compound_statement> then <compound_statement> is performed. This sequence is repeated
until <condition> is no longer TRUE .

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Statement Description

Error-handling statement. When one of the specified errors occurs,
performs <compound_statement>. WHEN statements, if present, must
WHEN come at the end of a block, just before END .

{<error> [, <error> ..] | ANY}

<error>: EXCEPTION <exception_name>, SQLCODE <errcode> or
DO <compound_statement>

GDSCODE <number>.

ANY : Handles any errors.

3.2.1. Syntax Errors in Stored Procedures

InterBase generates errors during parsing if there is incorrect syntax in a CREATE PROCEDURE
statement. Error messages look similar to this:

Statement failed, SQLCODE = -104
Dynamic SQL Error

-SQL error code = -104

-Token unknown - line 4, char 9
-tmp

The line numbers are counted from the beginning of the CREATE PROCEDURE statement, not
from the beginning of the data definition file. Characters are counted from the left, and the
unknown token indicated is either the source of the error, or immediately to the right of the
source of the error. When in doubt, examine the entire line to determine the source of the syntax
error.

3.3. The Procedure Header

Everything before AS in the CREATE PROCEDURE statement forms the procedure header. The
header contains:

« The name of the stored procedure, which must be unique among procedure and table
names in the database.

« An optional list of input parameters and their data types. The procedure receives the values
of the input parameters from the calling program.

« Optionally, the RETURNS keyword followed by a list of output parameters and their data
types. The procedure returns the values of the output parameters to the calling program.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

3.3.1. Declaring Input Parameters

Use input parameters to pass values from an application to a procedure. Any input parameters
are given in a comma-delimited list enclosed in parentheses immediately after the procedure
name, as follows:

CREATE PROCEDURE name
(var data_type [, var data_type ..])

Each input parameter declaration has two parts: a name and a data type. The name of the
parameter must be unique within the procedure, and the data type can be any standard SQL data
type except arrays of data types. The name of an input parameter need not match the name of
any host parameter in the calling program.

Note:
No more than 1,400 input parameters can be passed to a stored procedure.

3.3.2. Declaring Output Parameters

Use output parameters to return values from a procedure to an application. The RETURNS clause
in the procedure header specifies a list of output parameters. The syntax of the RETURNS clause
is:

[RETURNS (var data_type [, var data_type ..])]
AS

Each output parameter declaration has two parts: a name and a data type. The name of the
parameter must be unique within the procedure, and the data type can be any standard SQL data
type except arrays.

3.4. The Procedure Body

Everything following the AS keyword in the CREATE PROCEDURE statement forms the procedure
body. The body consists of an optional list of local variable declarations followed by a block of
statements.

A block is composed of statements in the InterBase procedure and trigger language, bracketed
by BEGIN and END. A block can itself include other blocks, so that there can be many levels of
nesting.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

InterBase procedure and trigger language includes all standard InterBase SQL statements except
data definition and transaction statements, plus statements unique to procedure and trigger
language.

Features of InterBase procedure and trigger language include:

« Assignment statements, to set values of local variables and input/output parameters.

» SELECT statements, to retrieve column values. SELECT statements must have an INTO
clause as the last clause.

* Control-flow statements, such as FOR SELECT .. DO, IF .. THEN, and WHILE .. DO, to
perform conditional or looping tasks.

* EXECUTE PROCEDURE statements, to invoke other procedures. Recursion is allowed.

« Comments to annotate procedure code.

« Exception statements, to return error messages to applications, and WHEN statements to
handle specific error conditions.

e SUSPEND and EXIT statements, that return control—and return values of output
parameters—to the calling application.

3.4.1. BEGIN ... END statements

Each block of statements in the procedure body starts with a BEGIN statement and ends with an
END statement. BEGIN and END are not followed by a semicolon.

3.4.2. Using Variables

There are three types of variables that can be used in the body of a procedure:

* Input parameters, used to pass values from an application to a stored procedure.

« Output parameters, used to pass values from a stored procedure back to the calling
application.

* Local variables, used to hold values used only within a procedure.

Any of these types of variables can be used in the body of a stored procedure where an
expression can appear. They can be assigned a literal value, or assigned a value derived from
queries or expression evaluations.

()

Note:

e In SQL statements, precede variables with a colon () to signify that they are variables
rather than column names. In procedure and trigger language extension statements, you
need not precede variables with a colon.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Local variables

Local variables are declared and used within a stored procedure. They have no effect outside the
procedure.

Local variables must be declared at the beginning of a procedure body before they can be used.
Declare a local variable as follows:

DECLARE VARIABLE var data_type;

where <var> is the name of the local variable, unique within the procedure, and <data_type> is
the data type, which can be any SQL data type except BLOB or an array. Each local variable
requires a separate DECLARE VARIABLE statement, followed by a semicolon ;).

The following header declares the local variable, ANY_SALES:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS

DECLARE VARIABLE ANY_SALES INTEGER;

BEGIN

Input Parameters

Input parameters are used to pass values from an application to a procedure. They are declared
in a comma-delimited list in parentheses following the procedure name. Once declared, they can
be used in the procedure body anywhere an expression can appear.

Input parameters are passed by value from the calling program to a stored procedure. This
means that if the procedure changes the value of an input parameter, the change has effect only
within the procedure. When control returns to the calling program, the input parameter still has
its original value.

The following procedure header declares two input parameters, EMP_NO and
PROJ_ID:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS

For more information on declaring input parameters in stored procedures, see Declaring Input
Parameters.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Output Parameters

Output parameters are used to return values from a procedure to the calling application. Declare
them in a comma-delimited list in parentheses following the RETURNS keyword in the procedure
header. Once declared, they can be used in the procedure body anywhere an expression can
appear. For example, the following procedure header declares five output parameters,
HEAD_DEPT, DEPARTMENT, MNGR_NAME, TITLE, and EMP_CNT:

CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

If you declare output parameters in the procedure header, the procedure must assign them
values to return to the calling application. Values can be derived from any valid expression in the
procedure.

For more information on declaring output parameters in stored procedures, see Declaring
Output Parameters.

A procedure returns output parameter values to the calling application with a SUSPEND
statement. For more information about SUSPEND, see Using SUSPEND, EXIT, and END With
Procedures.

In a SELECT statement that retrieves values from a procedure, the column names must match
the names and data types of the procedure’s output parameters. In an EXECUTE PROCEDURE
statement, the output parameters need not match the names of the procedure’s output
parameters, but the data types must match.

3.4.3. Using Assignment Statements

A procedure can assign values to variables with the syntax:

variable = expression;

where expression is any valid combination of variables, operators, and expressions, and can
include user-defined functions (UDFs) and generators.

A colon need not precede the variable name in an assignment statement. For example, the
following statement assigns a value of zero to the local variable, ANY_SALES:

any_sales = 0;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Variables should be assigned values of the data type that they are declared to be. Numeric
variables should be assigned numeric values, and character variables assigned character values.
InterBase provides automatic type conversion. For example, a character variable can be assigned
a numeric value, and the numeric value is automatically converted to a string. For more
information on type conversion, see the Embedded SQL Guide.

3.4.4. Using SELECT Statements

In a stored procedure, use the SELECT statement with an INTO clause to retrieve a single row
value from the database and assign it to a host variable. The SELECT statement must return at
most one row from the database, like a standard singleton SELECT. The INTO clause is
required and must be the last clause in the statement.

For example, the following statement is a standard singleton SELECT statement in an
application:

EXEC SQL

SELECT SUM(BUDGET), AVG(BUDGET)
INTO :tot_budget, :avg_budget
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept;

To use this SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget;

For a complete discussion of SELECT statement syntax, see the Language Reference.

3.4.5. Using FOR SELECT ... DO Statements

To retrieve multiple rows in a procedure, use the FOR SELECT .. DO statement. The syntax of
FOR SELECT is:

FOR

<select_expr>

DO
<compound_statement>;

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

FOR SELECT differs from a standard SELECT as follows:

« It is a loop statement that retrieves the row specified in the <select_expr> and performs the
statement or block following DO for each row retrieved.
« The INTO clause in the

<select_expr> is required and must come last. This syntax allows FOR .. SELECT to use the
SQL UNION clause, if needed.

For example, the following statement from a procedure selects department numbers into the
local variable, RDNO, which is then used as an input parameter to the DEPT_BUDGET procedure:

FOR SELECT DEPT_NO

FROM DEPARTMENT

WHERE HEAD_DEPT = :DNO

INTO :RDNO

DO

BEGIN

EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNS :SUMB;
TOT = TOT + SUMB;

END

)

3.4.6. Using WHILE ... DO Statements

WHILE .. DO is a looping statement that repeats a statement or block of statements as long as
a condition is true. The condition is tested at the start of each loop. WHILE .. DO uses the
following syntax:

WHILE (<condition>) DO
<compound_statement>
<compound_statement> = {<block> |
statement;}

The <compound_statement> is executed as long as <condition> remains TRUE .
A block is one or more compound statements enclosed by BEGIN and END.

For example, the following procedure uses a WHILE .. DO loop to compute the sum of all
integers from one up to the input parameter, I:

CREATE PROCEDURE SUM_INT (I INTEGER) RETURNS (S INTEGER)
AS

BEGIN

s = 0;

WHILE (i > 0) DO

BEGIN

s = s + 1i;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

i=1 - 1;
END
END ;

If this procedure is called from isql with the command:

EXECUTE PROCEDURE SUM_INT 4;

then the results are:

3.4.7. Using IF ... THEN ... ELSE Statements

The IF .. THEN .. ELSE statement selects alternative courses of action by testing a specified
condition. The syntax of IF .. THEN .. ELSE is as follows:

IF (<condition>)

THEN <compound_statement>

[ELSE <compound_statement>]
<compound_statement> = {<block> |
statement;}

The condition clause is an expression that must evaluate to TRUE to execute the statement or
block following THEN. The optional ELSE clause specifies an alternative statement or block to
be executed if condition is FALSE .

The following lines of code illustrate the use of IF .. THEN, assuming the variables LINE2,
FIRST, and LAST have been previously declared:

IF (FIRST IS NOT NULL)
THEN LINE2 = FIRST || ' ' || LAST;
ELSE LINE2 = LAST;

3.4.8. Using Event Alerters

To use an event alerter in a stored procedure, use the following syntax:

POST_EVENT <event_name>;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

The parameter, <event_name>, can be either a quoted literal or string variable.

(N\

Note:

Variable names do not need to be—and must not be—preceded by a colon in stored
procedures except in SELECT, INSERT, UPDATE, and DELETE clauses where they
would be interpreted as column names without the colon.

A /

When the procedure is executed, this statement notifies the event manager, which alerts
applications waiting for the named event. For example, the following statement posts an event
named “new_order”:

POST_EVENT 'new_order';
Alternatively, a variable can be used for the event name:
POST_EVENT event_name;

So, the statement can post different events, depending on the value of the string variable,
<event_name.>

For more information on events and event alerters, see the Embedded SQL Guide.

3.4.9. Adding Comments

Stored procedure code should be commented to aid debugging and application development.
Comments are especially important in stored procedures since they are global to the database
and can be used by many different application developers.

There are two different types of comments that you can use:

1. The simple comment: A comment that starts with a special symbol and ends with a new
line.

Note:
The simple comment syntax is only available starting with database engine version
InterBase 2017.

-— comment text

2. The bracketed comment: A comment that starts and ends with a special symbol. It may be
multi-line.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

/* comment text
more comment text
another line of comment text

*/

Regardless of the type of comment that you use, you may start a comment anywhere in a line,
but with a simple comment you need to keep in mind that the comment area stops after new
line. In order to use the simple comment syntax for a multi-line comment, you need to start each
line with the special symbol. For example:

* A multi-line bracketed comment:

/* my multi-line
comment 1is this
text */

» A multi-line simple comment:

-— my multi-line
-- comment is this
-- text

You can place comments on the same line as code, which makes them inline comments.

It is good programming practice to state the input and output parameters of a procedure in a
comment preceding the procedure. It is also often useful to comment local variable declarations
to indicate what each variable is used for.

Examples The following isql samples illustrate some ways to use comments:

*
Procedure DELETE_EMPLOYEE : Delete an employee.

Parameters:

employee number

Returns:

% ——

*/

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)

AS

DECLARE VARIABLE ANY_SALES INTEGER; -- Number of sales for emp.
BEGIN

b S T T

/* This script sets up Change Views Subscriptions
on the EMPLOYEE table.

*/

CONNECT "emp.ib" user 'SYSDBA' password 'masterkey';

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

COMMIT;

CREATE SUBSCRIPTION sub ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

-— Create a subscription on Employee table
CREATE SUBSCRIPTION subl ON EMPLOYEE FOR ROW (INSERT, UPDATE);
COMMIT;

« Simple comment followed by another SLC

-- One more comment
CREATE SUBSCRIPTION sub2 ON EMPLOYEE FOR ROW (INSERT);
COMMIT;

« Simple comment followed by another SLC with leading whitespace

-- One more comment followed by leading whitespace before CREATE below
CREATE SUBSCRIPTION sub3 ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

SHOW SUBSCRIPTIONS;

SELECT COUNT (%)
-- 1inline comment 1
FROM RDB$DATABASE;

SELECT COUNT(*) -- 1dinline comment 2
FROM RDB$DATABASE;

COMMIT;

SET TERM *7;

* Create a stored procedure with inline comments

CREATE PROCEDURE test_proc (
pl INTEGER, -- Param 1
p2 VARCHAR(68) -- Param 2
)
RETURNS (opl INTEGER) -— Output param
AS
declare variable vl INTEGER;
declare variable v2 varchar(150); -- Variable 2
BEGIN
-- sample comment 1
-- sample comment 2
-- return dinput value multiplied by 10
vl = pl * 10;
opl = vi;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

SUSPEND;
ENDA
SET TERM ;A

COMMIT;
SHOW PROCEDURE test_proc;
SELECT opl from test_proc (2, NULL);

3.4.10. Creating Nested and Recursive Procedures

A stored procedure can itself execute a stored procedure. Each time a stored procedure calls
another procedure, the call is said to be nested because it occurs in the context of a previous and
still active call to the first procedure. A stored procedure called by another stored procedure is
known as a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve
repetitive steps. Each invocation of a procedure is referred to as an instance, since each
procedure call is a separate entity that performs as if called from an application, reserving
memory and stack space as required to perform its tasks.

(N\

Note:

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to
e prevent infinite loops that can occur when a recursive procedure provides no absolute

terminating condition. Nested procedure calls can be restricted to fewer than 1,000

levels by memory and stack limitations of the server.

A J/

The following example illustrates a recursive procedure, FACTORIAL , which calculates factorials.
The procedure calls itself recursively to calculate the factorial of NUM, the input parameter.

CREATE PROCEDURE FACTORIAL (NUM INT)
RETURNS (N_FACTORIAL DOUBLE PRECISION)

AS

DECLARE VARIABLE NUM_LESS_ONE INT;
BEGIN

IF (NUM = 1) THEN

BEGIN /*xx* BASE CASE: 1 FACTORIAL IS 1 xx%x%/

N_FACTORIAL = 1;

SUSPEND;

END

ELSE

BEGIN /xx%* RECURSION: NUM FACTORIAL = NUM * (NUM-1) FACTORIAL *xxx/
NUM_LESS_ONE = NUM - 1;
EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE
RETURNING_VALUES N_FACTORIAL;
N_FACTORIAL = N_FACTORIAL x NUM;
SUSPEND;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

END
END ;

The following C code demonstrates how a host-language program would call FACTORIAL :

printf('\nCalculate factorial for what value? ');
scanf('%d', &pnum);

EXEC SQL

EXECUTE PROCEDURE FACTORIAL :pnum RETURNING_VALUES
:pfact;

printf('%d factorial dis %d.\n', pnum, pfact);

Recursion nesting restrictions would not allow this procedure to calculate
factorials for numbers greater than 1,001. Arithmetic overflow, however, occurs for much smaller
numbers.

3.4.11. Using SUSPEND, EXIT, and END With Procedures

The SUSPEND statement suspends execution of a select procedure, passes control back to the
program, and resumes execution from the next statement when the next FETCH is executed.
SUSPEND also returns values in the output parameters of a stored procedure.

SUSPEND should not be used in executable procedures, since the statements that follow it will
never execute. Use EXIT instead to indicate to the reader explicitly that the statement
terminates the procedure.

In a select procedure, the SUSPEND statement returns current values of output parameters to
the calling program and continues execution. If an output parameter has not been assigned a
value, its value is unpredictable, which can lead to errors. A procedure should ensure that all
output parameters are assigned values before a SUSPEND .

In both select and executable procedures, EXIT jumps program control to the final END
statement in the procedure.

What happens when a procedure reaches the final END statement depends on the type of
procedure:

* In a select procedure, the final END statement returns control to the application and sets
SQLCODE to 100, which indicates there are no more rows to retrieve.

« In an executable procedure, the final END statement returns control and values of output
parameters, if any, to the calling application.

The behavior of these statements is summarized in the following table:

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Procedure type SUSPEND

« Suspends execution of
procedure until next
FETCH

* Returns values

« Returns control to
Jumps to final END application
» Sets SQLCODE to 100

Select procedure

* Returns values
Jumps to final END * Returns control to
application

* Jumps to final END

Executable procedure
P » Not recommended

Consider the following procedure:

CREATE PROCEDURE P RETURNS (R INTEGER)
AS

BEGIN

R = 0;

WHILE (R < 5) DO
BEGIN

R =R+ 1
SUSPEND;

IF (R = 3) THEN
EXIT;

END

END ;

If this procedure is used as a select procedure, for example:

SELECT = FROM P;

then it returns values 1, 2, and 3 to the calling application, since the SUSPEND statement returns
the current value of R to the calling application. The procedure terminates when it encounters
EXIT.

If the procedure is used as an executable procedure, for example:

EXECUTE PROCEDURE P;

then it returns 1, since the SUSPEND statement terminates the procedure and returns the current
value of R to the calling application. This is not recommended, but is included here for
comparison.

Note:
If a select procedure has executable statements following the last SUSPEND in the
procedure, all of those statements are executed, even though no more rows are

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

returned to the calling program. The procedure terminates with the final END
o statement.

Error behavior

When a procedure encounters an error—either a SQLCODE error, GDSCODE error, or user-
defined exception—all statements since the last SUSPEND are undone.

Since select procedures can have multiple SUSPENDs, possibly inside a loop statement, only the
actions since the last SUSPEND are undone. Since executable procedures should not use
SUSPEND, when an error occurs the entire executable procedure is undone (if EXIT is used, as
recommended).

4. Altering and Dropping Stored Procedures

This section describes techniques and issues for changing and deleting procedures.

Tip:
To see a list of database procedures and their dependencies, use the isql command:

SHOW PROCEDURES;

4.1. Altering Stored Procedures

To change a stored procedure, use ALTER PROCEDURE . This statement changes the definition of
an existing stored procedure while preserving its dependencies according to which metadata
objects reference the stored procedure, and which objects the stored procedure references.

Changes made to a procedure are transparent to all client applications that use the procedure;
you do not have to rebuild the applications. However, see Altering and Dropping Procedures in
Use for issues of managing versions of stored procedures.

Only SYSDBA and the owner of a procedure can alter it.

Important:

Be careful about changing the type, number, and order of input and output parameters
to a procedure, since existing code might assume that the procedure has its original
format.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

When you alter a procedure, the new procedure definition replaces the old one. To alter a
procedure, follow these steps:

1. Copy the original data definition file used to create the procedure. Alternatively, use isql -
extract to extract a procedure from the database to a file.

2. Edit the file, changing CREATE to ALTER, and changing the procedure definition as
desired. Retain whatever is still useful.

4.2. ALTER PROCEDURE syntax

The syntax for ALTER PROCEDURE is similar to CREATE PROCEDURE as shown in the following
syntax:

ALTER PROCEDURE name

[(var data_type [, var data_type ..])]
[RETURNS (var data_type [, var data_type ..])]
AS

procedure_body;

The procedure <name> must be the name of an existing procedure. The arguments of the
ALTER PROCEDURE statement are the same as those for CREATE PROCEDURE (see Arguments
of the CREATE PROCEDURE statement on the page CREATE PROCEDURE syntax).

4.3. Dropping Procedures

The DROP PROCEDURE statement deletes an existing stored procedure from the database.
DROP PROCEDURE can be used interactively with isql orin a data definition file.

The following restrictions apply to dropping procedures:

* Only SYSDBA and the owner of a procedure can drop it.

* You can't drop a procedure used by other procedures, triggers, or views; alter the other
metadata object so that it does not reference the procedure, then drop the procedure.

* You can’t drop a procedure that is recursive or in a cyclical dependency with another
procedure; you must alter the procedure to remove the cyclical dependency, then drop the
procedure.

* You can't drop a procedure that is currently in use by an active transaction; commit the
transaction, then drop the procedure.

* You can't drop a procedure with embedded SQL; use dynamic SQL.

If you attempt to drop a procedure and receive an error, make sure you have entered the
procedure name correctly.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

4.4. Drop Procedure Syntax
The syntax for dropping a procedure is:

DROP PROCEDURE name;

The procedure <name> must be the name of an existing procedure. The following statement
deletes the ACCOUNTS_BY_CLASS procedure:

DROP PROCEDURE ACCOUNTS_BY_CLASS;

4.5. Altering and Dropping Procedures in Use

You must make special considerations when making changes to stored procedures that are
currently in use by other requests. A procedure is in use when it is currently executing, or if it has
been compiled internally to the metadata cache by a request.

Changes to procedures are not visible to client applications until they disconnect and reconnect
to the database; triggers and procedures that invoke altered procedures don't have access to the
new version until there is a point in which all clients are disconnected.

To simplify the task of altering or dropping stored procedures, it is highly recommended to
perform this task during a maintenance period when no client applications are connected to the
database. By doing this, all client applications see the same version of a stored procedure before
and after you make an alteration.

Tip:

You can minimize the maintenance period by performing the procedure alteration while
the database is in use, and then briefly closing all client applications. It is safe to alter
procedures while the database is in use.

Internals of the technology:

Below is a detailed description of the internal maintenance of stored procedure versions, to help
explain the behavior of the technology.

When any request invokes a stored procedure, the current definition for that stored procedure is
copied at that moment to a metadata cache. This copy persists for the lifetime of the request that
invoked the stored procedure.

A request is one of the following:

» A client application that executes the stored procedure directly

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

« A trigger that executes the stored procedure; this includes system triggers that are part of
referential integrity or check constraints
« Another stored procedure that executes the stored procedure

Altering or dropping a stored procedure takes effect immediately; new requests that invoke the
altered stored procedure see the latest version. However, outstanding requests continue to see
the version of the stored procedure that they first saw, even if a newer version has been created
after the request’s first invocation of the stored procedure. There is no method to force these
outstanding requests to update their metadata cache.

A trigger or stored procedure request persists in the metadata cache while there are one or more
clients connected to the database, regardless of whether the client makes use of the trigger or
stored procedure. These requests never update as long as any client is connected to the
database. These requests are emptied from the metadata cache only when the last client
disconnects from the database.

