
InterBase® 15

Language Reference Guide

© 2025 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or
registered trademarks of Embarcadero Technologies, Inc. All other trademarks are property
of their respective owners.

Embarcadero tools are built for elite developers who build and maintain the world's most
critical applications. Our customers choose Embarcadero because we are the champion of
developers, and we help them build more secure and scalable enterprise applications faster
than any other tools on the market. In fact, ninety of the Fortune 100 and an active
community of more than three million users worldwide have relied on Embarcadero's
award-winning products for over 30 years.

September, 2025

. 5

. 5

. 7

. 8

. 8

. 9

. 12

. 13

. 15

. 17

. 18

. 213

. 214

. 214

. 215

. 215

. 216

. 219

. 220

. 221

. 222

. 225

. 226

. 227

. 227

. 228

. 229

. 230

. 231

. 232

. 233

. 236

TABLE OF CONTENTS
USING THE INTERBASE LANGUAGE REFERENCE

Who Should Use this Book
Topics Covered in This Book

SQL STATEMENT AND FUNCTION REFERENCE

SQL Flavors
SQL Dialects
Database Object Naming Conventions (Language Reference Guide)
Statement List
Function List (Language Reference Guide)
Data Types (Language Reference Guide)
Exact Numerics (Language Reference Guide)
Error Handling (Language Reference Guide)
Statement and Function Reference (Language Reference Guide)

PROCEDURES AND TRIGGERS

Creating Triggers and Stored Procedures
Statement Types Not Supported
Nomenclature Conventions
Assignment Statement
BEGIN ... END
Comment
DECLARE VARIABLE
EXCEPTION
EXECUTE PROCEDURE (Procedures)
EXECUTE STATEMENT
FOR SELECT…DO
IF...THEN ... ELSE
Input Parameters (Procedures)
NEW Context Variables
OLD Context Variables
Output Parameters (Procedures)
POST EVENT
SELECT (Procedures)
SUSPEND
WHEN...DO
WHILE ... DO

. 238

. 242

. 242

. 246

. 271

. 300

. 301

. 349

. 373

. 377

. 380

. 389

KEYWORDS

InterBase Keywords

ERROR CODES AND MESSAGES

Error Sources
Error Reporting and Handling
SQLCODE Error Codes and Messages
InterBase Status Array Error Codes

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

Overview of System Tables, Temporary Tables, and Views
System Tables
System Temporary Tables
System Views
Change Views (Reference)

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

InterBase Character Sets and Collation Orders
Specifying Character Sets

USING THE INTERBASE LANGUAGE REFERENCE

The InterBase Language Reference details the syntax and semantics of SQL and Dynamic SQL
(DSQL) statements for embedded applications programming and for isql , the InterBase
interactive SQL utility. It also describes additional language and syntax that is specific to
InterBase stored procedures and triggers.

1. Who Should Use this Book

The Language Reference assumes a general familiarity with SQL, data definition, data
manipulation, and programming practice. It is a syntax and usage resource for:

Programmers writing embedded SQL and DSQL database applications.
Programmers writing directly to the InterBase applications programming interface (API), who
need to know supported SQL syntax.
Database designers who create and maintain databases and tables with isql .
Users who perform queries and data manipulation operations through isql .

2. Topics Covered in This Book

The following table lists the chapters in the Language Reference, and provides a brief description
of them:

Chapter Description

Using the InterBase Language Reference Introduces the book, and describes its intended audience.

SQL Statement and Function Reference
Provides syntax and usage information for SQL and DSQL
language elements.

Procedures and Triggers
Describes syntax and usage information for stored
procedure and trigger language.

Keywords
Lists keywords, symbols, and punctuation, that have
special meaning to InterBase.

Error Codes and Messages Summarizes InterBase error messages and error codes.

•
•

•
•

USING THE INTERBASE LANGUAGE REFERENCE

5

Chapter Description

System Tables, Temporary Tables, and Views
Describes InterBase system tables and views that track
metadata.

Character Sets and Collation Orders
Explains all about character sets and corresponding
collation orders for a variety of environments and uses.

Note: For a listing of functions provided in the InterBase UDF library, see the “Working with UDFs
and Blob Filters” chapter in the Developer's Guide.

USING THE INTERBASE LANGUAGE REFERENCE

6

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Developer%27s_Guide

SQL STATEMENT AND FUNCTION REFERENCE

This chapter provides the syntax and usage for InterBase SQL language elements. It includes the
following topics:

SQL variants and dialects
Database object naming conventions
Lists of SQL statements and functions
A description of each InterBase data type
An introduction to using SQLCODE to handle errors
How to use statement and function definitions
A reference entry for each SQL statement supported by InterBase

1. SQL Flavors

Although InterBase SQL follows the ISO/IEC 9075:1992 standard closely, there are small
differences. Differences also exist among the three major flavors of InterBase SQL: embedded
SQL, dynamic SQL (DSQL), and the procedure and trigger language.

1.1. Embedded SQL (ESQL)

The embedded form of SQL is used in programs written in traditional languages such as C and
Pascal. A preprocessor turns SQL statements into host language data structures and calls to the
InterBase server. The embedded language is written into the program; its statements cannot be
generated dynamically. Statements in embedded SQL are terminated with a semicolon.

1.2. Dynamic SQL (DSQL)

DSQL allows a program to create statements at run time. It can be used from conventional
languages through the InterBase API. More often, it is used from modern development
environments such as Delphi, which hide the nuts and bolts of the API. A completed DSQL
statement is very much like the “embedded” language, without the “EXEC SQL” and without the
terminating semicolon.

1.3. Stored Procedure and Trigger Language

Triggers and stored procedures are written in a variant of the embedded language, extended to
provide flow control, conditional expressions, and error handling. Certain constructs, including all
DDL (Data Definition Language) statements, are omitted. Within a trigger or stored procedure,
statements are separated by semicolons.

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

7

1.4. Interactive SQL (isql)

The interactive query language, isql , is very similar to DSQL, with some omissions (cursors, for
example) and a few additions (SET and SHOW statements). Like embedded SQL, isql
statements must be terminated with a semicolon.

2. SQL Dialects

Starting with version 6, InterBase is closer to the ISO/IEC 9075:1992 standard than previous
versions in several ways. Some of those ways are incompatible with earlier implementations of
SQL. In the current InterBase, each client and database has a SQL dialect: an indicator that
instructs an InterBase server how to interpret transition features: those features whose meanings
have changed between InterBase versions. See the Migration appendix in the Operations Guide
for information about using dialects and transition features.

2.1. Dialects

Dialect 1: transition features are interpreted as in InterBase version 5.6 and earlier.
Dialect 2: diagnostic mode, where transition features are recognized and flagged with a
warning.
Dialect 3: transition features are interpreted as SQL-92 compliant.

2.2. Transition Features

Double quote (“): changed from a synonym for the single quote (‘) to the delimiter for an
object name.
Large exact numerics: DECIMAL and NUMERIC data types with precision greater than 9 are
stored at INT64 instead of DOUBLE PRECISION.
DATE, TIME, and TIMESTAMP data types:

DATE has changed from a 64-bit quantity containing both date and time information to a
32-bit quantity containing only date information.
TIME is a 32-bit quantity containing only time information.
TIMESTAMP is a 64-bit quantity containing both date and time information (same as DATE in
InterBase 5 and older).

3. Database Object Naming Conventions (Language Reference Guide)

When an applications programmer or end user creates a database object or refers to it by name,
case is unimportant. The following limitations on naming database objects must be observed:

Start each name with an alphabetic character (A–Z or a–z).
Restrict object names to 67 characters, including dollar signs ($), underscores (_), 0 to 9, A to
Z, and a to z. Some objects, such as constraint names, are restricted to 27 bytes in length.

•
•

•

•

•

•

•

•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

8

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Keep object names unique. In all cases, objects of the same type–all tables, for example–
must be unique. In most cases, object names must also be unique within the database.

To use keywords, ASCII characters, case-sensitive strings, or spaces (except for trailing spaces) in
an object name, enclose the name in double quotes. It is then a delimited identifier. Delimited
identifiers must always be referenced in double quotes. In InterBase dialect 3, names enclosed in
double quotes are case sensitive. For example:

SELECT “CodAR” FROM MyTable

is different from:

SELECT “CODAR” FROM MyTable

This behavior conforms to ANSI SQL semantics for delimited identifiers.

For more information about naming database objects with CREATE or DECLARE statements,
see the Language Reference Guide.

4. Statement List

This chapter describes the following SQL statements:

A

ALTER DATABASE ALTER DOMAIN ALTER EXCEPTION

ALTER INDEX ALTER PROCEDURE ALTER TABLE

ALTER TRIGGER ALTER USER

B

BASED ON BEGIN DECLARE SECTION

C

CASE CLOSE CLOSE (BLOB)

COALESCE() COMMIT CONNECT

CREATE DATABASE CREATE DOMAIN CREATE ENCRYPTION

•

SQL STATEMENT AND FUNCTION REFERENCE

9

CREATE EXCEPTION CREATE GENERATOR CREATE INDEX

CREATE JOURNAL CREATE JOURNAL ARCHIVE CREATE PROCEDURE

CREATE ROLE CREATE SHADOW CREATE SUBSCRIPTION

CREATE TABLE CREATE TRIGGER CREATE USER

CREATE VIEW

D

DECLARE CURSOR DECLARE CURSOR (BLOB) DECLARE EXTERNAL FUNCTION

DECLARE FILTER DECLARE STATEMENT DECLARE TABLE

DELETE DESCRIBE DISCONNECT

DROP DATABASE DROP DOMAIN DROP ENCRYPTION

DROP EXCEPTION DROP EXTERNAL FUNCTION DROP FILTER

DROP GENERATOR DROP INDEX DROP JOURNAL

DROP JOURNAL ARCHIVE DROP PROCEDURE DROP ROLE

DROP SUBSCRIPTION* DROP SHADOW DROP TRIGGER

DROP VIEW DROP USER

E

END DECLARE SECTION EVENT INIT EVENT WAIT

EXECUTE EXECUTE IMMEDIATE EXECUTE PROCEDURE

F

FETCH FETCH (BLOB)

G

GRANT GRANT SUBSCRIBE GRANT TEMPORARY SUBSCRIBE

I

SQL STATEMENT AND FUNCTION REFERENCE

10

INSERT INSERT CURSOR (BLOB)

N

NULLIF()

O

OPEN OPEN (BLOB)

P

PREPARE

R

RELEASE SAVEPOINT REVOKE ROLLBACK

S

SAVEPOINT SELECT SET DATABASE

SET GENERATOR SET NAMES (Reference) SET SQL DIALECT

SET STATISTICS SET SUBSCRIPTION SET TRANSACTION

SHOW SQL DIALECT

T

TRUNCATE TABLE

U

UPDATE

SQL STATEMENT AND FUNCTION REFERENCE

11

W

WHENEVER

* For more information about creating subscriptions, see the Change View chapter in the Data
Definition Guide.

5. Function List (Language Reference Guide)

The following table lists the SQL functions described in this chapter:

Function Type Purpose

AVG() Aggregate Calculates the average of a set of values.

CAST() Conversion
Converts a column from one data type to
another.

COUNT() Aggregate
Returns the number of rows that satisfy a
query’s search condition.

EXTRACT() Conversion
Extracts date and time information from
DATE , TIME , and TIMESTAMP values.

GEN_ID() Numeric Returns a system-generated value.

MAX() Aggregate
Retrieves the maximum value from a set of
values.

MIN() Aggregate
Retrieves the minimum value from a set of
values

SUM() Aggregate Totals the values in a set of numeric values.

UPPER() Conversion Converts a string to all uppercase.

Aggregate functions perform calculations over a series of values, such as the columns retrieved
with a SELECT statement.

SQL STATEMENT AND FUNCTION REFERENCE

12

Conversion functions transform data types, either converting them from one type to another, or
by changing the scale or precision of numeric values, or by converting CHARACTER data types to
all uppercase.

The numeric function, GEN_ID() , produces a system-generated number that can be inserted
into a column requiring a numeric data type.

6. Data Types (Language Reference Guide)

InterBase supports most SQL data types, a dynamically sizable data type called a Blob, and arrays
of data types. It does not support arrays of Blobs.

The following table lists the data types available to SQL statements in InterBase:

Name Size
Range/

Precision
Description

BLOB Variable
None
Blob segment size is
limited to 64K.

Dynamically sizable
data type for storing
large data such as
graphics, text, and
digitized voice.
Basic structural unit is
the segment.
Blob subtype
describes Blob
contents.

BOOLEAN 16 bits
TRUE
FALSE
UNKNOWN

Represents truth
values TRUE ,
FALSE , and
UNKNOWN .

Requires ODS 11 or
higher, any dialect.

CHAR (<n>) <n> characters

1 to 32,767 bytes
Character set
character size
determines the
maximum number of
characters that can fit
in 32K.

Fixed length CHAR or
text string type
Alternate keyword:
CHARACTER

DATE 32 bits, signed1 1 Jan 100 a.d. to 29 Feb
32768 a.d.

ISC_DATE; stores a
date as a 32-bit
longword.

•
•

•

•

•

•
•
•

•

•

•
• •

•

SQL STATEMENT AND FUNCTION REFERENCE

13

Name Size
Range/

Precision
Description

DECIMAL (<precision>, <scale>)
Variable
(16, 32, or
64 bits)

<precision> = 1 to
18; specifies at least
<precision> digits of
precision to store.
<scale> = 1 to 18;
specifies number of
decimal places for
storage.
Must be less than or
equal to <precision>.

Number with a
decimal point <scale>
digits from the right
Example: DECIMAL
(10, 3) holds numbers
accurately in the
following format:
ppppppp.sss

DOUBLE PRECISION 64 bits2 2.225 x 10–308 to 1.797 x

10308
IEEE double precision: 15
digits

FLOAT 32 bits
1.175 x 10–38 to 3.402 x

1038
IEEE single precision: 7
digits

INTEGER 32 bits
–2,147,483,648 to
2,147,483,647

Signed long (longword)

NUMERIC (<precision>, <scale>)

Variable

(16, 32, or
64 bits)

<precision> = 1 to
18; specifies exactly
<precision> digits of
precision to store.
<scale> = 1 to 18;
specifies number of
decimal places for
storage.
Must be less than or
equal to <precision>.

Number with a
decimal point <scale>
digits from the right
Example: NUMERIC
(10,3) holds numbers
accurately in the
following format:
ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767 Signed short (word)

TIME 32 bits, unsigned
0:00 AM to 23:59.9999
PM

ISC_TIME

TIMESTAMP 64 bits
1 Jan 100 a.d. to 29 Feb
32768 a.d.

Also includes time
information.

•

•

•

•

•

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

14

Name Size
Range/

Precision
Description

VARCHAR (<n>) <n> characters

1 to 32,765 bytes
Character set
character size
determines the
maximum number of
characters that can fit
in 32K.

Variable length CHAR
or text string type
Alternate keywords:
CHAR VARYING ,
CHARACTER VARYIN
G

InterBase version 5 had a DATE data type that was 64 bits long and included both the date
and time. InterBase version 6 and later recognizes that type if you have specified dialect 1; in
dialect 3, that type is called TIMESTAMP.
Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

7. Exact Numerics (Language Reference Guide)

All NUMERIC and DECIMAL data types are stored as exact numerics: 16, 32, or 64 bits,
depending on the precision. NUMERIC and DECIMAL data types with precision greater than 9
are referred to as large exact numerics.

If one operand is an approximate numeric, the result of any dyadic operation (addition,
subtraction, multiplication, division) is DOUBLE PRECISION.
Any value that can be stored in a DECIMAL(18,S) can also be specified as the default value
for a column or a domain.

7.1. Addition and Subtraction

If both operands are exact numeric, adding or subtracting the operands produces an exact
numeric with a precision of 18 and a scale equal to the larger of the two. For example:

CREATE TABLE t1 (n1 NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

The following query returns the integer 135.243. The largest scale of the two operands is 3;
therefore, the scale of the sum is 3.

SELECT n1 + n2 FROM t1;

Similarly, the following query returns the integer -111.003:

SELECT n1 - n2 FROM t1;

•
•

•

•

1.

2.

•

•

SQL STATEMENT AND FUNCTION REFERENCE

15

If either of the operands is approximate numeric (FLOAT, REAL, or DOUBLE PRECISION), the result
is DOUBLE PRECISION.

7.2. Multiplication

If both operands are exact numeric, multiplying the operands produces an exact numeric with a
precision of 18 and a scale equal to the sum of the scales of the operands. For example:

CREATE TABLE t1 (n1 NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

the following query returns the integer 1492.25076 because n1 has a scale of 2 and n2 has a
scale of 3. the sum of the scales is 5.

SELECT n1*n2 FROM t1

If one of the operands is approximate numeric (FLOAT, REAL, or DOUBLE PRECISION), the result is
DOUBLE PRECISION.

7.3. Division

If both operands are exact numeric, dividing the operands produces an exact numeric with a
precision of 18 and a scale equal to the sum of the scales of the operands. If at least one operand
of a division operator has an approximate numeric type (FLOAT, REAL, or DOUBLE PRECISION),
the result is DOUBLE PRECISION.

For example, in the following table, division operations produce a variety of results:

CREATE TABLE t1 (i1 INTEGER), i2 INTEGER, n1 NUMERIC(16,2)
n2 NUMERIC(16,2));
INSERT INTO t1 VALUES (1, 3, 1.00, 3.00);
COMMIT;

The following query returns the integer 0 because each operand has a scale of 0, so the sum of
the scales is 0:

SELECT i1/i2 FROM t1

The following query returns the NUMERIC(18,2) value 0.33, because the sum of the scales 0
(operand 1) and 2 (operand 2) is 2:

SELECT i1/n2 FROM t1

SQL STATEMENT AND FUNCTION REFERENCE

16

The following query returns the NUMERIC(18,4) value 0.3333, because the sum of the two
operand scales is 4:

SELECT n1/n2 FROM t1

In InterBase 5 and earlier, any of the above division operations would have returned the DOUBLE
PRECISION value 0.3333333333333333.

8. Error Handling (Language Reference Guide)

Every time an executable SQL statement is executed, the SQLCODE variable is set to indicate its
success or failure. No SQLCODE is generated for declarative statements that are not executed,
such as DECLARE CURSOR , DECLARE TABLE , and DECLARE STATEMENT .

The following table lists values that are returned to SQLCODE :

SQLCODE Message Meaning

< 0 SQLERROR Error occurred; statement did not execute

0 SUCCESS Successful execution

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND
No qualifying rows found, or end of current
active set of rows reached

When an error occurs in isql , InterBase displays an error message.

In embedded applications, the programmer must provide error handling by checking the value of
SQLCODE .

To check SQLCODE , use one or a combination of the following approaches:

Test for SQLCODE values with the WHENEVER statement.
Check SQLCODE directly.
Use the isc_print_sqlerror () routine to display specific error messages.

For more information about error handling, see the Embedded SQL Guide.

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

17

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

9. Statement and Function Reference (Language Reference Guide)

The following is the reference of SQL statements and functions available in InterBase.

Each statement and function definition includes the following elements:

Element Description

Title Statement name

Definition The main purpose and availability of the statement

Syntax Diagram of the statement and its parameters

Argument Parameters available for use with the statement

Description Information about using the statement

Examples
Examples of using the statement in a program and in
isql

See also
Where to find more information about the statement or
others related to it

Most statements can be used in SQL, DSQL, and isql . In many cases, the syntax is nearly
identical, except that embedded SQL statements must always be preceded by the EXEC SQL
keywords. EXEC SQL is omitted from syntax statements for clarity.

In other cases there are small, but significant differences among SQL, DSQL, and isql syntax. In
these cases, separate syntax statements appear under the statement heading.

A

ALTER DATABASE ALTER DOMAIN ALTER EXCEPTION

ALTER INDEX ALTER PROCEDURE ALTER TABLE

ALTER TRIGGER ALTER USER AVG()

ALTER DESCRIPTION

SQL STATEMENT AND FUNCTION REFERENCE

18

http://docwiki.embarcadero.com/InterBase/15/en/ALTER_DESCRIPTION

B

BASED ON BEGIN DECLARE SECTION

C

CASE CAST() CLOSE

CLOSE (BLOB) COALESCE() COMMIT

CONNECT COUNT() CREATE DATABASE

CREATE DOMAIN CREATE ENCRYPTION CREATE EXCEPTION

CREATE GENERATOR CREATE INDEX CREATE JOURNAL

CREATE JOURNAL ARCHIVE CREATE PROCEDURE CREATE ROLE

CREATE SHADOW CREATE SUBSCRIPTION CREATE TABLE

CREATE TRIGGER CREATE USER CREATE VIEW

D

DECLARE CURSOR DECLARE CURSOR (BLOB) DECLARE EXTERNAL FUNCTION

DECLARE FILTER DECLARE STATEMENT DECLARE TABLE

DELETE DESCRIBE DISCONNECT

DROP DATABASE DROP DOMAIN DROP ENCRYPTION

DROP EXCEPTION DROP EXTERNAL FUNCTION DROP FILTER

DROP GENERATOR DROP INDEX DROP JOURNAL

DROP JOURNAL ARCHIVE DROP PROCEDURE DROP ROLE

DROP SHADOW DROP SUBSCRIPTION DROP TABLE

DROP TRIGGER DROP USER DROP VIEW

E

END DECLARE SECTION EVENT INIT EVENT WAIT

EXECUTE EXECUTE IMMEDIATE EXECUTE PROCEDURE

EXTRACT()

SQL STATEMENT AND FUNCTION REFERENCE

19

F

FETCH FETCH (BLOB)

G

GEN_ID() GRANT GRANT SUBSCRIBE

GRANT TEMPORARY SUBSCRIBE

I

INSERT INSERT CURSOR (BLOB)

M

MAX() MIN()

N

NULLIF()

O

OPEN OPEN (BLOB)

P

PREPARE

R

RELEASE SAVEPOINT REVOKE ROLLBACK

SQL STATEMENT AND FUNCTION REFERENCE

20

S

SAVEPOINT SELECT SET DATABASE

SET GENERATOR SET NAMES (Reference) SET SQL DIALECT

SET STATISTICS SET SUBSCRIPTION SET TRANSACTION

SHOW SQL DIALECT SHOW SUBSCRIPTION SUM()

T

TRUNCATE TABLE

U

UPDATE UPPER()

W

WHENEVER

9.1. ALTER DATABASE

Changes the characteristics of the current database. Available in gpre , DSQL, and isql , but
not in the trigger or stored procedure language.

ALTER {DATABASE | SCHEMA}
{ADD <add_clause> | DROP <drop_clause> | ENCRYPT <key_name> | DECRYPT

<key_name> | SET <set_clause>};

<add_clause> = FILE 'filespec' [fileinfo] [add_clause] | ADMIN OPTION

fileinfo = LENGTH [=] int [PAGE[S]]
| STARTING [AT [PAGE]] int [fileinfo]

<drop_clause> = ADMIN OPTION

<key_name> = ENCRYPT <|> DECRYPT

<set_clause> = {FLUSH INTERVAL <number> | NO FLUSH INTERVAL | GROUP COMMIT | NO
GROUP COMMIT |
LINGER INTERVAL <number> | NO LINGER INTERVAL | PAGE CACHE <number> | RECLAIM

SQL STATEMENT AND FUNCTION REFERENCE

21

INTERVAL <number> | NO RECLAIM INTERVAL | SYSTEM ENCRYPTION PASSWORD <255-
character_string> | NO SYSTEM ENCRYPTION PASSWORD} | PASSWORD DIGEST
'<digest_name>'}

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

SCHEMA Alternative keyword for DATABASE

ADD FILE '<filespec>'
Adds one or more secondary files to receive database pages after the primary
file is filled; for a remote database, associate secondary files with the same
node.

LENGTH [=] <int> [PAGE [
S]]

Specifies the range of pages for a secondary file by providing the number of
pages in each file.

STARTING [AT [PAGE]] <in
t>

Specifies a range of pages for a secondary file by providing the starting page
number.

ADD ADMIN OPTION Enables embedded user authentication.

DROP ADMIN OPTION Disables embedded user authentication.

ENCRYPT <key_name>
Uses the named encryption key to encrypt the database. Encrypting a database
causes all pages to be encrypted. Only the database owner can encrypt a
database.

DECRYPT <key_name>
Uses the named encryption key to decrypt the database. Decrypting a
database causes all pages to be decrypted and rewritten in plaintext. Only the
database owner can decrypt a database.

SET FLUSH INTERVAL <number>
Enables database flush. The interval <number> is interpreted in units of
seconds.

SET NO FLUSH INTERVAL Disables database flush.

SQL STATEMENT AND FUNCTION REFERENCE

22

Argument Description

SET GROUP COMMIT Allows transactions to be committed by a background cache writer thread.

SET NO GROUP COMMIT Disables group commit.

SET LINGER INTERVAL
Allows a database to remain in memory after the last user detaches. Interval is
in seconds.

SET NO LINGER INTERBAL Disables database linger.

SET RECLAIM INTERVAL

Determines how often the garbage collector thread will run to release memory
from unused procedures, triggers, and internal system queries back to
InterBase memory heap. Interval is in seconds. Default is 300 seconds when the
database is created.

SET NO RECLAIM INTERVAL Disables memory reclamation.

SET SYSTEM ENCRYPTION PASSW
ORD

Necessary to create encryption keys and perform encryption. InterBase uses a
System Encryption Password (SEP) to protect the encryption keys that are used
to encrypt the database and/or database columns. For more information about
using InterBase encryption, see “Encrypting Your Data” in the Data Definition
Guide.

Note: Only the SYSDSO (Data Security Owner) can create this
password.

SET NO SYSTEM ENCRYPTION PA
SSWORD

Deletes the password if there are no existing encryption keys.

Note: Only SYSDSO can delete a password.

SET PAGE CACHE Sets database page buffer cache limit. Also, tries to expand cache to that limit.

SET PASSWORD DIGEST '<diges
t_name>'

Sets the password hash function. The default value is 'DES-CRYPT' . See
Implementing Stronger Password Protection for more information.

Description: ALTER DATABASE adds secondary files to an existing database. Secondary files
permit databases to spread across storage devices, but they must remain on the same node as
the primary database file. A database can be altered by its creator, the SYSDBA user, and any
users with operating system root privileges.

ALTER DATABASE requires exclusive access to the database.

SQL STATEMENT AND FUNCTION REFERENCE

23

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Implementing_Stronger_Password_Protection

Note:
InterBase dynamically expands the last file in a database as needed. The maximum size
of the last file is system-dependent. You should be aware that specifying a LENGTH for
such files has no effect.

You cannot use ALTER DATABASE to split an existing database file. For example, if your existing
database is 80,000 pages long and you add a secondary file STARTING AT 50000 , InterBase
starts the new database file at page 80,001.

Tip:
To split an existing database file into smaller files, back it up and restore it. When you
restore a database, you are free to specify secondary file sizes at will, without reference
to the number and size of the original files.

Example: The following isql statement adds two secondary files to an existing database. The
command creates a secondary database file called employee2.ib that is 10,000 pages long
and another called employee3.ib . InterBase starts using employee2.ib only when the
primary file reaches 10,000 pages.

ALTER DATABASE
ADD FILE 'employee2.ib'
STARTING AT PAGE 10001 LENGTH 10000
ADD FILE 'employee3.ib';

See Also

CREATE DATABASE
DROP DATABASE
Encrypting Data
Decrypting Data
Data Definition Guide
Operations Guide
Implementing Stronger Password Protection

9.2. ALTER DOMAIN

Changes a domain definition. Available in gpre , DSQL, and isql , but not in the stored
procedure or trigger language.

ALTER DOMAIN { name |
old_name TO new_name }

SET DEFAULT {literal | NULL | USER}
| DROP DEFAULT

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

24

http://docwiki.embarcadero.com/InterBase/15/en/Encrypting_Data
http://docwiki.embarcadero.com/InterBase/15/en/Decrypting_Data
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Implementing_Stronger_Password_Protection

| ADD [CONSTRAINT] CHECK (dom_search_condition)
| DROP CONSTRAINT
| new_col_name
| TYPE data_type;
dom_search_condition =
VALUE operator val
| VALUE [NOT] BETWEEN val AND val
| VALUE [NOT] LIKE val [ESCAPE val]
| VALUE [NOT] IN (val [, val …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING val
| VALUE [NOT] STARTING [WITH] val
| (dom_search_condition)
| NOT dom_search_condition
| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator = {= | < | > | <= | >= | !< | !> | <> | !=}

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Represents the name of an existing domain.

SET DEFAULT

Specifies a default column value that is entered when no other entry is made.
Values:

<literal>—Inserts a specified string, numeric value, or date value.
NULL —Enters a NULL value.
USER —Enters the user name of the current user; the olumn must be of

compatible text type to use the default.
Defaults set at the column level overrides defaults set at the domain level.

DROP DEFAULT Drops an existing default.

ADD [CONSTRAINT] CHECK
<dom_search_condition>

Adds a CHECK constraint to the domain definition; a domain definition can
include only one CHECK constraint.

DROP CONSTRAINT Drops the CHECK constraint from the domain definition.

<new_col_name> Changes the domain name.

•
•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

25

Argument Description

TYPE <data_type> Changes the domain data type.

Description: ALTER DOMAIN changes any aspect of an existing domain except its NOT NULL
setting. Changes made to a domain definition affect all column definitions based on the domain
that have not been overridden at the table level.

Note:
To change the NOT NULL setting of a domain, drop the domain and recreate it with the
desired combination of features.

The TYPE clause of ALTER DOMAIN does not allow you to make data type conversions that could
lead to data loss.

A domain can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges.

Example: The following isql statements create a domain that must have a value > 1,000, then
alter it by setting a default of 9,999:

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 1000);
ALTER DOMAIN CUSTNO SET DEFAULT 9999;

See Also

CREATE DOMAIN
CREATE TABLE
DROP DOMAIN
Data Definition Guide

9.3. ALTER EXCEPTION

Changes the message associated with an existing exception. Available in DSQL and isql , but
not in the embedded language or stored procedure and trigger language.

ALTER EXCEPTION name 'message'

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

26

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<name> Name of an existing exception message

‘message’ Quoted string containing ASCII values

Description: ALTER EXCEPTION changes the text of an exception error message.

An exception can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

Example: This isql statement alters the message of an exception:

ALTER EXCEPTION CUSTOMER_CHECK 'Hold shipment for customer
remittance.';

See Also

ALTER PROCEDURE
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
CREATE TRIGGER
DROP EXCEPTION
Data Definition Guide

9.4. ALTER INDEX

Activates or deactivates an index. Available in embedded SQL, DSQL, and isql , but not in the
stored procedure or trigger language.

ALTER INDEX <name> {ACTIVE | INACTIVE};

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

27

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

name Name of an existing index.

ACTIVE Changes an INACTIVE index to an ACTIVE one.

INACTIVE Changes an ACTIVE index to an INACTIVE one.

Description: ALTER INDEX makes an inactive index available for use, or disables the use of an
active index. Deactivating an index is exactly like dropping it, except that the index definition
remains in the database. Activating an index creates a new index structure.

Before inserting, updating, or deleting a large number of rows, deactivate a table’s indexes to
avoid altering the index incrementally. When finished, reactivate the index. A reasonable metric is
that if you intend to add or delete more than 15% of the rows in a table, or update an indexed
column in more than 10% of the rows, you should consider deactivating and reactivating the
index.

If an index is in use, ALTER INDEX does not take effect until the index is no longer in use.

ALTER INDEX fails and returns an error if the index is defined for a UNIQUE , PRIMARY KEY , or
FOREIGN KEY constraint. To alter such an index, use DROP INDEX to delete the index, then
recreate it with CREATE INDEX .

An index can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges.

Note:
To add or drop index columns or keys, use DROP INDEX to delete the index, then
recreate it with CREATE INDEX.

Example: The following isql statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;
ALTER INDEX BUDGETX ACTIVE;

See Also

ALTER TABLE
CREATE INDEX
DROP INDEX
SET STATISTICS

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

28

9.5. ALTER PROCEDURE

Changes the definition of an existing stored procedure. Available in DSQL and isql but not in
the embedded language or in the stored procedures or triggers.

ALTER PROCEDURE'' ''<name> [(<param>'' ''data_type [,'' ''<param>'' ''data_type
…])]
[RETURNS (<param>'' ''data_type [, <param> data_type …])]
AS ''procedure_body'' ;

Argument Description

<name> Name of an existing procedure.

<param data_type>
Input parameters used by the procedure; legal data types are listed under
CREATE PROCEDURE .

RETURNS param data_type
Output parameters used by the procedure; legal data types are listed under
CREATE PROCEDURE .

<procedure_body>

The procedure body includes:

Local variable declarations
A block of statements in procedure and trigger language

See CREATE PROCEDURE for a complete description.

Description: ALTER PROCEDURE changes an existing stored procedure without affecting its
dependencies. It can modify the input parameters, output parameters, and body of a procedure.

The complete procedure header and body must be included in the ALTER PROCEDURE
statement. The syntax is exactly the same as CREATE PROCEDURE , except CREATE is replaced
by ALTER .

Important:
Be careful about changing the type, number, and order of input and output parameters
to a procedure, because existing application code may assume the procedure has its
original format. Check for dependencies between procedures before changing
parameters. Should you change parameters and find that another procedure can neither
be altered to accept the new parameters or deleted, change the original procedure back
to its original parameters, fix the calling procedure, then change the called procedure.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

29

A procedure can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges. Procedures in use are not altered until they are no longer in use.
ALTER PROCEDURE changes take effect when they are committed. Changes are then reflected in
all applications that use the procedure without recompiling or relinking.

Example: The following isql statements alter the GET_EMP_PROJ procedure, changing the
return parameter to have a data type of VARCHAR (20):

ALTER PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID VARCHAR(20)) AS
BEGIN
FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :emp_no
INTO :proj_id
DO
SUSPEND;
END;

See Also

CREATE PROCEDURE
DROP PROCEDURE
EXECUTE PROCEDURE
Data Definition Guide
Procedures and Triggers

9.6. ALTER TABLE

Changes a table by adding, dropping, or modifying columns or integrity constraints. Available in
gpre , DSQL, and isql .

Important:
To alter a global temporary table, see: "Altering a global temporary table" in the Data
Definition Guide.

ALTER TABLE <table> operation [, operation …];

operation = ADD col_def
| ADD tconstraint
| ALTER [COLUMN] column_name alt_col_clause
| DROP col
| DROP CONSTRAINT constraint
| [ON COMMIT {PRESERVE | DELETE} ROWS [RESTRICT | CASCADE]]
| [SET [NO] RESERVE SPACE]
alt_col_clause = TO new_col_name

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

30

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

| TYPE new_col_data_type
| POSITION new_col_position
col_def = col {data_type | COMPUTED [BY] (expr) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[col_constraint]
[COLLATE collation]
data_type =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [array_dim]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]array_dim = [[x:]y [, [x:]y …]]
| BOOLEAN
expr = A valid SQL expression that results in a single value.
col_constraint = [CONSTRAINT constraint]
{ UNIQUE
| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
tconstraint = [CONSTRAINT constraint]
{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …])
REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val
| val [NOT] LIKE val [ESCAPE val]
| val [NOT] IN (val [, val …] | select_list)
| val IS [NOT] NULL
| val {>= | <=}
| val [NOT] {= | < | >}
| {ALL | SOME | ANY} (select_list)
| EXISTS (select_expr)
| SINGULAR (select_expr)
| val [NOT] CONTAINING val
| val [NOT] STARTING [WITH] val
| (search_condition)
| NOT search_condition
| search_condition OR search_condition
| search_condition AND search_condition
val = { col [array_dim] | :variable
| constant | expr | function
| udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]
constant = num | 'string' | charsetname 'string'
function = COUNT (* | [ALL] val | DISTINCT val)

SQL STATEMENT AND FUNCTION REFERENCE

31

| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
| CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)
operator = {= | < | > | <= | >= | !< | !> | <> | !=}
select_one = SELECT on a single column; returns exactly one value.
select_list = SELECT on a single column; returns zero or more values.
select_expr = SELECT on a list of values; returns zero or more values.

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Notes on ALTER TABLE syntax:

The column constraints for referential integrity were new in InterBase 5.
You cannot specify a COLLATE clause for Blob columns.
When declaring arrays, you must include the outermost brackets, shown below in bold. For
example, the following statement creates a 5 by 5 two-dimensional array of strings, each of
which is 6 characters long:

my_array = varchar(6)[5,5]

Use the colon (:) to specify an array with a starting point other than 1. The following example
creates an array of integers that begins at 20 and ends at 30:

my_array = integer[20:30]

For the full syntax of search_condition, see CREATE TABLE.

Argument Description

<table> Name of an existing table to modify.

<operation>
Action to perform on the table. Valid options are:

ADD a new column or table constraint to a table
DROP an existing column or constraint from a table

•
•
•

•

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

32

Argument Description

<col_def>

Description of a new column to add.

Must include a column name and <data_type>.
Can also include default values, column constraints, and a specific collation
order.

<col>
Name of the column to add or drop; column name must be unique within the
table.

<data_type> Data type of the column; see Data Types (Language Reference Guide).

ALTER [COLUMN]

Modifies column names, data types, and positions. Can also be used with
ENCRYPT and DECRYPT options to encrypt and decrypt a column. For more
information about encrypting databases and columns, see “Encrypting Your
Data” in the Data Definition Guide.

COMPUTED [BY] <expr>

Specifies that the value of the column’s data is calculated from expr at runtime
and is therefore not allocated storage space in the database.

<expr> can be any arithmetic expression valid for the data types in the
expression.
Any columns referenced in <expr> must exist before they can be used in
<expr>.
<expr> cannot reference Blob columns.
<expr> must return a single value, and cannot return an array.

<domain> Name of an existing domain.

DEFAULT

Specifies a default value for column data; this value is entered when no other
entry is made; possible values are:

<literal>: Inserts a specified string, numeric value, or date value.
NULL : Enters a NULL value; this is the default DEFAULT.
USER : Enters the user name of the current user; column must be of

compatible text type to use the default.

Defaults set at column level override defaults set at domain level.

CONSTRAINT <constraint> Name of a column or table constraint; the constraint name must be unique
within the table.

<constraint_def>
Specifies the kind of column constraint; valid options are UNIQUE ,
PRIMARY KEY , CHECK , and REFERENCES .

•
•

•

•

•
•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

33

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

CHECK <search_condition> An attempt to enter a new value in the column fails if the value does not meet
the <search_condition>.

REFERENCES
Specifies that the column values are derived from column values in another
table; if you do not specify column names, InterBase looks for a column with
the same name as the referencing column in the referenced table.

ON DELETE | ON UPDATE

Used with REFERENCES : Changes a foreign key whenever the referenced
primary key changes; valid options are:

[Default] NO ACTION : Does not change the foreign key; may cause the
primary key update to fail due to referential integrity checks.
CASCADE : For ON DELETE , deletes the corresponding foreign key; for
ON UPDATE , updates the corresponding foreign key to the new value of the

primary key.
SET NULL : Sets all the columns of the corresponding foreign key to NULL .
SET DEFAULT : Sets every column of the corresponding foreign key to its

default value in effect when the referential integrity constraint is defined;
when the default for a foreign column change after the referential integrity
constraint is defined, the change does not have an effect on the default
value used in the referential integrity constraint.

NOT NULL
Specifies that a column cannot contain a NULL value.

If a table already has rows, a new column cannot be NOT NULL .
NOT NULL is a column attribute only.

DROP CONSTRAINT Drops the specified table constraint.

<table_constraint>
Description of the new table constraint; constraints can be PRIMARY KEY ,
UNIQUE , FOREIGN KEY , or CHECK .

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and
Collation Orders for more information.

Description: ALTER TABLE modifies the structure of an existing table. A single ALTER TABLE
statement can perform multiple adds and drops.

A table can be altered by its creator, the SYSDBA user, and any users with operating system
superuser privileges.

•

•

•
•

•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

34

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders

ALTER TABLE fails if the new data in a table violates a PRIMARY KEY or UNIQUE
constraint definition added to the table. Dropping or altering a column fails if any of the
following are true:

The column is part of a UNIQUE , PRIMARY , or FOREIGN KEY constraint.
The column is used in a CHECK constraint.
The column is used in the <value> expression of a computed column.
The column is referenced by another database object such as a view.

Important:
When a column is dropped, all data stored in it is lost.

Constraints:

Referential integrity constraints include optional ON UPDATE and ON DELETE clauses. They
define the change to be made to the referencing column when the referenced column is
updated or deleted.
To delete a column referenced by a computed column, you must drop the computed column
before dropping the referenced column. To drop a column referenced in a FOREIGN KEY
constraint, you must drop the constraint before dropping the referenced column. To drop a
PRIMARY KEY or UNIQUE constraint on a column that is referenced by FOREIGN KEY
constraints, drop the FOREIGN KEY constraint before dropping the PRIMARY KEY or
UNIQUE key it references.
You can create a FOREIGN KEY reference to a table that is owned by someone else only if
that owner has explicitly granted you the REFERENCES privilege on that table using
GRANT . Any user who updates your foreign key table must have REFERENCES or SELECT
privileges on the referenced primary key table.
You can add a check constraint to a column that is based on a domain but be aware that
changes to tables that contain CHECK constraints with subqueries may cause constraint
violations.
Naming column constraints is optional. If you do not specify a name, InterBase assigns a
system-generated name. Assigning a descriptive name can make a constraint easier to find
for changing or dropping, and more descriptive when its name appears in a constraint
violation error message.
When creating new columns in tables with data, do not use the UNIQUE constraint. If you
use the NOT NULL constraint on a table with data, you should also specify a default value.

Example: The following isql statement adds a column to a table and drops a column:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25),
DROP CURRENCY;

This statement results in the loss of all data in the dropped CURRENCY column.

•

•
•
•
•

•

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

35

The next isql statement changes the name of the LARGEST_CITY column to
BIGGEST_CITY :

ALTER TABLE COUNTRY ALTER LARGEST_CITY TO BIGGEST_CITY;

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in
nature. An archival table means that the rows of a table are infrequently or never UPDATED or
DELETED; have complex queries, such as aggregates and analytics that process a high percentage
of rows; and where indexes are rebuilt and the database is backed and/or restored frequently.
These database operations could see a performance improve of 20% or more with a savings in
storage space.

By default, InterBase reserves a small amount of space in each data page of a table to optimize
UPDATE and DELETE operations on resident rows. This reserve space can amount to 20% or more
of the total space occupied by all of the rows of the table. Some tables archive historical data or
data that are UPDATED infrequently or not at all and their rows may never be deleted. Database
operations that process most or all of the rows, such as backup, restore, index creation,
aggregate computation have always suffered performance penalties proportional to this
reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and
maximizes row packing for the most efficient fill ratio. At the database level, it has been possible
to restore a database with the -USE_ALL_SPACE switch so that no space is reserved for any table.
To change the storage behavior in a like manner for new or existing databases, the same clause is
introduced for CREATE/ALTER DATABASE.

User Interface To effect the new storage behavior, a non-standard SQL clause is added:

Clause is presented before the secondary file specification.

Clause is presented in any order with other SET elements.

ALTER DATABASE ... SET [NO] RESERVE SPACE

Clause is presented in any order with other ADD, DROP, ALTER elements.

ALTER TABLE <table name> ... SET [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record
version stub, as would normally be the case. Over many row insertions, a decrease in storage size
should be observed relative to what the table size would be in the absence of this feature. The

SQL STATEMENT AND FUNCTION REFERENCE

36

optional NO keyword when used with ALTER TABLE toggles the behavior to the alternate state of
the current storage behavior for the table.

The NO RESERVE storage modifier is preserved across database backup and restore. This state is
stored as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the
system table RDB$RELATIONS.

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's
column definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner
for the CREATE TABLE output of the respective table listing. The state for database-wide storage
behavior is stored in a like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A temporary table can be altered in the same way as a permanent base table although there is
no official support to toggle the behavior of the ON COMMIT clause. The specification offers an
ALTER TABLE syntax to toggle that behavior.

ALTER TABLE <table> ON COMMIT {PRESERVE | DELETE} ROWS [{RESTRICT | CASCADE}]

RESTRICT will report an error if there are dependencies by other temporary tables on the current
table scope. CASCADE will automatically propagate this table scope change to other temporary
tables to maintain compliance. The default action is RESTRICT.

For example, assume that TT1 is a temporary table with ON COMMIT PRESERVE and has a
foreign reference to temporary table TT2 which is also ON COMMIT PRESERVE. If an attempt is
made to modify TT2 to ON COMMIT DELETE, an error is raised because an ON COMMIT
PRESERVE table is not allowed by the SQL standard to have a referential constraint on an ON
COMMIT DELETE table. RESTRICT returns this error while CASCADE would also alter TT1 to have
ON COMMIT DELETE. Thus, CASCADE implements transitive closure when ON COMMIT behavior
is modified.

Note:
This specification of ALTER TABLE extension does not allow a table to be toggled
between temporary and persistent.

See Also

ALTER DOMAIN
CREATE DOMAIN
CREATE TABLE
Embedded SQL Guide
Data Definition Guide

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

37

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

9.7. ALTER TRIGGER

Changes an existing trigger. Available in DSQL and isql .

ALTER TRIGGER <name> [ACTIVE | INACTIVE]
[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION <number>]
[AS trigger_body] ;

Argument Description

<name> Name of an existing trigger.

ACTIVE [Default] Specifies that a trigger action takes effect when fired.

INACTIVE Specifies that a trigger action does not take effect.

BEFORE Specifies the trigger fires before the associated operation takes place.

AFTER Specifies the trigger fires after the associated operation takes place.

DELETE|INSERT|UPDATE Specifies the table operation that causes the trigger to fire.

POSITION <number>

Specifies order of firing for triggers before the same action or after the same
action.

<number> must be an integer between 0 and 32,767, inclusive.
Lower-number triggers fire first.
Triggers for a table need not be consecutive; triggers on the same action
with the same position number fire in random order.

<trigger_body>
Body of the trigger: a block of statements in procedure and trigger language.

See CREATE TRIGGER. for a complete description.

Description: ALTER TRIGGER changes the definition of an existing trigger. If any of the
arguments to ALTER TRIGGER are omitted, then they default to their current values, that is the
value specified by CREATE TRIGGER , or the last ALTER TRIGGER .

•
•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

38

ALTER TRIGGER can change:

Header information only, including the trigger activation status, when it performs its actions,
the event that fires the trigger, and the order in which the trigger fires compared to other
triggers.
Body information only, the trigger statements that follow the AS clause.
Header and trigger body information. In this case, the new trigger definition replaces the old
trigger definition.

A trigger can be altered by its creator, the SYSDBA user, and any users with operating system
root privileges.

Note:
To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER
TABLE to change the constraint definition.

Examples: The following statement modifies the trigger, SET_CUST_NO , to be inactive:

ALTER TRIGGER SET_CUST_NO INACTIVE;

The next statement modifies the trigger, SET_CUST_NO , to insert a row into the table,
NEW_CUSTOMERS , for each new customer.