Important:

The only way to guarantee that all copies of a stored procedure are purged from the
metadata cache is for all connections to the database to terminate. Only then are all
metadata objects emptied from the metadata cache. Subsequent connections and
triggers spawned by them are new requests, and they see the newest version of the
stored procedure.

5. Using Stored Procedures

Stored procedures can be used in applications in a variety of ways. Select procedures are used in
place of a table or view in a SELECT statement. Executable procedures are used with an
EXECUTE PROCEDURE statement.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax. The
difference is in how the procedure is written and how it is intended to be used. Select procedures
always return one or more rows, so that to the calling program they appear as a table or view.
Executable procedures are simply routines invoked by the calling program and only optionally
return values.

In fact, a single procedure can be used as a select procedure or an executable procedure, but this
is not recommended. A procedure should be written specifically to be used in a SELECT
statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement (an
executable procedure).

During application development, create and test stored procedures in isql. Once a stored
procedure has been created, tested, and refined, it can be used in applications. For more
information on using stored procedures in applications, see the Embedded SQL Guide.

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

5.1. Using Executable Procedures in isql

An executable procedure is invoked with EXECUTE PROCEDURE . It can return at most one row.
To execute a stored procedure in isql, use the following syntax:

EXECUTE PROCEDURE name [(] [param [, param ..]] [)];

The procedure <name> must be specified, and each <param> is an input parameter value (a
constant). All input parameters required by the procedure must be supplied.

Important:
In isql, do not supply output parameters or use RETURNING_VALUES in the

EXECUTE PROCEDURE statement, even if the procedure returns values. isql
automatically displays output parameters.

To execute the procedure, DEPT_BUDGET, from 1isql, use:

EXECUTE PROCEDURE DEPT_BUDGET 110;

isql displays this output:

1700000.00

5.2. Using Select Procedures in isql

A select procedure is used in place of a table or view in a SELECT statement and can return a

single row or multiple rows.
The advantages of select procedures over tables or views are:

« They can take input parameters that can affect the output.
» They can contain logic not available in normal queries or views.
« They can return rows from multiple tables using UNION .

The syntax of SELECT from a procedure is:

SELECT <col_list> from name ([param [, param ..]])
WHERE <search_condition>
ORDER BY <order_Tlist>;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

The procedure <name> must be specified, and in isql each <param> is a constant passed to
the corresponding input parameter. All input parameters required by the procedure must be
supplied. The <col_list> is a comma-delimited list of output parameters returned by the
procedure, or * to select all rows.

The WHERE clause specifies a <search_condition> that selects a subset of rows to return. The
ORDER BY clause specifies how to order the rows returned. For more information on SELECT,
see the Language Reference.

(N\

Note:

e The following code defines the procedure, GET_EMP_PROJ, which returns EMP_PROJ,
the project numbers assigned to an employee, when it is passed the employee number,
EMP_NO, as the input parameter.

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (EMP_PROJ SMALLINT) AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :EMP_NO

INTO :EMP_PROJ

DO

SUSPEND;

END ;

The following statement selects from GET_EMP_PROJ in isql:

SELECT * FROM GET_EMP_PROJ(24);

The output is:

PROJ_ID

The following select procedure, ORG_CHART , displays an organizational chart:

CREATE PROCEDURE ORG_CHART

RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),

MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

AS

DECLARE VARIABLE MNGR_NO INTEGER;

DECLARE VARIABLE DNO CHAR(3);

BEGIN

FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO, D.DEPT_NO
FROM DEPARTMENT D

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO
ORDER BY D.DEPT_NO

INTO :HEAD_DEPT, :DEPARTMENT, :MNGR_NO, :DNO
DO

BEGIN

IF (:MNGR_NO IS NULL) THEN
BEGIN

MNGR_NAME = '--TBH--';
TITLE = '';

END

ELSE

SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE

WHERE EMP_NO = :MNGR_NO
INTO :MNGR_NAME, :TITLE;
SELECT COUNT (EMP_NO)

FROM EMPLOYEE

WHERE DEPT_NO = :DNO

INTO :EMP_CNT;

SUSPEND;

END

END ;

ORG_CHART is invoked from 1isql as follows:
SELECT * FROM ORG_CHART;

For each department, the procedure displays the department name, the department’'s "head
department” (managing department), the department manager’'s name and title, and the number
of employees in the department.

HEAD_DEPT DEPARTMENT MNGR_NAME TITLE EMP_CNT
CLRNPBIEIE Bender, Oliver H. CEO 2
Headquarters

Corporate Sales and Marketing MacDonald, Mary S. VP 2

Headquarters

Sales and Marketing SBE N Baldwin, Janet Sales 2
Headquarters

Pacific Rim Field Office: Japan Yamamoto, Takashi SRep 2

Headquarters

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Pacific Rim Field Office:

Headquarters Singapore —TBH— 0

ORG_CHART must be used as a select procedure to display the full organization. If called with
EXECUTE PROCEDURE, then the first time it encounters the SUSPEND statement, the procedure
terminates, returning the information for Corporate Headquarters only.

SELECT can specify columns to retrieve from a procedure. For example, if ORG_CHART is
invoked as follows:

SELECT DEPARTMENT FROM ORG_CHART;

then only the second column, DEPARTMENT, is displayed.

5.2.1. Using WHERE and ORDER BY Clauses

A SELECT from a stored procedure can contain WHERE and ORDER BY clauses, just as in a
SELECT from a table or view.

The WHERE clause limits the results returned by the procedure to rows matching the search
condition. For example, the following statement returns only those rows where the HEAD_DEPT
is Sales and Marketing:

SELECT * FROM ORG_CHART WHERE HEAD_DEPT = 'Sales and Marketing';

The stored procedure then returns only the matching rows, for example:

HEAD_DEPT DEPARTMENT MNGR_NAME TITLE EMP_CNT

Sales and Marketing SBs N Baldwin, Janet Sales 2
Headquarters

Sales and Marketing European Reeves, Roger Sales 3
Headquarters

Sales and Marketing Field Office: East Cost Weston, K. J. SRep 2

The ORDER BY clause can be used to order the results returned by the procedure. For example,
the following statement orders the results by EMP_CNT, the number of employees in each
department, in ascending order (the default):

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

SELECT * FROM ORG_CHART ORDER BY EMP_CNT;

5.2.2. Selecting Aggregates from Procedures

In addition to selecting values from a procedure, you can use aggregate functions. For example,
to use ORG_CHART to display a count of the number of departments, use the following
statement:

SELECT COUNT (DEPARTMENT) FROM ORG_CHART;

The results are:

Similarly, to use ORG_CHART to display the maximum and average number of employees in each
department, use the following statement:

SELECT MAX(EMP_CNT), AVG(EMP_CNT) FROM ORG_CHART;

The results are:

If a procedure encounters an error or exception, the aggregate functions do not return the
correct values, since the procedure terminates before all rows are processed.

5.3. Viewing Arrays with Stored Procedures

If a table contains columns defined as arrays, you cannot view the data in the column with a
simple SELECT statement, since only the array ID is stored in the table. Arrays can be used to
display array values, as long as the dimensions and data type of the array column are known in
advance.

For example, in the employee database, the JOB table has a column named LANGUAGE_REQ
containing the languages required for the position. The column is defined as an array of five
VARCHAR (15).

In isql, if you perform a simple SELECT statement, such as:

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, LANGUAGE_REQ FROM JOB;

part of the results look like this:

JOB_CODE JOB_GRADE JOB_COUNTRY LANGUAGE_REQ

3 USA <null>
Sales 3 England 20:af
SRep 4 USA 20:b0
SRep 4 England 20:b2

4 Canada 20:b4

To view the contents of the LANGUAGE_REQ column, use a stored procedure, such as the
following:

CREATE PROCEDURE VIEW_LANGS
RETURNS (code VARCHAR(5), grade SMALLINT, cty VARCHAR(15),

lang VARCHAR(15))

AS

DECLARE VARIABLE i INTEGER;

BEGIN

FOR SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY
FROM JOB

WHERE LANGUAGE_REQ IS NOT NULL

INTO :code, :grade, :cty

DO

BEGIN

i = 1;

WHILE (i <= 5) DO

BEGIN

SELECT LANGUAGE_REQ[:i] FROM JOB
WHERE ((JOB_CODE :code) AND (JOB_GRADE = :grade)
AND (JOB_COUNTRY :cty)) INTO :lang;
i=1 + 1;

SUSPEND;

END

END

END ;

This procedure, VIEW_LANGS, uses a FOR .. SELECT loop to retrieve each row from JOB for
which LANGUAGE_REQ is not NULL. Then a WHILE loop retrieves each element of the
LANGUAGE_REQ array and returns the value to the calling application (in this case, isql).

For example, if this procedure is invoked with:

SELECT = FROM VIEW_LANGS;

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

the output is:

CODE GRADE CTY LANG
Eng 3 Japan Japanese
Eng 3 Japan Mandarin
Eng 3 Japan English
Eng 3 Japan
Eng 3 Japan
Eng 4 England English
Eng 4 England German

4 England French

This procedure can easily be modified to return only the language requirements for a particular
job, when passed JOB_CODE, JOB_GRADE, and JOB_COUNTRY as input parameters.

6. Stored Procedure Exceptions

An exception is a named error message that can be raised from a stored procedure. Exceptions
are created with CREATE EXCEPTION, modified with ALTER EXCEPTION, and dropped with
DROP EXCEPTION. A stored procedure raises an exception with EXCEPTION <name>.

When raised, an exception returns an error message to the calling program and terminates
execution of the procedure that raised it, unless the exception is handled by a WHEN statement.

Important:

Like procedures, exceptions are created and stored in a database, where they can be
used by any procedure that needs them. Exceptions must be created and committed
before they can be raised.

For more information on raising and handling exceptions, see Raising an Exception in a Stored
Procedure.

6.1. Creating Exceptions

To create an exception, use the following CREATE EXCEPTION syntax:

CREATE EXCEPTION name '<message>';

For example, the following statement creates an exception named
REASSIGN_SALES:

CREATE EXCEPTION REASSIGN_SALES 'Reassign the sales records
before deleting this employee.';

http://docwiki.embarcadero.com/InterBase/15/en/Raising_an_Exception_in_a_Stored_Procedure
http://docwiki.embarcadero.com/InterBase/15/en/Raising_an_Exception_in_a_Stored_Procedure

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

6.2. Altering Exceptions
To change the message returned by an exception, use the following syntax:

ALTER EXCEPTION name '<message>';

Only the creator of an exception can alter it. For example, the following statement changes the
text of the exception created in the previous section:

ALTER EXCEPTION REASSIGN_SALES 'Can’t delete employee--Reassign
Sales';

You can alter an exception even though a database object depends on it. If the exception is
raised by a trigger, you cannot drop the exception unless you first drop the trigger or stored
procedure. Use ALTER EXCEPTION instead.

6.3. Dropping Exceptions
To delete an exception, use the following syntax:

DROP EXCEPTION name;

For example, the following statement drops the exception, REASSIGN_SALES:

DROP EXCEPTION REASSIGN_SALES;

The following restrictions apply to dropping exceptions:

* Only the creator of an exception can drop it.
* Exceptions used in existing procedures and triggers cannot be dropped.
« Exceptions currently in use cannot be dropped.

Tip:

In isql, SHOW PROCEDURES displays a list of dependencies, the procedures, exceptions,
and tables which the stored procedure uses. SHOW PROCEDURE <name> displays the
body and header information for the named procedure. SHOW TRIGGERS <table>
displays the triggers defined for <table>. SHOW TRIGGER <name> displays the body
and header information for the named trigger.

6.4. Raising an Exception in a Stored Procedure

To raise an exception in a stored procedure, use the following syntax:

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

EXCEPTION name;

where <name> is the name of an exception that already exists in the database.
When an exception is raised, it does the following:

« Terminates the procedure in which it was raised and undoes any actions performed (directly
or indirectly) by the procedure.

* Returns an error message to the calling application. In isql, the error message is displayed
on the screen.

Note:
If an exception is handled with a WHEN statement, it behaves differently. For more
information on exception handling, see Handling Exceptions.

The following statements raise the exception, REASSIGN_SALES:

IF (any_sales > 0) THEN
EXCEPTION REASSIGN_SALES;

7. Handling Errors
Procedures can handle three kinds of errors with a WHEN .. DO statement:

* Exceptions raised by EXCEPTION statements in the current procedure, in a nested
procedure, or in a trigger fired as a result of actions by such a procedure.

« SQL errors reported in SQLCODE .

* InterBase errors reported in GDSCODE .

The WHEN ANY statement handles any of the three types of errors.

For more information about InterBase error codes and SQLCODE values, see the Language
Reference.

The syntax of the WHEN .. DO statement is:

WHEN {<error> [, <error> ..] | ANY}

DO <compound_statement>

<error>; =

{EXCEPTION exception_name | SQLCODE number | GDSCODE errcode}

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

Important:
If used, WHEN must be the last statement in a BEGIN .. END block. It should come
after SUSPEND, if present.

7.1. Handling Exceptions

Instead of terminating when an exception occurs, a procedure can respond to and perhaps
correct the error condition by handling the exception. When an exception is raised, it does the
following:

« Seeks a WHEN statement that handles the exception. If one is not found, it terminates
execution of the BEGIN .. END block containing the exception and undoes any actions
performed in the block.

« Backs out one level to the surrounding BEGIN .. END block and seeks a WHEN statement
that handles the exception, and continues backing out levels until one is found. If no WHEN
statement is found, the procedure is terminated and all its actions are undone.

* Performs the ensuing statement or block of statements specified by the WHEN statement
that handles the exception.

* Returns program control to the block in the procedure following the WHEN statement.

Note:
An exception that is handled does not return an error message.

7.2. Handling SQL Errors

Procedures can also handle error numbers returned in SQLCODE . After each SQL statement
executes, SQLCODE contains a status code indicating the success or failure of the statement.
SQLCODE can also contain a warning status, such as when there are no more rows to retrieve in
a FOR SELECT loop.

For example, if a procedure attempts to insert a duplicate value into a column defined as a
PRIMARY KEY, InterBase returns SQLCODE -803. This error can be handled in a procedure with
the following statement:

WHEN SQLCODE -803
DO
BEGIN

The following procedure includes a WHEN statement to handle SQLCODE -803 (attempt to insert
a duplicate value in a UNIQUE key column). If the first column in TABLE1l is a UNIQUE key, and

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

the value of parameter A is the same as one already in the table, then SQLCODE -803 is
generated, and the WHEN statement sets an error message returned by the procedure.

CREATE PROCEDURE NUMBERPROC (A INTEGER, B INTEGER)

RETURNS (E CHAR(60)) AS

BEGIN

BEGIN

INSERT INTO TABLE1 VALUES (:A, :B);

WHEN SQLCODE -8063 DO

E = '"Error Attempting to Insert in TABLEl1l - Duplicate Value.';
END;

END; !

For more information about SQLCODE , see the Language Reference.

7.3. Handling InterBase Errors

Procedures can also handle InterBase errors. For example, suppose a statement in a procedure
attempts to update a row already updated by another transaction, but not yet committed. In this
case, the procedure might receive an InterBase error LOCK_CONFLICT . If the procedure retries
its update, the other transaction might have rolled back its changes and released its locks. By
using a WHEN GDSCODE statement, the procedure can handle lock conflict errors and retry its
operation.

To handle InterBase error codes, use the following syntax:

WHEN GDSCODE errcode DO <compound_statement>;

For more information about InterBase error codes, see the Lanqguage Reference Guide.

7.4. Examples of Error Behavior and Handling

When a procedure encounters an error — either a SQLCODE error, GDSCODE error, or user-
defined exception — the statements since the last SUSPEND are undone.

SUSPEND should not be used in executable procedures. EXIT should be used to terminate the
procedure. If this recommendation is followed, then when an executable procedure encounters
an error, the entire procedure is undone. Since select procedures can have multiple SUSPEND
statemets, possibly inside a loop statement, only the actions since the last SUSPEND are undone.

For example, here is a simple executable procedure that attempts to insert the same values twice
into the PROJECT table.

CREATE PROCEDURE NEW_PROJECT
(id CHAR(5), name VARCHAR(20), product VARCHAR(12))

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

RETURNS (result VARCHAR(80))

AS

BEGIN

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = 'Values inserted OK.';

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = 'Values Inserted Again.';

EXIT;

WHEN SQLCODE -803 DO

BEGIN

result = 'Could Not Insert Into Table - Duplicate Value';
EXIT;

END

END ;

This procedure can be invoked with a statement such as:

EXECUTE PROCEDURE NEW_PROJECT 'XXX', 'Project X', 'N/A';

The second INSERT generates an error (SQLCODE -803, “invalid insert — no two rows can have
duplicate values.”). The procedure returns the string, “Could Not Insert Into Table - Duplicate
Value,” as specified in the WHEN clause, and the entire procedure is undone.

The next example is written as a select procedure, and invoked with the SELECT statement that
follows it:

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);
result = 'Values inserted OK.';
SUSPEND;
INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);
result = 'Values Inserted Again.';
SUSPEND;
WHEN SQLCODE -803 DO
BEGIN
result = 'Could Not Insert Into Table - Duplicate Value';
EXIT;
END
SELECT * FROM SIMPLE('XXX', 'Project X', 'N/A');

The first INSERT is performed, and SUSPEND returns the result string, “Values Inserted OK.” The
second INSERT generates the error because there have been no statements performed since
the last SUSPEND, and no statements are undone. The WHEN statement returns the string,
“Could Not Insert Into Table - Duplicate Value”, in addition to the previous result string.

The select procedure successfully performs the insert, while the executable procedure does not.

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

The next example is a more complex stored procedure that demonstrates SQLCODE error
handling and exception handling. It is based on the previous example of a select procedure, and
does the following:

« Accepts a project ID, name, and product type, and ensures that the ID is in all capitals, and
the product type is acceptable.

* Inserts the new project data into the PROJECT table, and returns a string confirming the
operation, or an error message saying the project is a duplicate.

* Uses a FOR .. SELECT loop with a correlated subquery to get the first three employees not
assigned to any project and assign them to the new project using the ADD_EMP_PROJ
procedure.

« If the CEO employee number is selected, raises the exception, CEO, which is handled with a
WHEN statement that assigns the CEO administrative assistant (employee number 28)
instead to the new project.

Note that the exception, CEO, is handled within the FOR .. SELECT loop, so that only the block
containing the exception is undone, and the loop and procedure continue after the exception is
raised.

CREATE EXCEPTION CEO 'Can’t Assign CEO to Project.';
CREATE PROCEDURE NEW_PROJECT

(id CHAR(5), name VARCHAR(20), product VARCHAR(12))
RETURNS (result VARCHAR(30), num smallint)

AS

DECLARE VARIABLE emp_wo_proj smallint;

DECLARE VARIABLE i smallint;

BEGIN

id = UPPER(id); /* Project id must be in uppercase.
*/

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = 'New Project Inserted OK.';
SUSPEND;

/* Add Employees to the new project */
i=0;

result = 'Project Got Employee Number:';

FOR SELECT EMP_NO FROM EMPLOYEE

WHERE EMP_NO NOT IN (SELECT EMP_NO FROM EMPLOYEE_PROJECT)
INTO :emp_wo_proj

DO

BEGIN

IF (i < 3) THEN

BEGIN

IF (emp_wo_proj = 5) THEN

EXCEPTION CEO;

EXECUTE PROCEDURE ADD_EMP_PROJ :emp_wo_proj, :id;
num = emp_wo_proj;

SUSPEND;

END

ELSE

WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)

EXIT;

i=1+ 1;

WHEN EXCEPTION CEO DO

BEGIN

EXECUTE PROCEDURE ADD_EMP_PROJ 28, :1id;

num = 28;

SUSPEND;

END

END

/* Error Handling */

WHEN SQLCODE -625 DO

BEGIN

IF ((:product <> 'software') OR (:product <> 'hardware') OR
(:product <> 'other') OR (:product <> 'N/A')) THEN

result = 'Enter product: software, hardware, other, or N/A';
END

WHEN SQLCODE -803 DO

result = 'Could not dinsert into table - Duplicate Value';
END ;

This procedure can be called with a statement such as:

SELECT * FROM NEW_PROJECT('XYZ', 'Alpha project', 'software');

With results such as the following:

RESULT NUM
New Project Inserted OK. <null>
Project Got Employee Number: 28
Project Got Employee Number: 29

Project Got Employee Number: 36

TRIGGERS (DATA DEFINITION GUIDE)

TRIGGERS (DATA DEFINITION GUIDE)

This chapter covers the following topics:

« What triggers are, and the advantages of using them
» How to create, modify, and drop triggers

» How to use triggers

» How to raise exceptions in triggers

1. About Triggers

A trigger is a self-contained routine associated with a table or view that automatically performs
an action when a row in the table or view is inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT,
UPDATE, or DELETE a row in a table, any triggers associated with that table and operation are
automatically executed, or fired.

Triggers can make use of exceptions, named messages called for error handling. When an
exception is raised by a trigger, it returns an error message, terminates the trigger, and undoes
any changes made by the trigger, unless the exception is handled with a WHEN statement in the
trigger.

The advantages of using triggers are:

« Automatic enforcement of data restrictions, to make sure users enter only valid values
into columns.

 Reduced application maintenance, since changes to a trigger are automatically reflected in
all applications that use the associated table without the need to recompile and re-link.

« Automatic logging of changes to tables. An application can keep a running log of changes
with a trigger that fires whenever a table is modified.

« Automatic notification of changes to the database with event alerters in triggers.

1.1. Working with Triggers

With isql, you can create, alter, and drop triggers and exceptions. Each of these operations is
explained in this chapter. There are two ways to create, alter, and drop triggers with isql:

* Interactively
 With an input file containing data definition statements

TRIGGERS (DATA DEFINITION GUIDE)

It is preferable to use data definition files, because it is easier to modify these files and provide a
record of the changes made to the database. For simple changes to existing triggers or
exceptions, the interactive interface can be convenient.

1.2. Working with Triggers Using a Data Definition File

To create or alter a trigger through a data definition file, follow these steps:

1. Use a text editor to write the data definition file.
2. Save the file.
3. Process the file with isql. Use the command:

isql -input filename database_name

where <filename> is the name of the data definition file and <database name> is the
name of the database used. Alternatively, from within isql, you can interactively process
the file using the command:

SQL> 1dnput filename;

Note:
If you do not specify the database on the command line or interactively, the data
definition file must include a statement to create or open a database.

The data definition file may include:

- Statements to create, alter, or drop triggers. The file can also include statements to create,
alter, or drop procedures and exceptions. Exceptions must be created and committed before
they can be referenced in procedures and triggers.

» Any other isql statements.

2. Creating Triggers

A trigger is defined with the CREATE TRIGGER statement, which is composed of a header and a
body. The trigger header contains:

« A trigger name, unique within the database.
- A table name, identifying the table with which to associate the trigger.
« Statements that determine when the trigger fires.

The trigger body contains:

« An optional list of local variables and their data types.

TRIGGERS (DATA DEFINITION GUIDE)

* A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. These statements are performed when the trigger fires. A block can itself include
other blocks, so that there may be many levels of nesting.

2.1. CREATE TRIGGER Syntax

The syntax of CREATE TRIGGER is:

CREATE TRIGGER name FOR {table | view}
[ACTIVE | INACTIVE]
{BEFORE | AFTER} {DELETE | INSERT | UPDATE}
[POSITION number]
AS <trigger_body>
<trigger_body>; = [<variable_declaration_1list>]
<block>;
<variable_declaration_1list> = DECLARE VARIABLE variable data_type;
[DECLARE VARIABLE variable data_type; ..]
<block> =
BEGIN
<compound_statement>;
[<compound_statement> ..]
END
<compound_statement> = <block> | statement;

Argument Description

<name> Name of the trigger. The name must be unique in the database.

Name of the table or view that causes the trigger to fire when the specified

<table> . .

operation occurs on the table or view.

Optional. Specifies trigger action at transaction end:
ACTIVE | INACTIVE ACTIVE : (Default). Trigger takes effect.

INACTIVE : Trigger does not take effect.

Required. Specifies whether the trigger fires:

BEFORE : Before associated operation.
BEFORE | AFTER

AFTER : After associated operation.

Associated operations are DELETE, INSERT, or UPDATE .

DELETE | INSERT | UPDATE Specifies the table operation that causes the trigger to fire.

TRIGGERS (DATA DEFINITION GUIDE)

Argument Description

Specifies firing order for triggers before the same action or after the same
action. <number> must be an integer between 0 and 32,767, inclusive. Lower-

POSITION <number> number triggers fire first. Default: 0 = first trigger to fire.

Triggers for a table need not be consecutive. Triggers on the same action with
the same position number will fire in alphabetic order by name.

Declares local variables used only in the trigger. Each declaration must be

preceded by DECLARE VARIABLE and followed by a semicolon ().
DECLARE VARIABLE <var>

<data_type> <var>: Local variable name, unique in the trigger.

<data_type>: The data type of the local variable.

Any single statement in InterBase procedure and trigger language. Each

< > ;
statement statement except BEGIN and END must be followed by a semicolon (;).

Terminator defined by the SET TERM statement which signifies the end of the

terminator>
<terminator trigger body; deprecated in InterBase 7.0. [No longer needed]

2.2. InterBase Procedure and Trigger Language

The InterBase procedure and trigger language is a complete programming language for stored
procedures and triggers. It includes:

» SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
Cursors are allowed.

« SQL operators and expressions, including UDFs linked with the database server and
generators.

« Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in different ways and for different purposes,
they both use the procedure and trigger language. Both triggers and stored procedures can use
any statements in the procedure and trigger language, with some exceptions:

« Context variables are unique to triggers.
* Input and output parameters, and the SUSPEND and EXIT statements, which return values

and are unique to stored procedures.

TRIGGERS (DATA DEFINITION GUIDE)

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre. The following statement types are not supported in triggers or stored
procedures:

« Data definition language statements: CREATE, ALTER, DROP, DECLARE
EXTERNAL FUNCTION, and DECLARE FILTER

« Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

. Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

« CONNECT/DISCONNECT, and sending SQL statements to another database

¢ GRANT/REVOKE

e SET GENERATOR

e EVENT INIT/WAIT

e BEGIN/END DECLARE SECTION

* BASED ON

* WHENEVER

e DECLARE CURSOR

* OPEN

e FETCH

The following table summarizes the language extensions for stored procedures.

Statement Description

Defines a block of statements that executes as one; the BEGIN keyword
BEGIN ... END starts the block, the END keyword terminates it. Neither should be
followed by a semicolon.

Assignment statement which assigns the value of <expression> to

<variable> = <expression> . . .
<variable>, a local variable, input parameter, or output parameter.

/* comment_text x/

Programmer’s comment. See Comment for more information and

or
examples.

-- comment_text

EXCEPTION Raises the named exception.

<exception_name> Exception: A user-defined error that can be handled with WHEN .

http://docwiki.embarcadero.com/InterBase/15/en/Comment

TRIGGERS (DATA DEFINITION GUIDE)

Statement Description

Executes stored procedure, <proc_name>, with the input arguments
listed following the procedure name, returning values in the output

EXECUTE PROCEDURE <proc_name> arguments listed following RETURNING_VALUES .
[<var> [, <var> ..]]
[RETURNING_VALUES var Enables nested procedures and recursion.

[, <var> ..]] .) _
Input and output parameters must be variables defined within the
procedure.

EXIT Jumps to the final END statement in the procedure.

Repeats the statement or block following DO for every qualifying row

FOR <select statement> retrieved by <select_statement>.

DO <compound_statement>. <select_statement>: a normal SELECT statement, except that the

INTO clause is required and must come last.

Either a single statement in procedure and trigger language or a block of

SR statements bracketed by BEGIN and END .

Tests <condition> and if itis TRUE , performs the statement or block
following THEN . Otherwise, performs the statement or block following
ELSE, if present.

IF (<condition>)
THEN <compound_statement>

[ELSE <compound statement>]. <condition>: a Boolean expression (TRUE , FALSE , or UNKNOWN),

generally two expressions as operands of a comparison operator.

POST_EVENT <event_name> Posts the event, <event_name>.

Ina SELECT procedure:

Suspends execution of procedure until next FETCH is issued by the
SUSPEND calling application.

Returns output values, if any, to the calling application.

Not recommended for executable procedures.

While <condition> is TRUE , keep performing
WHILE (<condition>) <compound_statement>. First <condition> is tested, and if it is TRUE ,
DO <compound_statement> then <compound_statement> is performed. This sequence is repeated
until <condition> is no longer TRUE .

TRIGGERS (DATA DEFINITION GUIDE)

Statement Description

Error-handling statement. When one of the specified errors occurs,
performs <compound_statement>. WHEN statements, if present, must
WHEN come at the end of a block, just before END .

{<error> [, <error> ..] | ANY}

<error>: EXCEPTION <exception_name>, SQLCODE <errcode> or
DO <compound_statement>

GDSCODE <number>.

ANY : Handles any errors.

2.2.1. Syntax Errors in Triggers

InterBase may generate errors during parsing if there is incorrect syntax in the
CREATE TRIGGER statement. Error messages look similar to this:

Statement failed, SQLCODE = -104
Dynamic SQL Error

-SQL error code = -104

-Token unknown - line 4, char 9
-tmp

The line numbers are counted from the beginning of the CREATE TRIGGER statement, not from
the beginning of the data definition file. Characters are counted from the left, and the unknown
token indicated will either be the source of the error or immediately to the right of the source of
the error. When in doubt, examine the entire line to determine the source of the syntax error.

2.3. The Trigger Header

Everything before the AS clause in the CREATE TRIGGER statement forms the trigger header.
The header must specify the name of the trigger and the name of the associated table or view.
The table or view must exist before it can be referenced in CREATE TRIGGER.

The trigger name must be unique among triggers in the database. Using the name of an existing
trigger or a system-supplied constraint name results in an error.

The remaining clauses in the trigger header determine when and how the trigger fires:

* The trigger status, ACTIVE or INACTIVE, determines whether a trigger is activated when
the specified operation occurs. ACTIVE is the default, meaning the trigger fires when the
operation occurs. Setting status to INACTIVE with ALTER TRIGGER is useful when
developing and testing applications and triggers.

* The trigger time indicator, BEFORE or AFTER, determines when the trigger fires relative to
the specified operation. BEFORE specifies that trigger actions are performed before the
operation. AFTER specifies that trigger actions are performed after the operation.

TRIGGERS (DATA DEFINITION GUIDE)

« The trigger statement indicator specifies the SQL operation that causes the trigger to fire:
INSERT, UPDATE, or DELETE. Exactly one indicator must be specified. To use the same
trigger for more than one operation, duplicate the trigger with another name and specify a
different operation.

« The optional sequence indicator, POSITION <number>, specifies the order in which the
trigger fires in relation to other triggers on the same table and event. <number> can be any
integer between zero and 32,767. The default is zero. Lower-numbered triggers fire first.
Multiple triggers can have the same position number; they will fire in random order.

The following example demonstrates how the POSITION clause determines trigger firing order.
Here are four headers of triggers for the ACCOUNTS table:

CREATE TRIGGER A FOR ACCOUNTS BEFORE UPDATE POSITION 5 AS ..
CREATE TRIGGER B FOR ACCOUNTS BEFORE UPDATE POSITION O AS ..
CREATE TRIGGER C FOR ACCOUNTS AFTER UPDATE POSITION 5 AS ..
CREATE TRIGGER D FOR ACCOUNTS AFTER UPDATE POSITION 3 AS ..

When this update takes place:

UPDATE ACCOUNTS SET C = 'canceled' WHERE C2 = 5;

The following sequence of events happens: trigger B fires, A fires, the update occurs, trigger D
fires, then C fires.

2.4. The Trigger Body

Everything following the AS keyword in the CREATE TRIGGER statement forms the procedure
body. The body consists of an optional list of local variable declarations followed by a block of
statements.

A block is composed of statements in the InterBase procedure and trigger language, bracketed
by BEGIN and END. A block can itself include other blocks, so that there may be many levels of
nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements except
data definition and transaction statements, plus statements unique to procedure and trigger
language.

Statements unique to InterBase procedure and trigger language include:

« Assignment statements, to set values of local variables.

« Control-flow statements, such as IF.. THEN, WHILE ... DO, and FOR SELECT ... DO, to
perform conditional or looping tasks.

* EXECUTE PROCEDURE statements to invoke stored procedures.

TRIGGERS (DATA DEFINITION GUIDE)

* Exception statements, to return error messages, and WHEN statements, to handle specific
error conditions.

« NEW and OLD context variables, to temporarily hold previous (old) column values and to
insert or update (new) values.

» Generators, to generate unique numeric values for use in expressions. Generators can be
used in procedures and applications as well as triggers, but they are particularly useful in
triggers for inserting unique column values. In read-only databases, generators can return
their current value but cannot increment.

Note:

0 All of these statements (except context variables) can be used in both triggers and
stored procedures. For a full description of these statements, see Working with Stored
Procedures.

2.4.1. NEW and OLD Context Variables

Triggers can use two context variables, OLD, and NEW. The OLD context variable refers to the
current or previous values in a row being updated or deleted. OLD is not used for inserts. NEW
refers to a new set of INSERT or UPDATE values for a row. NEW is not used for deletes. Context
variables are often used to compare the values of a column before and after it is modified.

The syntax for context variables is as follows:

NEW.column
OLD.column

where <column> is any column in the affected row. Context variables can be used anywhere a
regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INSERT and
tries to assign a value to NEW.<column> will have no effect. The actual column values are not
altered until after the action, so triggers that reference values from their target tables will not see
a newly inserted or updated value unless they fire after UPDATE or INSERT.

For example, the following trigger fires after the EMPLOYEE table is updated, and compares an
employee’s old and new salary. If there is a change in salary, the trigger inserts an entry in the
SALARY_HISTORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS

BEGIN

IF (old.salary <> new.salary) THEN

INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,
UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)

TRIGGERS (DATA DEFINITION GUIDE)

VALUES (old.emp_no, 'now', USER, old.salary,
(new.salary - old.salary) * 100 / old.salary);
END ;

Note:
Context variables are never preceded by a colon, even in SQL statements.

2.4.2. Using Generators in the Trigger Body

In a read-write database, a generator is a database object that automatically increments each
time the special function, GEN_ID() , is called.

Important: Generators cannot be used in read-only databases.

GEN_ID() can be used in a statement anywhere that a variable can be used. Generators are
typically used to ensure that a number inserted into a column is unique, or in sequential order.
Generators can be used in procedures and applications as well as in triggers, but they are
particularly useful in triggers for inserting unique column values.

Use the CREATE GENERATOR statement the create a generator and SET GENERATOR to
initialize it. If not otherwise initialized, a generator starts with a value of one. For more
information about creating and initializing a generator, see CREATE GENERATOR and
SET GENERATOR in the Language Reference.

A generator must be created with CREATE GENERATOR before it can be called by GEN_ID() .
The syntax for using GEN_ID() in a SQL statement is:

GEN_ID(genname, step)

<genname> must be the name of an existing generator, and <step> is the amount by which the
current value of the generator is incremented. <step> can be an integer or an expression that
evaluates to an integer.

The following trigger uses GEN_ID() to increment a new customer number before values are
inserted into the CUSTOMER table:

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS

BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END ;

TRIGGERS (DATA DEFINITION GUIDE)

Note:
This trigger must be defined to fire before the insert, since it assigns values to NEW.
CUST_NO.

3. Altering Triggers
To update a trigger definition, use ALTER TRIGGER. A trigger can be altered only by its creator.

ALTER TRIGGER can change:

« Only trigger header information, including the trigger activation status, when it performs its
actions, the event that fires the trigger, and the order in which the trigger fires compared to
other triggers.

* Only trigger body information, the trigger statements that follow the AS clause.

« Both trigger header and trigger body information. In this case, the new trigger definition
replaces the old trigger definition.

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE to
change the table definition. For more information on the ALTER TABLE statement, see Working
with Tables.

Note:

e Direct metadata operations, such as altering triggers, increase the metadata version. At
most 255 such operations can be performed before you must back up and restore the
database.

(. J

The ALTER TRIGGER syntax is as follows:

ALTER TRIGGER name

[ACTIVE | INACTIVE]

[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION number]

AS <trigger_body>;

The syntax of ALTER TRIGGER is the same as CREATE TRIGGER, except:

» The CREATE keyword is replaced by ALTER.

* FOR <table> is omitted. ALTER TRIGGER cannot be used to change the table with which
the trigger is associated.

 The statement need only include parameters that are to be altered in the existing trigger,
with certain exceptions listed in the following sections.

TRIGGERS (DATA DEFINITION GUIDE)

3.1. Altering a Trigger Header

When used to change only a trigger header, ALTER TRIGGER requires at least one altered
setting after the trigger name. Any setting omitted from ALTER TRIGGER remains unchanged.

The following statement makes the trigger, SAVE_SALARY_CHANGE , inactive:

ALTER TRIGGER SAVE_SALARY_CHANGE INACTIVE;

If the time indicator (BEFORE or AFTER) is altered, then the operation (UPDATE, INSERT, or
DELETE) must also be specified. For example, the following statement reactivates the trigger,
VERIFY_FUNDS, and specifies that it fire before an UPDATE instead of after:

ALTER TRIGGER SAVE_SALARY_CHANGE
ACTIVE
BEFORE UPDATE;

3.2. Altering a Trigger Body

When a trigger body is altered, the new body definition replaces the old definition. When used to
change only a trigger body, ALTER TRIGGER need contain any header information other than
the trigger’s name.

To make changes to a trigger body:

1. Copy the original data definition file used to create the trigger. Alternatively, use isql -
extract to extract a trigger from the database to a file.

2. Edit the file, changing CREATE to ALTER, and delete all trigger header information after
the trigger name and before the AS keyword.

3. Change the trigger definition as desired. Retain whatever is still useful. The trigger body
must remain syntactically and semantically complete.

For example, the following ALTER statement modifies the previously introduced trigger,
SET_CUST_NO, to insert a row into the (assumed to be previously defined) table,
NEW_CUSTOMERS, for each new customer.

Note:
o This example assumes that you have a table named NEW_CUSTOMERS with a column
cust_no.

ALTER TRIGGER SET_CUST_NO
BEFORE INSERT AS
BEGIN

TRIGGERS (DATA DEFINITION GUIDE)

new.cust_no = GEN_ID(CUST_NO_GEN, 1);
INSERT INTO NEW_CUSTOMERS (new.cust_no, TODAY)
END ;

4. Dropping Triggers

During database design and application development, a trigger may no longer be useful. To
permanently remove a trigger, use DROP TRIGGER.

The following restrictions apply to dropping triggers:

« Only the creator of a trigger can drop it.
« Triggers currently in use cannot be dropped.

To temporarily remove a trigger, use ALTER TRIGGER and specify INACTIVE in the header.

The DROP TRIGGER syntax is as follows:

DROP TRIGGER name;

The trigger <name> must be the name of an existing trigger. The following example drops the
trigger, SET_CUST_NO:

DROP TRIGGER SET_CUST_NO;

You cannot drop a trigger if it is in use by a CHECK constraint (a system-defined trigger). Use
ALTER TABLE to remove or modify the CHECK clause that defines the trigger.

(N\

Note:

Direct metadata operations, such as dropping triggers, increase the metadata version. At
most 255 such operations can be performed before you must back up and restore the
database.

A /

5. Using Triggers

Triggers are a powerful feature with a variety of uses. Among the ways that triggers can be used
are:

« To make correlated updates. For example, to keep a log file of changes to a database or
table.

« To enforce data restrictions, so that only valid data is entered in tables.

« Automatic transformation of data. For example, to automatically convert text input to
uppercase.

« To notify applications of changes in the database using event alerters.

« To perform cascading referential integrity updates.

TRIGGERS (DATA DEFINITION GUIDE)

Triggers are stored as part of a database, like stored procedures and exceptions. Once defined to
be ACTIVE, they remain active until deactivated with ALTER TRIGGER or removed from the
database with DROP TRIGGER.

A trigger is never explicitly called. Rather, an active trigger automatically fires when the specified
action occurs on the specified table.

Important:

If a trigger performs an action that causes it to fire again—or fires another trigger that
performs an action that causes it to fire—an infinite loop results. For this reason, it is
important to ensure that a trigger's actions never cause the trigger to fire, even
indirectly. For example, an endless loop will occur if a trigger fires on INSERT to a table
and then performs an INSERT into the same table.

5.1. Triggers and Transactions

Triggers operate within the context of the transaction in the program where they are fired.
Triggers are considered part of the calling program'’s current unit of work.

If triggers are fired in a transaction, and the transaction is rolled back, then any actions
performed by the triggers are also rolled back.

5.2. Triggers and Security

Triggers can be granted privileges on tables, just as users or procedures can be granted
privileges. Use the GRANT statement, but instead of using TO <username>, use TO TRIGGER
<trigger_name>. Privileges of triggers can be revoked similarly using REVOKE. For more
information about GRANT and REVOKE, see Planning Security.

When a user performs an action that fires a trigger, the trigger will have privileges to perform its
actions if:

» The trigger has privileges for the action.
« The user has privileges for the action.

So, for example, if a user performs an UPDATE of table A, which fires a trigger, and the trigger
performs an INSERT on table B, the INSERT will occur if the user has INSERT privileges on
the table or the trigger has insert privileges on the table.

If there are insufficient privileges for a trigger to perform its actions, InterBase will set the
appropriate SQLCODE error number. The trigger can handle this error with a WHEN clause. If it
does not handle the error, an error message will be returned to the application, and the actions
of the trigger and the statement which fired it will be undone.

TRIGGERS (DATA DEFINITION GUIDE)

5.3. Triggers as Event Alerters

Triggers can be used to post events when a specific change to the database occurs. For example,
the following trigger, POST_NEW_ORDER, posts an event named “ NEW_ORDER " whenever a new
record is inserted in the SALES table:

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS

BEGIN

POST_EVENT 'NEW_ORDER';

END ;

In general, a trigger can use a variable for the event name:

POST_EVENT :EVENT_NAME;

The parameter <> EVENT_NAME is declared as a string variable, the statement could post
different events, depending on the value of the string variable, EVENT_NAME . Then, for example,
an application can wait for the event to occur, if the event has been declared with EVENT INIT
and then instructed to wait for it with EVENT WAIT:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('NEW_ORDER');
EXEC SQL

EVENT WAIT ORDER_WAIT;

For more information on event alerters, see the Embedded SQL Guide.

5.4. Updating Views with Triggers

Views that are based on joins — including reflexive joins — and on aggregates cannot be updated
directly. You can, however, write triggers that will perform the correct writes to the base tables
when a DELETE, UPDATE, or INSERT is performed on the view. This InterBase feature turns

non-update-able views into update-able views.

If you define BEFORE triggers for a view that the InterBase engine considers to be directly
update-able, on an UPDATE, DELETE, or INSERT operation the BEFORE trigger will fire; also, the
default action attempted by the UPDATE/DELETE/INSERT statement will be executed, generating
two actions and hence unexpected results.

4 N\

Note:
o Not all views can be made update-able by defining triggers for them. For example, this

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

TRIGGERS (DATA DEFINITION GUIDE)

read-only view attempts to count records from the client; but regardless of the triggers
o you define for it, all operations except SELECT always fail:

CREATE VIEW AS SELECT 1 FROM MyTable;

Tip:

You can specify non-default behavior for update-able views, as well. InterBase does not
perform write-throughs on any view that has one or more triggers defined on it. This
means that you can have complete control of what happens to any base table when
users modify a view based on it.

For more information about updating and read-only views, see Types of Views: Read-only and
Update-able.

Example: The following example creates two tables, creates a view that is a join of the two
tables, and then creates three triggers — one each for DELETE, UPDATE, and INSERT - that will
pass all updates on the view through to the underlying base tables.

CREATE TABLE Tablel (

ColA INTEGER NOT NULL,

ColB VARCHAR(20),

CONSTRAINT pk_table PRIMARY KEY(ColA)

)

CREATE TABLE Table2 (

ColA INTEGER NOT NULL,

ColC VARCHAR(20),

CONSTRAINT fk_table2 FOREIGN KEY REFERENCES Tablel(ColA)

)

CREATE VIEW TableView AS

SELECT Tablel.ColA, Tablel.ColB, Table2.ColC
FROM Tablel, Table2

WHERE Tablel.ColA = Table2.ColA;

CREATE TRIGGER TableView_Delete FOR TableView BEFORE DELETE AS
BEGIN

DELETE FROM Tablel

WHERE ColA = OLD.ColA;

DELETE FROM Table2

WHERE ColA = OLD.ColA;

END;

CREATE TRIGGER TableView_Update FOR TableView BEFORE UPDATE AS
BEGIN

UPDATE Tablel

SET ColB = NEW.ColB

WHERE ColA = OLD.ColA;

UPDATE Table2

SET ColC = NEW.ColC

TRIGGERS (DATA DEFINITION GUIDE)

WHERE ColA = OLD.ColA;
END;

CREATE TRIGGER TableView_Insert FOR TableView BEFORE INSERT AS
BEGIN

INSERT INTO Tablel values (NEW.ColA,NEW.ColB);

INSERT INTO Table2 values (NEW.ColA,NEW.ColC);

END;

6. Trigger Exceptions

An exception is a named error message that can be raised from a trigger or a stored procedure.
Exceptions are created with CREATE EXCEPTION, modified with ALTER EXCEPTION, and
removed from the database with DROP EXCEPTION. For more information about these
statements, see Working with Stored Procedures.

When raised in a trigger, an exception returns an error message to the calling program and
terminates the trigger, unless the exception is handled by a WHEN statement in the trigger. For
more information on error handling with WHEN , see Working with Stored Procedures.

For example, a trigger that fires when the EMPLOYEE table is updated might compare the
employee’s old salary and new salary, and raise an exception if the salary increase exceeds 50%.
The exception could return an message such as:

New salary exceeds old by more than 50%. Cannot update record.