ALTER TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS
BEGIN
NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
INSERT INTO NEW_CUSTOMERS(NEW.CUST_NO, TODAY)
END ;

See Also

CREATE TRIGGER
DROP TRIGGER
Procedures and Triggers
Data Definition Guide

9.8. ALTER USER

Change an existing user. Available in DSQL and isql .

ALTER USER <name> SET
[PASSWORD <password>]
[[NO] DEFAULT ROLE <name>]
[[NO] SYSTEM USER NAME <name>]

•

•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

39

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

[[NO] GROUP NAME <name>]
[[NO] UID <number>]
[[NO] GID <number>]
[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]
[ACTIVE]
[INACTIVE];

Argument Description

PASSWORD Password of user.

[NO] DEFAULT ROLE Default role.

[NO] SYSTEM USER NAME System user name for target user.

[NO] GROUP NAME Group name for target user.

[NO] UID Target user ID.

[NO] GID Group ID for target user.

[NO] DESCRIPTION Description

[NO] FIRST NAME First name for target user.

[NO] MIDDLE NAME Middle name for target user.

[NO] LAST NAME Last name for target user.

ACTIVE Default. After inactive, reinstates selected user.

INACTIVE Prevents a user from logging into database.

Description: Alter user changes the definition of an existing user. Only used with database under
embedded user authentication.

SQL STATEMENT AND FUNCTION REFERENCE

40

If you choose to set more than one property value for the user, include a comma between each
property-value pair.

Note:
When NO is specified, an argument to the option must not be supplied. No sets the
option to a NULL state.

Examples: The following statement modifies the user, JDOE, to be inactive:

ALTER USER JDOE SET INACTIVE;

The next statement modifies the user, JDOE, to be active:

ALTER USER JDOE SET ACTIVE;

See Also

CREATE USER
DROP USER
Operations Guide

9.9. AVG()

Calculates the average of numeric values in a specified column or expression. Available in gpre ,
DSQL, and isql .

AVG ([ALL] value | DISTINCT value)

Argument Description

ALL Returns the average of all values.

DISTINCT Eliminates duplicate values before calculating the average.

<value> A column or expression that evaluates to a numeric data type.

Description: AVG() is an aggregate function that returns the average of the values in a
specified column or expression. Only numeric data types are allowed as input to AVG() .

If a field value involved in a calculation is NULL or unknown, it is automatically excluded from
the calculation. Automatic exclusion prevents averages from being skewed by meaningless data.

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

41

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

AVG() computes its value over a range of selected rows. If the number of rows returned by a
SELECT is zero, AVG() returns a NULL value.

Examples: The following embedded SQL statement returns the average of all rows in a table:

EXEC SQL
SELECT AVG (BUDGET) FROM DEPARTMENT INTO :avg_budget;

The next embedded SQL statement demonstrates the use of SUM() , AVG() , MIN() , and
MAX() over a subset of rows in a table:

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also

COUNT()
MAX()
MIN()
SUM()

9.10. BASED ON

Declares a host-language variable based on a column. Available in gpre .

BASED [ON] [<dbhandle>.]<table>.<col>[.SEGMENT] <variable>;

Argument Description

<dbhandle>
Handle for the database in which a table resides in a multi-database program;
<dbhandle> must be previously declared in a SET DATABASE statement.

<table.col> Name of table and name of column on which the variable is based.

. SEGMENT
Bases the local variable size on the segment length of the Blob column during
BLOB FETCH operations; use only when <table.col> refers to a column of
BLOB data type.

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

42

Argument Description

<variable>
Name of the host-language variable that inherits the characteristics of a
database column.

Description: BASED ON is a preprocessor directive that creates a host-language variable based
on a column definition. The host variable inherits the attributes described for the column and any
characteristics that make the variable type consistent with the programming language in use. For
example, in C, BASED ON adds one byte to CHAR and VARCHAR variables to accommodate the
NULL character terminator.

Use BASED ON in a variable declaration section of a program.

Note:
BASED ON does not require the EXEC SQL keywords.

To declare a host-language variable large enough to hold a Blob segment during FETCH
operations, use the SEGMENT option of the BASED ON clause. The size of the variable is derived
from the segment length of a Blob column. If the segment length for the Blob column is changed
in the database, recompile the program to adjust the size of host variables created with
BASED ON .

Examples: The following embedded statements declare a host variable based on a column:

EXEC SQL
BEGIN DECLARE SECTION
BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

See Also

BEGIN DECLARE SECTION
CREATE TABLE
END DECLARE SECTION

9.11. BEGIN DECLARE SECTION

Identifies the start of a host-language variable declaration section. Available in gpre .

BEGIN DECLARE SECTION;

Description: BEGIN DECLARE SECTION is used in embedded SQL applications to identify the
start of host-language variable declarations for variables that will be used in subsequent SQL

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

43

statements. BEGIN DECLARE SECTION is also a preprocessor directive that instructs gpre to
declare SQLCODE automatically for the applications programmer.

Important:
BEGIN DECLARE SECTION must always appear within a module’s global variable
declaration section.

Example: The following embedded SQL statements declare a section and a host-language
variable:

EXEC SQL
BEGIN DECLARE SECTION;
BASED ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

See Also

BASED ON
END DECLARE SECTION

9.12. CASE

The CASE function allows you to evaluate a column value on a row against multiple criteria,
where each criterion might return a different value.

CASE [<expression>]
WHEN <expression> THEN <expression> | NULL
[ELSE <expression> | NULL]
[COALESCE <expression>]
[NULLIF <expression, expression, ...>]
END

Description: The CASE expression is a conditional value expression that consists of a list of value
expressions, each of which is associated with a conditional expression. A CASE expression
evaluates to the first value expression in the list for which its associated conditional expression
evaluates to TRUE. The CASE expression has simple and searched forms of syntax.

The COALESCE and NULLIF expressions are common, shorthand forms of use for the CASE
expression involving the NULL state. A COALESCE expression consists of a list of value
expressions. It evaluates to the first value expression in the list that evaluates to non-NULL. If
none of the value expressions in the list evaluates to non-NULL, then the COALESCE expression
evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are

•
•

SQL STATEMENT AND FUNCTION REFERENCE

44

unequal then the NULLIF expression evaluates to the first value expression in the list. Otherwise,
it evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib
database:

SELECT emp.first_name || ' ' || emp.last_name AS NAME,
CASE proj.proj_name

WHEN 'DigiPizza' THEN 'Digital Pizza'
WHEN 'AutoMap' THEN 'AutoMobile Map'
WHEN 'Translator upgrade' THEN 'Universal Language Translator'
ELSE 'Other'

END
AS project
FROM employee emp

INNER JOIN employee_project emp_proj
ON emp.emp_no = emp_proj.emp_no

INNER JOIN project proj
ON emp_proj.proj_id = proj.proj_id

9.13. CAST()

Converts a column from one data type to another. Available in gpre , DSQL, and isql .

CAST (value AS <data_type>)

Argument Description

<val>
A column, constant, or expression; in SQL, <val> can also be a host-
language variable, function, or UDF.

<data_type> Data type to which to convert.

Description: CAST() allows mixing of numerics and characters in a single expression by
converting val to a specified data type.

Normally, only similar data types can be compared in search conditions. CAST() can be used in
search conditions to translate one data type into another for comparison purposes.

Data types can be converted as shown in the following table:

From data type class To data type class

Numeric character, varying character, numeric

Character, varying character numeric, date, time, timestamp

Date character, varying character, timestamp

Time character, varying character, timestamp

SQL STATEMENT AND FUNCTION REFERENCE

45

From data type class To data type class

Timestamp character, varying character, date, time

Blob, arrays —

Boolean character, varying character

An error results if a given data type cannot be converted into the data type specified in CAST() .
For example, you will get a string conversion error if you attempt to cast from a
numeric type which is unable to represent in a date type to a date (e.g. a numeric type
attempting to represent "year 99/12/31"(December) or "year 32768/3/1"(March)).

Example: In the following WHERE clause, CAST() is used to translate a CHARACTER data type,
INTERVIEW_DATE , to a DATE data type to compare against a DATE data type, HIRE_DATE :

. . .
WHERE HIRE_DATE = CAST (INTERVIEW_DATE AS DATE);

To cast a VARCHAR data type, you must specify the length of the string, for example:

UPDATE client SET charef = CAST (clientref AS VARCHAR(20));

See Also

UPPER()

9.14. CLOSE

Closes an open cursor. Available in gpre .

CLOSE <cursor>;

Argument Description

<cursor> Name of an open cursor

Description: CLOSE terminates the specified cursor, releasing the rows in its active set and any
associated system resources. A cursor is a one-way pointer into the ordered set of rows retrieved
by the select expression in the DECLARE CURSOR statement. A cursor enables sequential access
to retrieved rows in turn and update in place.

There are four related cursor statements:

•

SQL STATEMENT AND FUNCTION REFERENCE

46

Stage Statement Purpose

1 DECLARE CURSOR
Declares the cursor; the SELECT statement
determines rows retrieved for the cursor.

2 OPEN
Retrieves the rows specified for retrieval with
DECLARE CURSOR ; the resulting rows

become the active set of the cursor.

3 FETCH
Retrieves the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the set.

4 CLOSE
Closes the cursor and releases system
resources.

FETCH statements cannot be issued against a closed cursor. Until a cursor is closed and
reopened, InterBase does not reevaluate values passed to the search conditions. Another user
can commit changes to the database while a cursor is open, making the active set different the
next time that cursor is reopened.

Note:
In addition to CLOSE, COMMIT and ROLLBACK automatically close all cursors in a
transaction.

Example: The following embedded SQL statement closes a cursor:

EXEC SQL
CLOSE BC;

See Also

CLOSE (BLOB)
COMMIT
DECLARE CURSOR
FETCH
OPEN
ROLLBACK

9.15. CLOSE (BLOB)

Terminates a specified Blob cursor and releases associated system resources. Available in gpre .

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

47

CLOSE <blob_cursor>;

Argument Description

<blob_cursor> Name of an open Blob cursor

Description: CLOSE closes an opened read or insert Blob cursor. Generally a Blob cursor should
be closed only after:

Fetching all the Blob segments for BLOB READ operations.
Inserting all the segments for BLOB INSERT operations.

Example: The following embedded SQL statement closes a Blob cursor:

EXEC SQL
CLOSE BC;

See Also

DECLARE CURSOR (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

9.16. COALESCE()

The COALESCE function evaluates to the first value expression in a list that evaluates to non-
NULL. If none of the value expressions in the list evaluates to non-NULL, then the COALESCE
expression evaluates to NULL.

COALESCE(<expression1>,<expression2>,...<expression_n>)

Description: The COALESCE and NULLIF expressions are common, shorthand forms of use for
the CASE expression involving the NULL state. A COALESCE expression consists of a list of value
expressions. It evaluates to the first value expression in the list that evaluates to non-NULL. If
none of the value expressions in the list evaluates to non-NULL, then the COALESCE expression
evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib
database:

select coalesce(department, head_dept, location) from department

•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

48

9.17. COMMIT

Makes changes of a transaction to the database permanent, and ends the transaction. Available
in gpre , DSQL, and isql .

COMMIT [WORK] [TRANSACTION <name>] [RELEASE] [RETAIN [SNAPSHOT]];

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

WORK
An optional word used for compatibility with other relational databases that
require it

TRANSACTION <name>
Commits transaction name to database. Without this option, COMMIT affects
the default transaction.

RELEASE Available for compatibility with earlier versions of InterBase.

RETAIN [SNAPSHOT] Commits changes and retains current transaction context.

Description: COMMIT is used to end a transaction and:

Write all updates to the database.
Make the changes of transaction visible to subsequent SNAPSHOT transactions or
READ COMMITTED transactions.
Close open cursors, unless the RETAIN argument is used.

A transaction ending with COMMIT is considered a successful termination. Always use COMMIT
or ROLLBACK to end the default transaction.

Tip:
After read-only transactions, which make no database changes, use COMMIT rather than
ROLLBACK. The effect is the same, but the performance of subsequent transactions is
better and the system resources used by them are reduced.

•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

49

Important:
The RELEASE argument is only available for compatibility with previous versions of
InterBase. To detach from a database use DISCONNECT .

Examples: The following isql statement makes permanent the changes to the database made
by the default transaction:

COMMIT;

The next embedded SQL statement commits a named transaction:

EXEC SQL
COMMIT TR1;

The following embedded SQL statement uses COMMIT RETAIN to commit changes while
maintaining the current transaction context:

EXEC SQL
COMMIT RETAIN;

See Also

DISCONNECT
ROLLBACK
Embedded SQL Guide

9.18. CONNECT

Attaches to one or more databases. Available in gpre . A subset of CONNECT options is available
in isql .

isql:

CONNECT 'filespec' [USER 'username'][PASSWORD 'password']
[CACHE int] [ROLE 'rolename']

SQL:

CONNECT [TO] {ALL | DEFAULT} <config_opts>
| <db_specs> <config_opts> [, <db_specs> <config_opts>...];

<db_specs> = dbhandle
| {'filespec' | :variable} AS dbhandle

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

50

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

<config_opts> = [USER {'username' | :variable}]
[PASSWORD {'password' | :variable}]
[ROLE {'rolename' | :variable}]
[CACHE int [BUFFERS]]

Argument Description

{ ALL | DEFAULT }
Connects to all databases specified with SET DATABASE ; options specified
with CONNECT TO ALL affect all databases.

<'filespec>'
Database file name; can include path specification and node. The filespec must
be in quotes if it includes spaces.

<dbhandle>
Database handle declared in a previous SET DATABASE statement;
available in embedded SQL but not in isql .

<:variable>
Host-language variable specifying a database, user name, or password;
available in embedded SQL but not in isql .

AS <dbhandle>
Attaches to a database and assigns a previously-declared handle to it; available
in embedded SQL but not in isql .

USER {'<username>' | :<variable>}
String or host-language variable that specifies a user name for use when
attaching to the database. The server checks the user name against the security
database. User names are case insensitive on the server.

PASSWORD {‘<password>’ |
 :<variable>}

String or host-language variable, up to 8 characters in size, that specifies
password for use when attaching to the database. The server checks the user
name and password against the security database. Case sensitivity is retained
for the comparison.

ROLE {‘<rolename>’ | :<variable>}

String or host-language variable, up to 67 characters in size, which specifies
the role that the user adopts on connection to the database. The user must
have previously been granted membership in the role to gain the privileges of
that role. Regardless of role memberships granted, the user has the privileges
of a role at connect time only if a ROLE clause is specified in the connection.
The user can adopt at most one role per connection, and cannot switch roles
except by reconnecting.

SQL STATEMENT AND FUNCTION REFERENCE

51

Argument Description

CACHE <int> [BUFFERS]

Sets the number of cache buffers for a database, which determines the number
of database pages a program can use at the same time. Values for <int>:

Default: 256
Maximum value: system-dependent

Do not use the <filespec> form of database name with cache assignments.

Description: The CONNECT statement:

Initializes database data structures.
Determines if the database is on the originating node (a local database) or on another node
(a remote database). An error message occurs if InterBase cannot locate the database.
Optionally specifies one or more of a user name, password, or role for use when attaching to
the database. PC clients must always send a valid user name and password. InterBase
recognizes only the first 8 characters of a password.

If an InterBase user has ISC_USER and ISC_PASSWORD environment variables set and the user
defined by those variables is not in the InterBase security database (admin.ib by default), the
user receives the following error when attempting to view users from the local server manager
connection: “undefined user name and password.” This applies only to the local connection; the
automatic connection made through Server Manager bypasses user security.

Attaches to the database and verifies the header page. The database file must contain a valid
database, and the on-disk structure (ODS) version number of the database must be the one
recognized by the installed version of InterBase on the server, or InterBase returns an error.
Optionally establishes a database handle declared in a SET DATABASE statement.
Specifies a cache buffer for the process attaching to a database.

In SQL programs before a database can be opened with CONNECT , it must be declared with the
SET DATABASE statement. isql does not use SET DATABASE .

In SQL programs while the same CONNECT statement can open more than one database, use
separate statements to keep code easy to read.

When CONNECT attaches to a database, it uses the default character set (NONE), or one
specified in a previous SET NAMES statement.

In SQL programs, the CACHE option changes the database cache size count (the total number of
available buffers) from the default of 75. This option can be used to:

Set a new default size for all databases listed in the CONNECT statement that do not already
have a specific cache size.
Specify a cache for a program that uses a single database.

•
•

•
•

•

•

•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

52

Change the cache for one database without changing the default for all databases used by
the program.

The size of the cache persists as long as the attachment is active. If a database is already attached
through a multi-client server, an increase in cache size due to a new attachment persists until all
the attachments end. A decrease in cache size does not affect databases that are already
attached through a server.

A subset of CONNECT features is available in isql : database file name, USER , and PASSWORD .
isql can only be connected to one database at a time. Each time CONNECT is used to attach to
a database, previous attachments are disconnected.

Examples: The following statement opens a database for use in isql . It uses all the CONNECT
options available to isql :

CONNECT 'employee.ib' USER 'ACCT_REC' PASSWORD 'peanuts';

The next statements, from an embedded application, attach to a database file stored in the host-
language variable and assign a previously-declared database handle to it:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';
EXEC SQL
CONNECT :db_file AS DB1;

The following embedded SQL statement attaches to employee.ib and allocates 150 cache -
buffers:

EXEC SQL
CONNECT 'accounts.ib' CACHE 150;

The next embedded SQL statement connects the user to all databases specified with previous
SET DATABASE statements:

EXEC SQL
CONNECT ALL USER 'ACCT_REC' PASSWORD 'peanuts'
CACHE 50;

The following embedded SQL statement attaches to the database, employee.ib , with 80
buffers and database employee2.ib with the default of 75 buffers:

EXEC SQL
CONNECT 'employee.ib' CACHE 80, 'employee2.ib';

The next embedded SQL statement attaches to all databases and allocates 50 buffers:

•

SQL STATEMENT AND FUNCTION REFERENCE

53

EXEC SQL
CONNECT ALL CACHE 50;

The following embedded SQL statement connects to EMP1 and v, setting the number of buffers
for each to 80:

EXEC SQL
CONNECT EMP1 CACHE 80, EMP2 CACHE 80;

The next embedded SQL statement connects to two databases identified by variable names,
setting different user names and passwords for each:

EXEC SQL
CONNECT
:orderdb AS DB1 USER 'ACCT_REC' PASSWORD 'peanuts',
:salesdb AS DB2 USER 'ACCT_PAY' PASSWORD 'payout';

See Also

Command-line Options
DISCONNECT
SET DATABASE
SET NAMES (Reference)
Data Definition Guide
Operations Guide

9.19. COUNT()

Calculates the number of rows that satisfy search condition of a query. Available in gpre , DSQL,
and isql .

COUNT (* | [ALL] value | DISTINCT value)

Argument Description

* Retrieves the number of rows in a specified table, including NULL values

ALL Counts all non- NULL values in a column.

DISTINCT Returns the number of unique, non- NULL values for the column.

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

54

http://docwiki.embarcadero.com/InterBase/15/en/Invoking_isql#Command-line_Options
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Argument Description

<val> A column or expression.

Description: COUNT() is an aggregate function that returns the number of rows that satisfy the
search condition of a query. It can be used in views and joins, as well as in tables.

Example: The following embedded SQL statement returns the number of unique currency values
it encounters in the COUNTRY table:

EXEC SQL
SELECT COUNT (DISTINCT CURRENCY) INTO :cnt FROM COUNTRY;

See Also

AVG()
MAX()
MIN()
SUM()

9.20. CREATE DATABASE

Creates a new database. Available in gpre , DSQL, and isql .

CREATE {DATABASE | SCHEMA} '<filespec>'
[USER '<username>' [PASSWORD '<password>']]
[PAGE_SIZE [=] <int>]
[LENGTH [=] <int> [PAGE[S]]]
[WITH ADMIN OPTION]
[DEFAULT CHARACTER SET <charset>]
[secondary_file];

secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = [LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }
[fileinfo]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

55

Argument Description

‘<filespec>’
A new database file specification.
File naming conventions are platform-specific.

USER ‘<username>’

Checks the <username> against valid user name and password
combinations in the security database on the server where the database will
reside.
Windows client applications must provide a user name when attaching to a
server.

PASSWORD ‘<password>’

Checks the <password> against valid user name and password
combinations in the security database on the server where the database will
reside; can be up to 8 characters.
Windows client applications must provide a password when attaching to a
server.

PAGE_SIZE [=] <int> Size, in bytes, for database pages.
int can be 1024 (default), 2048, 4096, 8129, or 16384.

PREALLOCATE [=] <number> [P
AGE[S]]

Reserves storage space in a file system for the requested number of
database pages. It guarantees that a write will not fail due to lack of storage
space over this range of pages.

WITH ADMIN OPTION Create new database with embedded user authentication enabled.

DEFAULT CHARACTER SET
<charset>

Sets default character set for a database.
<charset> is the name of a character set; if omitted, character set defaults
to NONE .

FILE ‘<filespec>’

Names one or more secondary files to hold database pages after the primary
file is filled.
For databases created on remote servers, secondary file specifications
cannot include a node name.

STARTING [AT [PAGE]] <int> Specifies the starting page number for a secondary file.

LENGTH [=]
<int> [PAGE[S]]

Specifies the length of a primary or secondary database file.
Use for primary file only if defining a secondary file in the same statement.

Description: CREATE DATABASE creates a new, empty database and establishes the following
characteristics for it:

The name of the primary file that identifies the database for users.

By default, databases are contained in single files.

The name of any secondary files in which the database is stored.

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

56

A database can reside in more than one disk file if additional file names are specified as
secondary files. If a database is created on a remote server, secondary file specifications cannot
include a node name.

The size of database pages.

Increasing page size can improve performance for the following reasons:
Indexes work faster because the depth of the index is kept to a minimum.
Keeping large rows on a single page is more efficient.
Blob data is stored and retrieved more efficiently when it fits on a single page.

If most transactions involve only a few rows of data, a smaller page size might be appropriate,
since less data needs to be passed back and forth and less memory is used by the disk cache.

The number of pages in each database file.
The dialect of the database.

The initial dialect of the database is the dialect of the client that creates it. For example, if you are
using isql , either start it with the -sql_dialect <n> switch or issue the
SET SQL DIALECT <n> command before issuing the CREATE DATABASE command. Typically,
you would create all databases in dialect 3. Dialect 1 exists to ease the migration of legacy
databases.
To change the dialect of a database, use gfix or the Properties dialog in IBConsole. See the
Migration appendix in the InterBase Operations Guide for information about migrating
databases.

The character set used by the database.

For a list of the character sets recognized by InterBase, see Character Sets and Collation Orders
(Language Reference Guide).
Choice of DEFAULT CHARACTER SET limits possible collation orders to a subset of all available
collation orders. Given a specific character set, a specific collation order can be specified when
data is selected, inserted, or updated in a column.
If you do not specify a default character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column defined
with NONE , but you cannot load that same data into another column that has been defined with
a different character set. In that case, no transliteration is performed between the source and
destination character sets, and transliteration errors may occur during assignment.

System tables that describe the structure of the database.

After creating the database, you define its tables, views, indexes, and system views as well as any
triggers, generators, stored procedures, and UDFs that you need.

•

•
•
•

•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

57

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Important:
In DSQL, you must execute CREATE DATABASE EXECUTE IMMEDIATE . The database
handle and transaction name, if present, must be initialized to zero prior to use.