Important:

Like procedures and triggers, exceptions are created and stored in a database, where
they can be used by any procedure or trigger in the database. Exceptions must be
created and committed before they can be used in triggers.

6.1. Raising an Exception in a Trigger
To raise an existing exception in a trigger, use the following syntax:

EXCEPTION name;

where <name> is the name of an exception that already exists in the database. Raising an
exception:

« Terminates the trigger, undoing any changes caused (directly or indirectly) by the trigger.
* Returns the exception message to the application which performed the action that fired the
trigger. If an isql command fired the trigger, the error message is displayed on the screen.

TRIGGERS (DATA DEFINITION GUIDE)

Note:
If an exception is handled with a WHEN statement, it will behave differently. For more
information on exception handling, see Working with Stored Procedures.

For example, suppose an exception is created as follows:

CREATE EXCEPTION RAISE_TOO_HIGH 'New salary exceeds old by
more than 50%. Cannot update record.';

The trigger, SAVE_SALARY_CHANGE , might raise the exception as follows:

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
DECLARE VARIABLE PCNT_RAISE;
BEGIN
PCNT_RAISE = (NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY;
IF (OLD.SALARY <> NEW.SALARY)
THEN
IF (PCNT_RAISE > 50)
THEN EXCEPTION RAISE_TOO_HIGH;
ELSE
BEGIN
INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,
UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,
PCNT_RAISE);
END END ;

6.2. Error Handling in Triggers

Errors and exceptions that occur in triggers may be handled using the WHEN statement. If an
exception is handled with WHEN , the exception does not return a message to the application and
does not necessarily terminate the trigger.

Error handling in triggers works the same as for stored procedures: the actions performed in the
blocks up to the error-handling (WHEN) statement are undone and the statements specified by
the WHEN statement are performed.

For more information on error handling with WHEN , see Working with Stored Procedures.

WORKING WITH GENERATORS

WORKING WITH GENERATORS

This chapter covers the following topics:

» What a generator is
» How to create, modify, and drop generators
* Using generators

1. About Generators

A generator is a mechanism that creates a unique, sequential number that is automatically
inserted into a column in a read-write database when SQL data manipulation operations such as
INSERT or UPDATE occur. Generators are typically used to produce unique values that can be
inserted into a column that is used as a PRIMARY KEY . For example, a programmer writing an
application to log and track invoices may want to ensure that each invoice number entered into
the database is unique. The programmer can use a generator to create the invoice numbers
automatically, rather than writing specific application code to accomplish this task.

Any number of generators can be defined for a database, as long as each generator has a unique
name. A generator is global to the database where it is declared. Any transaction that activates
the generator can use or update the current sequence number. InterBase will not assign
duplicate generator values across transactions.

2. Creating Generators

To create a unique number generator in the database, use the CREATE GENERATOR statement.
CREATE GENERATOR declares a generator to the database and sets its starting value to zero (the
default). If you want to set the starting value for the generator to a number other than zero, use
SET GENERATOR to specify the new value.

The syntax for CREATE GENERATOR is:

CREATE GENERATOR name;

The following statement creates the generator, EMPNO_GEN :

CREATE GENERATOR EMPNO_GEN;

Note:
Once defined, a generator cannot be deleted.

WORKING WITH GENERATORS

3. Setting or Resetting Generator Values

SET GENERATOR sets a starting value for a newly created generator, or resets the value of an

existing generator. The new value for the generator, <int>, can be an integer from —203 1o 293
1. When the GEN_ID() function is called, that value is <int> plus the increment specified in the
GEN_ID() <step> parameter.

The syntax for SET GENERATOR is:

SET GENERATOR NAME TO 1int;

The following statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

Important:

Don't reset a generator unless you are certain that duplicate numbers will not occur. For
example, a generators are often used to assign a number to a column that has
PRIMARY KEY or UNIQUE integrity constraints. If you reset such a generator so that it
generates duplicates of existing column values, all subsequent insertions and updates
fail with a "Duplicate key"” error message.

4. Using Generators

Once a generator has been created using the CREATE GENERATOR statement, it exists within the
database but no numbers have actually been generated. To invoke the number generator, you
must call the InterBase GEN_ID() function. GEN_ID() takes two arguments: the name of the
generator to call, which must already be defined for the database, and a step value, indicating
the amount by which the current value should be incremented (or decremented, if the value is
negative). GEN_ID() can be called from within a trigger, a stored procedure, or an application
whenever an INSERT, UPDATE, or DELETE operation occurs. Applications can also use
GEN_ID() with SELECT statements to obtain a generator value for inclusion as part of an
INSERT statement.

The syntax for GEN_ID() is:
GEN_ID(genname, step);

To generate a number, follow these steps:

1. Create the generator.

WORKING WITH GENERATORS

2. Within a trigger, stored procedure, or application, reference the generator with a call to
GEN_ID() .

3. The generator returns a value when a trigger fires, or when a stored procedure or application
executes. It is up to the trigger, stored procedure, or application to use the value. For
example, a trigger can insert the value into a column.

To stop inserting a generated number in a database column, delete or modify the trigger, stored
procedure, or application so that it no longer invokes GEN_ID() .

Important:
Generators return a 64-bit value. You should define the column that holds the generated
value as an ISC_INT64 variable with a DECIMAL or NUMERIC data type.

Example: The following statement uses GEN_ID() to call the generator G to increment a
purchase order number in the SALES table by one:

INSERT INTO SALES (PO_NUMBER) VALUES (GEN_ID(G,1));

For more information on using generators in triggers, see Working with Triggers. For more
information on using generators in stored procedures, see Working with Stored Procedures.

5. Dropping Generators

To drop a generator from a database, use the following syntax:

DROP GENERATOR generator_name

The DROP GENERATOR command checks for any existing dependencies on the generator (as in
triggers or UDFs) and fails if such dependencies exist. The statement fails if generator_name is
not the name of a generator defined on the database. An application that tries to call a deleted
generator returns runtime errors.

4 Y

Note:

In previous versions of InterBase that lacked the DROP GENERATOR command, users
0 issued a SQL statement to delete the generator from the appropriate system table. This

approach is strongly discouraged now that the DROP GENERATOR command is

available, since modifying system tables always carries with it the possibility of rendering

the entire database unusable as a result of even a slight error or miscalculation.

PLANNING SECURITY

PLANNING SECURITY

This chapter discusses the following topics:

* SQL access privileges

« Granting access to a table

* Granting privileges to execute stored procedures
* Granting access to views

* Revoking access to tables and views

« Using views to restrict data access

+ Additional security measures

Note:

0 For information about the InterBase encryption feature, which enables encryption at
the database and column levels, and about the privileges needed to grant and revoke
encrypt and decrypt permissions, see Encrypting Your Data.

(. J

1. Overview of SQL Access Privileges

SQL security is controlled at the table level with access privileges, a list of operations that a user is
allowed to perform on a given table or view. The GRANT statement assigns access privileges for
a table or view to specified users, to a role, or to objects such as stored procedures or triggers.
GRANT can also enable users or stored procedures to execute stored procedures through the
EXECUTE privilege and can grant roles to users. Use REVOKE to remove privileges assigned
through GRANT.

GRANT can be used in the following ways:

« Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to
users, triggers, stored procedures, or views (optionally WITH GRANT OPTION).

e Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to users, triggers,
stored procedures, or views (optionally WITH GRANT OPTION).

e Grant SELECT, INSERT, UPDATE, DELETE, DECRYPT, and REFERENCES privileges for a
table to a role.

» Grant SELECT, INSERT, UPDATE, DECRYPT, and DELETE privileges for a view to a role.

» Grant ENCRYPT ON ENCRYPTION permission to a user.

* Grant a role to users (optionally WITH ADMIN OPTION).

» Grant EXECUTE permission on a stored procedure to users, triggers, stored procedures, or
views (optionally WITH GRANT OPTION).

PLANNING SECURITY

1.1. Default Security and Access

All tables and stored procedures are secured against unauthorized access when they are created.
Initially, only a creator of a table, its owner, has access to a table, and only its owner can use
GRANT to assign privileges to other users or to procedures. Only a creator of a procedure, its
owner, can execute or call the procedure, and only its owner can assign EXECUTE privilege to
other users or to other procedures.

InterBase also supports a SYSDBA user who has access to all database objects; furthermore, on
platforms that support the concept of a superuser, or user with root or locksmith privileges, such
a user also has access to all database objects.

1.2. Privileges Available

The following table lists the SQL access privileges that can be granted and revoked:

Privilege Access

ALL Select, insert, update, delete data, and reference a primary key from a foreign

key.
SELECT Read data.
INSERT Write new data.
UPDATE Modify existing data.
DELETE Delete data.

Enables the database owner or individual table owner to use a specific
encryption key to encrypt a database or column. Only the SYSDSO (Data
Security Owner) can grant encrypt permission. For information about the
InterBase encryption feature, which enables encryption at the database and
column levels, and about the privileges needed to grant and revoke encrypt
and decrypt permissions, see Encrypting Your Data.

ENCRYPT ON ENCRYPTION

PLANNING SECURITY

Privilege Access

After encrypting a column, the database owner or the individual table owner
can grant decrypt permission to users who need to access the values in an
encrypted column. For information about the InterBase encryption feature,

DECRYPT . .
which enables encryption at the database and column levels, and about the
privileges needed to grant and revoke encrypt and decrypt permissions, see
Encrypting Your Data.
REFERENCES Reference a primary key with a foreign key.
EXECUTE Execute or call a stored procedure.
role All privileges assigned to the role.

The ALL keyword provides a mechanism for assigning SELECT, DELETE, INSERT, UPDATE,
and REFERENCES privileges using a single keyword. ALL does not grant a role or the EXECUTE
privilege. SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges can also be
granted or revoked singly or in combination.

Note:
Statements that grant or revoke either the EXECUTE privilege or a role cannot grant or
revoke other privileges.

1.3. SQL ROLES

InterBase implements features for assigning SQL privileges to groups of users, fully supporting
SQL group-level security with the GRANT, REVOKE, and DROP ROLE statements. It partially
supports GRANT ROLE and REVOKE ROLE.

Note:

These features replace the Security Classes feature in versions prior to InterBase 5. In the
o past, group privileges could be granted only through the InterBase-proprietary GDML

language. In Version 5, new SQL features were added to assist in migrating InterBase

users from GDML to SQL.

(. J

Using roles
Implementing roles is a four-step process:

1. Create a role using the CREATE ROLE statement.

PLANNING SECURITY

2. Assign privileges to the role using GRANT privilege TO rolename.
3. Grant the role to users using GRANT rolename TO user.
4. Users specify the role when attaching to a database.

These steps are described in detail in this chapter. In addition, the CONNECT, CREATE ROLE,
GRANT, and REVOKE statements are described in the Language Reference Guide.

2. Granting Privileges

You can grant access privileges on an entire table or view or to only certain columns of the table
or view. This section discusses the basic operation of granting privileges.

« Granting multiple privileges at one time, or granting privileges to groups of users is
discussed in Multiple Privileges and Multiple Grantees.

« Using Roles to Grant Privileges discusses both how to grant privileges to roles and how to
grant roles to users.

* You can grant access privileges to views, but there are limitations. See Granting Access to
Views.

* The power to grant GRANT authority is discussed in Granting Users the Right to Grant
Privileges.

» Granting EXECUTE privileges on stored procedures is discussed in Granting Privileges to
Execute Stored Procedures.

2.1. Granting Privileges to a Whole Table

Use GRANT to give a user or object privileges to a table, view, or role. At a minimum, GRANT
requires the following parameters:

* An access privilege
* The table to which access is granted
» The name of a user to whom the privilege is granted

The access privileges can be one or more of SELECT, INSERT, UPDATE, DELETE,
REFERENCE . The privilege granted can also be a role to which one or more privileges have been
assigned.

The user name is typically a user is the InterBase security database, (admin.ib by default), but
on UNIX systems can also be a user who is in /etc/password on both the server and client
machines. In addition, you can grant privileges to a stored procedure, trigger, or role.

The syntax for granting privileges to a table is:

GRANT <privileges>

ON [TABLE] { <tablename> | <viewname>}

TO { <object> | <userlist> [WITH GRANT OPTION]
| GROUP <UNIX_group>}

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

PLANNING SECURITY

| EXECUTE ON PROCEDURE procname TO { <object>
| <userlist>}
| <role_granted> TO {PUBLIC | <role_grantee_list> }[WITH GRANT OPTION];

<privileges> = ALL [PRIVILEGES] | <privilege_list>
<privilege_Tlist> = {

SELECT

| DELETE

| INSERT

| UPDATE [(col[, col ..])]
| REFERENCES [(col[, col ..])] }[, <privilege_list> ..]
<object> = {

PROCEDURE procname

| TRIGGER trigname

| VIEW viewname

| PUBLIC }[, <object> ..]
<userlist> = {

 [USER] username

| rolename

| UNIX_user }[, <userlist> ..]
<role_granted> = rolename[, rolename ..]
<role_grantee_1list> = [USER] username[, [USER] username ..]

Notice that this syntax includes the provisions for restricting UPDATE or REFERENCES to certain
columns, discussed on the next section, Granting Access to Columns in a Table.

The following statement grants SELECT privilege for the DEPARTMENTS table to a user, EMIL:

GRANT SELECT ON DEPARTMENTS TO EMIL;

The next example grants REFERENCES privileges on DEPARTMENTS to EMIL, permitting
EMIL to create a foreign key that references the primary key of the DEPARTMENTS table, even
though he does not own that table:

GRANT REFERENCES ON DEPARTMENTS(DEPT_NO) TO EMIL;
Tip:

Views offer a way to further restrict access to tables, by restricting either the columns or
the rows that are visible to the user. See Working with Views for more information.

2.2. Granting Access to Columns in a Table

In addition to assigning access rights for an entire table, GRANT can assign UPDATE or
REFERENCES privileges for certain columns of a table or view. To specify the columns, place the
comma-separated list of columns in parentheses following the privileges to be granted in the
GRANT statement.

PLANNING SECURITY

The following statement assigns UPDATE access to all users for the CONTACT and PHONE
columns in the CUSTOMERS table:

GRANT UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLIC;

You can add to the rights already assigned to users at the table level, but you cannot subtract
from them. To restrict user access to a table, use the REVOKE statement.

2.3. Granting Privileges to a Stored Procedure or Trigger

A stored procedure, view, or trigger sometimes needs privileges to access a table or view that has
a different owner. To grant privileges to a stored procedure, put the PROCEDURE keyword before
the procedure name. Similarly, to grant privileges to a trigger or view, put the TRIGGER or
VIEW keyword before the object name.

Important:
When a trigger, stored procedure or view needs to access a table or view, it is sufficient
for either the accessing object or the user who is executing it to have the necessary
permissions.

The following statement grants the INSERT privilege for the ACCOUNTS table to the procedure,
MONEY_TRANSFER:

GRANT INSERT ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Tip:

As a security measure, privileges to tables can be granted to a procedure instead of to
individual users. If a user has EXECUTE privilege on a procedure that accesses a table,
then the user does not need privileges to the table.

3. Multiple Privileges and Multiple Grantees

This section discusses ways to grant several privileges at one time, and ways to grant one or
more privileges to multiple users or objects.

3.1. Granting Multiple Privileges

To give a user several privileges on a table, separate the granted privileges with commas in the
GRANT statement. For example, the following statement assigns INSERT and UPDATE
privileges for the DEPARTMENTS table to a user, LI

PLANNING SECURITY

GRANT INSERT, UPDATE ON DEPARTMENTS TO LT;

To grant a set of privileges to a procedure, place the PROCEDURE keyword before the procedure
name. Similarly, to grant privileges to a trigger or view, precede the object name with the
TRIGGER or VIEW keyword.

The following statement assigns INSERT and UPDATE privileges for the ACCOUNTS table to the
MONEY_TRANSFER procedure:

GRANT INSERT, UPDATE ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

The GRANT statement can assign any combination of SELECT, DELETE, INSERT,
UPDATE, and REFERENCES privileges. EXECUTE privileges must be assigned in a separate
statement.

Note:
REFERENCES privileges cannot be assigned for views.

3.2. Granting all Privileges

The ALL privilege combines the SELECT, DELETE, INSERT, UPDATE, and REFERENCES
privileges for a table in a single expression. It is a shorthand way to assign that group of
privileges to a user or procedure. For example, the following statement grants all access
privileges for the DEPARTMENTS table to a user, SUSAN:

GRANT ALL ON DEPARTMENTS TO SUSAN;

SUSAN can now perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES operations
on the DEPARTMENTS table.

Procedures can be assigned ALL privileges. When a procedure is assigned privileges, the
PROCEDURE keyword must precede its name. For example, the following statement grants all
privileges for the ACCOUNTS table to the procedure, MONEY_TRANSFER:

GRANT ALL ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

3.3. Granting Privileges to Multiple Users

There are a number of techniques available for granting privileges to multiple users. You can
grant the privileges to a list of users, to a UNIX group, or to all users (PUBLIC). In addition, you
can assign privileges to a role, which you then assign to a user list, a UNIX group, or to PUBLIC.

PLANNING SECURITY

3.3.1. Granting Privileges to a List of Users

To assign the same access privileges to a number of users at the same time, provide a comma-
separated list of users in place of the single user name. For example, the following statement
gives INSERT and UPDATE privileges for the DEPARTMENTS table to users FRANCIS,
BEATRICE, and HELGA:

GRANT INSERT, UPDATE ON DEPARTMENTS TO FRANCIS, BEATRICE, HELGA;

3.3.2. Granting Privileges to a UNIX Group

OS-level account names are implicit in InterBase security on UNIX. A client running as a UNIX
user adopts that user identity in the database, even if the account is not defined in the InterBase
security database. Now OS-level groups share this behavior, and database administrators can
assign SQL privileges to UNIX groups through SQL GRANT / REVOKE statements. This allows any
OS-level account that is a member of the group to inherit the privileges that have been given to
the group. For example:

GRANT UPDATE ON tablel TO GROUP group_name;

where group_name is a UNIX-level group defined in /etc/group.

Note:
Integration of UNIX groups with database security is not a SQL standard feature.

3.3.3. Granting Privileges to All Users

To assign the same access privileges for a table to all users, use the PUBLIC keyword rather than
listing users individually in the GRANT statement.

The following statement grants SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table to all users:

GRANT SELECT, INSERT, UPDATE ON DEPARTMENTS TO PUBLIC;

Important:
PUBLIC grants privileges only to users, not to stored procedures, triggers, roles, or
views. Privileges granted to users with PUBLIC can only be revoked from PUBLIC.

PLANNING SECURITY

3.4. Granting Privileges to a List of Procedures

To assign privileges to a several procedures at once, provide a comma-separated list of
procedures following the word PROCEDURE in the GRANT statement.

The following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
the procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT INSERT, UPDATE ON DEPARTMENTS TO PROCEDURE ACCT_MAINT,
MONEY_TRANSFER;

4. Using Roles to Grant Privileges

In InterBase, you can assign privileges through the use of roles. Acquiring privileges through a
role is a four-step process.

1. Create a role using the CREATE ROLE statement.
CREATE ROLE rolename;

2. Assign one or more privileges to that role using GRANT .
GRANT privilegelist ON tablename TO rolename;

3. Use the GRANT statement once again to grant the role to one or more users.
GRANT rolename TO userlist;

The role can be granted WITH ADMIN OPTION, which allows users to grant the role to
others, just as the WITH GRANT OPTION allows users to grant privileges to others.

4. At connection time, specify the role whose privileges you want to acquire for that
connection.

CONNECT 'database' USER 'username' PASSWORD 'password' ROLE 'rolename';

Use REVOKE to remove privileges that have been granted to a role or to remove roles that have
been granted to users.

See the Language Reference Guide for more information on CONNECT, CREATE ROLE, GRANT,
and REVOKE .

4.1. Granting Privileges to a Role

Once a role has been defined, you can grant privileges to that role, just as you would to a user.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

PLANNING SECURITY

The syntax is as follows:

GRANT <privileges>

ON [TABLE] {tablename | viewname}

TO rolename;

<privileges> = ALL [PRIVILEGES] | <privilege_list>
<privilege_list> = {

SELECT

| DELETE

| INSERT

| UPDATE [(col [, col ..])]

| REFERENCES [(col [, col ..])]

} [, <privilege_list> ..]

See the following section Granting a Role to Users for an example of creating a role, granting
privileges to it, and then granting the role to users.

4.2. Granting a Role to Users

When a role has been defined and has been granted privileges, you can grant that role to one or
more users, who then acquire the privileges that have been assigned to the role.

To permit users to grant the role to others, add WITH ADMIN OPTION to the GRANT statement
when you grant the role to the users.

The syntax is as follows:

GRANT {rolename [, rolename ..]} TO {PUBLIC
| {[USER] username [, [USER] username ..]J} } [WITH ADMIN OPTION];

The following example creates the DOITALL role, grants ALL privileges on DEPARTMENTS to
this role, and grants the DOITALL role to RENEE, who then has SELECT, DELETE, INSERT,
UPDATE, and REFERENCES privileges on DEPARTMENTS .

CREATE ROLE DOITALL;
GRANT ALL ON DEPARTMENTS TO DOITALL;
GRANT DOITALL TO RENEE;

5. Granting Users the Right to Grant Privileges

Initially, only the owner of a table or view can grant access privileges on the object to other users.
The WITH GRANT OPTION clause transfers the right to grant privileges to other users.

To assign grant authority to another user, add the WITH GRANT OPTION clause to the end of a
GRANT statement.

http://docwiki.embarcadero.com/InterBase/15/en/Granting_a_Role_to_Users

PLANNING SECURITY

The following statement assigns SELECT access to user EMIL and allows EMIL to grant
SELECT access to other users:

GRANT SELECT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Note:
You cannot assign the WITH GRANT OPTION to a stored procedure.

WITH GRANT OPTION clauses are cumulative, even if issued by different users. For example,
EMIL can be given grant authority for SELECT by one user, and grant authority for INSERT by
another user. For more information about cumulative privileges, see Grant Authority Implications.

5.1. Grant Authority Restrictions

There are only three conditions under which a user can grant access privileges (SELECT,
DELETE, INSERT, UPDATE, and REFERENCES) for tables to other users or objects:

« Users can grant privileges to any table or view that they own.

* Users can grant any privileges on another user’s table or view when they have been assigned
those privileges WITH GRANT OPTION.

*Users can grant privileges that they have acquired by being granted a role
WITH ADMIN OPTION.

For example, in an earlier GRANT statement, EMIL was granted SELECT access to the
DEPARTMENTS table WITH GRANT OPTION. EMIL can grant SELECT privilege to other users.
Suppose EMIL is now given INSERT access as well, but without the WITH GRANT OPTION:

GRANT INSERT ON DEPARTMENTS TO EMIL;

EMIL can SELECT from and INSERT to the DEPARTMENTS table. He can grant SELECT
privileges to other users, but cannot assign INSERT privileges.