Read-only databases :

Databases are always created in read-write mode. You can change a table to read-only mode in
one of two ways: you can specify mode -read_only when you restore a backup, or you can use
gfix -mode read_only to change the mode of a table to read-only. See “Database User
Management” in the Operations Guide for more information on database configuration and
maintenance.

About file sizes:

InterBase dynamically expands the last file in a database as needed. The maximum file size is
system-dependent. This applies to single-file databases as well as to the last file of multifile
databases. You should be aware that specifying a LENGTH for such files has no effect.

The total file size is the product of the number of database pages times the page size. The
default page size is 4KB and the maximum page size is 16KB. However, InterBase files are small at
creation time and increase in size as needed. The product of number of pages times page size
represents a potential maximum size, not the size at creation.

Examples: The following isql statement creates a database in the current directory using
isql :

CREATE DATABASE 'employee.ib';

The next embedded SQL statement creates a database with a page size of 2048 bytes rather than
the default of 4096:

EXEC SQL
CREATE DATABASE 'employee.ib' PAGE_SIZE 2048;

The following embedded SQL statement creates a database stored in two files and specifies its
default character set:

EXEC SQL
CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET ISO8859_1
FILE 'employee2.ib' STARTING AT PAGE 10001;

SQL STATEMENT AND FUNCTION REFERENCE

58

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

See Also

ALTER DATABASE
DROP DATABASE
Data Definition Guide
Operations Guide

9.21. CREATE DOMAIN

Creates a column definition that is global to the database. Available in gpre , DSQL, and isql .

CREATE DOMAIN <domain> [AS] data_type
[DEFAULT {<literal> | NULL | USER}]
[NOT NULL] [CHECK (dom_search_condition)]
[COLLATE <collation>];

data_type> =
{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION} [array_dim]
| {DATE|TIME|TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [array_dim]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
| BOOLEAN
array_dim> = [[x:]y [, [x:]y …]]
dom_search_condition> =
VALUE operator value
| VALUE [NOT] BETWEEN value AND value
| VALUE [NOT] LIKE value [ESCAPE value]
| VALUE [NOT] IN (value [, value …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING value
| VALUE [NOT] STARTING [WITH] value
| (dom_search_condition)
| NOT dom_search_condition
| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

Note on the CREATE DOMAIN syntax:

COLLATE is useful only for text data, not for numeric types. Also, you cannot specify a
COLLATE clause for Blob columns.
When declaring arrays, you must include the outermost brackets, shown below in bold. For
example, the following statement creates a 5 by 5 two-dimensional array of strings, each of
which is six characters long:

•
•
•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

59

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

my_array = varchar(6)[5,5]

Use the colon (:) to specify an array with a starting point other than 1. The following example
creates an array of integer values that begins at 20 and ends at 30:

my_array = integer[20:30]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<domain> Unique name for the domain.

<data_type> SQL data type

DEFAULT

Specifies a default column value that is entered when no other entry is made;
possible values are:

<literal> – Inserts a specified string, numeric value, or date value.

NULL – Enters a NULL value.

USER – Enters the user name of the current user; column must be of
compatible character type to use the default.

NOT NULL Specifies that the values entered in a column cannot be NULL .

CHECK (<dom_search_condition>) Creates a single CHECK constraint for the domain.

VALUE Placeholder for the name of a column eventually based on the domain.

COLLATE <collation> Specifies a collation sequence for the domain.

•

SQL STATEMENT AND FUNCTION REFERENCE

60

Description: CREATE DOMAIN builds an inheritable column definition that acts as a template for
columns defined with CREATE TABLE or ALTER TABLE . The domain definition contains a set
of characteristics, which include:

Data type
An optional default value
Optional disallowing of NULL values
An optional CHECK constraint
An optional collation clause

The CHECK constraint in a domain definition sets a dom_search_condition that must be true for
data entered into columns based on the domain. The CHECK constraint cannot reference any
domain or column.

Note:
Be careful not to create a domain with contradictory constraints, such as declaring a
domain NOT NULL and assigning it a DEFAULT value of NULL.

The data type specification for a CHAR or VARCHAR text domain definition can include a
CHARACTER SET clause to specify a character set for the domain. Otherwise, the domain uses
the default database character set. For a complete list of character sets recognized by InterBase,
see Character Sets and Collation Orders.

If you do not specify a default character set, the character set defaults to NONE . Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column defined
with NONE , but you cannot load that same data into another column that has been defined with
a different character set. In these cases, no transliteration is performed between the source and
destination character sets, so errors can occur during assignment.

The COLLATE clause enables specification of a particular collation order for CHAR , VARCHAR ,
and NCHAR text data types. Choice of collation order is restricted to those supported for the
domain’s given character set, which is either the default character set for the entire database, or a
different set defined in the CHARACTER SET clause as part of the data type definition. For a
complete list of collation orders recognized by InterBase, see Character Sets and Collation
Orders.

Columns based on a domain definition inherit all characteristics of the domain. The domain
default, collation clause, and NOT NULL setting can be overridden when defining a column
based on a domain. A column based on a domain can add additional CHECK constraints to the
domain CHECK constraint.

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

61

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders

Examples: The following isql statement creates a domain that must have a positive value
greater than 1,000, with a default value of 9,999. The keyword VALUE substitutes for the name
of a column based on this domain.

CREATE DOMAIN CUSTNO
AS INTEGER
DEFAULT 9999
CHECK (VALUE > 1000);

The next isql statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

The following isql statement creates a domain that defines an array of CHAR data type:

CREATE DOMAIN DEPTARRAY AS CHAR(67) [4:5];

In the following isql example, the first statement creates a domain with USER as the default.
The next statement creates a table that includes a column, ENTERED_BY , based on the
USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)
DEFAULT USER;
CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,
ORDER_AMT DECIMAL(8,2));
INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH :

SELECT * FROM ORDERS;
1-MAY-93 JSMITH 512.36

The next isql statement creates a BLOB domain with a TEXT subtype that has an assigned
character set:

CREATE DOMAIN DESCRIPT AS
BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SJIS;

SQL STATEMENT AND FUNCTION REFERENCE

62

See Also

ALTER DOMAIN
ALTER TABLE
CREATE TABLE
DROP DOMAIN
Data Definition Guide

9.22. CREATE ENCRYPTION

Creates encryption keys for use during the encryption process.

CREATE ENCRYPTION key-name for AES | for DES

Argument Description

Key-name Name associated with the encryption key. Name must be unique.

For AES|DES

Indicates the level of encryption InterBase will apply to the encrypted data.
Advanced Encryption Standard (AES) is considered a strong encryption scheme
and requires a license to use with InterBase. Data Encryption Standard (DES) is
considered a weak encryption scheme that requires no special license.

Description: CREATE ENCRYPTION creates an encryption key. Only a SYSDSO (Data Security
Owner) can create an encryption key. An encryption key is used to encrypt pages and/or columns
of a database. The database owner uses an encryption key to perform encryption on a specific
database or column. InterBase stores encryption keys in the RDB$ENCRYPTIONS system table.

Three new columns have been added to the RDB$RELATIONS_FIELDS table:
RDB$ENCRYPTION_ID, RDB$DECRYPT_DEFAULT_VALUE and RDB$DECRYPT_DEFAULT_SOURCE to
support the database page and column-level encryption as well.

Example: The following isql statement creates an encryption key called revenue_key using the
AES encryption scheme and a length of 192 bits:

CREATE ENCRYPTION revenue_key FOR AES WITH LENGTH 192 BITS

See Also

DROP ENCRYPTION
GRANT
REVOKE
ALTER DATABASE
ALTER TABLE

•
•
•
•
•

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

63

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Data Definition Guide

9.23. CREATE EXCEPTION

Creates a used-defined error and associated message for use in stored procedures and triggers.
Available in DSQL and isql .

CREATE EXCEPTION <name> '<message>';

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In isql , the
semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name>
Name associated with the exception message; must be unique among
exception names in the database.

‘<message>’
Quoted string containing alphanumeric characters and punctuation; maximum
length = 78 characters.

Description: CREATE EXCEPTION creates an exception, a user-defined error with an associated
message. Exceptions may be raised in triggers and stored procedures.

Exceptions are global to the database. The same message or set of messages is available to all
stored procedures and triggers in an application. For example, a database can have English and
French versions of the same exception messages and use the appropriate set as needed.

When raised by a trigger or a stored procedure, an exception:

Terminates the trigger or procedure in which it was raised and undoes any actions
performed (directly or indirectly) by it.
Returns an error message to the calling application. In isql , the error message appears on
the screen, unless output is redirected.

Exceptions may be trapped and handled with a WHEN statement in a stored procedure or trigger.

Examples: This isql statement creates the exception, UNKNOWN_EMP_ID :

CREATE EXCEPTION UNKNOWN_EMP_ID 'Invalid employee number or project id.';

The following statement from a stored procedure raises the previously-created exception when
SQLCODE -530 is set, which is a violation of a FOREIGN KEY constraint:

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

64

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

. . .
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;
. . .

See Also

ALTER EXCEPTION
ALTER PROCEDURE
ALTER TRIGGER
CREATE PROCEDURE
CREATE TRIGGER
DROP EXCEPTION
Procedures and Triggers
Data Definition Guide

9.24. CREATE GENERATOR

Declares a generator to the database. Available in gpre , DSQL, and isql .

CREATE GENERATOR <name>;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name for the generator

Description: CREATE GENERATOR declares a generator to the database and sets its starting
value to zero. A generator is a sequential number that can be automatically inserted in a column
with the GEN_ID() function. A generator is often used to ensure a unique value in a
PRIMARY KEY , such as an invoice number, that must uniquely identify the associated row.

A database can contain any number of generators. Generators are global to the database, and
can be used and updated in any transaction. InterBase does not assign duplicate generator
values across transactions.

You can use SET GENERATOR to set or change the value of an existing generator when writing
triggers, procedures, or SQL statements that call GEN_ID() .

•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

65

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

See Also

GEN_ID()
SET GENERATOR

9.25. CREATE INDEX

Creates an index on one or more columns in a table. Available in gpre , DSQL, and isql .

Note:
By default indices reside in the same tablespace as that of the table unless a different
tablespace is specified. For more information on table spaces refer to the Tablespace
documentation.

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index>
ON <table> (<col> [, <col> …]);

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

UNIQUE Prevents insertion or updating of duplicate values into indexed columns.

ASC[ENDING] Sorts columns in ascending order, the default order if none is specified.

DESC[ENDING] Sorts columns in descending order.

<index> Unique name for the index.

<table> Name of the table on which the index is defined.

<col> Column in <table> to index.

Description: Creates an index on one or more columns in a table. Use CREATE INDEX to
improve the speed of data access. Using an index for columns that appear in a WHERE clause
may improve search performance.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

66

http://docwiki.embarcadero.com/InterBase/15/en/Tablespace

Important:
You cannot index Blob columns or arrays.

A UNIQUE index cannot be created on a column or set of columns that already contains
duplicate or NULL values.

ASC and DESC specify the order in which an index is sorted. For faster response to queries that
require sorted values, use the index order that matches the s ORDER BY clause of the query.
Both an ASC and a DESC index can be created on the same column or set of columns to access
data in different orders.

Tip:
To improve index performance, use SET STATISTICS to recompute index selectivity, or
rebuild the index by making it inactive, then active with sequential calls to ALTER INDEX.

Examples: The following isql statement creates a unique index:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The next isql statement creates a descending index:

CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);

The following isql statement creates a two-column index:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

9.25.1. Expression Index

InterBase 2017 Update 1 introduces Expression Index support, which can enhance the index
definition and optimization of queries. For more information and examples refer to Expression
Index

See Also

Expression Index
ALTER INDEX
DROP INDEX
SELECT
SET STATISTICS

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

67

http://docwiki.embarcadero.com/InterBase/15/en/Expression_Index
http://docwiki.embarcadero.com/InterBase/15/en/Expression_Index
http://docwiki.embarcadero.com/InterBase/15/en/Expression_Index

9.26. CREATE JOURNAL

Creates a journal file and activates journaling.

CREATE JOURNAL [<journal-file-specification>] [LENGTH <number-of-pages>]

[CHECKPOINT LENGTH <number-of-pages> [PAGES]]
[CHECKPOINT INTERVAL <number-of-seconds> [SECONDS]]
[PAGE SIZE <number-of-bytes> [BYTES]]
[PAGE CACHE <number-of-buffers> [BUFFERS]]
[[NO] TIMESTAMP NAME]
[[NO] PREALLOCATE <number-of-pages> [PAGES]]

Argument Description

journal-file-specification

Specifies a quoted string containing the full path and base file name of the
journal file. The base journal file name is used as a template for the actual
journal file names as they are created. The default is the full database path and
file name.

LENGTH
This clause specifies the number of pages that can be written to the journal file
before rolling over to a new journal file. The maximum length is 2GB or 4000
pages.

CHECKPOINT LENGTH
This clause specifies the number of pages that can be written to the journal file
before checkpoint occurs. The default is 500.

CHECKPOINT INTERVAL

Determines the number of seconds between database checkpoints. The
checkpoint interval determines how long it will take to recover after a server
crash. The default is 0.

Note: If both CHECKPOINT LENGTH and CHECKPOINT INTERVAL are
specified, whichever event occurs first will initiate a database checkpoint.

PAGE SIZE

Determines the size of a journal page in bytes. A journal page size must be at
least twice the size of a database page size. If a journal page size of less is
specified, it will be rounded up to twice the database page size and a warning
will be returned. The journal page size needs not be a power of 2. The default
is twice the database size.

SQL STATEMENT AND FUNCTION REFERENCE

68

Argument Description

PAGE CACHE

Determines the number of journal pages that are cached to memory. This
number must be large enough to provide buffers for worker threads to write to
when the cache writer is writing other buffers. If the number is too small, the
worker threads wait and performance suffers.The default is 100 buffers.

[NO] TIMESTAMP NAME

Determines whether or not to append the file creation timestamp to the base
journal file name. The default is enabled.

If used, the base journal file name will be appended with a timestamp in the
following format:

YYYY_MM_DDTHH_MM_SSZ.sequence_number.journal

[NO] PREALLOCATE
Determines journal file space requirements while simultaneously guaranteeing
that the space is allocated in advance. The default is twice the database size.

Description: A journal consists of one or more journal files. A journal file records each database
transaction as it occurs. To save changed journal pages in the database cache to the hard disk,
you set up journaling checkpoints to occur automatically. A checkpoint specifies the time at
which InterBase must save all the changed pages in the database cache to the database file.

The CREATE JOURNAL statement causes all subsequent write operations on a database to be
done asynchronously. The journal file I/O is always synchronous and cannot be altered. All
transaction changes are safely recorded on durable storage before the transaction is committed.

Journaling can be used with journal archiving to provide more complete disaster recovery.

Example: In the following example:

CREATE JOURNAL 'e:\database\test'
LENGTH 4000
CHECKPOINT LENGTH 10000
PAGE CACHE 2500;

The LENGTH parameter of 65000 will cause rollover to a new journal file every 1GB (65000 x
16KB). A CHECKPOINT LENGTH parameter of 10000 means the database checkpoint will occur
every 160MB (10000 x 16KB). The 2500 journal buffer configuration will leave 2000 spare buffers
for the worker threads to dump their journal changes. At the built-in PAGE CACHE default of
100, the worker threads can stall due to a high rate of journal buffer wait states.

See Also

DROP JOURNAL•

SQL STATEMENT AND FUNCTION REFERENCE

69

CREATE JOURNAL ARCHIVE
DROP JOURNAL ARCHIVE
Operations Guide

9.27. CREATE JOURNAL ARCHIVE

Activities journal archiving and performs the initial database dump to the archive directory.

CREATE JOURNAL ARCHIVE <journal archive directory>

Argument Description

journal archive directory

The location in which InterBase stores the journal archive. If the directory does
not exist or is not accessible, InterBase returns an error message. The directory
path can be a local drive, a mapped drive, or an UNC path (as long as the
underlying file APIs can open the file using that specification). If you do not
specify a journal archive directory in the CREATE JOURNAL ARCHIVE
statement, InterBase uses the journal directory created with the
CREATE JOURNAL statement.

Description: The CREATE JOURNAL ARCHIVE command performs two functions: it activates
journal archiving in an InterBase database, and it automatically performs the initial full, physical
dump of the database. InterBase stores the dump in the journal archive directory you specify in
the CREATE statement. A journal archive enables you to recover to the last committed
transaction in the most recently archived and completed journal file.

Important:
CREATE JOURNAL ARCHIVE creates the archive and performs an initial dump. However,
you must issue a specific gbak command to copy completed journal files to the journal
archive. You use another gbak command to perform subsquent dumps to the archive.
For information about the gbak archive commands, and about how to implement
journaling and journal archiving, see the InterBase Operations Guide.

9.27.1. Journal Archive Management

You can manage the Journal Archive feature of InterBase V8. The archive is a directory that holds
journal files, which have been archived from the local journal directory associated with a
database. In addition, to storing copies of the local journal files, the archive also stores database
dumps that are periodically backed up to the archive.

Description: Archived database dumps represent the starting point from which long-term
database recovery is initiated. A set of archive journal files are applied to a copy of the archive
database in the same way that local journal files are applied to a production database during

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

70

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

short-term recovery. Also, an InterBase timestamp can be specified to indicate a point-in-time
until which the journal files will be applied.

When the archive is used to recover a database, the resulting database is not a journaled
database. This means that RDBLOG_FILES, RDBJOURNAL_FILES and the log page of the
database are empty. This prevents the database from accidently using the journal and journal
archive of an existing database. Database recovery is usually used when the original database is
corrupted or unavailable due to hardware failures. However, it could be possible to recover a
database on the same machine as the working production database or on a different machine
where the journal and journal archive directories have no similarly-named directories. Therefore,
if journaling and/or journal archiving is desired for the recovered database, it is necessary to
execute the appropriate DDL commands to do so.

Examples: gbak is used to archive databases and journal files to the archive, and is also used to
recover a database from the archive back to a specified local directory of the user's choice.

To archive a database:
gbak -archive_database <dbname>

To archive local journal files:

gbak -archive_journals <dbname>

To recover a database (optionally to a point-in-time)

gbak -archive_recover [-until <timestamp>] <archive_dbname> <local_dbname>

If the -until command line switch is not given, the database recover applies as many journal files
as possible to recover a database to the most recent point-in-time. If possible, the database
recovery attempts to "jump" from the archive to the local journal directory to apply the journal
files that were never copied to the archive. In this way, a database may be recovered to the most
recently committed transaction of the original database.

If allowed, the archive grows in storage size infinitely as the database and the most current
journal files are continually archived. Gfix is used to manage and garbage collect archived items
that are no longer required. As the number of journal files grows in the archive without have
created more recent archived database dumps, so does the time that will be needed to recover
the database from the archive. Therefore, it is desirable to periodically create additional database
dumps in the archive. At some point, you may decided that older database dumps and the
journal files on which they depend on are no longer necessary, as the basis of recovery will be on
more recent database dumps and journal files.

All archive items are denoted by an archive sequence number that corresponds to the order in
which the items were created in the archive.

SQL STATEMENT AND FUNCTION REFERENCE

71

To garbage collect archive items less than an archive sequence number.

gfix -archive_sweep [-force] <archive_sequence_no>

If an archive item cannot be swept for some reason, the sweep stops and returns an error status.
In some cases, this could stop the command from ever succeeding. For example, if an archive is
manually deleted with a shell OS command, the sweep always fails because it cannot find the file
to drop. The -force option continues regardless of errors to delete as much as possible. The -
force switch logs errors to the InterBase error log instead of returning an error status.

To specify how many database dumps to allow in the archive:

gfix -archive_dumps <number>

Once the number of database dumps in the archive exceeds the <number> given, all lower
sequenced archive items are deleted from the archive. Sometimes all lower sequenced items
cannot be deleted. For example, a database dump may depend on a lower sequenced journal file
with which to start recovery. In that case, InterBase automatically adjusts the given sequence
number lower so that this dependency is not lost.

To track that state of the archive, a new system table, RDB$JOURNAL_ARCHIVES, has been added
since ODS 12 databases. The Gbak and Gfix commands listed above used this system table to
decide which archive items are targets for the commands.

Important:
Listed below are the requirements and constraints for managing the Journal Archive.

The archive is platform-specific. An archive created with InterBase for Windows cannot be
directly used to recover on InterBase for Unix. Instead, an archived database dump could be
logically backed up in transportable format and then logically restored on the other
platform.
The journal and journal archive are restricted to a single directory. The number of items
allowed to be archived will be limited to the number of files that are allowed in a directory
for a give file system.
Only full database dumps are archived. In particular, it is not possible to archive incremental
database dumps.
Journaling must be enabled for a database before the database can be configured for
journal archiving.

See Also

DROP JOURNAL ARCHIVE
CREATE JOURNAL

1.

2.

3.

4.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

72

DROP JOURNAL

9.28. CREATE PROCEDURE

Creates a stored procedure, its input and output parameters, and its actions. Available in DSQL,
and isql .

CREATE PROCEDURE'' name
'' [(<param>'' ''data_type [, <param>'' ''data_type'' ''…])]
[RETURNS param data_type'' [, ''<param>'' ''data_type …])]
AS ''procedure_body '';

procedure_body =

[variable_declaration_list]
block
variable_declaration_list =

DECLARE VARIABLE var data_type;
[DECLARE VARIABLE var data_type; …]
block =
BEGIN
compound_statement
[compound_statement …]
END
compound_statement = block | statement;
data_type = { SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
[(int)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]
| BOOLEAN

Argument Description

<name>
Name of the procedure. Must be unique among procedure, table, and view
names in the database.

<param data_type>

Input parameters that the calling program uses to pass values to the
procedure:

<param>: Name of the input parameter, unique for variables in the procedure.

<data_type>: An InterBase data type.

•

SQL STATEMENT AND FUNCTION REFERENCE

73

Argument Description

RETURNS <param data_type>

Output parameters that the procedure uses to return values to the calling
program:

<param>: Name of the output parameter, unique for variables within the
procedure.

<data_type>: An InterBase data type.

The procedure returns the values of output parameters when it reaches a
SUSPEND statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body.

DECLARE VARIABLE

Declares local variables used only in the procedure; must be preceded by
DECLARE VARIABLE and followed by a semicolon (;).

is the name of the local variable, unique for variables in the procedure.

<statement>
Any single statement in InterBase procedure and trigger language; must be
followed by a semicolon (;) except for BEGIN and END statements.

Description: CREATE PROCEDURE defines a new stored procedure to a database. A stored
procedure is a self-contained program written in InterBase procedure and trigger language, and
stored as part of a metadata of a database. Stored procedures can receive input parameters from
and return values to applications.

InterBase procedure and trigger language includes all SQL data manipulation statements and
some powerful extensions, including IF … THEN … ELSE , WHILE … DO , FOR SELECT … DO ,
exceptions, and error handling.

There are two types of procedures:

Select procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values, or an error will
result.
Executable procedures that an application can call directly, with the EXECUTE PROCEDURE
statement. An executable procedure need not return values to the calling program.

A stored procedure is composed of a header and a body.

The procedure header contains:

The name of the stored procedure, which must be unique among procedure and table
names in the database.

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

74

An optional list of input parameters and their data types that a procedure receives from the
calling program.
RETURNS followed by a list of output parameters and their data types if the procedure
returns values to the calling program.

The procedure body contains:

An optional list of local variables and their data types.
A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END . A block can itself include other blocks, so that there may be many levels of
nesting.

InterBase does not allow database changes that affect the behavior of an existing stored
procedure (for example, DROP TABLE or DROP EXCEPTION). To see all procedures defined for
the current database or the text and parameters of a named procedure, use the isql internal
commands SHOW PROCEDURES or SHOW PROCEDURE procedure.

InterBase procedure and trigger language is a complete programming language for stored
procedures and triggers. It includes:

SQL data manipulation statements: INSERT , UPDATE , DELETE , and singleton SELECT .
SQL operators and expressions, including generators and UDFs that are linked with the
database.
Extensions to SQL, including assignment statements, control-flow statements, context
variables (for triggers), event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for stored procedures. For a complete
description of each statement, see Procedures and Triggers.

Statement Description

BEGIN … END
Defines a block of statements that executes as one.

The BEGIN keyword starts the block; the END keyword terminates it.
Neither should end with a semicolon.

variable = expression
Assignment statement: assigns the value of expression to variable, a local
variable, input parameter, or output parameter.

/* comment_text */
Programmer’s comment, where comment_text can be any number of lines
of text.

•

•

•
•

•
•

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

75

Statement Description

EXCEPTION <exception_name>
Raises the named exception: an exception is a user-defined error that
returns an error message to the calling application unless handled by a
WHEN statement.

EXECUTE PROCEDURE <proc_name> [[,
…]] [RETURNING_VALUES [, …]]

Executes stored procedure, <proc_name>, with the listed input
arguments, returning values in the listed output arguments following
RETURNING_VALUES ; input and output arguments must be local

variables.

EXIT Jumps to the final END statement in the procedure.

FOR <select_statement> DO
<compound_statement>

Repeats the statement or block following DO for every qualifying row
retrieved by <select_statement>.

<select_statement> is like a normal SELECT statement.

<compound_statement>
Either a single statement in procedure and trigger language or a block of
statements bracketed by BEGIN and END .

IF (<condition>) THEN
<compound_statement> [ELSE
<compound_statement>]

Tests <condition>, and if it is TRUE , performs the statement or block
following THEN ; otherwise, performs the statement or block following
ELSE , if present.

<condition>: a Boolean expression (TRUE , FALSE , or UNKNOWN),
generally two expressions as operands of a comparison operator.

NEW .<column>
New context variable that indicates a new column value in an INSERT or
UPDATE operation.

OLD .<column>
Old context variable that indicates a column value before an UPDATE or
DELETE operation.

POST_EVENT <event_name> | <col> Posts the event, <event_name>, or uses the value in <col> as an event
name.

SUSPEND

In a SELECT procedure:

Suspends execution of procedure until next FETCH is issued by the
calling application.
Returns output values, if any, to the calling application.
Not recommended for executable procedures.

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

76

Statement Description

WHILE (<condition>) DO
<compound_statement>

While <condition> is TRUE , keep performing <compound_statement>:

Tests <condition>, and performs <compound_statement> if condition
is TRUE .
Repeats this sequence until <condition> is no longer TRUE .

WHEN {<error> [, <error> …] | ANY }
DO <compound_statement>

Error-handling statement: when one of the specified errors occurs,
performs <compound_statement>:

WHEN statements, if present, must come at the end of a block, just
before END .
<error>: EXCEPTION <exception_name>, SQLCODE <errcode> or
GDSCODE errcode.
ANY : Handles any errors.

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre . The following statement types are not supported in triggers or
stored procedures:

Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION,
and DECLARE FILTER
Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK
Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE
CONNECT/DISCONNECT, and sending SQL statements to another database
GRANT/REVOKE
SET GENERATOR
EVENT INIT/WAIT
BEGIN/END DECLARE SECTION
BASED ON
WHENEVER
DECLARE CURSOR
OPEN
FETCH

Examples: The following procedure, SUB_TOT_BUDGET , takes a department number as its input
parameter, and returns the total, average, smallest, and largest budgets of departments with the
specified HEAD_DEPT .

CREATE PROCEDURE SUB_TOT_BUDGET (HEAD_DEPT CHAR(3))
RETURNS (tot_bw1udget DECIMAL(12, 2), avg_budget DECIMAL(12, 2),
min_budget DECIMAL(12, 2), max_budget DECIMAL(12, 2))
AS
BEGIN
SELECT SUM(BUDGET), AVG(BUDGET), MIN(BUDGET), MAX(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept

•

•

•

•

•

•

•
•
•
•
•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

77

INTO :tot_budget, :avg_budget, :min_budget, :max_budget;
EXIT;
END ;

The following SELECT procedure, ORG_CHART , displays an organizational chart that shows the
department name, the parent department, the department manager, the manager’s job title, and
the number of employees in the department:

CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)
AS
DECLARE VARIABLE mngr_no INTEGER;
DECLARE VARIABLE dno CHAR(3);
BEGIN
FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO, D.DEPT_NO
FROM DEPARTMENT D
LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO
ORDER BY D.DEPT_NO
INTO :head_dept, :department, :mngr_no, :dno
DO
BEGIN
IF (:mngr_no IS NULL) THEN
BEGIN
MNGR_NAME = '--TBH--';
TITLE = '';
END
ELSE
SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE
WHERE EMP_NO = :mngr_no
INTO :mngr_name, :title;
SELECT COUNT(EMP_NO)
FROM EMPLOYEE
WHERE DEPT_NO = :dno
INTO :emp_cnt;
SUSPEND;
END
END ;

When ORG_CHART is invoked, for example in the following isql statement:

SELECT * FROM ORG_CHART

it displays the department name for each department, which department it is in, the department
manager’s name and title, and the number of employees in the department.

SQL STATEMENT AND FUNCTION REFERENCE

78

HEAD_DEPT
DEPARTMEN

T
MGR_NAME TITLE EMP_CNT

Corporate
Headquarters

Bender, Oliver H. CEO 2

Corporate
Headquarters

Sales and Marketing MacDonald, Mary S. VP 2

Sales and Marketing
Pacific Rim
Headquarters

Baldwin, Janet ? Sales 2

Pacific Rim
Headquarters

Field Office: Japan Yamamoto, Takashi SRep 2

Pacific Rim
Headquarters

Field Office:
Singapore

—TBH— 0

ORG_CHART must be used as a select procedure to display the full organization. If called with
EXECUTE PROCEDURE , the first time it encounters the SUSPEND statement, it terminates,
returning the information for Corporate Headquarters only.

See Also

ALTER EXCEPTION
ALTER PROCEDURE
CREATE EXCEPTION
DROP EXCEPTION
DROP PROCEDURE
EXECUTE PROCEDURE
SELECT
Data Definition Guide
Procedures and Triggers

9.29. CREATE ROLE

Creates a role.

CREATE ROLE <rolename>;

•
•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

79

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<rolename>
Name associated with the role; must be unique among role names in the
database

Description: Roles created with CREATE ROLE can be granted privileges just as users can.
These roles can be granted to users, who then inherit the privilege list that has been granted to
the role. Users must specify the role at connect time. Use GRANT to grant privileges (ALL ,
SELECT , INSERT , UPDATE , DELETE , EXECUTE , REFERENCES) to a role and to grant a role to
users. Use REVOKE to revoke them.

Example: The following statement creates a role called “administrator.”

CREATE ROLE administrator;

See Also

GRANT
REVOKE
DROP ROLE

9.30. CREATE SHADOW

Creates one or more duplicate, in-sync copies of a database. Available in gpre , DSQL, and
isql .

CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]
'<filespec>' [LENGTH [=] <int> [PAGE[S]]]
[secondary_file];

secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int

[fileinfo]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

80

applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<set_num>
Positive integer that designates a shadow set to which all subsequent files
listed in the statement belong.

AUTO

Specifies the default access behavior for databases in the event no shadow is
available.

All attachments and accesses succeed.
Deletes all references to the shadow and detaches the shadow file.

MANUAL
Specifies that database attachments and accesses fail until a shadow becomes
available, or until all references to the shadow are removed from the database

CONDITIONAL
Creates a new shadow, allowing shadowing to continue if the primary shadow
becomes unavailable or if the shadow replaces the database due to disk failure.

‘<filespec>’
Explicit path name and file name for the shadow file; must be a local file
system and must not include a node name or be on a networked file system.

LENGTH [=] <int> [PAGE [S
]]

Length in database pages of an additional shadow file; page size is determined
by the page size of the database itself.

<secondary_file>
Specifies the length of a primary or secondary shadow file; use for primary file
only if defining a secondary file in the same statement.

STARTING [AT [PAGE]]
<int>

Starting page number at which a secondary shadow file begins.

Description: CREATE SHADOW is used to guard against loss of access to a database by
establishing one or more copies of the database on secondary storage devices. Each copy of the
database consists of one or more shadow files, referred to as a shadow set. Each shadow set is
designated by a unique positive integer.

Disk shadowing has three components:

A database to shadow.
The RDB$FILES system table, which lists shadow files and other information about the
database.

•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

81

A shadow set, consisting of one or more shadow files.

When CREATE SHADOW is issued, a shadow is established for the database most recently
attached by an application. A shadow set can consist of one or multiple files. In case of disk
failure, the database administrator (DBA) activates the disk shadow so that it can take the place
of the database. If CONDITIONAL is specified, then when the DBA activates the disk shadow to
replace an actual database, a new shadow is established for the database.

If a database is larger than the space available for a shadow on one disk, use the
<secondary_file> option to define multiple shadow files. Multiple shadow files can be spread
over several disks.

Tip:
To add a secondary file to an existing disk shadow, drop the shadow with DROP
SHADOW and use CREATE SHADOW to recreate it with the desired number of files.

Examples: The following isql statement creates a single, automatic shadow file for
employee.ib :

CREATE SHADOW 1 AUTO 'employee.shd';

The next isql statement creates a conditional, single, automatic shadow file for
employee.ib :

CREATE SHADOW 2 CONDITIONAL 'employee.shd' LENGTH 1000;

The following isql statements create a multiple-file shadow set for the employee.ib
database. The first statement specifies starting pages for the shadow files; the second statement
specifies the number of pages for the shadow files.

CREATE SHADOW 3 AUTO
'employee.sh1'
FILE 'employee.sh2'
STARTING AT PAGE 1000
FILE 'employee.sh3'
STARTING AT PAGE 2000;
CREATE SHADOW 4 MANUAL 'employee.sdw'
LENGTH 1000
FILE 'employee.sh1'
LENGTH 1000
FILE 'employee.sh2';

See Also

DROP SHADOW
Operations Guide

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

82

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Data Definition Guide

9.31. CREATE SUBSCRIPTION

Establishes interest in observing changed data on a set of tables beyond the natural boundary of
a database connection, a subscription must be created on a list of tables (base tables or views).

CREATE SUBSCRIPTION <subscription_name> ON
<table>[(column_comma-list)]:[FOR ROW ({INSERT, UPDATE, DELETE})
], <table>[(column-comma_list)][FOR ROW ({INSERT, UPDATE, DELETE})] ...]
[DESCRIPTION user-description];

Argument Description

FOR ROW Determines what types of row modification causes column-level changes.

<table> If a table is specified, all table columns are tracked.

column_comma-list Specifies a subset of columns to be tracked.

user-description

Description: The FOR clause tailors what types of row modifications causes column-level
changes to be tracked for the subscription. If the FOR clause is omitted then all data changing
row operations cause column data to be tracked for the subscription. If a table alone is specified
then all columns of the table are tracked. If only a subset of columns is desired to be tracked,
then an optional list of columns can be specified by the subscription.

An optional list of columns is specified for the "Employees" table so that only changes on those
columns are tracked. Since no FOR clause is specified for "Employees" the default of FOR
assumes that all insert, update, and delete changes are tracked by the subscription. The
"Customer" table clause specifies that only row deletions are tracked.

If you no longer want to observe a set of changed views, the subscription must be dropped.
If RESTRICT is specified then a check of existing subscribers is performed. If there are
subscribers then an error is returned without dropping the subscription.
If CASCADE is specified then all subscribers of this subscription are also dropped.
If neither RESTRICT nor CASCADE is specified then RESTRICT is assumed.

Example: If only a subset of columns is desired to be tracked, then an optional list of columns
can be specified by the subscription.

•

•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

83

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

CREATE SUBSCRIPTION "Subscribed_Changes" ON "Employees" (NAME, DEPARTMENT,
SALARY), "Customers" FOR ROW (DELETE).

To create your subscriptions (the first line shows new employees, the second shows customer
records that were deleted).

CREATE SUBSCRIPTION "Subscribed_Inserts" ON "Employees" (FULL_NAME, DEP_NO,
SALARY) FOR ROW (INSERT)
CREATE SUBSCRIPTION “Customer_Deletes" ON "Customer" FOR ROW (DELETE)

See Also

Operations Guide
Data Definition Guide

9.32. CREATE TABLE

Creates a new table in an existing database. Available in gpre , DSQL, and isql .

Important:
To create a global Temporary table, see: “global Temporary Tables” in the Data Definition
Guide.

CREATE TABLE <table> [EXTERNAL [FILE] '<filespec>']
(col_def [, col_def | tconstraint …]) [ON COMMIT {PRESERVE | DELETE} ROWS] [[NO]
RESERVE SPACE];

col_def = col {data_type | COMPUTED [BY] (expr) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[col_constraint]
[COLLATE collation]
data_type =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [array_dim]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
| BOOLEAN
array_dim = [[x:]y [, [x:]y …]]
expr = A valid SQL expression that results in a single value.
col_constraint = [CONSTRAINT constraint]
{ UNIQUE

•
•

SQL STATEMENT AND FUNCTION REFERENCE

84

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
tconstraint = [CONSTRAINT constraint]
{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …])
REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val
| val [NOT] LIKE val [ESCAPE val]
| val [NOT] IN (val [, val …] | select_list)
| val IS [NOT] NULL
| val {>= | <=}
| val [NOT] {= | < | >}
| {ALL | SOME | ANY} (select_list)
| EXISTS (select_expr)
| SINGULAR (select_expr)
| val [NOT] CONTAINING val
| val [NOT] STARTING [WITH] val
| (search_condition)
| NOT search_condition
| search_condition OR search_condition
| search_condition AND search_condition
val = { col [array_dim] | :variable
| constant | expr | function
| udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]
constant = num | 'string' | charsetname 'string'
function = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
| CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)
operator = {= | < | > | <= | >= | !< | !> | <> | !=}
select_one = SELECT on a single column; returns exactly one value.
select_list = SELECT on a single column; returns zero or more values.
select_expr = SELECT on a list of values; returns zero or more values.

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

SQL STATEMENT AND FUNCTION REFERENCE

85

Notes on the CREATE TABLE statement:

When declaring arrays, you must include the outermost brackets, shown below in bold. For
example, the following statement creates a 5 by 5 two-dimensional array of strings, each of
which is 6 characters long:

my_array VARCHAR(6)[5,5]

Use the colon (:) to specify an array with a starting point other than 1. The following
example creates an array of integers that begins at 10 and ends at 20:

my_array INTEGER[10:20]

In SQL and isql , you cannot use val as a parameter placeholder (like “?”).
In DSQL and isql , val cannot be a variable.
You cannot specify a COLLATE clause for Blob columns.
expr is any complex SQL statement or equation that produces a single value.

Argument Description

<table>
Name for the table; must be unique among table and procedure names in the
database.

EXTERNAL [FILE] ‘<filespec>’.
Declares that data for the table under creation resides in a table or file outside
the database; <filespec> is the complete file specification of the external file or
table.

<col>

Name for the table column; unique among column names in the table. You can
also encrypt/decrypt a column when you create a table. For instructions on
how to encrypt and decrypt a column or database see “Encrypting Your Data”
in the Data Definition Guide.

<data_type> SQL data type for the column; see Data Types (Language Reference Guide).

COMPUTED [BY] (<expr>)

Specifies that the value of the data of the coulmn is calculated from <expr> at
runtime and is therefore not allocated storage space in the database.

<expr> can be any arithmetic expression valid for the data types in the
expression.
Any columns referenced in <expr> must exist before they can be used in
<expr>.
<expr> cannot reference Blob columns.
<expr> must return a single value, and cannot return an array.

•

•

•
•
•
•

•

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

86

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<domain> Name of an existing domain

DEFAULT

Specifies a default column value that is entered when no other entry is made;
possible values are:

<literal>: Inserts a specified string, numeric value, or date value.
NULL : Enters a NULL value.
USER : Enters the user name of the current user. Column must be of

compatible text type to use the default.

Defaults set at column level override defaults set at the domain level.

CONSTRAINT <constraint> Name of a column or table constraint; the constraint name must be unique
within the table.

<constraint_def>
Specifies the kind of column constraint; valid options are UNIQUE ,
PRIMARY KEY , CHECK , and REFERENCES .

REFERENCES
Specifies that the column values are derived from column values in another
table; if you do not specify column names, InterBase looks for a column with
the same name as the referencing column in the referenced table.

ON DELETE | ON UPDATE

Used with REFERENCES : Changes a foreign key whenever the referenced
primary key changes; valid options are:

[Default] NO ACTION : Does not change the foreign key; may cause the
primary key update to fail due to referential integrity checks.
CASCADE : For ON DELETE , deletes the corresponding foreign key; for
ON UPDATE , updates the corresponding foreign key to the new value of the

primary key.
SET NULL : Sets all the columns of the corresponding foreign key to NULL .
SET DEFAULT : Sets every column of the corresponding foreign key is set to

its default value in effect when the referential integrity constraint is defined.
When the default for a foreign column changes after the referential integrity
constraint is defined, the change does not have an effect on the default
value used in the referential integrity constraint.

CHECK <search_condition> An attempt to enter a new value in the column fails if the value does not meet
the <search_condition>.

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and
Collation Orders for more information.

•
•
•

•

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

87

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders

Description: CREATE TABLE establishes a new table, its columns, and integrity constraints in an
existing database. The user who creates a table is the owner of the table and has all privileges for
it, including the ability to GRANT privileges to other users, triggers, and stored procedures.

CREATE TABLE supports several options for defining columns:

Local columns specify the name and data type for data entered into the column.
Computed columns are based on an expression. Column values are computed each time the
table is accessed. If the data type is not specified, InterBase calculates an appropriate one.
Columns referenced in the expression must exist before the column can be defined.
Domain-based columns inherit all the characteristics of a domain, but the column definition
can include a new default value, a NOT NULL attribute, additional CHECK constraints, or a
collation clause that overrides the domain definition. It can also include additional column
constraints.
The data type specification for a CHAR , VARCHAR , or Blob text column definition can
include a CHARACTER SET clause to specify a particular character set for the single column.
Otherwise, the column uses the default database character set. If the database character set
is changed, all columns subsequently defined have the new character set, but existing
columns are not affected. For a complete list of character sets recognized by InterBase, see
Character Sets and Collation Orders.
If you do not specify a default character set, the character set defaults to NONE . Using
character set NONE means that there is no character set assumption for columns; data is
stored and retrieved just as you originally entered it. You can load any character set into a
column defined with NONE , but you cannot load that same data into another column that
has been defined with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur during assignment.
The COLLATE clause enables specification of a particular collation order for CHAR ,
VARCHAR , and Blob text data types. Choice of collation order is restricted to those
supported for the given character set of the column, which is either the default character set
for the entire database, or a different set defined in the CHARACTER SET clause as part of
the data type definition. For a complete list of collation orders recognized by InterBase, see
Character Sets and Collation Orders.

NOT NULL is an attribute that prevents the entry of NULL or unknown values in column.
NOT NULL affects all INSERT and UPDATE operations on a column.

•

•
•

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

88

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders

Important:
A DECLARE TABLE must precede CREATE TABLE in embedded applications if the
same SQL program both creates a table and inserts data in the table.

The EXTERNAL FILE option creates a table whose data resides in an external file, rather
than in the InterBase database. Use this option to:

Define an InterBase table composed of data from an external source, such as data in files
managed by other operating systems or in non-database applications.
Transfer data to an existing InterBase table from an external file.

External files must either be placed in <InterBase_home>/ext or their location must be
specified in the ibconfig configuration file using the EXTERNAL_FILE_DIRECTORY entry.

Referential integrity constraints:

You can define integrity constraints at the time you create a table. These constraints are rules
that validate data entries by enforcing column-to-table and table-to-table relationships.
They span all transactions that access the database and are automatically maintained by the
system. CREATE TABLE supports the following integrity constraints:
A PRIMARY KEY is one or more columns whose collective contents are guaranteed to be
unique. A PRIMARY KEY column must also define the NOT NULL attribute. A table can
have only one primary key.
UNIQUE keys ensure that no two rows have the same value for a specified column or
ordered set of columns. A unique column must also define the NOT NULL attribute. A table
can have one or more UNIQUE keys. A UNIQUE key can be referenced by a FOREIGN KEY
in another table.
Referential constraints (REFERENCES) ensure that values in the specified columns (known as
the foreign key) are the same as values in the referenced UNIQUE or PRIMARY KEY
columns in another table. The UNIQUE or PRIMARY KEY columns in the referenced table
must be defined before the REFERENCES constraint is added to the secondary table.
REFERENCES has ON DELETE and ON UPDATE clauses that define the action on the
foreign key when the referenced primary key is updated or deleted. The values for
ON UPDATE and ON DELETE are as follows:

Action specified Effect on foreign key

NO ACTION
[Default] The foreign key does not change. This may cause the primary key
update or delete to fail due to referential integrity checks.

CASCADE
The corresponding foreign key is updated or deleted as appropriate to the new
value of the primary key.

•

•

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

89

Action specified Effect on foreign key

SET DEFAULT

Every column of the corresponding foreign key is set to its default value. If the
default value of the foreign key is not found in the primary key, the update or
delete on the primary key fails.

The default value is the one in effect when the referential integrity constraint
was defined. When the default for a foreign key column is changed after the
referential integrity constraint is set up, the change does not have an effect on
the default value used in the referential integrity constraint.

SET NULL Every column of the corresponding foreign key is set to NULL .

You can create a FOREIGN KEY reference to a table that is owned by someone else only if
that owner has explicitly granted you REFERENCES privilege on that table. Any user who
updates your foreign key table must have REFERENCES or SELECT privileges on the
referenced primary key table.
CHECK constraints enforce a <search_condition> that must be true for inserts or updates
to the specified table. <search_condition> can require a combination or range of values or
can compare the value entered with data in other columns.

Note:
Specifying USER as the value for a <search_condition> references the login of the user
who is attempting to write to the referenced table.

Creating PRIMARY KEY and FOREIGN KEY constraints requires exclusive access to the
database.
For unnamed constraints, the system assigns a unique constraint name stored in the
RDB$RELATION_CONSTRAINTS system table.

Note:
Constraints are not enforced on expressions.

Examples: The following isql statement creates a simple table with a PRIMARY KEY :

CREATE TABLE COUNTRY (COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

The next isql statement creates both a column-level and a table-level UNIQUE constraint:

CREATE TABLE STOCK (
MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

90

ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

The following isql statement illustrates table-level PRIMARY KEY , FOREIGN KEY , and
CHECK constraints. The PRIMARY KEY constraint is based on three columns. This example also
illustrates creating an array column of VARCHAR .

CREATE TABLE JOB (
JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
JOB_TITLE VARCHAR(25) NOT NULL,
MIN_SALARY SALARY NOT NULL,
MAX_SALARY SALARY NOT NULL,
JOB_REQUIREMENT BLOB(400,1),
LANGUAGE_REQ VARCHAR(15) [5],
PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY),
CHECK (MIN_SALARY < MAX_SALARY));

In the next example, the F2 column in table T2 is a foreign key that references table T1
through the primary key P1 of T1 . When a row in T1 changes, that change propagates to all
affected rows in table T2 . When a row in T1 is deleted, all affected rows in the F2 column of
table T2 are set to NULL .