To change a user's existing privileges to include grant authority, issue a second GRANT
statement that includes the WITH GRANT OPTION clause. For example, to allow EMIL to grant
INSERT privileges on DEPARTMENTS to others, reissue the GRANT statement and include the
WITH GRANT OPTION clause:

GRANT INSERT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

PLANNING SECURITY

5.2. Grant Authority Implications

Consider every extension of grant authority with care. Once other users are permitted grant
authority on a table, they can grant those same privileges, as well as grant authority for them, to
other users.

As the number of users with privileges and grant authority for a table increases, the likelihood
that different users can grant the same privileges and grant authority to any single user also
increases.

SQL permits duplicate privilege and authority assignment under the assumption that it is
intentional. Duplicate privilege and authority assignments to a single user have implications for
subsequent revocation of that user's privileges and authority. For more information about
revoking privileges, see Revoking User Access.

For example, suppose two users to whom the appropriate privileges and grant authority have
been extended, GALENA and SUDHANSHU, both issue the following statement:

GRANT INSERT ON DEPARTMENTS TO SPINOZA WITH GRANT OPTION;

Later, GALENA revokes the privilege and grant authority for SPINOZA:

REVOKE INSERT ON DEPARTMENTS FROM SPINOZA;

GALENA now believes that SPINOZA no longer has INSERT privilege and grant authority for
the DEPARTMENTS table. The immediate net effect of the statement is negligible because
SPINOZA retains the INSERT privilege and grant authority assigned by SUDHANSHU .

When full control of access privileges on a table is desired, grant authority should not be
assigned indiscriminately. In cases where privileges must be universally revoked for a user who
might have received rights from several users, there are two options:

« Each user who assigned rights must issue an appropriate REVOKE statement.

» The table’s owner must issue a REVOKE statement for all users of the table, then issue
GRANT statements to reestablish access privileges for the users who should not lose their
rights.

For more information about the REVOKE statement, see Revoking User Access.

6. Granting Privileges to Execute Stored Procedures

To use a stored procedure, users or other stored procedures must have
EXECUTE privilege for it, using the following GRANT syntax:

PLANNING SECURITY

GRANT EXECUTE ON PROCEDURE procname TO {<object> | <userlist>}
<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}
[, <object> ..]
<userlist> = {
[USER] username
| rolename
| UNIX_user
} [, <userlist> ..] [WITH GRANT OPTION]

You must give EXECUTE privileges on a stored procedure to any procedure or trigger that calls
that stored procedure if the caller's owner is not the same as the owner of the called procedure.

Note:
If you grant privileges to PUBLIC, you cannot specify additional users or objects as
grantees in the same statement.

The following statement grants EXECUTE privilege for the FUND_BALANCE procedure to two
users, NKOMO, and SUSAN, and to two procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT EXECUTE ON PROCEDURE FUND_BALANCE TO NKOMO, SUSAN, PROCEDURE
ACCT_MAINT, MONEY_TRANSFER;

7. Granting Access to Views

To a user, a view looks—and often acts—just like a table. However, there are significant
differences: the contents of a view are not stored anywhere in the database. All that is stored is
the query on the underlying base tables. Because of this, any UPDATE, DELETE, INSERT to a
view is actually a write to the table on which the view is based.

Any view that is based on a join or an aggregate is considered to be a read-only view, since it is
not directly update-able. Views that are based on a single table which have no aggregates or
reflexive joins are often update-able. See Types of Views: Read-only and Update-able for more
information about this topic.

Important:

It is meaningful to grant INSERT, UPDATE, and DELETE privileges for a view only if
the view is update-able. Although you can grant the privileges to a read-only view
without receiving an error message, any actual write operation fails because the view is
read-only. SELECT privileges can be granted on a view just as they are on a table, since
reading data from a view does not change anything.

PLANNING SECURITY

You cannot assign REFERENCES privileges to views.

Tip:

If you are creating a view for which you plan to grant INSERT and UPDATE privileges,
use the WITH CHECK OPTION constraint so that users can update only base table rows
that are accessible through the view.

7.1. Update-able Views

You can assign SELECT, UPDATE, INSERT, and DELETE privileges to update-able views, just
as you can to tables. UPDATES, INSERTS, and DELETES to a view are made to the view's base
tables. You cannot assign REFERENCES privileges to a view.

The syntax for granting privileges to a view is:

GRANT <privileges>

ON viewname

TO {<object>

| <userlist> | GROUP UNIX_group};

<privileges> = ALL [PRIVILEGES] | <privilege_list>

<privilege_Tlist> = {
SELECT

| DELETE

| INSERT

| UPDATE [(col [, col ..])]
}

[, <privilege_list> ..]
<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname

| PUBLIC

+

[, <object> ..]
<userlist> = {
[USER] username

| rolename

| UNIX_user

+

[, <userlist> ..]
[WITH GRANT OPTION]

When a view is based on a single table, data changes are made directly to the view's underlying
base table.

For UPDATE, changes to the view affect only the base table columns selected through the view.
Values in other columns are invisible to the view and its users and are never changed. Views

PLANNING SECURITY

created using the WITH CHECK OPTION integrity constraint can be updated only if the UPDATE
statement fulfills the constraint’s requirements.

For DELETE, removing a row from the view, and therefore from the base table removes all
columns of the row, even those not visible to the view. If SQL integrity constraints or triggers
exist for any column in the underlying table and the deletion of the row violates any of those
constraints or trigger conditions, the DELETE statement fails.

For INSERT, adding a row to the view necessarily adds a row with all columns to the base table,
including those not visible to the view. Inserting a row into a view succeeds only when:

» Data being inserted into the columns visible to the view meet all existing integrity
constraints and trigger conditions for those columns.
« All other columns of the base table are allowed to contain NULL values.

For more information about working with views, see Working with Views.

7.2. Read-only Views

When a view definition contains a join of any kind or an aggregate, it is no longer a legally
updatable view, and InterBase cannot directly update the underlying tables.

()

Note:

You can use triggers to simulate updating a read-only view. Be aware, however, that any
e triggers you write are subject to all the integrity constraints on the base tables. To see an

example of how to use triggers to “update” a read-only view, see Updating Views with

Triggers.

| J

For more information about integrity constraints and triggers, see Working with Triggers.

8. Revoking User Access

Use the REVOKE statement to remove privileges that were assigned with the GRANT statement.
At a minimum, REVOKE requires parameters that specify the following:

* One access privilege to remove.
* The table or view to which the privilege revocation applies.
» The name of the grantee for which the privilege is revoked.

In its full form, REVOKE removes all the privileges that GRANT can assign.

REVOKE <privileges> ON [TABLE] {tablename | viewname}
FROM {<object> | <userlist> | GROUP UNIX_group};
<privileges> = ALL [PRIVILEGES] | <privilege_list>
<privilege_list> = {

PLANNING SECURITY

SELECT

| DELETE

| INSERT

| UPDATE [(col [, col ..])]

| REFERENCES [(col [, col ..])]
} [, <privilege_list> ..]
<object> = {

PROCEDURE procname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

} [, <object> ..]

<userlist> = [USER] username [, [USER] username ..]

The following statement removes the SELECT privilege for the user, SUSAN, on the
DEPARTMENTS table:

REVOKE SELECT ON DEPARTMENTS FROM SUSAN;

The following statement removes the UPDATE privilege for the procedure, MONEY_TRANSFER,
on the ACCOUNTS table:

REVOKE UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSER;

The next statement removes EXECUTE privilege for the procedure, ACCT_MAINT, on the
MONEY_TRANSFER procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSER FROM PROCEDURE ACCT_MAINT;

For the complete syntax of REVOKE , see REVOKE.

8.1. Revocation Restrictions
The following restrictions and rules of scope apply to the REVOKE statement:

« Privileges can be revoked only by the user who granted them.

« Other privileges assigned by other users are not affected.

* Revoking a privilege for a user, A, to whom grant authority was given, automatically revokes
that privilege for all users to whom it was subsequently assigned by user A.

* Privileges granted to PUBLIC can only be revoked for PUBLIC.

8.2. Revoking Multiple Privileges

To remove some, but not all, of the access privileges assigned to a user or procedure, list the
privileges to remove, separating them with commas. For example, the following statement
removes the INSERT and UPDATE privileges for the DEPARTMENTS table from a user, LI:

http://docwiki.embarcadero.com/InterBase/15/en/REVOKE

PLANNING SECURITY

REVOKE INSERT, UPDATE ON DEPARTMENTS FROM LI;

The next statement removes INSERT and DELETE privileges for the ACCOUNTS table from a
stored procedure, MONEY_TRANSFER:

REVOKE INSERT, DELETE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER;

Any combination of previously assigned SELECT, DELETE, INSERT, and UPDATE privileges
can be revoked.

8.3. Revoking All Privileges

The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE privileges for a
table in a single expression. It is a shorthand way to remove all SQL table access privileges from a
user or procedure. For example, the following statement revokes all access privileges for the
DEPARTMENTS table for a user, SUSAN :

REVOKE ALL ON DEPARTMENTS FROM SUSAN;

Even if a user does not have all access privileges for a table, ALL can still be used. Using ALL in
this manner is helpful when a current user’s access rights are unknown.

Note:
ALL does not revoke EXECUTE privilege.

8.4. Revoking Privileges for a List of Users

Use a comma-separated list of users to REVOKE access privileges for a number of users at the
same time.

The following statement revokes INSERT and UPDATE privileges on the DEPARTMENTS table
for users FRANCIS, BEATRICE, and HELGA:

REVOKE INSERT, UPDATE ON DEPARTMENTS FROM FRANCIS, BEATRICE, HELGA;

8.5. Revoking Privileges for a Role

If you have granted privileges to a role or granted a role to users, you can use REVOKE to
remove the privileges or the role.

To Remove Privileges from a Role:

PLANNING SECURITY

REVOKE privileges ON table FROM rolenamelist;
To Revoke a Role from Users:

REVOKE role_granted FROM {PUBLIC | role_grantee_list};

The following statement revokes UPDATE privileges from the DOITALL role:

REVOKE UPDATE ON DEPARTMENTS FROM DOITALL;

Now, users who were granted the DOITALL role no longer have UPDATE privileges on
DEPARTMENTS, although they retain the other privileges— SELECT, INSERT, DELETE, and
REFERENCES —that they acquired with this role.

Important:

If you drop a role using the DROP ROLE statement, all privileges that were conferred by
that role are revoked.

8.6. Revoking a Role from Users

Use REVOKE to remove a role that you assigned to users.

The following statement revokes the DOITALL role from RENEE.

REVOKE DOITALL FROM RENEE;

RENEE no longer has any of the access privileges that she acquired as a result of membership in

the DOITALL role. However, if any others users have granted the same privileges to her, she still
has them.

8.7. Revoking EXECUTE Privileges

Use REVOKE to remove EXECUTE privileges on a stored procedure. The syntax for revoking
EXECUTE privileges is as follows:

REVOKE EXECUTE ON PROCEDURE procname FROM {<object> | <userlist>}
<object> = {

PROCEDURE procname

| TRIGGER trigname

| VIEW viewname

| PUBLIC

}

PLANNING SECURITY

[, <object> ..]
<userlist> = [USER] username [, [USER] username ..]

The following statement removes EXECUTE privilege for user EMIL on the MONEY_TRANSFER
procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSFER FROM EMIL;

8.8. Revoking Privileges from Objects

REVOKE can remove the access privileges for one or more procedures, triggers, or views.
Precede each type of object by the correct keyword (PROCEDURE, TRIGGER, or VIEW) and
separate lists of one object type with commas.

The following statement revokes INSERT and UPDATE privileges for the ACCOUNTS table from
the MONEY_TRANSFER and ACCT_MAINT procedures and from the SHOW_USER trigger.

REVOKE INSERT, UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,
ACCT_MAINT TRIGGER SHOW_USER;

8.9. Revoking Privileges for All Users

To revoke privileges granted to all users as PUBLIC, use REVOKE with PUBLIC. For example,
the following statement revokes SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table for all users:

REVOKE SELECT, INSERT, UPDATE ON DEPARTMENTS FROM PUBLIC;

When this statement is executed, only the table's owner retains full access privileges to
DEPARTMENTS .

Important:
PUBLIC does not revoke privileges for stored procedures. PUBLIC cannot be used to
strip privileges from users who were granted them as individual users.

8.10. Revoking Grant Authority

To revoke a user's grant authority for a given privilege, use the following REVOKE syntax:

REVOKE GRANT OPTION FOR privilege [, privilege ..] ON table
FROM user;

PLANNING SECURITY

For example, the following statement revokes SELECT grant authority on the DEPARTMENTS
table from a user, EMIL:

REVOKE GRANT OPTION FOR SELECT ON DEPARTMENTS FROM EMIL;

9. Using Views to Restrict Data Access

In addition to using GRANT and REVOKE to control access to database tables, you can use views
to restrict data access. A view is usually created as a subset of columns and rows from one or
more underlying tables. Because it is only a subset of its underlying tables, a view already
provides a measure of access security.

For example, suppose an EMPLOYEES table contains the columns, LAST_NAME, FIRST_NAME,
JOB, SALARY, DEPT, and PHONE. This table contains much information that is useful to all
employees. It also contains employee information that should remain confidential to almost
everyone: SALARY . Rather than allow all employees access to the EMPLOYEES table, a view can
be created which allows access to other columns in the EMPLOYEES table, but which excludes
SALARY :

CREATE VIEW EMPDATA AS
SELECT LAST_NAME, FIRST_NAME, DEPARTMENT, JOB, PHONE
FROM EMPLOYEES;

Access to the EMPLOYEES table can now be restricted, while SELECT access to the view,
EMPDATA , can be granted to everyone.

()

Note:

o Be careful when creating a view from base tables that contain sensitive information.
Depending on the data included in a view, it may be possible for users to recreate or
infer the missing data.

ENCRYPTING YOUR DATA

ENCRYPTING YOUR DATA

This chapter provides information and instruction on the following topics:

« Overview of InterBase encryption

 An overview of encryption tasks

« A description of encryption users

* Encrypt and decrypt permissions

« Using isgl to enable and perform encryption

» Using IBConsole to enable and perform encryption
« Encrypting backup files

The InterBase encryption feature is available in InterBase 2009 and after.

1. About InterBase Encryption

Encryption is the process of applying an invertible algorithm to a block of data (plaintext) so
that the encrypted data (ciphertext) bears no resemblance to the plaintext. Typically, an
encryption key is applied to the plaintext to produce the ciphertext. The same encryption key is
used to convert (decrypt) the ciphertext back to plaintext. The purpose of encryption is to protect
data from being deciphered by unauthorized viewers or users. InterBase enables you to encrypt
information at one or both of the following levels:

+ Database-level Encryption:

When you specify database-level encryption, InterBase encrypts all the database pages that
contain user information. Non-user database pages are not encrypted. Non-user pages include
the header page, log page, inventory pages, pointer pages, transaction inventory pages, index
root pages, and generator pages.

You cannot specify which pages in a database to encrypt. Instead, you issue the encrypt database
command from the database to which you are connected, and InterBase encrypts all the user-
related pages in that database.

 Column-level Encryption:

Column-level encryption is both more flexible and more specific. To encrypt a column, you
specify the table that contains the column, followed by the name of the column. You can encrypt
all of the columns in a table, or only individual columns you specify. For example, you can
encrypt a payroll column in an Employee table so that both payroll and HR employees can
access it. Then you might encrypt SSN information in the same table so that only payroll
employees can access it. Users who need to access data in encrypted columns can be given
decrypt privileges for that column.

ENCRYPTING YOUR DATA

Note:

When working with encrypted columns, the MIN, MAX, BETWEEN, and ORDER BY
e operations cannot use an index based on those fields due to the nature of the index key

that is formed from the encrypted field value. So while the index is not useful for the

above operations, it is still useful for equality matches and JOIN operations

(. J

Generally speaking, encrypting all of the user pages of a database takes much greater overhead
than selectively encrypting individual columns. In addition, database performance can be
adversely affected when a large number of concurrent queries access the same encrypted
columns.

1.1. Encrypting Database Backup Files

To maintain the security and confidentiality of encrypted databases, you must also encrypt
database backup files. The GBAK utility provides three additional switches to facilitate encrypt
and decrypt operations on database backups. For instructions on how to encrypt and decrypt
backup files, see Encrypting Backup Files.

1.2. Encrypting Network Communication (InterBase Encryption)

Data passed to a remote InterBase client from a database server is unencrypted during the
transmission process. For information on how to encrypt information that is passed over a
network, see Encrypting Your Data the InterBase Operations Guide.

1.3. About Industry Encryption Standards

InterBase encryption supports the use of the following industry encryption standards:

« Advanced Encryption Standard (AES) was adopted as a federal standard in 2002. AES
enables a larger number of bits with which to scrambled data. Because AES offers much
stronger encryption protection, the United States regulates its export. To address U.S. export
regulations, users must obtain an InterBase license to use AES with InterBase. InterBase
includes AES in the Server, ToGo and Desktop editions. Please, see About AES for more
information about this standard.

Note:
You do not need an AES addon license starting with InterBase XE3 release. InterBase
2009 and InterBase XE required the addon license.

You specify the standard you want to use with InterBase when you create an encryption key.
Instructions on how to create the encryption key are provided later in this chapter.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
https://www.cbp.gov/trade/aes/introduction

ENCRYPTING YOUR DATA

1.4. Who Can Create Encryption?

Encryption tasks, which are summarized in the table on the page An Overview of Encryption
Tasks, are primarily performed by the following users: a SYSDSO, the database owner, and any
individual table owners who are given permission to encrypt specific columns in a table.
InterBase requires the creation of the System Database Security Owner (SYSDSO) user to
implement specific encryption tasks. SYSDSO is a reserved user name, similar to SYSDBA.

The database owner is typically the person who creates the database. The database owner may
or may not also be the administrator of the database.

The SYSDSO role controls three significant steps in the encryption process:

* Creates a System Encryption Password (SEP).

« Creates the encryption keys.

« Grants the database owner access to the encryption keys, which s/he then uses to encrypt
the database and/or its columns.

However, the SYSDSO cannot encrypt databases or columns, nor can s/he grant or revoke access
to encrypted data. Only a database owner and/or an individual table owner can actually
encrypt a database or columns in a database; the SYSDSO simply creates the tools (the
encryption keys) that are needed to perform the encryption. Requiring that multiple users set up
and implement encryption, rather than just one, adds an additional layer of database security.

In addition, only the user who encrypts a column or database can grant decrypt privileges to
those who need to view or modify the encrypted data. For more information about granting
decrypt permission, see Granting Decrypt Permission.

Generally speaking, only the user who grants the permission can revoke the permission. For more
information, see Revoking Encrypt and Decrypt Permissions.

Note:
Decrypt permission is only required for column-level encryption. It is not required for
database-level encryption.

1.4.1. Creating the SYSDSO User

The database owner uses the following syntax to create the SYSDSO user:

CREATE USER SYSDSO SET PASSWORD 'PASSWORD';

You must keep the SYSDSO user for as long as you use the encryption keys created by that same
SYSDSO.

http://docwiki.embarcadero.com/InterBase/15/en/An_Overview_of_Encryption_Tasks
http://docwiki.embarcadero.com/InterBase/15/en/An_Overview_of_Encryption_Tasks

ENCRYPTING YOUR DATA

If the SET PASSWORD clause is not specified, the default SYSDSO password will be the password
of the person who creates the account. This makes it easier for the account creator to temporarily
acquire SYSDSO privileges to create and test encryptions during development without having to
login to do so. When the SYSDSO password is subsequently changed, the account creator loses
this privilege. Presumably, this handoff would occur at deployment time, when transferring these
duties to a security authority.

1.5. An Overview of Encryption Tasks

The following list identifies the tasks that need to be performed to encrypt a database and/or its
columns, and to give users the appropriate access rights. The steps are typically performed by a
SYSDSO and a database owner unless additional individuals are given encrypt privileges to
specific columns. See Who Can Create Encryption? for more information about how the SYSDSO
and database owner use the InterBase encryption feature.

To implement encryption using InterBase, perform the tasks listed in the table. The following
sections provide detailed instructions on how to perform steps 3-7.

Step # Task Performed by

Ensure that Embedded User
Authentication (EUA) is enabled on
the database you plan to encrypt. For
instructions on how to enable EUA
1 using isql, see the InterBase Database owner
Operations Guide. For instructions on
how to enable EUA using IBConsole,
see Encrypting a Database with
IBConsole of this chapter.

Create a System Database Security
Owner (SYSDSO) account using the

2 command on Creating the SYSDSO Database owner
User.

3 Create a System Encryption Password SYSDSO
(SEP).
Create an encryption key for the

4 database and/or the columns you SYSDSO

want the database or table owner to
encrypt.

http://docwiki.embarcadero.com/InterBase/15/en/Who_Can_Create_Encryption%3F
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Creating_the_SYSDSO_User
http://docwiki.embarcadero.com/InterBase/15/en/Creating_the_SYSDSO_User

ENCRYPTING YOUR DATA

Step # Task Performed by

Grant the database owner privileges
5 to use the encryption keys to SYSDSO
perform encryption.

Encrypt the database and/or

Database owner or individual table owner
columns.

Grant or revoke decrypt privileges to

Database owner or individual table owner
other users.

1.6. Requirements and Support

InterBase encryption is supported on all InterBase platforms. Before using it, you must install or
do the following:

« Embedded User Authentication (EUA) must be enabled to grant specified users decrypt
privileges to access data in encrypted columns. For instructions on how to enable EUA using
isql, see the InterBase Operations Guide. For instructions on how to enable EUA using
IBConsole, see Encrypting a Database with IBConsole of this chapter.

« ODS 13 is the lowest version that supports this feature and is not available on older ODS
databases. Therefore, a backup and restore to ODS 13 is required for pre-existing databases
to use InterBase encryption. For more information about performing backups and restores,
see the InterBase Operations Guide.

The table below shows which primary ODS version corresponds to each InterBase release:

InterBase version Database engine version Primary ODS version

2020 14 18
2017 13 17
XE7 12 16
XE3 11 15
XE 10 15
2009 9 13
2007 8 12
7.0 7 11
6.0 6 10

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

ENCRYPTING YOUR DATA

Note:

o The InterBase release may support certain older ODS versions as well (see the Migration
Issues section of the Readme for that release). There is no official release of ODS 14 as a
primary ODS.

Note:

InterBase uses OpenSSL or a derivation of that version to support InterBase encryption.
e InterBase embeds OpenSSL libraries in InterBase server/client to help implement

encryption-related features. OpenSSL contains libraries for the most widely known

encryption and message digest algorithms in use today. InterBase uses these libraries as

the basis for supporting database and column-level encryption functionality.

(& J

See Also

» On-disk Structure (ODS)
* InterBase XE7 has been upgraded to the latest OpenSSL release with Security Vulnerability
fixes.

2. Using isql to Enable and Implement Encryption

This section explains how to enable and implement encryption using isql. For instructions on to
use IBConsole to perform the same encryption tasks, see Encrypting a Database with IBConsole.

2.1. Setting the System Encryption Password (SEP)

InterBase uses a System Encryption Password (SEP) to protect the encryption keys that are used
to encrypt the database and/or database columns. If you are managing multiple databases that
use InterBase encryption, it is recommended that you create a different SEP for each database.

2.1.1. Altering the Database to Create the SEP

The SYSDSO uses the ALTER DATABASE command to create the SEP.

To create a SEP, use the following syntax:

alter database set system encryption password <255-character string>

The string can be up to 255 characters long and can include spaces. The system encryption
password is encrypted with a key derived from machine specific information and stored in the
database. This effectively node locks the database to the machine but allows the database to be
attached without a user having to pass the system encryption password in plaintext. Thus,
subsequent connections on the same machine need not provide the SEP.

http://docwiki.embarcadero.com/InterBase/15/en/On-disk_Structure_%28ODS%29
http://www.openssl.org/news/vulnerabilities.html
http://www.openssl.org/news/vulnerabilities.html

ENCRYPTING YOUR DATA

However, if the database file is copied and installed on a different machine, the node-lock feature
disallows direct loading of the database without the user providing the SEP. After moving a
database with a node-locked SEP to another machine, you must login as SYSDSO with the
current SEP set via the SEP environment variable or DPB. The SYSDSO can then perform ALTER
DATABASE SET SYSTEM ENCRYPTION PASSWORD to create a new SEP.

Just “setting” the SEP to connect to the database does not redefine or re-node-lock the SEP. You
can continue to provide the SEP externally though you may want to alter the sep command to re-
node-lock it to the new machine.

Using External Option when Creating a SEP

Though an unauthorized person would not have decrypt permission for any encrypted columns,
he or she might be able to bit edit the database file to artificially grant decrypt permission. The
password attribute of an encryption key can mitigate this risk because the user needs the
passwords as well as decrypt permission. For database-level encryption, the data would be visible
immediately because only the SEP is needed to see it.

Adding the external setting to a SEP statement can make it more difficult for unauthorized users
to access an encrypted database on a mobile device such as a laptop computer, or on an a
poorly secured desktop computer.

alter database set system encryption password <255-character string>
[external]

The external form of setting the SEP requires the first database attach to pass the
isc_dpb_sys_encrypt_password parameter with the value of the password, or to set the
environment variable isc_system_encrypt_password . Subsequent database attachments are
not required to pass the SEP as the database server already has it in memory.

For security reasons, programs should not hardcode the SEP with
isc_dpb_sys_encrypt_password but query the wuser, then generate this database
attachment parameter dynamically. The disc_system_encrypt_password environment
variable should never be hardcoded in scripts and if entered at the console should be unset as
soon as possible.

2.1.2. Removing the System Encryption Password (SEP)

The SYSDSO can remove the SEP when the database is no longer encrypted, and when there are
no remaining column-level encryptions stored in the RDB$ENCRYPTIONS table.

To remove a SEP, use the following syntax:

ENCRYPTING YOUR DATA

alter database set no system encryption password

2.2. Creating Encryption Keys

The SYSDSO wuses the CREATE ENCRYPTION command to create encryption keys. An
encryption key is used to encrypt the pages and/or columns of a database. The database owner
uses an encryption key to perform encryption on a specific database or column. InterBase stores
encryption keys in the RDBSENCRYPTIONS system table.

The following statement provides an example of a simple CREATE ENCRYPTION statement:
CREATE ENCRYPTION payroll_key for AES

where CREATE ENCRYPTION is the command, and “payroll_key” is the name of the key created.
Thus, the basic syntax for creating an encryption key is:

CREATE ENCRYPTION key-name for AES

To create an encryption key using all of the available isql statement options, use the following
syntax:

CREATE ENCRYPTION key-name [as default] [for {AES}] [with length number-
of-bits [bits]] [password {'user-password' | system encryption password}]
[init_vector {NULL | random}] [pad {NULL | random}] [description ‘some
user description’]

For example:

CREATE ENCRYPTION revenue_key FOR AES WITH LENGTH 192 BITS INIT_VECTOR
RANDOM

See the following table for a description of each encryption key option:

Option Description

Key name Identifies the encryption key by a unique name.

This key is used as the database default when no explicit

Default . .
. key is named for database or column encryption.

Advanced Encryption Standard algorithm. This encryption
AES scheme is considered strong and requires an InterBase
license.

ENCRYPTING YOUR DATA

Option Description

Specifies key length. With AES, you can specify 128, 192,

e or 256 bits. For AES, 128 is the default.

Available only for column encryption keys. Associating a
custom password with an encryption key provides an
additional layer of protection. For more information about
associating a custom password with an encryption key,
see Setting a User-defined Password for an Encryption

Key.

Password

Random enables Cipher Block Chaining (CBC) encryption
technique so that equal values have different ciphertext. If
NULL is specified, then Electronic Cookbook (ECB) is used.
NULL is the default value.

Init-vector

Random padding can cause equal values to have different
Pad ciphertext. NULL specifies that random padding should
not occur. NULL is the default value.

A user-level comment that describes the purpose of the

Description .
encryption.

Note:

A random initialization vector or random padding prevents an encrypted column from
o being used in an index, and raises an error if a create index DDL statement tries to do so.

The NULL defaults for both of these options favor index-enabled access optimization

over a more stringent level of protection afforded by the random counterparts.

2.2.1. Setting a User-defined Password for an Encryption Key

As noted in the table above, you can assign each column encryption key a custom password,
which adds an additional level of protection for your data. When you associate a password with a
column encryption key, you must give it to the database owner or the table owner so that s/he
can use the key to encrypt the column. You must also give it to any end users who need to
change or view the values in the encrypted column.

If an encryption key was defined with a user-defined password, then users must set the password
during a database session before accessing columns that have been encrypted with the key:

ENCRYPTING YOUR DATA

Note:
The System Encryption Password (SEP) is the default if no PASSWORD clause is provided
to CREATE ENCRYPTION.

set password '<user-password>' for {encryption <encryption_name> | column
<table.column_name>}

Assuming the same user also has decrypt and access permissions on the column, he or she can
now access all columns encrypted by that key.

2.2.2. Dropping an Encryption Key

An encryption key can be dropped (deleted) from the database. Only the SYSDSO can execute
this command. The command will fail if the encryption key is still being used to encrypt the
database or any table columns when “restrict” is specified, which is the default drop behavior. If
“cascade” is specified, then all columns using that encryption are decrypted and the encryption is
dropped.

To drop an encryption key, use the following syntax:

key-name [restrict | cascade]

2.3. Granting Encryption Permission to the Database Owner

In order for the database owner to use an encryption key to encrypt a database or column, the
SYSDSO must first grant encrypt permission to the database or table owner to use the key. Only
the SYSDSO can grant encrypt permission.

To grant permission to encrypt, use the following syntax:

GRANT ENCRYPT ON ENCRYPTION key-name to user-name;
For example, if a SYSDBA is the database owner:

GRANT ENCRYPT ON ENCRYPTION expenses_key to SYSDBA;

gives the SYSDBA permission to use the payroll-key to encrypt a database or a column.

Important:

Only the user who encrypts a column or database can grant decrypt privileges to those
who need to view the encrypted data. Only the database owner can grant decrypt
privileges.

ENCRYPTING YOUR DATA

2.4. Encrypting Data

As indicated at the beginning of this chapter, InterBase can be used to encrypt data at the
database-level, and to encrypt specific columns in a database. Generally speaking, encrypting at
the column-level offers the greatest data protection. When you encrypt at the database- or
column-level, you must also encrypt the backup files of the database. For instructions on how to
do so, see Encrypting Backup Files.

2.4.1. About the Encryption Commands

InterBase provides two encryption commands: one to encrypt a database, and the other to
encrypt database columns.

To encrypt a database, use the following syntax:

ALTER DATABASE ENCRYPT [[with] key-name]

For example, the statement:

ALTER DATABASE ENCRYPT with fin_key

uses the fin_key to encrypt all the database pages in the current database (i.e. in the database to
which you are connected).

To encrypt a column in an existing table, use the following syntax:
ALTER TABLE table-name ALTER COLUMN column-name ENCRYPT [[with] key-name]
For example, the following statement:

ALTER TABLE sales ALTER COLUMN total_value ENCRYPT with expenses_key

uses the expenses_key to encrypt data in the total_value column.

To encrypt a column when creating a table, use the following syntax:

CREATE TABLE table-name column-name data-type ENCRYPT [[with] key-name]

2.4.2. Setting a Decrypt Default Value for a Column

When encrypting a column, the database or table owner can specify a decrypt default value that
displays when a user who does not have decrypt privileges for that column tries to access the

ENCRYPTING YOUR DATA

column’s data. If a decrypt default value is not specified, the user will get an error message. A
decrypt default value also allows existing reports and applications to run without raising
permission exceptions when columns are encrypted.

To specify a decrypt default value, use the following syntax:

create table table-name (column-name data-type encrypt [[with] key_name]
[decrypt default value], ..)

A decrypt default can be changed or dropped from a column. Note that a decrypt default is not
automatically dropped when a column is decrypted.

alter table table-name alter [column] column-name [no] decrypt default value

2.4.3. Encrypting Blob Columns

Blob columns can be encrypted like any other column data type. However, due to their large size,
blob encryption can be time-consuming. Typically, a large blob is created before its creator
knows which column it will belong to. If the final column destination is encrypted, then the
unencrypted blob will need to be re-read and encrypted with the column’s encryption key.

To avoid blob re-encryption overhead, two blob parameter items have been added, and can be
passed to isc_blob_create2() to indicate the column to which the blob will be assigned. The
items isc_bpb_target_relation_name and isc_bpb_target_field_name denote the column to
which the blob will be assigned by the developer. These items are passed via the blob parameter
block in the same way that blob filter and character set blob parameter items are sent. The blob
parameter byte string includes the following:

* The blob parameter;
* One “length” byte; and
* "Length” bytes for the target name.

isc_blob_gen_bpb() and isc_blob_gen_bpb2() can generate these new blob parameter items if
the target blob descriptor argument has both blob_desc_relation_name and
blob_desc_field_name string members.

If a blob ID is assigned between two columns with different encryptions, the blob assigned to the
destination column is automatically translated between the two encryptions. This means that the
source blob is decrypted internally to plaintext and the destination blob is encrypted with the
new ciphertext.

The workaround described here also pertains to special cases in which one of the blobs is not
encrypted. If an encrypted blob ID is assigned to a blob column with no encryption, the
assignment is allowed but a warning error is returned.

ENCRYPTING YOUR DATA

2.5. Decrypting Data

Only the database owner can perform database-level decryption. Decrypting a database causes
all pages to be decrypted and rewritten in plaintext.

To decrypt a database, use the following syntax:

alter database decrypt

An isc_database_info()call can be made to determine if database-level encryption is enabled, by
passing an isc_info_db_encrypted info item. A value of 1 is returned if the database is encrypted
and a value of 0 if not. GSTAT indicates the database is encrypted in the Variable header data
section of the header page display and isgl does likewise with the Show Database command.

2.5.1. Decrypting Columns

A column can be re-encrypted with another key or decrypted. The table needs exclusive access
before this operation can proceed. All rows in the table are re-encrypted and the former column
data, including blobs, are zeroed from the database so that it is no longer visible. If more than a
single column in a table is altered for a change in encryption, you should disable auto-commit of
DDL statements. This allows the multiple columns to be re-encrypted in a single pass over the
table, which can save time on very large tables.

To decrypt a column, use the following syntax:

alter table table-name alter [column] column-name decrypt

2.6. Granting Decrypt Permission

After encrypting a column, the database owner or the individual table owner, grants decrypt
permission to users who need to access the values in an encrypted column. Generally speaking,
these are end users who already have, or who need to have, select, insert, update, and/or delete
privileges on the same data. You can grant decrypt permission to individual users and to groups
of users by role, view, trigger, and stored procedure.

To grant decrypt privileges to an individual user, use the following syntax:

grant decrypt[(column-name, ..)] on table-name to user-name

Note:
If the database owner or the individual table owner has explicitly granted execute and
select privileges to users on stored procedures and views, respectively, a chain of

ENCRYPTING YOUR DATA

ownership implicitly grants decrypt privilege on any referenced encrypted columns in
those schema elements owned by that schema owner.

2.6.1. Permissions for Roles and Views

When a number of users need to access the same encrypted columns, you can save time and
effort by assigning the users to the same role, and granting decrypt permission to the role rather
than to each individual user.

For example, suppose you have a table called “"Employee” which contains columns that are used
by people in the same department. You could create a role called "HR_Role,” assign individual HR
employees to the role, and then grant decrypt privileges to the role. The code sample that
follows shows you how to create users, assign them to a role, then provide decrypt privileges to
the role:

CREATE USER J_Smith PASSWORD 'Smith'
CREATE USER J_Doe PASSWORD 'Doe'

CREATE USER B_Jones PASSWORD 'Jones'
CREATE ROLE HR_Role

GRANT HR_Role to J_Smith, J_Doe, B_Jones
GRANT DECRYPT (A) on Employee to HR_Role
GRANT DECRYPT (B) on Employee to HR_Role

After issuing these commands, all the members in the HR_role can use their role affiliation to
decrypt columns A and B.

Similarly, you can give users access to a view that has decrypt access to encrypted columns. First
you create the view:

CREATE VIEW Payroll_View as SELECT
C, D, E, I FROM Employee

Payroll_View now contains data from columns C, D, E, and I. Next, you can grant decrypt access
to encrypted columns on Employee to view Payroll_View:

GRANT DECRYPT (C, D, E, I) ON Employee TO VIEW Payroll_View

Next, you can grant access to Payroll_View to individual users:

GRANT SELECT ON Payroll_View TO D_Gibson

or to all the users assigned to a role (after creating the role), as shown below:

GRANT SELECT ON Payroll_View TO Payroll_Role

ENCRYPTING YOUR DATA

2.7. Revoking Encrypt and Decrypt Permissions

There are two revoke commands associated with the InterBase encryption feature:

* Revoke ENCRYPT ON ENCRYPTION is used to revoke encryption permission. Only the
SYSDSO can revoke encryption permission.

* Revoke DECRYPT can be used by the database or table owner to revoke decrypt permission
from a user, role, or view.

To revoke encryption permission, the SYSDSO uses the following syntax:

revoke ENCRYPT ON ENCRYPTION key-name from user-name;

To revoke decrypt permission, the database or table owner uses the following syntax:

revoke decrypt[(column-name, ..)] on table-name from {user-name {{!}} role- name

{{!'}} public}

3. Encrypting a Database with IBConsole

This section explains how to enable Embedded User Authentication (EUA) and perform
encryption using IBConsole. Before enabling and performing encryption, please read About
InterBase Encryption.

For more information about using IBConsole, see the InterBase |BConsole.

3.1. Enabling EUA and Performing Encryption When Creating a New Database

To enable EUA and perform encryption when creating a new database, do the following:

1. Login to IBConsole as a SYSDBA or as a database owner.

2. Right click Databases > Create Database on the server tree.

3. In Create Database, click the browse button in the File field and the Specify Database
Name dialog opens.

4. In the Save In field, select the folder where you want to save the database.

5. Specify a file name and click Save and the dialog closes.

Note:
The Alias field is automatically populated with the database name you just created
in the File Name field.

6. Change the value in the Embedded User Authentication field to Yes. The Use Encryption
field is now visible.
7. In the Use Encryption field, change the value to Yes, as shown in the figure:

http://docwiki.embarcadero.com/InterBase/15/en/IBConsole

ENCRYPTING YOUR DATA

Create Database X

Server: Local Server - gds_db

Eiles: Options
File Name C\data\ENCRIPTEDDB.IB = Page Size 4096
Tablespaces Multiple Files /O Write Mode Asynchronous
Use Name File Location Description Default Character Set None
SQL Dialect 3
Reserve Table Space Yes
data to display> Preallocate Pages 0

Embedded User Authentication Yes

Use Encryption Yes
Create on behalf of user ~ SYSDBA ODS Version DEFAULT
Password of user sssssccse
¥4 Save Alias Information Save Password
Alias: Encripteddb

Use Alias for DB connections
Next Cancel

8. Click OK to create the database.

Note:

o You can also specify if the database is to created for another user. In the Alias field,
you can specify the name of the user. In the Create on behalf of user you would
specify the name of the user.

9. Click OK to create the database.The dialog closes and the Database Connect dialog opens.
10. Enter your connection information and click Connect.
11. The database is created and the Encryption Wizard opens.

ENCRYPTING YOUR DATA

Encryption Wizard X

Database: Encripteddb

Welcome to the Database Encryption Wizard

The Database Encryption Wizard will guide you through the creation
of an encryption key which will then be used to perform database-
level encryption on this database.

The steps are:
1. Provide SYSDSO Password (optional)
2. Establish a System Encryption Password
3. Specify a name and oPtlons for the encryption key
4. Create a backup key if necessary

Click the "Next” button to begin.

< Back Next > OK X Cancel

12. After reading the page, click Next.
13. In Step 1, type the SYSDSO Password and click Next.

Encryption Wizard

Database: Encripteddb

Database Encryption Wizard Step 1

The first step is creating account for SYSDSO,
To continue, please provide the SYSDSO password.

SYSDSO Password |

Confirm Password
No Password

No password makes it easier for the account creator to temporarily
acquire SYSDSO privileges to create and test encryptions during
development without having to login to do so. When the SYSDSO
password is subsequently changed, the account creator loses this
privilege. Presumably, this handoff would occur at deployment time,
when transferring these duties to a security authority.

< Back Next > OK X Cancel

14. In Step 2, create and confirm a System Encryption Password (SEP) and then click Next.

Note:
For more information about External, see Using the External Option when Creating

a SEP.

http://docwiki.embarcadero.com/InterBase/15/en/Using_the_External_Option_when_Creating_a_SEP
http://docwiki.embarcadero.com/InterBase/15/en/Using_the_External_Option_when_Creating_a_SEP

ENCRYPTING YOUR DATA

Encryption Wizard X

Database: Encripteddb
Database Encryption Wizard Step 2

Please establish a System Encryption Password for this database.

Check the External checkbox if you do not want the
SEP to be associated with your computer.

Encryption password |
Confirm password

External

When external, a SEP password is required each time the database is
initially loaded into memory. When internal, this is required only the
first time the database is loaded on a given system.

< Back Next > OK X Cancel

15.In Step 3, type a name for the Encryption Key in the Encryption Name field. Change the
fields in the Options section as desired.

Database: Encripteddb

Database Encryption Wizard Step 3
Specify a name and the options for the encryption key.

Encryption name

Use Case Sensitive name Default Key
with Grant Option

Options
Cipher

Key bit length
Init vector NULL
Padding NULL

< Back Next > OK X Cancel

* You can specify any name for the encryption key.

* The encryption key used to encrypt a backup needs to be password-protected. You can
create a key without a password, but that will cause problems if that key is used at the
time of backup.

* It is recommended that you select the Default Key check-box. However it is not
required.

« In this example DES is used as Cipher because it is free.

ENCRYPTING YOUR DATA

16. In Step 4, create a password-protected key and then click OK.

Encryption Wizard X

Database: Encripteddb

Database Encryption Wizard Step 4

To be able to backup and restore the encrypted database you need
to create a password protected key.

You can create it now by specifying a name for
it and supplying a password. The Cipher and

Backupkey Name |

Case sensitive name

Password

Confirm Password

< Back Next I X Cancel

The dialog closes and a message opens informing you that the encryption of database is
complete.

Note:
For more information about Embedded User Authentication, see the InterBase
Operations Guide.

3.2. Enabling EUA and Performing Encryption on an Existing Database

To enable EUA and perform encryption on an existing database, take the following steps:

1. Connect to the database you want to encrypt as the owner.

2. In the left pane, right-click on the database name and select Properties from the context
menu or select Database > Properties from the menu.

3. In the Database Properties dialog, click on the General tab.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

ENCRYPTING YOUR DATA

Database Properties X

Object: Local Server - gds_db

Alias General

Summary Information Options
Owner: SYSDBA ' Read Only
On Disk Structure: 19.0 I/O Write Mode

Allocated DB Pages: 245
Page Size: 4096
Default Character Set: NONE

Sweep Interval
Database Dialect
Page Buffers
Linger Interval
Flush Interval

Reclaim Interval
Statistics

IDescrlptlon: Reserve Table Space

Embedded User Authentication
EUA Active
Database Encrypted
Default Password Digest

Group Commit

()
Synchronous
20000
3
2048
0
0
300

8006 C

SHA-256

v OK X Cancel

4. Select the Embedded User Authentication checkbox. Notice that the dialog now shows

three new options.

» Select the EUA Active checkbox, a new setting will be available below.

« Select the Database Encrypted checkbox.

* You do not need to change the Default Password Digest setting.
5. Click OK to enable EUA. The dialog closes and the Encryption Wizard opens.

ENCRYPTING YOUR DATA

€% Encryption Wizard for - Employee = O X

Introduction
Introduction Welcome to the InterBase database encryption wizard '

SYSDSO Information

SEP The Database Encryption Wizard will guide you through the creation of an

Encryption Information encryption key which will then be used to perform database-level
encryption on this database.

Backup/Restore Key

The steps are:
Create the SYSDSO user.
Establish a System Encryption Password
Specify a name and options for the encryption key
Create a backup key. Mandatory if no password encryptions exist.

Click the "Next" button to begin.

Back Cancel

6. After reading the page, click Next.
7. In in the SYSDSO Information screen, enter a Password and click Next.

ENCRYPTING YOUR DATA

€% Encryption Wizard for - Employee = O X

SYSDSO Information
Provide SYSDSO password. If SYSDSO does not exist it will be created. '

Introduction

SYSDSO Information

SEP SYSDSO Password

Encryption Information

Confirm Password

Backup/Restore Key

No Password [J

No password makes it easier for the account creator to temporarily acquire
SYSDSO privileges to create and test encryptions during development without
having to login to do so. When the SYSDSO password is subsequently changed,
the account creator loses this privilege. Presumably, this handoff would occur at
deployment time, when transferring these duties to a security authority.

Back Next

8. In the SEP screen, create and confirm a System Encryption Password. Then click Next.

Note:
For more information about External, see Using the External Option when Creating
a SEP.

http://docwiki.embarcadero.com/InterBase/15/en/Using_the_External_Option_when_Creating_a_SEP
http://docwiki.embarcadero.com/InterBase/15/en/Using_the_External_Option_when_Creating_a_SEP

ENCRYPTING YOUR DATA

€% Encryption Wizard for - Employee = O X

SEP

Ruouction Establish a System Encryption Password for this database. '

SYSDSO Information

Check the External checkbox if you do not want the SEP to be associated with
your computer.

Encryption Information

Backup/Restore Key SEP Password

Confirm

External CJ

When external, a SEP password is required each time the database is initially
loaded into memory. When internal, this is required only the first time the
database is loaded on a given system.