CREATE TABLE T1 (P1 INTEGER NOT NULL PRIMARY KEY);
CREATE TABLE T2 (F2 INTEGER FOREIGN KEY (F2) REFERENCES T1 (P1)
ON UPDATE CASCADE
ON DELETE SET NULL);

The next isql statement creates a table with a calculated column:

CREATE TABLE SALARY_HISTORY (
EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECISION
DEFAULT 0
NOT NULL
CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),
NEW_SALARY COMPUTED BY
(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO));

In the following isql statement the first column retains the default collating order for the
default character set of the dataset. The second column has a different collating order, and the
third column definition includes a character set and a collating order.

SQL STATEMENT AND FUNCTION REFERENCE

91

CREATE TABLE BOOKADVANCE (
BOOKNO CHAR(6),
TITLE CHAR(50) COLLATE ISO8859_1,
EUROPUB CHAR(50) CHARACTER SET ISO8859_1 COLLATE FR_FR);

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in
nature. An archival table means that the rows of a table are infrequently or never UPDATED or
DELETED; have complex queries, such as aggregates and analytics that process a high percentage
of rows; and where indexes are rebuilt and the database is backed and/or restored frequently.
These database operations could see a performance improve of 20% or more with a savings in
storage space.

By default, InterBase reserves a small amount of space in each data page of a table to optimize
UPDATE and DELETE operations on resident rows. This reserve space can amount to 20% or more
of the total space occupied by all of the rows of the table. Some tables archive historical data or
data that are UPDATED infrequently or not at all and their rows may never be deleted. Database
operations that process most or all of the rows, such as backup, restore, index creation,
aggregate computation have always suffered performance penalties proportional to this
reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and
maximizes row packing for the most efficient fill ratio. At the database level, it has been possible
to restore a database with the -USE_ALL_SPACE switch so that no space is reserved for any table.
To change the storage behavior in a like manner for new or existing databases, the same clause is
introduced for CREATE/ALTER DATABASE.

User Interface To effect the new storage behavior, a non-standard SQL clause is added:

Clause is presented before the secondary file specification.

CREATE DATABASE <file name> ... [NO] RESERVE SPACE

Clause is presented after the column list specification and optional ON COMMIT clause for
temporary tables.

CREATE TABLE <table name> ... [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record
version stub, as would normally be the case. Over many row insertions, a decrease in storage size
should be observed relative to what the table size would be in the absence of this feature. The
optional NO keyword when used with ALTER TABLE toggles the behavior to the alternate state of
the current storage behavior for the table.

SQL STATEMENT AND FUNCTION REFERENCE

92

The NO RESERVE storage modifier is preserved across database backup and restore. This state is
stored as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the
system table RDB$RELATIONS.

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's
column definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner
for the CREATE TABLE output of the respective table listing. The state for database-wide storage
behavior is stored in a like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A global temporary table is declared to a database schema via the normal CREATE TABLE
statement with the following syntax:

CREATE GLOBAL TEMPORARY TABLE {{Placeholder|table}}
({{Placeholder|<col_def>}} [, {{Placeholder|<col_def>}} | {{Placeholder|
<tconstraint>}} ...])
 [ON COMMIT {PRESERVE | DELETE} ROWS];

The first argument that you supply CREATE GLOBAL TEMPORARY TABLE is the temporary table
name, which is required and must be unique among all table and procedure names in the
database. You must also supply at least one column definition.

The ON COMMIT clause describes whether the rows of the temporary table are deleted on each
transaction commit (ON COMMIT DELETE) or are left in place (ON COMMIT PRESERVE) to be
used by other transactions in the same database attachment. If the ON COMMIT is not specified
then the default behavior is to DELETE ROWS on transaction commit.

There is a change in behavior in the GLOBAL TEMPORARY TABLE Support with the InterBase
XE3U2 release. When an SQL script is executed ISQL reported a "deadlock" if EXIT is called
without COMMIT/ROLLBACK on a global temporary table. To resolve this issue, the GLOBAL
TEMPORARY TABLES function has been redesigned which changes the behavior and corrects the
deadlock error.

It is no longer possible for transactions emanating from the same connection to see each other's
rows in a transaction-specific (ON COMMIT DELETE) temporary table. To do that, you must use a
session-specific (ON COMMIT PRESERVE) temporary table that makes all rows visible to
transactions starting in the same session. This is still not the same in that the rows will persist
until the connection is finished.

A Global temporary table is dropped from a database schema using the normal DROP TABLE
statement.

See Also

CREATE DOMAIN•

SQL STATEMENT AND FUNCTION REFERENCE

93

DECLARE TABLE
GRANT
REVOKE

For more information on creating metadata, using integrity constraints, external tables, data
types, collation order, and character sets, see the Data Definition Guide.

For detailed information on encryption and decryption, see the topics “Encrypting Data” and
“Decrypting Data” in the Data Definition Guide.

9.33. CREATE TRIGGER

Creates a trigger, including when it fires, and what actions it performs. Available in DSQL, and
isql .

CREATE TRIGGER name FOR table
[ACTIVE | INACTIVE]
{BEFORE | AFTER}
{DELETE | INSERT | UPDATE}
[POSITION number]
AS trigger_body ;

trigger_body = [variable_declaration_list] block
variable_declaration_list =
DECLARE VARIABLE variable data_type;
[DECLARE VARIABLE variable data_type; …]
block =
BEGIN
compound_statement
[compound_statement …]
END
data_type = SMALLINT
| INTEGER
| FLOAT
| DOUBLE PRECISION
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
[(int)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]
| BOOLEAN
compound_statement = block | statement;

Argument Description

<name> Name of the trigger; must be unique in the database.

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

94

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<table>
Name of the table or view that causes the trigger to fire when the specified
operation occurs on the table or view.

ACTIVE | INACTIVE
Optional. Specifies trigger action at transaction end:

ACTIVE : [Default] Trigger takes effect.
INACTIVE : Trigger does not take effect.

BEFORE | AFTER

Required. Specifies whether the trigger fires:

BEFORE : Before the associated operation.
AFTER : After the associated operation.

Associated operations are DELETE , INSERT , or UPDATE .

DELETE | INSERT | UPDATE Specifies the table operation that causes the trigger to fire.

POSITION <number>

Specifies the firing order for triggers before the same action or after the same
action; <number> must be an integer between 0 and 32,767, inclusive.

Lower-number triggers fire first.
Default: 0 = first trigger to fire.
Triggers for a table need not be consecutive; triggers on the same action
with the same position number will fire in random order.

DECLARE VARIABLE

Declares local variables used only in the trigger. Each declaration must be
preceded by DECLARE VARIABLE and followed by a semicolon (;).

: Local variable name, unique in the trigger.
<data_type>: The data type of the local variable.

<statement>
Any single statement in InterBase procedure and trigger language; each
statement except BEGIN and END must be followed by a semicolon (;).

Description: CREATE TRIGGER defines a new trigger to a database. A trigger is a self-contained
program associated with a table or view that automatically performs an action when a row in the
table or view is inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT ,
UPDATE , or DELETE a row in a table, any triggers associated with that table and operation
automatically execute, or fire. Triggers defined for UPDATE on non-updatable views fire even if
no update occurs.

A trigger is composed of a header and a body.

•
•

•
•

•
•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

95

The trigger header contains:

A trigger name, unique within the database, that distinguishes the trigger from all others.
A table name, identifying the table with which to associate the trigger.
Statements that determine when the trigger fires.

The trigger body contains:

An optional list of local variables and their data types.
A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END . These statements are performed when the trigger fires. A block can itself include
other blocks, so that there may be many levels of nesting.

A trigger is associated with a table. The table owner and any user granted privileges to the table
automatically have rights to execute associated triggers.

Triggers can be granted privileges on tables, just as users or procedures can be granted
privileges. Use the GRANT statement, but instead of using TO <username>, use TO TRIGGER
<trigger_nam>e. Triggers privileges can be revoked similarly using REVOKE .

When a user performs an action that fires a trigger, the trigger will have privileges to perform its
actions if one of the following conditions is true:

The trigger has privileges for the action.
The user has privileges for the action.

InterBase procedure and trigger language is a complete programming language for stored
procedures and triggers. It includes:

SQL data manipulation statements: INSERT , UPDATE , DELETE , and singleton SELECT .
SQL operators and expressions, including generators and UDFs that are linked with the
calling application.
Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for triggers. For a complete description of
each statement, see Procedures and Triggers.

Statement Description

BEGIN … END
Defines a block of statements that executes as one.

The BEGIN keyword starts the block; the END keyword terminates it.
Neither should it be followed by a semicolon.

•
•
•

•
•

•
•

•
•

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

96

Statement Description

<variable> = <expression>
Assignment statement that assigns the value of <expression> to
<variable>, a local variable, input parameter, or output parameter.

/* <comment_text> */
Programmer’s comment, where <comment_text> can be any number of
lines of text.

EXCEPTION <exception_name>
Raises the named exception; an exception is a user-defined error that
returns an error message to the calling application unless handled by a
WHEN statement.

EXECUTE PROCEDURE < proc_name> [[,
…]] [RETURNING_VALUES [, …]]

Executes the stored procedure, <proc_name>, with the listed input
arguments.

Returns values in the listed output arguments following
RETURNING_VALUES .

Input and output arguments must be local variables.

EXIT Jumps to the final END statement in the procedure.

FOR <select_statement> DO
<compound_statement>

Repeats the statement or block following DO for every qualifying row
retrieved by <select_statement>.

<select_statement> A normal SELECT statement.

<compound_statement>
Either a single statement in procedure and trigger language or a block of
statements bracketed by BEGIN and END .

IF (condition) THEN
compound_statement [ELSE
compound_statement]

Tests <condition>, and if it is TRUE , performs the statement or block
following THEN ; otherwise, performs the statement or block following
ELSE , if present.

<condition>
A Boolean expression (TRUE , FALSE , or UNKNOWN), generally two
expressions as operands of a comparison operator.

NEW .<column>
New context variable that indicates a new column value in an INSERT or
UPDATE operation.

•

•

SQL STATEMENT AND FUNCTION REFERENCE

97

Statement Description

OLD .<column>
Old context variable that indicates a column value before an UPDATE or
DELETE operation.

POST_EVENT <event_name> | <col> Posts the event, <event_name>, or uses the value in <col> as an event
name.

WHILE (<condition>) DO
<compound_statement>

While condition is TRUE , keep performing <compound_statement>.

Tests <condition>, and performs <compound_statement> if
<condition> is TRUE .
Repeats this sequence until <condition> is no longer TRUE .

WHEN {<error> [, <error> …] | ANY } DO
<compound_statement>

Error-handling statement. When one of the specified errors occurs,
performs <compound_statement>. WHEN statements, if present, must
come at the end of a block, just before END .

ANY : Handles any errors

<error>
EXCEPTION <exception_name>, SQLCODE <errcode> or GDSCODE

errcode

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre . The following statement types are not supported in triggers or
stored procedures:

Data definition language statements: CREATE , ALTER , DROP , DECLARE
EXTERNAL FUNCTION , and DECLARE FILTER
Transaction control statements: SET TRANSACTION , COMMIT , ROLLBACK
Dynamic SQL statements: PREPARE , DESCRIBE , EXECUTE
CONNECT/DISCONNECT , and sending SQL statements to another database
GRANT/REVOKE
SET GENERATOR
EVENT INIT/WAIT
BEGIN/END DECLARE SECTION
BASED ON
WHENEVER
DECLARE CURSOR
OPEN
FETCH

•

•

•

•

•
•
•
•
•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

98

Examples: The following trigger, SAVE_SALARY_CHANGE , makes correlated updates to the
SALARY_HISTORY table when a change is made to an employee’s salary in the EMPLOYEE
table:

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'now', USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

The following trigger, SET_CUST_NO , uses a generator to create unique customer numbers
when a new customer record is inserted in the CUSTOMER table.

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS
BEGIN
NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END ;

The following trigger, POST_NEW_ORDER , posts an event named “new_order” whenever a new
record is inserted in the SALES table.

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS
BEGIN
POST_EVENT 'new_order';
END ;

The following four fragments of trigger headers demonstrate how the POSITION option
determines trigger firing order:

CREATE TRIGGER A FOR accounts
BEFORE UPDATE
POSITION 5 … /*Trigger body follows*/
CREATE TRIGGER B FOR accounts
BEFORE UPDATE
POSITION 0 … /*Trigger body follows*/
CREATE TRIGGER C FOR accounts
AFTER UPDATE
POSITION 5 … /*Trigger body follows*/
CREATE TRIGGER D FOR accounts
AFTER UPDATE
POSITION 3 … /*Trigger body follows*/

SQL STATEMENT AND FUNCTION REFERENCE

99

When this update takes place:

UPDATE accounts SET account_status = 'on_hold'
WHERE account_balance < 0;

The triggers fire in this order:

Trigger B fires.
Trigger A fires.
The update occurs.
Trigger D fires.
Trigger C fires.

See Also

ALTER EXCEPTION
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
DROP EXCEPTION
DROP TRIGGER
EXECUTE PROCEDURE
Data Definition Guide
Procedures and Triggers

9.34. CREATE USER

Create a new user. Available in DSQL and isql .

CREATE USER <name> SET
[PASSWORD <password>]
[[NO] DEFAULT ROLE <name>]
[[NO] SYSTEM USER NAME <name>]
[[NO] GROUP NAME <name>]
[[NO] UID <number>]
[[NO] GID <number>]
[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]
[ACTIVE]
[INACTIVE];

1.
2.
3.
4.
5.

•
•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

100

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

PASSWORD Password of user

[NO] DEFAULT ROLE Default role

[NO] SYSTEM USER NAME System user name for target user

[NO] GROUP NAME Group name for target user

[NO] UID Target user ID

[NO] GID Group ID for target user

[NO] DESCRIPTION Description

[NO] FIRST NAME First name for target user

[NO] MIDDLE NAME Middle name for target user

[NO] LAST NAME Last name for target user

ACTIVE Default. After inactive, reinstates selected user.

INACTIVE Prevents a user from logging into database.

Description: CREATE USER creates a new user. Only used with database under embedded user
authentication.

If you choose to set more than one property value for the user, include a comma between each
property value pair.

Note:
When NO is specified, an argument to the option must not be supplied. NO sets the
option to a NULL state.

SQL STATEMENT AND FUNCTION REFERENCE

101

Examples: The following statement creates the user, JDOE and set password, jdoe:

CREATE USER JDOE SET PASSWORD ‘jdoe’;

The next statement creates the user, JDOE, and set password, first name and last name:

CREATE USER JDOE SET PASSWORD ‘jdoe’, FIRST NAME ‘Jane’, LAST NAME ‘Doe’;

See Also

ALTER USER
DROP USER
Operations Guide

9.35. CREATE VIEW

Creates a new view of data from one or more tables. Available in gpre , DSQL, and isql .

CREATE VIEW name [(view_col [, view_col …])]
AS select [WITH CHECK OPTION];

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name>
Name for the view; must be unique among all view, table, and procedure
names in the database.

<view_col>

Names the columns for the view:

Column names must be unique among all column names in the view.
Required if the view includes columns based on expressions; otherwise
optional.
Default: Column name from the underlying table.

<select> Specifies the selection criteria for rows to be included in the view.

WITH CHECK OPTION
Prevents INSERT or UPDATE operations on an updatable view if the
INSERT or UPDATE violates the search condition specified in the WHERE

clause of the SELECT clause of the view.

•
•
•

•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

102

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Description: CREATE VIEW describes a view of data based on one or more underlying tables in
the database. The rows to return are defined by a SELECT statement that lists columns from the
source tables. Only the view definition is stored in the database; a view does not directly
represent physically stored data. It is possible to perform select, project, join, and union
operations on views as if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability to
GRANT privileges to other users, roles, triggers, views, and stored procedures. A user may have
privileges to a view without having access to its base tables. When creating views:

A read-only view requires SELECT privileges for any underlying tables.
An updatable view requires ALL privileges to the underlying tables.

The <view_col> option ensures that the view always contains the same columns and that the
columns always have the same view-defined names.

View column names correspond in order and number to the columns listed in the SELECT
clause, so specify all view column names or none.

A <view_col> definition can contain one or more columns based on an expression that
combines the outcome of two columns. The expression must return a single value, and cannot
return an array or array element. If the view includes an expression, the view-<column> option is
required.

Note:
Any columns used in the value expression must exist before the expression can be
defined.

A SELECT statement clause cannot include the ORDER BY clause.

When SELECT * is used rather than a column list, order of display is based on the order in which
columns are stored in the base table.

WITH CHECK OPTION enables InterBase to verify that a row added to or updated in a view is
able to be seen through the view before allowing the operation to succeed. Do not use
WITH CHECK OPTION for read-only views.

Note:
You cannot select from a view that is based on the result set of a stored procedure.

Note:
An updatable view cannot have UNION clauses. To create such a view, use embedded
SQL.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

103

A view is updatable if:

It is a subset of a single table or another updatable view.
All base table columns excluded from the view definition allow NULL values.
The SELECT statement of the view does not contain subqueries, a DISTINCT predicate, a
HAVING clause, aggregate functions, joined tables, user-defined functions, or stored
procedures.

If the view definition does not meet these conditions, it is considered read-only.

Note:
Read-only views can be updated by using a combination of user-defined referential
constraints, triggers, and unique indexes.

Examples: The following isql statement creates an updatable view:

CREATE VIEW SNOW_LINE (CITY, STATE, SNOW_ALTITUDE) AS
SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 5000;

The next isql statement uses a nested query to create a view:

CREATE VIEW RECENT_CITIES AS
SELECT STATE, CITY, POPULATION
FROM CITIES WHERE STATE IN
(SELECT STATE FROM STATES WHERE STATEHOOD > '1-JAN-1850');

In an updatable view, the WITH CHECK OPTION prevents any inserts or updates through the
view that do not satisfy the WHERE clause of the CREATE VIEW SELECT statement:

CREATE VIEW HALF_MILE_CITIES AS
SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 2500
WITH CHECK OPTION;

The WITH CHECK OPTION clause in the view would prevent the following insertion:

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Chicago', 'Illinois', 250);

On the other hand, the following UPDATE would be permitted:

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

104

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Truckee', 'California', 2736);

The WITH CHECK OPTION clause does not allow updates through the view which change the
value of a row so that the view cannot retrieve it. For example, the WITH CHECK OPTION in the
HALF_MILE_CITIES view prevents the following update:

UPDATE HALF_MILE_CITIES
SET ALTITUDE = 2000
WHERE STATE = 'NY';

The next isql statement creates a view that joins two tables, and so is read-only:

CREATE VIEW PHONE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

See Also

CREATE TABLE
DROP VIEW
GRANT
INSERT
REVOKE
SELECT
UPDATE
Data Definition Guide

9.36. DECLARE CURSOR

Defines a cursor for a table by associating a name with the set of rows specified in a SELECT
statement. Available in gpre and DSQL.

SQL form:

DECLARE cursor CURSOR FOR select [FOR UPDATE OF col [, col…]];

DSQL form:

DECLARE cursor CURSOR FOR statement_id

Blob form: See DECLARE CURSOR (BLOB).

•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

105

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<cursor> Name for the cursor.

<select> Determines which rows to retrieve. SQL only.

FOR UPDATE OF <col> [, <col> …] Enables UPDATE and DELETE of specified column for retrieved rows.

<statement_id>
SQL statement name of a previously-prepared statement, which in this case

must be a SELECT statement. DSQL only.

Description: DECLARE CURSOR defines the set of rows that can be retrieved using the cursor it
names. It is the first member of a group of table cursor statements that must be used in
sequence.

select specifies a SELECT statement that determines which rows to retrieve. The SELECT
statement cannot include INTO or ORDER BY clauses.

The FOR UPDATE OF clause is necessary for updating or deleting rows using the
WHERE CURRENT OF clause with UPDATE and DELETE .

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in
the DECLARE CURSOR statement. It enables sequential access to retrieved rows in turn. There
are four related cursor statements:

Stage Statement Purpose

1 DECLARE CURSOR
Declares the cursor; the SELECT statement
determines rows retrieved for the cursor.

2 OPEN
Retrieves the rows specified for retrieval with
DECLARE CURSOR ; the resulting rows

become the active set of the cursor.

3 FETCH
Retrieves the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the set.

SQL STATEMENT AND FUNCTION REFERENCE

106

Stage Statement Purpose

4 CLOSE
Closes the cursor and releases the system
resources.

Examples: The following embedded SQL statement declares a cursor with a search condition:

EXEC SQL
DECLARE C CURSOR FOR
SELECT CUST_NO, ORDER_STATUS
FROM SALES
WHERE ORDER_STATUS IN ('open', 'shipping');

The next DSQL statement declares a cursor for a previously-prepared statement, QUERY1 :

DECLARE Q CURSOR FOR QUERY1

See Also

CLOSE
DECLARE CURSOR (BLOB)
FETCH
OPEN
PREPARE
SELECT

9.37. DECLARE CURSOR (BLOB)

Declares a Blob cursor for read or insert. Available in gpre .

DECLARE cursor CURSOR FOR
{READ BLOB column FROM table
| INSERT BLOB column INTO table}
[FILTER [FROM subtype] TO subtype]
[MAXIMUM_SEGMENT length];

Argument Description

<cursor> Name for the Blob cursor

<column> Name of the Blob column

<table> Table name

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

107

Argument Description

READ BLOB Declares a read operation on the Blob

INSERT BLOB Declares a write operation on the Blob

[FILTER [FROM <subtype>] TO
<subtype>]

Specifies optional Blob filters used to translate a Blob from one user-specified
format to another; <subtype> determines which filters are used for translation

MAXIMUM_SEGMENT <length> Length of the local variable to receive the Blob data after a FETCH operation

Description: Declares a cursor for reading or inserting Blob data. A Blob cursor can be associated
with only one Blob column.

To read partial Blob segments when a host-language variable is smaller than the segment length
of a Blob, declare the Blob cursor with the MAXIMUM_SEGMENT clause. If length is less than the
Blob segment, FETCH returns length bytes. If the same or greater, it returns a full segment (the
default).

Examples: The following embedded SQL statement declares a READ BLOB cursor and uses the
MAXIMUM_SEGMENT option:

EXEC SQL
DECLARE BC CURSOR FOR
READ BLOB JOB_REQUIREMENT FROM JOB MAXIMUM_SEGMENT 40;

The next embedded SQL statement declares an INSERT BLOB cursor:

EXEC SQL
DECLARE BC CURSOR FOR
INSERT BLOB JOB_REQUIREMENt INTO JOB;

See Also

CLOSE (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

9.38. DECLARE EXTERNAL FUNCTION

Declares an existing user-defined function (UDF) to a database. Available in gpre , DSQL, and
isql .

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

108

DECLARE EXTERNAL FUNCTION name [data_type
| CSTRING (<int>) [, data_type | CSTRING (<int>) …]]
RETURNS {data_type [BY VALUE] | CSTRING (<int>) | PARAMETER <n}> [FREE_IT]
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Note:
Whenever a UDF returns a value by reference to dynamically allocated memory, you
must declare it using the FREE_IT keyword in order to free the allocated memory.

Argument Description

<name>
Name of the UDF to use in SQL statements; can be different from the name of
the function specified after the ENTRY_POINT keyword.

<data_type>

Data type of an input or return parameter.

All input parameters are passed to a UDF by reference.
Return parameters can be passed by value.
Cannot be an array element.

CSTRING (<int>) Specifies a UDF that returns a null-terminated string <int> bytes in length.

RETURNS Specifies the return value of a function.

BY VALUE
Specifies that a return value should be passed by value rather than by
reference.

PARAMETER <n>
Specifies that the <n>th input parameter is to be returned.
Used when the return data type is BLOB .

FREE_IT
Frees memory of the return value after the UDF finishes running.

Use only if the memory is allocated dynamically in the UDF
See also Error Codes and Messages.

'<entryname>'
Quoted string that contains the function name as it is stored in the library that
is referenced by the UDF.

•
•
•

•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

109

Argument Description

'<modulename>'

Quoted specification identifying the library that contains the UDF.

The library must reside on the same machine as the InterBase server.
On any platform, the module can be referenced with no path name if it is in
<<InterBase_home>> /UDF or <<InterBase_home>> / intl
If the library is in a directory other than <<InterBase_home>> /UDF or
<<InterBase_home>> / intl , you must specify its location in
configuration file (ibconfig) of InterBase using the
EXTERNAL_FUNCTION_DIRECTORY parameter.

It is not necessary to supply the extension to the module name.

Description: DECLARE EXTERNAL FUNCTION provides information about a UDF to a database:
where to find it, its name, the input parameters it requires, and the single value it returns. Each
UDF in a library must be declared once to each database where it will be used. As long as the
entry point and module name do not change, there is no need to redeclare a UDF, even if the
function itself is modified.

entryname is the actual name of the function as stored in the UDF library. It does not have to
match the name of the UDF as stored in the database.

Important:
The module name does not need to include a path. However, the module must either be
placed in <<InterBase_home>> /UDF or be listed in the InterBase configuration file
using the EXTERNAL_FUNCTION_DIRECTORY parameter.

To specify a location for UDF libraries in the InterBase configuration file, enter a line of the
following form for Windows platforms:

EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase

For UNIX, the line does not include a drive letter:

EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase

The InterBase configuration file is called ibconfig on all platforms.

Examples: The following isql statement declares the TOPS() UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS
CHAR(256), INTEGER, BLOB
RETURNS INTEGER BY VALUE
ENTRY_POINT 'te1' MODULE_NAME 'tm1';

•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

110

This example does not need the FREE_IT keyword because only cstrings, CHAR , and VARCHAR
return types require memory allocation.

The next example declares the LOWERS() UDF and frees the memory allocated for the return
value:

DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

See Also

DROP EXTERNAL FUNCTION
Working with UDFs and Blob Filters.

9.39. DECLARE FILTER

Declares an existing Blob filter to a database. Available in gpre , DSQL, and isql .

DECLARE FILTER filter
INPUT_TYPE subtype OUTPUT_TYPE subtype
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<filter> Name of the filter; must be unique among filter names in the database.

INPUT_TYPE <subtype> Specifies the Blob subtype from which data is to be converted.

OUTPUT_TYPE <subtype> Specifies the Blob subtype into which data is to be converted.

‘<entryname>’
Quoted string specifying the name of the Blob filter as stored in a linked
library.

‘<modulename>’
Quoted file specification identifying the object module in which the filter is
stored.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

111

http://docwiki.embarcadero.com/InterBase/15/en/Working_with_UDFs_and_Blob_Filters

Description: DECLARE FILTER provides information about an existing Blob filter to the
database: where to find it, its name, and the Blob subtypes it works with. A Blob filter is a user-
written program that converts data stored in Blob columns from one subtype to another.

INPUT_TYPE and OUTPUT_TYPE together determine the behavior of the Blob filter. Each filter
declared to the database should have a unique combination of INPUT_TYPE and
OUTPUT_TYPE integer values. InterBase provides a built-in type of 1, for handling text. User-
defined types must be expressed as negative values.

<entryname> is the name of the Blob filter stored in the library. When an application uses a
Blob filter, it calls the filter function with this name.

Example: The following isql statement declares a Blob filter:

DECLARE FILTER DESC_FILTER
INPUT_TYPE 1
OUTPUT_TYPE -4
ENTRY_POINT 'desc_filter'
MODULE_NAME 'FILTERLIB';

See Also

DROP FILTER
Embedded SQL Guide
Data Definition Guide

9.40. DECLARE STATEMENT

Identifies dynamic SQL statements before they are prepared and executed in an embedded
program. Available in gpre .

DECLARE statement STATEMENT;

Argument Description

<statement>
Name of a SQL variable for a user-supplied SQL statement to prepare and
execute at run time.

Description: DECLARE STATEMENT names a SQL variable for a user-supplied SQL statement to
prepare and execute at run time. DECLARE STATEMENT is not executed, so it does not produce
run-time errors. The statement provides internal documentation.

Example: The following embedded SQL statement declares Q1 to be the name of a string for
preparation and execution.

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

112

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

EXEC SQL
DECLARE Q1 STATEMENT;

See Also

EXECUTE
EXECUTE IMMEDIATE
PREPARE

9.41. DECLARE TABLE

Describes the structure of a table to the preprocessor, gpre , before it is created with
CREATE TABLE . Available in gpre .

DECLARE table TABLE (table_def);

Argument Description

<table> Name of the table; table names must be unique within the database.

<table_def> Definition of the table; for complete table definition syntax, see CREATE TABLE.

Description: DECLARE TABLE causes gpre to store a table description. You must use it if you
both create and populate a table with data in the same program. If the declared table already
exists in the database or if the declaration contains syntax errors, gpre returns an error.

When a table is referenced at run time, the column descriptions and data types are checked
against the description stored in the database. If the table description is not in the database and
the table is not declared, or if column descriptions and data types do not match, the application
returns an error.

DECLARE TABLE can include an existing domain in a column definition, but must give the
complete column description if the domain is not defined at compile time.

DECLARE TABLE cannot include integrity constraints and column attributes, even if they are
present in a subsequent CREATE TABLE statement.

Important:
DECLARE TABLE cannot appear in a program that accesses multiple databases.

Example: The following embedded SQL statements declare and create a table:

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

113

EXEC SQL
DECLARE STOCK TABLE
(MODEL SMALLINT,
MODELNAME CHAR(10),
ITEMID INTEGER);
EXEC SQL
CREATE TABLE STOCK
(MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

See Also

CREATE DOMAIN
CREATE TABLE

9.42. DELETE

Removes rows in a table or in the active set of a cursor. Available in gpre , DSQL, and isql .

SQL and DSQL form:

Important:
Omit the terminating semicolon for DSQL.

DELETE [TRANSACTION transaction] FROM table
{[WHERE search_condition] | WHERE CURRENT OF cursor}
[ORDER BY order_list]
[ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]];
search_condition = Search condition as specified in SELECT.

isql form:

DELETE FROM TABLE [WHERE search_condition];

Argument Description

TRANSACTION <transaction> Name of the transaction under control of which the statement is executed; SQL
only

<table> Name of the table from which to delete rows

•
•

SQL STATEMENT AND FUNCTION REFERENCE

114

Argument Description

WHERE <search_condition>
Search condition that specifies the rows to delete; without this clause,
DELETE affects all rows in the specified table or view

WHERE CURRENT OF <cursor> Specifies that the current row in the active set of <cursor> is to be deleted

ORDER BY <order_list>
Specifies columns to order, either by column name or ordinal number in the
query, and the sort order (ASC or DESC) for the returned rows

ROWS <value>
[TO <upper_value>]
[BY <step_value>]
[PERCENT][WITH TIES]

<value> is the total number of rows to return if used by itself
<value> is the starting row number to return if used with TO
<value> is the percent if used with PERCENT
<upper_value> is the last row or highest percent to return
If <step_value> = <n>, returns every <n>th row, or <n> percent rows
PERCENT causes all previous ROWS values to be interpreted as percents
WITH TIES returns additional duplicate rows when the last value in the

ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY

DELETE specifies one or more rows to delete from a table or updatable view. DELETE is one of
the database privileges controlled by the GRANT and REVOKE statements.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which
transaction controls the DELETE operation. The TRANSACTION clause is not available in DSQL
or isql .

For searched deletions, the optional WHERE clause can be used to restrict deletions to a subset
of rows in the table.

Important:
Without a WHERE clause, a searched delete removes all rows from a table.

When performing a positioned delete with a cursor, the WHERE CURRENT OF clause must be
specified to delete one row at a time from the active set.

Examples: The following isql statement deletes all rows in a table:

DELETE FROM EMPLOYEE_PROJECT;

The next embedded SQL statement is a searched delete in an embedded application. It deletes
all rows where a host-language variable equals a column value.

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

115

EXEC SQL
DELETE FROM SALARY_HISTORY
WHERE EMP_NO = :emp_num;

The following embedded SQL statements use a cursor and the WHERE CURRENT OF option to
delete rows from CITIES with a population less than the host variable, min_pop. They declare
and open a cursor that finds qualifying cities, fetch rows into the cursor, and delete the current
row pointed to by the cursor.

EXEC SQL
DECLARE SMALL_CITIES CURSOR FOR
SELECT CITY, STATE
FROM CITIES
WHERE POPULATION < :min_pop;
EXEC SQL
OPEN SMALL_CITIES;
EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;
WHILE (!SQLCODE)
{EXEC SQL
DELETE FROM CITIES
WHERE CURRENT OF SMALL_CITIES;
EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;}
EXEC SQL
CLOSE SMALL_CITIES;

See Also

DECLARE CURSOR
FETCH
GRANT
OPEN
REVOKE
SELECT
Embedded SQL Guide

9.43. DESCRIBE

Provides information about columns that are retrieved by a dynamic SQL (DSQL) statement, or
information about the dynamic parameters that statement passes. Available in gpre .

DESCRIBE [OUTPUT | INPUT] statement
{INTO | USING} SQL DESCRIPTOR xsqlda;

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

116

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Argument Description

OUTPUT
[Default] Indicates that column information should be returned in the
XSQLDA .

INPUT
Indicates that dynamic parameter information should be stored in the
XSQLDA .

<statement>
A previously defined alias for the statement to DESCRIBE .
Use PREPARE to define aliases.

{INTO | USING} SQL DESCRIPT
OR

<xsqlda>
Specifies the XSQLDA to use for the DESCRIBE statement.

Description: DESCRIBE has two uses:

As a describe output statement, DESCRIBE stores into an XSQLDA a description of the
columns that make up the select list of a previously-prepared statement. If the PREPARE
statement included an INTO clause, it is unnecessary to use DESCRIBE as an output
statement.
As a describe input statement, DESCRIBE stores into an XSQLDA a description of the
dynamic parameters that are in a previously-prepared statement.

DESCRIBE is one of a group of statements that process DSQL statements.

Statement Purpose

PREPARE Readies a DSQL statement for execution.

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously-prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

Separate DESCRIBE statements must be issued for input and output operations. The INPUT
keyword must be used to store dynamic parameter information.

•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

117

Important:
When using DESCRIBE for output, if the value returned in the sqld field in the XSQLDA
is larger than the sqln field, you must:

Allocate more storage space for XSQLVAR structures.
Reissue the DESCRIBE statement.

Note:
The same XSQLDA structure can be used for input and output if desired.

Example: The following embedded SQL statement retrieves information about the output of a
SELECT statement:

EXEC SQL
DESCRIBE Q INTO xsqlda

The next embedded SQL statement stores information about the dynamic parameters passed
with a statement to be executed:

EXEC SQL
DESCRIBE INPUT Q2 USING SQL DESCRIPTOR xsqlda;

See Also

EXECUTE
EXECUTE IMMEDIATE
PREPARE
Embedded SQL Guide

9.44. DISCONNECT

Detaches an application from a database. Available in gpre .

DISCONNECT {{ALL | DEFAULT} | dbhandle [, dbhandle] …]};

Argument Description

ALL|DEFAULT Either keyword detaches all open databases.

<dbhandle> Previously-declared database handle specifying a database to detach.

•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

118

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Description: DISCONNECT closes a specific database identified by a database handle or all
databases, releases resources used by the attached database, zeroes database handles, commits
the default transaction if the gpre -manual option is not in effect, and returns an error if any
non-default transaction is not committed.

Before using DISCONNECT , commit or roll back the transactions affecting the database to be
detached.

To reattach to a database closed with DISCONNECT , reopen it with a CONNECT statement.

Examples: The following embedded SQL statements close all databases:

EXEC SQL
DISCONNECT DEFAULT;
EXEC SQL
DISCONNECT ALL;

The next embedded SQL statements close the databases identified by their
handles:

EXEC SQL
DISCONNECT DB1;
EXEC SQL
DISCONNECT DB1, DB2;

See Also

COMMIT
CONNECT
ROLLBACK
SET DATABASE

9.45. DROP DATABASE

Deletes the currently attached database. Available in isql .

DROP DATABASE;

Description: DROP DATABASE deletes the currently attached database, including any associated
secondary, shadow, and log files. Dropping a database deletes any data it contains.

A database can be dropped by its creator, the SYSDBA user, and any users with operating
system root privileges.

Example: The following isql statement deletes the current database:

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

119

DROP DATABASE;

See Also

ALTER DATABASE
CREATE DATABASE

9.46. DROP DOMAIN

Deletes a domain from a database. Available in gpre , DSQL, and isql .

DROP DOMAIN name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing domain

Description: DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP operation fails.
To prevent failure, use ALTER TABLE to delete the columns based on the domain before
executing DROP DOMAIN .

A domain may be dropped by its creator, the SYSDBA , and any users with operating system root
privileges.

Example: The following isql statement deletes a domain:

DROP DOMAIN COUNTRYNAME;

See Also

ALTER DOMAIN
ALTER TABLE
CREATE DOMAIN

•
•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

120

9.47. DROP ENCRYPTION

Used to delete an encryption key from a database.

DROP ENCRYPTION key-name [restrict | cascade]

Argument Description

key-name Specifies the name of the encryption key to drop from the database.

restrict This is the sub-command which is the default drop behavior.

cascade Decrypts all fields in all relations encrypted by it.

Description: An encryption key can be dropped (deleted) from the database. Only the SYSDSO
can execute this command. The command fails if the encryption key is still being used to encrypt
the database. If any table columns are encrypted when "restrict" is specified, which is the default
drop behavior, the command also fails. If "cascade" is specified, then all columns using that
encryption are decrypted and the encryption is dropped “Restrict” and “Cascade” are the only
options available for this command.

In the case of Column-level Encryption use, although DROP ENCRYPTION CASCADE decrypts all
fields in all relations encrypted by it, that decryption process makes back versions of the
decrypted records, which remain dependent on the existence of the encryption. The encryption is
only marked for deletion.

The next time the database is swept, database sweep completion checks for any record formats
that still depend on a “marked for deletion” encryption. If there are none, the encryption is fully
deleted at that time.

If you are trying to completely remove all encryption from your database and are presented with
an "unsuccessful metadata update encryptions still exist", you need to sweep the database after
the DROP ENCRYPTION CASCADE and before ALTER DATABASE SET NO SYSTEM PASSWORD.

Example: The following example uses the cascade option to decrypt all columns using the
revenue_key and to delete the key:

drop encryption revenue_key cascade

See Also

CREATE ENCRYPTION•

SQL STATEMENT AND FUNCTION REFERENCE

121

GRANT
REVOKE
ALTER DATABASE
ALTER TABLE
Data Definition Guide

9.48. DROP EXCEPTION

Deletes an exception from a database. Available in DSQL and isql .

DROP EXCEPTION name

Argument Description

<name> Name of an existing exception message

Description: DROP EXCEPTION removes an exception from a database.

Exceptions used in existing procedures and triggers cannot be dropped.

Tip:
In isql , SHOW EXCEPTION displays a list of exceptions’ dependencies, the procedures
and triggers that use the exceptions.

An exception can be dropped by its creator, the SYSDBA user, and any user with operating
system root privileges.

Example: This isql statement drops an exception:

DROP EXCEPTION UNKNOWN_EMP_ID;

See Also

ALTER EXCEPTION
ALTER PROCEDURE
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
CREATE TRIGGER

•
•
•
•
•

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

122

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

9.49. DROP EXTERNAL FUNCTION

Removes a user-defined function (UDF) declaration from a database. Available in gpre , DSQL,
and isql .

DROP EXTERNAL FUNCTION name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing UDF

Description: DROP EXTERNAL FUNCTION deletes a UDF declaration from a database. Dropping
a UDF declaration from a database does not remove it from the corresponding UDF library, but it
does make the UDF inaccessible from the database. Once the definition is dropped, any
applications that depend on the UDF will return run-time errors.

A UDF can be dropped by its declarer, the SYSDBA user, or any users with operating system root
privileges.

Example: This isql statement drops a UDF:

DROP EXTERNAL FUNCTION TOPS;

See Also

DECLARE EXTERNAL FUNCTION

9.50. DROP FILTER

Removes a Blob filter declaration from a database. Available in gpre , DSQL, and isql .

DROP FILTER name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded

•

SQL STATEMENT AND FUNCTION REFERENCE

123

applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing Blob filter

Description: DROP FILTER removes a Blob filter declaration from a database. Dropping a Blob
filter declaration from a database does not remove it from the corresponding Blob filter library,
but it does make the filter inaccessible from the database. Once the definition is dropped, any
applications that depend on the filter will return run-time errors.

DROP FILTER fails and returns an error if any processes are using the filter.

A filter can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Example: This isql statement drops a Blob filter:

DROP FILTER DESC_FILTER;

See Also

DECLARE FILTER

9.51. DROP GENERATOR

Drops a generator from the database. Available in DSQL, and isql .

DROP GENERATOR generator_name

Argument Description

generator_name Name of the generator.

Description: This command checks for any existing dependencies on the generator (as in
triggers or UDFs) and fails if such dependencies exist. The statement fails if generator_name is
not the name of a generator defined on the database. An application that tries to call a deleted
generator returns runtime errors.

Note:
In previous versions of InterBase that lacked the DROP GENERATOR command, users

•

SQL STATEMENT AND FUNCTION REFERENCE

124

issued a SQL statement to delete the generator from the appropriate system table. This
approach is strongly discouraged now that the DROP GENERATOR command is
available, since modifying system tables always carries with it the possibility of rendering
the entire database unusable as a result of even a slight error or miscalculation.

See Also

GEN_ID()
CREATE GENERATOR
SET GENERATOR

9.52. DROP INDEX

Removes an index from a database. Available in gpre , DSQL, and isql .

DROP INDEX name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing index

Description: DROP INDEX removes a user-defined index from a database.

An index can be dropped by its creator, the SYSDBA user, or any user with operating system
root privileges.

Important:
You cannot drop system-defined indexes, such as those for UNIQUE , PRIMARY KEY ,
and FOREIGN KEY .

An index in use is not dropped until it is no longer in use.

Example: The following isql statement deletes an index:

DROP INDEX MINSALX;

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

125

See Also

ALTER INDEX
CREATE INDEX
Data Definition Guide

9.53. DROP JOURNAL

Discontinues the use of journaling and deletes existing journal files in the database.

DROP JOURNAL

Description: The DROP JOURNAL statement discontinues the use of write-ahead logging and
deletes all journal files. This operation does not delete any journal files in the journal archive but
does discontinue maintenance of the journal archive. Dropping journal files requires exclusive
access to the database.

See Also

CREATE JOURNAL
CREATE JOURNAL ARCHIVE
DROP JOURNAL ARCHIVE
Operations Guide

9.54. DROP JOURNAL ARCHIVE

Discontinues journal archiving on the database.

DROP JOURNAL ARCHIVE

Description: DROP JOURNAL ARCHIVE disables journal archiving for the database. It causes all
journal files and database file dumps to be deleted in all journal archive directories. The file
system directories themselves are not deleted.

Important: This command does not discontinue journaling and the creation of journal files.
See Also

CREATE JOURNAL ARCHIVE
CREATE JOURNAL
DROP JOURNAL
Operations Guide

9.55. DROP PROCEDURE

Deletes an existing stored procedure from a database. Available in DSQL, and isql .

•
•
•

•
•
•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

126

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

DROP PROCEDURE name

Argument Description

<name> Name of an existing stored procedure

Description: DROP PROCEDURE removes an existing stored procedure definition from a
database.

Procedures used by other procedures, triggers, or views cannot be dropped. Procedures currently
in use cannot be dropped.

Tip:
In isql , SHOW PROCEDURE displays a list of procedures’ dependencies, the
procedures, triggers, exceptions, and tables that use the procedures.

A procedure can be dropped by its creator, the SYSDBA user, or any user with operating system
root privileges.

Example: The following isql statement deletes a procedure:

DROP PROCEDURE GET_EMP_PROJ;

See Also

ALTER PROCEDURE
CREATE PROCEDURE
EXECUTE PROCEDURE

9.56. DROP ROLE

Deletes a role from a database. Available in gpre , DSQL, and isql .

DROP ROLE <rolename>;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

127

Argument Description

<rolename> Name of an existing role

Description: DROP ROLE deletes a role that was previously created using CREATE ROLE . Any
privileges that users acquired or granted through their membership in the role are revoked.

A role can be dropped by its creator, the SYSDBA user, or any user with superuser privileges.

Example: The following isql statement deletes a role from its database:

DROP ROLE administrator;

See Also

CREATE ROLE
GRANT
REVOKE

9.57. DROP SHADOW

Deletes a shadow from a database. Available in gpre , DSQL, and isql .

DROP SHADOW <set_num>;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<set_num> Positive integer to identify an existing shadow set

Description: DROP SHADOW deletes a shadow set and detaches from the shadowing process.
The isql SHOW DATABASE command can be used to see shadow set numbers for a database.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating system
root privileges.

Example: The following isql statement deletes a shadow set from its database:

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

128

DROP SHADOW 1;

See Also

CREATE SHADOW

9.58. DROP SUBSCRIPTION

To eliminate interest in observing a set of change views, a subscription must be dropped.

DROP SUBSCRIPTION <subscription_name> [RESTRICT | CASCADE];

Important:
If RESTRICT is specified then a check of existing subscribers is performed. If there are
subscribers then an error is returned without dropping the subscription. If CASCADE is
specified then all subscribers of this subscription are also dropped. If neither RESTRICT
nor CASCADE is specified then RESTRICT is assumed.

Argument Description

<RESTRICT> Checks existing subscribers.

CASCADE All subscribers of the subscription are dropped.

See Also

SET SUBSCRIPTION
CREATE SUBSCRIPTION
Data Definition Guide

9.59. DROP TABLE

Removes a table from a database. Available in gpre , DSQL, and isql .

DROP TABLE name;

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol for the
statement, so it must be included.

•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

129

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<name> Name of an existing table

Description: DROP TABLE removes the data, metadata, and indexes of a table from a database.
It also drops any triggers that reference the table.

A table referenced in a SQL expression, a view, integrity constraint, or stored procedure cannot
be dropped. A table used by an active transaction is not dropped until it is free.

Note: When used to drop an external table, DROP TABLE only removes the table definition from
the database. The external file is not deleted.

A table can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Example: The following embedded SQL statement drops a table:

EXEC SQL
DROP TABLE COUNTRY;

See Also

ALTER TABLE
CREATE TABLE

9.60. DROP TRIGGER

Deletes an existing user-defined trigger from a database. Available in DSQL and isql .

DROP TRIGGER <name>

Argument Description

<name> Name of an existing trigger

Description: DROP TRIGGER removes a user-defined trigger definition from the database.
System-defined triggers, such as those created for CHECK constraints, cannot be dropped. Use
ALTER TABLE to drop the CHECK clause that defines the trigger.

Triggers used by an active transaction cannot be dropped until the transaction is terminated.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

130

A trigger can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Tip:
To inactivate a trigger temporarily, use ALTER TRIGGER and specify INACTIVE in the
header.