Back Next Cancel

9. In the Encryption Information screen, click Create New Encryption.

ENCRYPTING YOUR DATA

€% Encryption Wizard for - Employee = O X

Encryption Information

Introducti i
ntroduction Select Encryption Key

SYSDSO Information

SEP

Encyption Informati Specify a name and the options for the encryption key.
on rmation

Create New Encryption

Backup/Restore Key

Encryption Name v

Options

Cipher
BitLength
InitVector
Padding

Back Next Cancel

* In the new Encryption Editor dialog, you can specify a name for the encryption key and

set other parameters.
Encryption Editor X

Name | (JUse case sensitive names
Description
Cipher AES v Bit Length 256 v
Init Vector NULL v Padding NULL v
Default (OJ
Grant Owner [Jwith Grant Option OK X Cancel

* The encryption key used to encrypt a backup needs to be password protected. You can
create a key without a password, but that will cause problems if that key is used at the
time of backup.

ENCRYPTING YOUR DATA

« It is recommended that you select the Default Key check box. However, it is not

required.
« Click Ok to save your settings and close the dialog.

 The Encryption Key has been created, click Next to continue.
0 Encryption Wizard for - Employee

Encryption Information

Introducti .
-y Select Encryption Key

SYSDSO Information

SEP

Specify a name and the options for the encryption key.

Encryption Information
Encryption Name KEYNAME
Backup/Restore Key -
o Options

Cipher AES
BitLength 256
InitVector NULL
Padding NULL

Back

10. In the Backup/Restore Key screen click Create Backup Encryption.

Cancel

ENCRYPTING YOUR DATA

€% Encryption Wizard for - Employee = O X
Backup/Restore Key
Introducti
oy To be able to backup and restore the encrypted database you need to create a
SYSDSO Information password protected key.
SEP
Encryption Information No password protected keys exist. Create one now for backup purposes. .
Create Backup Encryption
Back Finish Cancel

* In the new dialog, enter a name for your key and a password, click Ok to save your
settings.

ENCRYPTING YOUR DATA

Encryption Editor X

Name ([Use case sensitive names
Description
Cipher AES v BitLength 256 v
Init Vector NULL v Padding NULL v
Default (J

Password required

Password

Confirm

Grant Owner [Jwith Grant Option oK X Cancel

 The Backup Key has been created, click Finish to save your settings.
€9 Encryption Wizard for - Employee = 0O X

Backup/Restore Key
Introducti
ey To be able to backup and restore the encrypted database you need to create a

SYSDSO Information password protected key.

SEP

Encryption Information No password protected keys exist. Create one now for backup purposes.

Backup Key Name BKPKEY

Password eeeeeeeeee ®
Options
Cipher AES
BitLength 256
InitVector NULL
Padding NULL

Back Finish Cancel

ENCRYPTING YOUR DATA

The dialog closes and a message opens informing you that the encryption of database is
complete.

Note:
For more information about Embedded User Authentication, see the InterBase
Operations Guide.

3.3. Decrypting the Database

Database-level decryption causes all pages to be decrypted and rewritten in plain text. To
decrypt the database using IBConsole:

1. In the left pane, right-click on the database name, and select Decrypt Database.

2. The Decrypt Database dialog appears asking you to confirm your decision, it also provides
information about changes on the database, information depends on whether SEP is Internal
or External.

3. Click Decrypt.

Decrypt 127.0.0.1/gds_db:C:\Users\Administrator\Documents\TestDB.ib X

This operation will decrypt the encrypted database. It does not drop encryptions or
disable SEP.

This database has internal SEP. This means even after being decrypted, SEP is still
active, If the database is moved to a different system, the first time it is loaded
nto memory it will require the SEP password.

To do a full drop of encryption and disable SEP, login as SYSDSO and on the context
menu for the database select "Drop Encryption and Disable SEP™. This will allow you
to a) remove all encryptions and b) optionally remove SEP. "Drop Encryption and
Disable SEP" is not available on encrypted databases.

In the special case when database owner has been granted temporary SYSDSO
rights (when SYSDSO was created with no password) then the extra step of loaging
n as SYSDSO is not required. The database owner will have these context menu

tems.
: [t5]>[25] Decrypt > Cancel

Database-level decryption causes all pages to be decrypted and rewritten in plaintext.

Note:
Notice that the command in the right pane has been changed to Encrypt Database.

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

ENCRYPTING YOUR DATA

3.4. Drop Encryption with IBConsole

The Drop and Disable Encryption dialog allows you to delete an encryption key from a
database and also remove SEP. For using this function consider the following points:

« This function is not available on encrypted databases.
« The function is available when you log in as SYSDSO.
« Database owners granted temporary SYSDSO can access this function.

To drop and disable encryption on IBConsole follow these steps:

1. Connect to the database you want to modify.
2. On the left pane, right click on the database and select Drop and Disable Encryption, this
option is also available on the right pane.

InterBase Servers A
= E) Local Server - gds_db

Action

L <% Datab Disc
[—]--': .ata ases Dol
=& B y
...... Disconnect |
:C
""" Maintenance > i
...... *
...... EB . Backup / Restore > 3
s0L_ t
""" "@' Performance Monitor...
fx View Encryption Metadata ...
------ b Set SEP
""" (%) Drop and Disable Encryption
...... $ | h
3. The Drop and Disable Encryption dialog shows a list of existing encryption keys
Drop and Disable Encryption >
Enayptions "Drop Encryption Keys” will drop all the encryption
ENCKEY keys only. The System Encryption Password (SEP)
BKPKEY will continue to remain in the database, should you

choose to areate encryption keys later.
If you choose to drop SEP as wel, please note a
database sweep operation will be performed to

remove any old remnant of encrypted record
versions.

[[Jorop Encryption Keys

v oK | xgancel|

ENCRYPTING YOUR DATA

4. Select Drop Encryption Keys, once you select this option you can also select Drop SEP if
you want to also drop SEP.
5. Click OK.

3.5. Performing Column-level Encryption Using IBConsole

With column-level encryption, only the data of the selected columns is encrypted. Also, with
column-level encryption the database/table owner can specify GRANT/REVOKE access to certain
roles, users, stored procedures, and triggers.

After enabling EUA, login as SYSDSO and take the following steps in IBConsole:

1. Right-click on the database that contains the columns you want to encrypt, and choose Set
SEP.
2. On Set System Encryption Password, enter and confirm a password, then choose OK.
. Select the Encryptions node, then right-click in the right pane and select Create.
4. In Encryption Editor complete the fields as desired and choose OK.
« Name: Enter your name of the encryption key. You have an option to make this case
sensitive or not.
* Description: Enter a description to define your encryption key.
« Cipher: Select from the drop-down list: None, AES.
* Key Length: Specifies the bit length of the encryption key. For AES you can select from
128, 192, or 256, with 128 as the default value. The higher the bit length, the stronger
the encryption.
« Init Vector: Select NULL (the default) or RANDOM. This specifies the initialization vector.
« Pad: Select NULL (the default) or RANDOM. Random provides stronger encryption.
* Password and Confirm Password: Enter and confirm the password for this encryption
key.
« Grant Owner: This is selected by default. If this is not selected the key cannot be used
until you GRANT permission to someone using the Grant Editor.
5. Disconnect from the database as SYSDSO, and reconnect as SYSDBA.
6. Select the Tables node, right-click the table that contains the columns that you want to
encrypt, and select Properties.

w

“Click % and the Table Editor opens.

8. Select the name of the column to encrypt, and click Edit Field.

9. In Field Property Editor, complete the following information, and click OK.

« Name: Where the name of the column is entered or changed.

* Field Kind: Select the kind of column to create. Once you make a selection three options
are available:

« Domain: You have two options: (1) Select Domain where you select an existing domain
to be used with the column; or (2) New Domain which opens the Domain Editor to
create a new domain to be used with the column.

« Data Type: You can open the Data Type Editor to create or alter the Data Type definition
for the column.

ENCRYPTING YOUR DATA

« Computed By: This field is only visible when created a Computed By column. Computed
By columns cannot be altered.

» Domain: Displays the domain name if the column definition is based on a domain.

 Data Type: The data type definition is displayed, whether it is based on a domain or
created manually.

« Default: This field is only enabled when creating a column that is not Computed By.

* Not Null: When checked the column cannot have null values. This is only enabled when
creating a column definition.

* Encryption: The column is encrypted with the selected encryption key. If “none” is
selected the column will decrypt.

« Decrypt Default: This value is displayed to users who are not granted permission to see
or alter the data in the column. If no “Decrypt default: is specified, IBConsole hides the
column when a user without rights displays the data in the table.

10. Choose OK again on the Table Editor. The column you selected is encrypted using the
encryption level you specified.

3.6. Backup and Restore an Encrypted Database

To backup and restore an encrypted database the database must have a special password-
protected encryption key. Any password-protected encryption key will work, but it is a good
practice to create a special key for this purpose. Only SYSDSO can create encryption keys.

3.6.1. Create an Encrypted Key

1. If you are connected to the database then you must first disconnect from it.

2. In the right pane double-click Connect As, or select Database > Connect As from the
menu. The Connect As dialog will be displayed.
*fi Database Connect ? X

Database: Testdbl

User Name: |SYSDS0]
Password: (000000000 |
Save Settings]

Role: l l
Case sensitive role name

Client Dialect: 3 v
Display Character Set None v

Use DBAliashame]

Connect Cancel

ENCRYPTING YOUR DATA

3. Specify SYSDSO as the user and supply the SYSDSO password that you created in the
Encryption Wizard.

4. Click Connect and the database is connected. Notice that in the node, Encryptions is now
visible.
*§ 18Console - O X

Console View Server Database Tools Windows Help

B B& &%
@ InteiBase Servers Stait Here Database
v B Local Sever - gds_db
v ;?' Databases
#x Employee
v & Tesdnl
Domaing
Tables
¥ Indices
3 Views
W Stored Proceduwes
(3] Trggers
ﬁ Extemal Functions
% Generators
@ Exceptions
& BiobFiters
B Roles
S Subscriptions
Emtmh'om
> Backup

MName Desciiption
[[3¢]keY

Recent databases |
Abas Server Last Acce:

W Teadbl LocalServer-gds_db 6/6/2017
¥, Emplovee Local Server - gds_db 6/6/2017

< > < >
Server: Local Server - gds_db Database: Testdbl User: SYSDSO 1 objects listed

5. Select this node, then right-click in the right pane and select Create from the pop-up menu.
The Encryption Editor opens.

Encryption Editor ? X
Name || | [J Use Case sensitive names
Description I I
Cipher [Be aware that using AES requires an additional license)

Init Vector NULL v
Pad NULL v
Password | |
Confim | |
Grant Dwner with Grant Option [] oK

ENCRYPTING YOUR DATA

6. Specify a name for the encryption key, select a Cipher, and enter and confirm a password.
7. Click OK and the backup key is created. Note that the key you just created is now listed in

the right panel.

8. Now disconnect from the database.

3.6.2. Backup an Encrypted Database

. Connect to the database as owner of the database.
. Double-click on Database Backup in the right pane or select Database > Maintenance >

Backup/Restore > Backup from the menu. The Database Backup dialog is displayed.

. IBConsole supplies a default filename for the backup file. To override this click the browse

button to the right of the File Name input box. Here you can select another backup file or
create a new file name.

. In the Options group box select the Encryption Key from the dropdown box. IBConsole lists

all available password protected encryption keys.

. IBConsole already has the SEP so you do not need to specify this.
. Click OK and a the cursor changes to a “processing” cursor. Once the backup is completed,

an information dialog tells you the database backup is complete.

3.6.3. Restore an Encrypted Database

To restore a database logon as SYSDBA or as the owner of the database, make sure you are not
connected to the database, then do the following steps:

1.

Right-click the Backup node in the left pane and select Restore or select Database >
Maintenance > Backup/Restore > Restore from the menu. The Database Restore dialog
opens.

. First, specify the backup file to be restored. In the Backup File(s) option, select File... from

the Alias field.

. In the File Open dialog browser to your backup file and click Open.
. In the Database option, specify the database to restore to. Select a database alias from the

Alias drop down or specify a file.

. You need to set the following options:

« If you are restoring to the original database file name, you need to set Overwrite to
True.

* In SEP you must specify the SEP of the backup file. At this point IBConsole does not
make any assumption about the SEP of a backup file. So you must specify the SEP you
used when you encrypted the database.

* In the Decrypt Password field, supply the password of the encryption key used to create
the backup file.

« Specify the name of the database owner and password in the EUA User Name and EUA
Password fields.

ENCRYPTING YOUR DATA

*i Database Restore ? X
Server. Local Server - gds_db
Backup File(s) Options
Alias: File... v Page Size 4036 v
Files D:ABACKUPS \testbkp.ibk D ETite e ~
L
Commit After Each Table False v
Create Shadow Files False v
v Deactivate Indices False v
Database Walidity Conditions Restore v
Alias: | testbkp v Use All Space False v
File Name D:ABACKUPS testbkp.ibk Verbose Output None v
[J Use multiple files [J Remember Settings Validation Check False v
Preallocate Pages IU |
SEP] \
Decrypt Password I |
EUA UserName ’ ‘
If you restore an encrypted backupfile you need to supply the System
Encryption Password [SEP) of the original database. You need also to supply EUA Password l |
the password of the key used to encrypt the backupfile in the Decrypt
Password inputbox.
0DS Version DEFAULT v
The Usemame and Password of the owner of the database is required when
the database has Embedded User Authentication (EUA). X Cancel

6. Click OK to start the restore. Once the restore is complete, you will get a completion
message.

4. Encrypting Backup Files

Because backup files are often sent off-site for disaster recovery or long-term archival purposes,
it is important that encrypted databases have their backup files encrypted as well.

A database encrypted at the database or column level must be backed up as encrypted. There is
no override or "backdoor” to back up an encrypted database in unencrypted form. To allow a
regular, unencrypted database backup, the user would have to manually make a file copy of the
database and alter the database copy to decrypt all pages and columns and drop all encryptions.
The GBAK utility provides three additional switches to facilitate encrypt and decrypt operations
on database backups.

The GBAK utility uses the -encrypt and -decrypt switches to provide the information required to
encrypt and decrypt a database backup. The -sep switch is used to pass the system encryption
password of the database that is being backed up and restored. If the -sep switch is not
provided, InterBase automatically provides the value associated with the
ISC_SYSTEM_ENCRYPT_PASSWORD environment variable (when the variable has been defined).

ENCRYPTING YOUR DATA

Important:

Starting with InterBase XE, all encrypted databases (AES or DES) can only be backed up
or restored using the “-se service” option. Only service-side backups are allowed for
encrypted databases thus making data visibility more secure; this inhibits any potential
process-space view of unencrypted data on a normal backup client.

4.1. Avoiding Embedded Spaces in GBAK Encrypt/Decrypt and Sep Statements

When using the -sep (for creating the System Encryption Password), -encrypt, -decrypt
arguments, it is recommended that you avoid using delimited identifiers and password
arguments with embedded spaces in the argument, if possible.

The -sep, -encrypt, -decrypt arguments require quotations if they contain embedded spaces. If
quotations are required, the quotation nesting level depends on whether GBAK is invoked with
the -service switch. If the -service switch is not given, then one level of quotation is satisfactory. If
the -service switch is given, then two levels of quotation are required.

4.2. Encrypting a Database Backup File

The -encrypt switch requires the name of the encryption defined in the database that is being
backed up. Please note that encrypted databases can be backed up only as a service, and thus
will also need to provide full path names to the database file and backup file.

The following example shows how to use the -encrypt and -sep switches to encrypt a sample
database backup file:

gbak -se service -b c:\embarcadero\interbase\examples\database\employee.ib c:
\backup_dir\employee.ibak -sep 'sep password' -encrypt my_backup_key

gbak -se localhost:service -b c:
\embarcadero\interbase\examples\database\employee.ib c:\backup_dir\employee.ibak
-sep 'sep password' -encrypt my_backup_key

4.3. Decrypting a Database Backup File During a Restore

The -decrypt switch is used during the database restore process to provide the password of the
encryption that was used to originally backup the database. Please note that encrypted
databases can be restored only as a service, and thus will also need to provide full path names to
the database file and backup file.

The following example shows how to use the -decrypt and -sep switches to decrypt a sample
database file during a database restore:

gbak -se service -r c:\backup_dir\employee.ibak c:
\embarcadero\interbase\examples\database\employee.ib -sep “’sep password”’ -

ENCRYPTING YOUR DATA

decrypt 'my password'

gbak -se localhost:service -r c:\backup_dir\employee.ibak c:
\embarcadero\interbase\examples\database\employee.ib -sep “’sep password”’ -
decrypt 'my password'

For more information about using the GBAK -b and -r options to perform database backups and
restores, see the InterBase Operations Guide.

4.4. Additional Guidelines for Encrypting and Decrypting Database Backup Files

When preparing to encrypt or decrypt database backup files, keep the following information in
mind:

« The encryption chosen for a database backup must be custom password-protected and at
least as strong, in terms of encryption key size, as the strongest encryption defined in the
database.

 An encrypted database backup file will be almost the same size as an unencrypted database
backup. However, the time to encrypt and decrypt a backup file may be longer than a
backup which is not encrypted.

» GBAK retrieves all encrypted column data in plaintext form, so Over-the-Wire (OTW)
encryption should be used if backing up and restoring over the network. Alternatively, the -
se service manager switch can be used to backup and restore on the server to avoid network
transmission. For more information about OTW, see the InterBase Operations Guide.

« It is the user's responsibility to remember the encryption password and system encryption
password necessary to decrypt a set of database backup files as there is no means for
InterBase to do so automatically.

« Databases with AES encryption keys allow backup/restore activities only as a service. It was
designed to facilitate discovering a "strong encryption” license mandate in the engine.

Backup/restore operations can be restricted on any encrypted database. An error message now
displays the following when GBAK is not run as a service on encrypted databases:
gbak: ERROR: encrypted database: use -service switch

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

CHARACTER SETS AND COLLATION ORDERS

CHARACTER SETS AND COLLATION ORDERS

This chapter discusses the following topics:

* Available character sets and their corresponding collation orders

« Character set storage requirements

« Specifying default character set for an entire database

« Specifying an alternative character set for a particular column in a table

« Specifying a client application character set that the server should use when translating data
between itself and the client

« Specifying the collation order for a column

« Specifying the collation order for a value in a comparison operation

« Specifying the collation order in an ORDER BY clause

« Specifying the collation order in a GROUP BY clause

1. About Character Sets and Collation Orders

CHAR, VARCHAR, and text BLOB columns in InterBase can use many different character sets. A
character set defines the symbols that can be entered as text in a column, and its also defines the
maximum number of bytes of storage necessary to represent each symbol. In some character
sets, such as ISO8859_1, each symbol requires only a single byte of storage. In others, such as
UNICODE_FSS, each symbol requires from 1 to 3 bytes of storage.

Each character set also has an implicit collation order that specifies how its symbols are sorted
and ordered. Some character sets also support alternative collation orders. In all cases, choice of
character set limits choice of collation orders. InterBase supports four different types of collation
order: Windows, dBASE, Paradox, and ISO. The ISO collation sequence is recommended in
preference to the other three.

2. Character Set Storage Requirements

It is important to know the storage requirements of a particular character set because InterBase
restricts the maximum amount of storage in each field of a CHAR column to 32,767 bytes.
VARCHAR columns are restricted to 32,765 bytes.

For character sets that require only a single byte of storage per character, the maximum number
of characters that can be stored in a single field corresponds to the number of bytes. For
character sets that require multiple bytes per character, determine the maximum number of
symbols that can be safely stored in a field by dividing 32,767 or 32,765 by the number of bytes
required for each character.

For example, for a CHAR column defined to use the UNICODE_FSS character set, the maximum
number of characters that can be specified is 10,922 (32,767/3).

CHARACTER SETS AND COLLATION ORDERS

CHAR (10922) CHARACTER SET UNICODE_FSS;

3. InterBase Character Sets

The following table lists each character set that can be used in InterBase. For each character set,
the minimum and maximum number of bytes used to store each symbol is listed, and all collation
orders supported for that character set are also listed. The first collation order for a given
character set is that implicit collation of the set, the one that is used if no COLLATE clause
specifies an alternative order. The implicit collation order cannot be specified in the COLLATE
clause.

Collation names of the form WINxxxx are defined by Microsoft, those of the form DB_xxx are
dBASE, and those that start with PDOX or PXW are Paradox. Collation names of the form AA-BB
are ISO collations: AA is the language, BB is the country.

Character sets and collation orders

Character Maximum Minimum Collation

Character set . .
set ID character size character size orders

ASClI 2 1 byte 1 byte ASCII

BIG_5 56 2 bytes 1 byte BIG_5

CYRL
CYRL 50 1 byte 1 byte DB_RUS
PDOX_CYRL

DOS437
DB_DEU437
DB_ESP437
DB_FIN437
DB_FRA437
DB_ITA437

DOS437 10 1 byte 1 byte DB_NLD437
DB_SVE437
DB_UK437
DB_US437
PDOX_ASCII
PDOX_INTL
PDOX_SWEDFIN

CHARACTER SETS AND COLLATION ORDERS

Character set

Character
set ID

Maximum
character size

Minimum
character size

Collation
orders

DOS850

DOS852

DOS857

DOS860

DOS861

DOS863

DOS865

EUCJ_0208

11

45

46

13

47

14

12

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

DOS850
DB_DEU850
DB_ESP850
DB_FRA850
DB_FRC850
DB_ITA850
DB_NLD850
DB_PTB850
DB_SVE850
DB_UK850
DB_US850

DOS852
DB_CSY
DB_PLK
DB_SLO
PDOX_CSY
PDOX_HUN
PDOX_PLK
PDOX_SLO

DOS857
DB_TRK

DOS860
DB_PTG860

DOS861
PDOX_ISL

DOS863
DB_FRC863

DOS865
DB_DANB865
DB_NOR865
PDOX_NORDAN4

EUJC_0208

CHARACTER SETS AND COLLATION ORDERS

Character Maximum Minimum Collation
Character set . .
set ID character size character size orders
GB_2312 57 2 bytes 1 byte GB 2312
1ISO8859 1

CC_PTBRLAT1
DA_DA
DE_DE
DU_NL
EN_UK
EN_US
ES_ES
1S08859_1 21 1 byte 1 byte
FI_FI
FR_CA
FR_FR
IS_IS
ITIT
NO_NO
PT_PT

SV_SV

ISO8859_2
ISO8859_2 22 1 byte 1 byte s .z

PL_PL

CHARACTER SETS AND COLLATION ORDERS

Character set

Character Maximum
set ID character size

Minimum
character size

Collation
orders

ISO8859_15

KOI8R

KSC_5601

NEXT

NONE

58

44

19

1 byte

1 byte

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1SO8859_15
CC_PTBRLAT9
DA_DA9
DE_DE9
DU_NL9
EN_UK9
EN_US9
ES_ES9
FI_FI9
FR_CA9
FR_FR9
IS_IS9
IT_IT9
NO_NO9
PT_PT9

SV_SV9

KOI8R

RU_RU

KSC_5601

KSC_DICTIONARY

NEXT
NXT_DEU
NXT_FRA
NXT_ITA
NXT_US

NONE

CHARACTER SETS AND COLLATION ORDERS

Character Maximum Minimum Collation
Character set . .
set ID character size character size orders
OCTETS 1 1 byte 1 byte OCTETS
SJIS_0208 5 2 bytes 1 byte SJIS_0208
UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS
UNICODE_BE L.
UCS2BE 8 2 bytes 2 bytes N/A at this time
UNICODE_LE
UCSOLE 64 2 byte 2 bytes N/A
UTF_8 59 4 bytes 1 byte N/A at this time.
WIN1250
PXW_CSY
WIN1250 51 1 byte 1 byte PXW_HUNDC
PXW_PLK
PXW_SLOV
WIN1251
WIN1251 52 1 byte 1 byte PXW._CYRL
WIN1252
CC_PTBRWIN
PXW_INTL
WIN1252 53 1 byte 1 byte PXW_INTL850
PXW_NORDAN4
PXW_SPAN
PXW_SWEDFIN
WIN1253
WIN1253 54 1 byte 1 byte PXW_GREEK
WIN1254 55 1 byte 1 byte WINT254

PXW_TURK

CHARACTER SETS AND COLLATION ORDERS

4. Character Sets for DOS

The following character sets correspond to MS-DOS code pages, and should be used to specify
character sets for InterBase databases that are accessed by Paradox for DOS and dBASE for DOS:

Character set DOS code page

DOS437 437
DOS850 850
DOS852 852
DOS857 857
DOS860 860
DOS861 861
DOS863 863
DOS865 865

The names of collation orders for these character sets that are specific to Paradox begin “ PDOX ".
For example, the DOS865 character set for DOS code page 865 supports a Paradox collation
order for Norwegian and Danish called “ PDOX_NORDAN4 “.

The names of collation orders for these character sets that are specific to dBASE begin “ DB “. For
example, the DOS437 character set for DOS code page 437 supports a dBASE collation order for
Spanish called “ DB_ESP437 ".

For more information about DOS code pages, and Paradox and dBASE collation orders, see the
appropriate Paradox and dBASE documentation and driver books.

4.1. Character Sets for Microsoft Windows

There are five character sets that support Windows client applications, such as Paradox for
Windows. These character sets are: WIN1250, WIN1251, WIN1252, WIN1253, and WIN1254.

CHARACTER SETS AND COLLATION ORDERS

The names of collation orders for these character sets that are specific to Paradox for Windows
begin "PXW". For example, the WIN1250 character set supports a Paradox for Windows collation
order for Norwegian and Danish called “ PXW_NORDAN4 “.

For more information about Windows character sets and Paradox for Windows collation orders,
see the appropriate Paradox for Windows documentation and driver books.

4.2. UNICODE_BE and UNICODE_LE Character Sets

InterBase now supports 16-bit UNICODE_BE and UNICODE_LE as server character sets. These
character sets cannot be used as client character sets. If your client needs full UNICODE character
support, please use UTF8 instead of UNICODE_LE and UNICODE_BE for the client character set
(a.k.a LC_CSET). A client can use the UTF8 (or other native) client character set to connect with a
UNICODE database.

A database schema is declared to use the new character set in the CREATE DATABASE statement,
as follows:

CREATE DATABASE <filespec> <...>; DEFAULT CHARACTER SET UNICODE;

Note that InterBase uses “"big endian” ordering by default.

The attributes for the UNICODE_BE and UNICODE_LE character sets are shown in InterBase
Character Sets.

Note:
InterBase 2008 does not support UNICODE collations in this release. The default
collation is binary sort order for UNICODE.

Support for the UTF-8 Character Set

The UTF-8 character set is an alternative coded representation form for all of the characters of
the ISO/IEC 10646 standard. To use the UTF-8 character set, you would declare a database
schema to use the character set, in the CREATE DATABASE SQL statement, as shown below:

CREATE DATABASE <filespec> <...> DEFAULT CHARACTER SET UTFS8;

Additionally, you may use the alias UTF_8.

The attributes for the UTF-8 character set are shown in InterBase Character Sets.

CHARACTER SETS AND COLLATION ORDERS

4.3. Additional Character Sets and Collations

Support for additional character sets and collation orders is constantly being added to InterBase.
To see if additional character sets and collations are available for a newly created database,
connect to the database with isql, then use the following set of queries to generate a list of
available character sets and collations:

SELECT RDBSCHARACTER_SET_NAME, RDB$CHARACTER_SET_ID
FROM RDBSCHARACTER_SETS

ORDER BY RDB$CHARACTER_SET_NAME;
SELECT RDBSCOLLATION_NAME, RDB$CHARACTER_SET_ID
FROM RDBSCOLLATIONS

ORDER BY RDB$COLLATION_NAME;

5. Specifying Defaults

This section describes the mechanics of specifying character sets for databases, table columns,
and client connections. In addition, it describes how to specify collation orders for columns,
comparisons, ORDER BY clauses, and GROUP BY clauses.

5.1. Specifying a Default Character Set for a Database

A database’s default character set designation specifies the character set the server uses to tag
CHAR, VARCHAR, and text BLOB columns in the database when no other character set
information is provided. When data is stored in such columns without additional character set
information, the server uses the tag to determine how to store and transliterate that data. A
default character set should always be specified for a database when it is created with
CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of
CREATE DATABASE. For example, the following statement creates a database that uses the
ISO8859 1 character set:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET IS08859_1;

Important:

If you do not specify a character set, the character set defaults to NONE . Using character
set NONE means that there is no character set assumption for columns; data is stored
and retrieved just as you originally entered it. You can load any character set into a
column defined with NONE, but you cannot later move that data into another column
that has been defined with a different character set. In this case, no transliteration is
performed between the source and destination character sets, and errors may occur
during assignment.

CHARACTER SETS AND COLLATION ORDERS

For the complete syntax of CREATE DATABASE, see Language Reference Guide.

5.2. Specifying a Character Set for a Column in a Table

Character sets for individual columns in a table can be specified as part of the column’s CHAR or
VARCHAR data type definition. When a character set is defined at the column level, it overrides
the default character set declared for the database. For example, the following isql statements
create a database with a default character set of ISO8859 1, then create a table where two
column definitions include a different character set specification:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET IS08859_1;
CREATE TABLE RUS_NAME (

LNAME VARCHAR(30) NOT NULL CHARACTER SET CYRL,

FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,);

For the complete syntax of CREATE TABLE, see Language Reference Guide.

5.3. Specifying a Character Set for a Client Connection

When a client application, such as isql, connects to a database, it may have its own character
set requirements. The server providing database access to the client does not know about these
requirements unless the client specifies them. The client application specifies its character set
requirement using the SET NAMES statement before it connects to the database.

SET NAMES specifies the character set the server should use when translating data from the
database to the client application. Similarly, when the client sends data to the database, the
server translates the data from the client’s character set to the database’s default character set
(or the character set for an individual column if it differs from the database’s default character
set).

For example, the following isql command specifies that isql is using the DOS437 character set.
The next command connects to the europe database created in Specifying a Character Set for a
Column in a Table:

SET NAMES D0S437;
CONNECT 'europe.ib' USER 'JAMES' PASSWORD 'U4EEAH';

For the complete syntax of SET NAMES and CONNECT, see Language Reference Guide.

6. Specifying Collation Orders

This section describes how to use the COLLATE clause to specify collation order in columns,
comparison operations, ORDER BY clauses, and GROUP BY clauses.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

CHARACTER SETS AND COLLATION ORDERS

6.1. Specifying Collation Order for a Column

Use the COLLATE clause with either CREATE TABLE or ALTER TABLE to specify the collation
order for a CHAR or VARCHAR column. The COLLATE clause is especially useful for character
sets such as ISO8859_1 or DOS437 that support many different collation orders.

For example, the following isql ALTER TABLE statement adds a new column to a table, and
specifies both a character set and a collation order:

ALTER TABLE 'FR_CA_EMP'

ADD ADDRESS VARCHAR(40) CHARACTER SET IS08859_1
NOT NULL
COLLATE FR_CA;

For the complete syntax of ALTER TABLE, see Language Reference Guide.

6.2. Specifying Collation Order in a Comparison Operation

When CHAR or VARCHAR values are compared in a WHERE clause, it is necessary to specify a
collation order for the comparisons if the values being compared use different collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE clause
after the value. For example, in the following WHERE clause fragment from an embedded
application, the value to the left of the comparison operator is forced to be compared using a
specific collation:

WHERE LNAME COLLATE FR_CA = :1lname_search;

For the complete syntax of the WHERE clause, see Language Reference Guide.

6.3. Specifying Collation Order in an ORDER BY Clause

When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary to
specify a collation order for the ordering, especially if columns used for ordering use different
collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause, include a
COLLATE clause after the column name. For example, in the following ORDER BY clause, the
collation order for two columns is specified:

ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see the Language Reference Guide.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

CHARACTER SETS AND COLLATION ORDERS

6.4. Specifying Collation Order in a GROUP BY Clause

When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary to
specify a collation order for the grouping, especially if columns used for grouping use different
collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause, include a
COLLATE clause after the column name. For example, in the following GROUP BY clause, the
collation order for two columns is specified:

GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see Language Reference Guide.

http://docwiki.embarcadero.com/InterBase/15/en/Language_Reference_Guide

	USING THE DATA DEFINITION GUIDE
	What is Data Definition?
	Who Should Use the Data Definition Guide
	Using isql
	Using a Data Definition File

	DESIGNING DATABASES
	Overview of Design Issues
	Database Versus Data Model
	Design Goals

	Design Framework
	Analyzing Requirements
	Collecting and Analyzing Data
	Identifying Entities and Attributes
	Designing Tables
	Determining Unique Attributes (Designing Databases)
	Developing a Set of Rules (Designing Databases)
	Specifying a Data Type
	Choosing International Character Sets
	Specifying Domains
	Setting Default Values and NULL Status
	Defining Integrity Constraints
	Defining CHECK Constraints

	Establishing Relationships between Objects
	Enforcing Referential Integrity
	Normalizing the Database
	Eliminating Repeating Groups (Normalizing the Database)
	Removing Partially-dependent Columns (Normalizing the Database)
	Removing Transitively-dependent Columns (Normalizing the Database)
	When to Break the Rules

	Choosing Indexes
	Increasing Cache Size
	Creating a Multifile, Distributed Database

	Planning Security (Designing Databases)
	Naming Objects

	CREATING DATABASES (DATA DEFINITION GUIDE)
	What You Should Know
	Creating a Database (Data Definition Guide)
	Database File Naming Conventions
	Creating a Database Using a Data Definition File
	Using CREATE DATABASE
	Creating a Single-file Database
	Specifying file size for a single-file database

	Creating a Multifile Database
	Using LENGTH to Specify a Secondary File
	Specifying the Starting Page Number of a Secondary File
	Specifying User Name and Password (Using CREATE DATABASE)
	Specifying Database Page Size
	When to increase page size
	Changing page size for an existing database

	Specifying the Default Character Set
	When there is No Default Character Set

	Creating Read-only Databases

	Altering a Database
	Dropping a Database
	Creating a Database Shadow
	Advantages of Creating a Database Shadow
	Limitations of Creating a Database Shadow
	Before Creating a Shadow
	Using CREATE SHADOW
	Creating a Single-file Shadow (Using CREATE SHADOW)
	Shadow Location (Using CREATE SHADOW)
	Creating a Multifile Shadow (Using CREATE SHADOW)
	Auto Mode and Manual Mode (Using CREATE SHADOW)
	Auto Mode (Using CREATE SHADOW)
	Manual mode (Using CREATE SHADOW)

	Conditional Shadows (Using CREATE SHADOW)

	Dropping a Shadow (Creating Databases)
	Expanding the Size of a Shadow
	Using isql to Extract Data Definitions
	Extracting an InterBase 4.0 Database
	Extracting a 3.x Database

	SPECIFYING DATA TYPES
	About InterBase Data Types
	Where to Specify Data Types
	Defining Numeric Data Types
	Integer Data Types
	Fixed-decimal Data Types
	NUMERIC data type
	DECIMAL data type
	How fixed-decimal Data Types are Stored
	Specifying NUMERIC and DECIMAL with Scale and Precision
	Numeric Input and Exponents
	Specifying Data Types Using Embedded Applications
	Considering Migration for NUMERIC and DECIMAL Data Types
	Migrating Databases with NUMERIC and DECIMAL Data Types
	Using Exact Numeric Data Types in Arithmetic

	Floating-point Data Types

	Date and Time Data Types
	Converting to the DATE, TIME, and TIMESTAMP Data Types
	How InterBase Stores Date Values

	Character Data Types
	Specifying a Character Set
	Characters vs. Bytes
	Using CHARACTER SET NONE
	About Collation Order

	Fixed-length Character Data
	CHAR(n) or CHARACTER(n)
	NCHAR(n) or NATIONAL CHAR(n)

	Variable-length Character Data
	VARCHAR(n)
	NCHAR VARYING(n)

	The BOOLEAN Data Type
	Defining BLOB Data Types
	BLOB Columns
	BLOB Segment Length
	Defining Segment Length
	Segment Syntax

	BLOB Subtypes
	BLOB Filters
	Using BLOBs with VARCHAR Data
	About Text BLOB Syntax

	Defining Arrays
	Multi-dimensional Arrays
	Specifying Subscript Ranges for Array Dimensions

	Converting Data Types
	Implicit Type Conversions
	Explicit Type Conversions

	WORKING WITH DOMAINS
	Creating Domains (Data Definition Guide)
	Specifying the Domain Data Type
	Syntax

	Specifying Domain Defaults
	Specifying NOT NULL
	Specifying Domain CHECK Constraints
	Using the VALUE Keyword
	Specifying Domain Collation Order

	Altering Domains
	Dropping a Domain

	WORKING WITH TABLES (DATA DEFINITION GUIDE)
	Before Creating a Table
	Creating Tables (Data Definition Guide)
	Defining Columns
	Required Attributes
	Optional Attributes
	Specifying the Data Type
	Syntax
	Supported data types

	Casting Data Types
	Defining a Character Set
	The COLLATE Clause
	Defining Domain-based Columns
	Defining Expression-based Columns
	Specifying Column Default Values
	Specifying NOT NULL Columns

	Defining Integrity Constraints on a Table
	PRIMARY KEY and UNIQUE Constraints
	Using the FOREIGN KEY to Enforce Referential Integrity
	Referencing Tables Owned by Others
	Circular References
	How to Declare Constraints

	Defining a CHECK Constraint
	Using the EXTERNAL FILE Option
	Restrictions
	Importing External Files
	Exporting InterBase Tables to an External File

	Altering Tables
	Before using ALTER TABLE
	Saving Existing Data
	Dropping Columns

	Using ALTER TABLE
	Adding a New Column to a Table
	Adding New Table Constraints
	Dropping an Existing Column from a Table
	Dropping Existing Constraints from a Column
	Modifying Columns in a Table
	Summary of ALTER TABLE Arguments

	Dropping Tables
	Dropping a Table
	DROP TABLE Syntax

	Global Temporary Tables
	Creating a Global Temporary Table
	Altering a Global Temporary Table
	Requirements and Constraints (Global Temporary Tables)

	WORKING WITH INDEXES
	Index Basics
	When to Index
	Creating Indexes
	Using CREATE INDEX
	Preventing Duplicate Entries
	Specifying Index Sort Order
	Using Expression Index
	Expression Index
	Usability
	syntax:
	Index definition using a COMPUTED BY <expression>
	Index definition on a COMPUTED BY column
	Sample queries:

	Requirements and Constraints
	Migration issues

	When to Use a Multi-column Index
	Examples Using Multi-column Indexes

	Improving Index Performance
	ALTER INDEX: Deactivating an Index
	SET STATISTICS: Recomputing Index Selectivity
	Dropping a User-defined Index

	WORKING WITH VIEWS
	Introduction to Views
	Advantages of Views
	Creating Views (Data Definition Guide)
	Specifying View Column Names
	Using the SELECT Statement
	Using Expressions to Define Columns
	Types of Views: Read-only and Update-able
	View Privileges
	Examples of Views

	Inserting Data through a View
	Using WITH CHECK OPTION
	Examples

	Dropping Views

	CHANGE VIEWS
	Getting Started with Change Views
	ODS Platform Updates
	Migration Issues and Dependencies
	Requirements and Constraints
	Requirements
	Constraints
	Backup/Restore Considerations
	Deferred Constraint Checking
	Trigger Inactivation
	Database Restore from a Backup

	Creating Subscriptions to Change Views
	DROP SUBSCRIPTION
	Grant Subscribe
	Set Subscription

	Statement Execution
	Change Views API Support
	Change Views SQL Language Support
	Metadata Support
	Subscription/Subscriber Tables
	RDB$SUBSCRIPTIONS
	RDB$SUBSCRIBERS
	RDB$ENCRYPTIONS
	RDB$FIELDS
	RDB$TRIGGERS
	RDB$RELATIONS
	RDB$RELATION_FIELDS
	RDB$USER_PRIVILEGES

	Ad-hoc Subscriptions and SQL Language Support
	GRANT TEMPORARY SUBSCRIBE

	Change Views Requirements and Constraints
	Deferred Constraint Checking
	Trigger Inactivation

	Change Views Glossary

	WORKING WITH STORED PROCEDURES (DATA DEFINITION GUIDE)
	Overview of Stored Procedures
	Working with Procedures
	Working with Procedures Using a Data Definition File
	Calling Stored Procedures
	Privileges for Stored Procedures

	Creating Procedures
	CREATE PROCEDURE syntax
	Procedure and Trigger Language
	Syntax Errors in Stored Procedures

	The Procedure Header
	Declaring Input Parameters
	Declaring Output Parameters

	The Procedure Body
	BEGIN ... END statements
	Using Variables
	Local variables
	Input Parameters
	Output Parameters

	Using Assignment Statements
	Using SELECT Statements
	Using FOR SELECT … DO Statements
	Using WHILE … DO Statements
	Using IF … THEN … ELSE Statements
	Using Event Alerters
	Adding Comments
	Creating Nested and Recursive Procedures
	Using SUSPEND, EXIT, and END With Procedures
	Error behavior

	Altering and Dropping Stored Procedures
	Altering Stored Procedures
	ALTER PROCEDURE syntax
	Dropping Procedures
	Drop Procedure Syntax
	Altering and Dropping Procedures in Use

	Using Stored Procedures
	Using Executable Procedures in isql
	Using Select Procedures in isql
	Using WHERE and ORDER BY Clauses
	Selecting Aggregates from Procedures

	Viewing Arrays with Stored Procedures

	Stored Procedure Exceptions
	Creating Exceptions
	Altering Exceptions
	Dropping Exceptions
	Raising an Exception in a Stored Procedure

	Handling Errors
	Handling Exceptions
	Handling SQL Errors
	Handling InterBase Errors
	Examples of Error Behavior and Handling

	TRIGGERS (DATA DEFINITION GUIDE)
	About Triggers
	Working with Triggers
	Working with Triggers Using a Data Definition File

	Creating Triggers
	CREATE TRIGGER Syntax
	InterBase Procedure and Trigger Language
	Syntax Errors in Triggers

	The Trigger Header
	The Trigger Body
	NEW and OLD Context Variables
	Using Generators in the Trigger Body

	Altering Triggers
	Altering a Trigger Header
	Altering a Trigger Body

	Dropping Triggers
	Using Triggers
	Triggers and Transactions
	Triggers and Security
	Triggers as Event Alerters
	Updating Views with Triggers

	Trigger Exceptions
	Raising an Exception in a Trigger
	Error Handling in Triggers

	WORKING WITH GENERATORS
	About Generators
	Creating Generators
	Setting or Resetting Generator Values
	Using Generators
	Dropping Generators

	PLANNING SECURITY
	Overview of SQL Access Privileges
	Default Security and Access
	Privileges Available
	SQL ROLES

	Granting Privileges
	Granting Privileges to a Whole Table
	Granting Access to Columns in a Table
	Granting Privileges to a Stored Procedure or Trigger

	Multiple Privileges and Multiple Grantees
	Granting Multiple Privileges
	Granting all Privileges
	Granting Privileges to Multiple Users
	Granting Privileges to a List of Users
	Granting Privileges to a UNIX Group
	Granting Privileges to All Users

	Granting Privileges to a List of Procedures

	Using Roles to Grant Privileges
	Granting Privileges to a Role
	Granting a Role to Users

	Granting Users the Right to Grant Privileges
	Grant Authority Restrictions
	Grant Authority Implications

	Granting Privileges to Execute Stored Procedures
	Granting Access to Views
	Update-able Views
	Read-only Views

	Revoking User Access
	Revocation Restrictions
	Revoking Multiple Privileges
	Revoking All Privileges
	Revoking Privileges for a List of Users
	Revoking Privileges for a Role
	Revoking a Role from Users
	Revoking EXECUTE Privileges
	Revoking Privileges from Objects
	Revoking Privileges for All Users
	Revoking Grant Authority

	Using Views to Restrict Data Access

	ENCRYPTING YOUR DATA
	About InterBase Encryption
	Encrypting Database Backup Files
	Encrypting Network Communication (InterBase Encryption)
	About Industry Encryption Standards
	Who Can Create Encryption?
	Creating the SYSDSO User

	An Overview of Encryption Tasks
	Requirements and Support

	Using isql to Enable and Implement Encryption
	Setting the System Encryption Password (SEP)
	Altering the Database to Create the SEP
	Using External Option when Creating a SEP

	Removing the System Encryption Password (SEP)

	Creating Encryption Keys
	Setting a User-defined Password for an Encryption Key
	Dropping an Encryption Key

	Granting Encryption Permission to the Database Owner
	Encrypting Data
	About the Encryption Commands
	Setting a Decrypt Default Value for a Column
	Encrypting Blob Columns

	Decrypting Data
	Decrypting Columns

	Granting Decrypt Permission
	Permissions for Roles and Views

	Revoking Encrypt and Decrypt Permissions

	Encrypting a Database with IBConsole
	Enabling EUA and Performing Encryption When Creating a New Database
	Enabling EUA and Performing Encryption on an Existing Database
	Decrypting the Database
	Drop Encryption with IBConsole
	Performing Column-level Encryption Using IBConsole
	Backup and Restore an Encrypted Database
	Create an Encrypted Key
	Backup an Encrypted Database
	Restore an Encrypted Database

	Encrypting Backup Files
	Avoiding Embedded Spaces in GBAK Encrypt/Decrypt and Sep Statements
	Encrypting a Database Backup File
	Decrypting a Database Backup File During a Restore
	Additional Guidelines for Encrypting and Decrypting Database Backup Files

	CHARACTER SETS AND COLLATION ORDERS
	About Character Sets and Collation Orders
	Character Set Storage Requirements
	InterBase Character Sets
	Character Sets for DOS
	Character Sets for Microsoft Windows
	UNICODE_BE and UNICODE_LE Character Sets
	Additional Character Sets and Collations

	Specifying Defaults
	Specifying a Default Character Set for a Database
	Specifying a Character Set for a Column in a Table
	Specifying a Character Set for a Client Connection

	Specifying Collation Orders
	Specifying Collation Order for a Column
	Specifying Collation Order in a Comparison Operation
	Specifying Collation Order in an ORDER BY Clause
	Specifying Collation Order in a GROUP BY Clause