Example: The following isql statement drops a trigger:

DROP TRIGGER POST_NEW_ORDER;

See Also

ALTER TRIGGER
CREATE TRIGGER

9.61. DROP USER

Deletes an existing user from an embedded user authentication database. Available in DSQL, and
isql .

DROP USER <name>

9.62. DROP VIEW

Removes a view definition from the database. Available in gpre , DSQL, and isql .

DROP VIEW name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing view definition to drop

Description: DROP VIEW enables a view’s creator to remove a view definition from the
database if the view is not used in another view, stored procedure, or CHECK constraint
definition.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

131

A view can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Example: The following isql statement removes a view definition:

DROP VIEW PHONE_LIST;

See Also

CREATE VIEW

9.63. END DECLARE SECTION

Identifies the end of a host-language variable declaration section. Available in gpre .

END DECLARE SECTION;

Description: END DECLARE SECTION is used in embedded SQL applications to identify the end
of host-language variable declarations for variables used in subsequent SQL statements.

Example: The following embedded SQL statements declare a section, and single host-language
variable:

EXEC SQL
BEGIN DECLARE SECTION;
BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

See Also

BASED ON
BEGIN DECLARE SECTION

9.64. EVENT INIT

Registers interest in one or more events with the InterBase event manager. Available in gpre .

EVENT INIT request_name [dbhandle]
[('string' | :variable [, 'string' | :variable …]);

Argument Description

<request_name> Application event handle

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

132

Argument Description

<dbhandle>
Specifies the database to examine for occurrences of the events; if omitted,
<dbhandle> defaults to the database named in the most recent
SET DATABASE statement.

‘<string>’ Unique name identifying an event associated with <event_name>.

<variable> Host-language character array containing a list of event names to associate
with.

Description: EVENT INIT is the first step in the InterBase two-part synchronous event -
mechanism:

EVENT INIT registers an application interest in an event.
EVENT WAIT causes the application to wait until notified of the event occurrence.

EVENT INIT registers an application interest in a list of events in parentheses. The list should
correspond to events posted by stored procedures or triggers in the database. If an application
registers interest in multiple events with a single EVENT INIT , then when one of those events
occurs, the application must determine which event occurred.

Events are posted by a POST_EVENT call within a stored procedure or trigger.

The event manager keeps track of events of interest. At commit time, when an event occurs, the
event manager notifies interested applications.

Example: The following embedded SQL statement registers interest in an event:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('new_order');

See Also

CREATE PROCEDURE
CREATE TRIGGER
EVENT WAIT
SET DATABASE
Embedded SQL Guide

9.65. EVENT WAIT

Causes an application to wait until notified of an event occurrence. Available in gpre .

1.
2.

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

133

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

EVENT WAIT request_name;

Argument Description

<request_name> Application event handle declared in a previous EVENT INIT statement

Description: EVENT WAIT is the second step in the InterBase two-part synchronous event
mechanism. After a program registers interest in an event, EVENT WAIT causes the process
running the application to sleep until the event of interest occurs.

Examples: The following embedded SQL statements register an application event name and
indicate the program is ready to receive notification when the event occurs:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('new_order');
EXEC SQL
EVENT WAIT ORDER_WAIT;

See Also

EVENT INIT
Embedded SQL Guide

9.66. EXECUTE

Executes a previously prepared dynamic SQL (DSQL) statement. Available in gpre .

EXECUTE [TRANSACTION transaction] statement
[USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<statement> Alias of a previously prepared statement to execute

USING SQL DESCRIPTOR
Specifies that values corresponding to the prepared statement parameters
should be taken from the specified XSQLDA

•
•

SQL STATEMENT AND FUNCTION REFERENCE

134

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Argument Description

INTO SQL DESCRIPTOR
Specifies that return values from the executed statement should be stored in
the specified XSQLDA

<xsqlda> XSQLDA host-language variable

Description: EXECUTE carries out a previously prepared DSQL statement. It is one of a group of
statements that process DSQL statements.

Statement Purpose

PREPARE Readies a DSQL statement for execution

DESCRIBE Fills in the XSQLDA with information about the statement

EXECUTE Executes a previously prepared statement

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it

Before a statement can be executed, it must be prepared using the PREPARE statement. The
statement can be any SQL data definition, manipulation, or transaction management statement.
Once it is prepared, a statement can be executed any number of times.

The TRANSACTION clause can be used in SQL applications running multiple, simultaneous
transactions to specify which transaction controls the EXECUTE operation.

USING DESCRIPTOR enables EXECUTE to extract a statement parameters from an XSQLDA
structure previously loaded with values by the application. It need only be used for statements
that have dynamic parameters.

INTO DESCRIPTOR enables EXECUTE to store return values from statement execution in a
specified XSQLDA structure for application retrieval. It need only be used for DSQL statements
that return values.

Note:
If an EXECUTE statement provides both a USING DESCRIPTOR clause and an INTO
DESCRIPTOR clause, then two XSQLDA structures must be provided.

SQL STATEMENT AND FUNCTION REFERENCE

135

Example: The following embedded SQL statement executes a previously prepared DSQL
statement:

EXEC SQL
EXECUTE DOUBLE_SMALL_BUDGET;

The next embedded SQL statement executes a previously prepared statement with parameters
stored in an XSQLDA :

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda;

The following embedded SQL statement executes a previously prepared statement with
parameters in one XSQLDA , and produces results stored in a second XSQLDA:

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda_1 INTO DESCRIPTOR xsqlda_2;

See Also

DESCRIBE
EXECUTE IMMEDIATE
PREPARE
Embedded SQL Guide

9.67. EXECUTE IMMEDIATE

Prepares a dynamic SQL (DSQL) statement, executes it once, and discards it. Available in gpre .

EXECUTE IMMEDIATE [TRANSACTION transaction]
{:variable | 'string'} [USING SQL DESCRIPTOR xsqlda];

Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<variable> Host variable containing the SQL statement to execute

‘<string>’ A string literal containing the SQL statement to execute

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

136

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Argument Description

USING SQL DESCRIPTOR
Specifies that values corresponding to the statement parameters should be
taken from the specified XSQLDA

<xsqlda> XSQLDA host-language variable

Description: EXECUTE IMMEDIATE prepares a DSQL statement stored in a host-language
variable or in a literal string, executes it once, and discards it. To prepare and execute a DSQL
statement for repeated use, use PREPARE and EXECUTE instead of EXECUTE IMMEDIATE .

The TRANSACTION clause can be used in SQL applications running multiple, simultaneous
transactions to specify which transaction controls the EXECUTE IMMEDIATE operation.

The SQL statement to execute must be stored in a host variable or be a string literal. It can
contain any SQL data definition statement or data manipulation statement that does not return
output.

USING DESCRIPTOR enables EXECUTE IMMEDIATE to extract the values of a statement’s
parameters from an XSQLDA structure previously loaded with appropriate values.

Example: The following embedded SQL statement prepares and executes a statement in a host
variable:

EXEC SQL
EXECUTE IMMEDIATE :insert_date;

See Also

DESCRIBE
PREPARE
Embedded SQL Guide

9.68. EXECUTE PROCEDURE

Calls a stored procedure. Available in gpre , DSQL, and isql .

SQL form:

EXECUTE PROCEDURE [TRANSACTION transaction]
name [:param [[INDICATOR]:indicator]]
[, :param [[INDICATOR]:indicator] …]
[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator] …]];

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

137

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

DSQL form:

EXECUTE PROCEDURE name [param [, param …]]
[RETURNING_VALUES param [, param …]]

isql form:

EXECUTE PROCEDURE name [param [, param …]]

Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<name> Name of an existing stored procedure in the database

<param> Input or output parameter; can be a host variable or a constant

RETURNING_VALUES : <param> Host variable which takes the values of an output parameter

[INDICATOR] :<indicator> Host variable for indicating NULL or unknown values

Description: EXECUTE PROCEDURE calls the specified stored procedure. If the procedure
requires input parameters, they are passed as host-language variables or as constants. If a
procedure returns output parameters to a SQL program, host variables must be supplied in the
RETURNING_VALUES clause to hold the values returned.

In isql , do not use the RETURN clause or specify output parameters. isql will automatically
display return values.

Note:
In DSQL, an EXECUTE PROCEDURE statement requires an input descriptor area if it has
input parameters and an output descriptor area if it has output parameters.

In embedded SQL, input parameters and return values may have associated indicator variables
for tracking NULL values. Indicator variables are integer values that indicate unknown or NULL
values of return values.

An indicator variable that is less than zero indicates that the parameter is unknown or NULL . An
indicator variable that is zero or greater indicates that the associated parameter is known and not
NULL .

SQL STATEMENT AND FUNCTION REFERENCE

138

Examples: The following embedded SQL statement demonstrates how the executable
procedure, DEPT_BUDGET , is called from embedded SQL with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The next embedded SQL statement calls the same procedure using a host variable instead of a
literal as the input parameter:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

See Also

ALTER PROCEDURE
CREATE PROCEDURE
DROP PROCEDURE
Embedded SQL Guide

9.69. EXTRACT()

Extracts date and time information from DATE, TIME, and TIMESTAMP values. Available in gpre ,
DSQL, and isql .

EXTRACT (part FROM value)

Argument Description

<part>
YEAR , MONTH , DAY , HOUR , MINUTE , SECOND , WEEKDAY , or YEARDAY ;

see the table below for data types and ranges of values

<value> DATE , TIME , or TIMESTAMP value

Description: The value passed to the EXTRACT() expression must be a DATE , a TIME , or a
TIMESTAMP . Extracting a part that does not exist in a data type results in an error. For example,
a statement such as tEXTRACT (YEAR from aTime) would fail.

Note: The data type of part depends on which part is extracted.

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

139

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Part extracted Data type Range

YEAR SMALLINT 0–5400

MONTH SMALLINT 1–12

DAY SMALLINT 1–31

HOUR SMALLINT 0–23

MINUTE SMALLINT 0–59

SECOND DECIMAL(6,4) 0–59.9999

WEEKDAY SMALLINT
0–6

(0 = Sunday, 1 = Monday, etc.)

YEARDAY SMALLINT 0–365

Example: EXTRACT(HOUR FROM StartTime);

9.70. FETCH

Retrieves the next available row from the active set of an opened cursor. Available in gpre and
DSQL.

SQL form:

FETCH cursor
[INTO :hostvar [[INDICATOR] :indvar]
[, :hostvar [[INDICATOR] :indvar] …]];

DSQL form:

FETCH cursor {INTO | USING} SQL DESCRIPTOR xsqlda

Blob form: See FETCH (BLOB).

SQL STATEMENT AND FUNCTION REFERENCE

140

Argument Description

<cursor> Name of the opened cursor from which to fetch rows.

<hostvar>
A host-language variable for holding values retrieved with the FETCH .

Optional if FETCH gets rows for DELETE or UPDATE .
Required if row is displayed before DELETE or UPDATE .

<indvar>
Indicator variable for reporting that a column contains an unknown or NULL
value.

[INTO|USING] SQL DESCRIPTOR Specifies that values should be returned in the specified XSQLDA .

<xsqlda> XSQLDA host-language variable

Description: FETCH retrieves one row at a time into a program from the active set of a cursor.
The first FETCH operates on the first row of the active set. Subsequent FETCH statements
advance the cursor sequentially through the active set one row at a time until no more rows are
found and SQLCODE is set to 100.

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in
the DECLARE CURSOR statement. A cursor enables sequential access to retrieved rows. There are
four related cursor statements:

Stage Statement Purpose

1 DECLARE CURSOR
Declare the cursor; the SELECT statement
determines rows retrieved for the cursor.

2 OPEN
Retrieve the rows specified for retrieval with
DECLARE CURSOR ; the resulting rows

become the cursor active set.

3 FETCH
Retrieve the current row from the active set,
starting with the first row; subsequent FETCH
statements advance the cursor through the set.

4 CLOSE Close the cursor and release system resources.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

141

The number, size, data type, and order of columns in a FETCH must be the same as those listed
in the query expression of its matching DECLARE CURSOR statement. If they are not, the wrong
values can be assigned.

Examples: The following embedded SQL statement fetches a column from the active set of a
cursor:

EXEC SQL
FETCH PROJ_CNT INTO :department, :hcnt;

See Also

CLOSE
DECLARE CURSOR
DELETE
FETCH (BLOB)
OPEN
Embedded SQL Guide

9.71. FETCH (BLOB)

Retrieves the next available segment of a Blob column and places it in the specified local buffer.
Available in gpre .

FETCH cursor INTO
[:buffer [[INDICATOR] :segment_length];

Argument Description

<cursor> Name of an open Blob cursor from which to retrieve segments

<buffer> Host-language variable for holding segments fetched from the Blob column;
user must declare the buffer before fetching segments into it

INDICATOR
Optional keyword indicating that a host-language variable for indicating the
number of bytes returned by the FETCH follows

<segment_length>
Host-language variable used to indicate the number of bytes returned by the
FETCH

Description: FETCH retrieves the next segment from a Blob and places it into the specified
buffer.

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

142

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

The host variable, segment_length, indicates the number of bytes fetched. This is useful when the
number of bytes fetched is smaller than the host variable, for example, when fetching the last
portion of a Blob.

FETCH can return two SQLCODE values:

SQLCODE = 100 indicates that there are no more Blob segments to retrieve.
SQLCODE = 101 indicates that a partial segment was retrieved and placed in the local buffer
variable.

Note:
To ensure that a host variable buffer is large enough to hold a Blob segment buffer
during FETCH operations, use the SEGMENT option of the BASED ON statement.

To ensure that a host variable buffer is large enough to hold a Blob segment buffer during
FETCH operations, use the SEGMENT option of the BASED ON statement.

Example: The following code, from an embedded SQL application, performs a BLOB FETCH :

while (SQLCODE != 100)
{
EXEC SQL
OPEN BLOB_CUR USING :blob_id;
EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;
while (SQLCODE !=100 || SQLCODE == 101)
{
blob_segment{blob_seg_len + 1] = '\0';
printf("%*.*s",blob_seg_len,blob_seg_len,blob_segment);
blob_segment{blob_seg_len + 1] = ‘ ’;
EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;
}
. . .
}

See Also

BASED ON
CLOSE (BLOB)
DECLARE CURSOR (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

9.72. GEN ID()

Produces a system-generated integer value. Available in gpre , DSQL, and isql .

•
•

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

143

gen_id (generator, step)

Argument Description

<generator> Name of an existing generator

<step>
Integer or expression specifying the increment for increasing or decreasing the

current generator value. Values can range from –(263) to 263 – 1

Description: The GEN_ID() function:

Increments the current value of the specified generator by step.
Returns the new value of the specified generator.

GEN_ID() is useful for automatically producing unique values that can be inserted into a
UNIQUE or PRIMARY KEY column. To insert a generated number in a column, write a trigger,
procedure, or SQL statement that calls GEN_ID() .

Note: A generator is initially created with CREATE GENERATOR. By default, the value of a
generator begins at zero. It can be set to a different value with SET GENERATOR.

Examples: The following isql trigger definition includes a call to GEN_ID() :

CREATE TRIGGER CREATE_EMPNO FOR EMPLOYEES
BEFORE INSERT
POSITION 0
AS BEGIN
NEW.EMPNO = GEN_ID (EMPNO_GEN, 1);
END

The first time the trigger fires, NEW.EMPNO is set to 1. Each subsequent firing increments
NEW.EMPNO by 1.

See Also

CREATE GENERATOR
SET GENERATOR

9.73. GRANT

Assigns privileges to users for specified database objects. Available in gpre , DSQL, and isql .

GRANT <privileges> ON [TABLE] {<tablename> | <viewname}>
TO {object|userlist [WITH GRANT OPTION]|GROUP <UNIX_group}>

1.
2.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

144

| EXECUTE ON PROCEDURE procname TO {object | userlist}
| <role_granted> TO {PUBLIC | <role_grantee_list}>[WITH ADMIN OPTION];

privileges = ALL [PRIVILEGES] | privilege_list
privilege_list = {

SELECT
| DELETE
| INSERT
| ENCRYPT ON ENCRYPTION
| DECRYPT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
}[, privilege_list …]
object = {

PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}[, object …]
userlist = {

[USER] username
| rolename

| UNIX_user
}[,userlist …]
role_granted = rolename [, rolename …]
role_grantee_list = [USER] username [, [USER] username …]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<privilege_list>
Name of privilege to be granted; valid options are SELECT , DELETE ,
INSERT , UPDATE , ENCRYPT ON ENCRYPTION, DECRYPT, and
REFERENCES .

<col> Column to which the granted privileges apply

<tablename> Name of an existing table for which granted privileges apply

<viewname> Name of an existing view for which granted privileges apply

SQL STATEMENT AND FUNCTION REFERENCE

145

Argument Description

GROUP <unix_group> On a UNIX system, the name of a group defined in /etc/group

<object>
Name of an existing procedure, trigger, or view; PUBLIC is also a permitted
value.

<userlist>
A user in the InterBase security database (admin.ib by default) or a
rolename created with CREATE ROLE

WITH GRANT OPTION
Passes GRANT authority for privileges listed in the GRANT statement to
userlist.

<rolename> An existing role created with the CREATE ROLE statement

<role_grantee_list>
A list of users to whom <rolename> is granted; users must be in the InterBase
security database.

WITH ADMIN OPTION Passes grant authority for roles listed to <role_grantee_list>.

Description: GRANT assigns privileges and roles for database objects to users, roles, or other
database objects. When an object is first created, only its creator has privileges to it and only its
creator can GRANT privileges for it to other users or objects.

The following table summarizes available privileges:

Privilege Enables users to …

ALL Perform SELECT , DELETE , INSERT , UPDATE , and REFERENCES

SELECT Retrieve rows from a table or view

DELETE Remove rows from a table or view

DECRYPT
After encrypting a column, the database owner or the individual table owner
can grant decrypt permission to users who need to access the values in an
encrypted column.

SQL STATEMENT AND FUNCTION REFERENCE

146

Privilege Enables users to …

ENCRYPT ON ENCRYPTION
Enables the database owner or individual table owner to use a specific
encryption key to encrypt a database or column. Only the SYSDSO (Data
Security Owner) can grant encrypt permission.

INSERT Store new rows in a table or view

UPDATE
Change the current value in one or more columns in a table or view; can be
restricted to a specified subset of columns.

EXECUTE Execute a stored procedure

REFERENCES
Reference the specified columns with a foreign key; at a minimum, this must be
granted to all the columns of the primary key if it is granted at all.

Note:
ALL does not include REFERENCES in code written for InterBase 4.0 or earlier.

To access a table or view, a user or object needs the appropriate SELECT , INSERT ,
UPDATE , DELETE , or REFERENCES privileges for that table or view. SELECT , INSERT ,
UPDATE , DELETE , and REFERENCES privileges can be assigned as a unit with ALL .
A user or object must have EXECUTE privilege to call a stored procedure in an application.
For more information about the GRANT ENCRYPT ON ENCRYPTION and GRANT DECRYPT
permissions, see “Encrypting Your Data” in the Data Definition Guide.
To grant privileges to a group of users, create a role using CREATE ROLE . Then use GRANT
<privilege> TO <rolename> to assign the desired privileges to that role and use GRANT
<rolename> TO <user> to assign that role to users. Users can be added or removed from
a role on a case-by-case basis using GRANT and REVOKE . A user must specify the role at
connection time to actually have those privileges. See “ANSI SQL 3 roles” in the Operations
Guide for more information about invoking a role when connecting to a database.
On UNIX systems, privileges can be granted to groups listed in /etc/groups and to any
UNIX user listed in /etc/passwd on both the client and server, as well as to individual
users and to roles.
To allow another user to reference a column from a foreign key, grant REFERENCES
privileges on the primary key table or on the primary key columns of the table to the owner
of the foreign key table. You must also grant REFERENCES or SELECT privileges on the
primary key table to any user who needs to write to the foreign key table.

•

•
•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

147

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Tip:
Make it easy, if read security is not an issue, GRANT REFERENCES on the primary key
table to PUBLIC.

If you grant the REFERENCES privilege, it must, at a minimum, be granted to all columns of
the primary key. When REFERENCES is granted to the entire table, columns that are not
part of the primary key are not affected in any way.
When a user defines a foreign key constraint on a table owned by someone else, InterBase
checks that the user has REFERENCES privileges on the referenced table.
The privilege is used at run time to verify that a value entered in a foreign key field is
contained in the primary key table.
You can grant REFERENCES privileges to roles.
To give users permission to grant privileges to other users, provide a userlist that includes
the WITH GRANT OPTION . Users can grant to others only the privileges that they
themselves possess.
To grant privileges to all users, specify PUBLIC in place of a list of user names. Specifying
PUBLIC grants privileges only to users, not to database objects.

Privileges can be removed only by the user who assigned them, using REVOKE . If ALL privileges
are assigned, then ALL privileges must be revoked. If privileges are granted to PUBLIC , they
can be removed only for PUBLIC .

Examples: The following isql statement grants SELECT and DELETE privileges to a user. The
WITH GRANT OPTION gives the user GRANT authority.

GRANT SELECT, DELETE ON COUNTRY TO CHLOE WITH GRANT OPTION;

The next embedded SQL statement, from an embedded program, grants SELECT and UPDATE
privileges to a procedure for a table:

EXEC SQL
GRANT SELECT, UPDATE ON JOB TO PROCEDURE GET_EMP_PROJ;

This embedded SQL statement grants EXECUTE privileges for a procedure to another procedure
and to a user:

EXEC SQL
GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
TO PROCEDURE ADD_EMP_PROJ, LUIS;

•

•

•

•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

148

The following example creates a role called “administrator”, grants UPDATE privileges on table1
to that role, and then grants the role to user1, user2, and user3. These users then have UPDATE
and REFERENCES privileges on table1.

CREATE ROLE administrator;
GRANT UPDATE ON table1 TO administrator;
GRANT administrator TO user1, user2, user3;

See Also

REVOKE
Data Definition Guide

9.74. GRANT SUBSCRIBE

A user is granted SUBSCRIBE privilege to subscribe to the subscription in
order to track changes on the listed tables:

GRANT SUBSCRIBE ON SUBSCRIPTION <subscription_name> TO <user_name>;

REVOKE SUBSCRIBE ON SUBSCRIPTION <subscription_name> FROM <user_name>;

Important:
To set a subscription as active, an application issues a SET SUBSCRIPTION statement.

Argument Description

<subscription_name> Implied by the user identity of the database

<user_name> User identify of the database connection

Description: This SET SUBSCRIPTION statement allows multiple subscriptions to be activated and
includes an AT clause to denote a destination or device name as a recipient of the subscribed
changes. The subscriber user name is implied by the user identity of the database connection.
Multiple subscriptions against the same schema object for a user, via the AT clause, are available
for two reasons:

First, each subscription for a user may connote a separate device among many that have a
disconnected interest in a change set that is queried independently at different times for
different purposes.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

149

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Second, some multiuser applications use pooled database connections under the umbrella of a
single user name (for example CRM_User or even SYSDBA). In these cases, an alternate identifier
must be provided to distinguish which subscription should be used to query a change set. That
additional identifier can be thought of as a destination or a "device name".

Example: This is to grant subscribe privileges to that user:

GRANT SUBSCRIBE ON SUBSCRIPTION Subscribed_Inserts TO smartphone_user;
GRANT SUBSCRIBE ON SUBSCRIPTION Customer_Deletes TO smartphone_user;

See Also

CREATE SUBSCRIPTION
SET SUBSCRIPTION
DROP SUBSCRIPTION
GRANT TEMPORARY SUBSCRIBE
SET SUBSCRIPTION
Operations Guide
Data Definition Guide

9.75. GRANT TEMPORARY SUBSCRIBE

GRANT TEMPORARY SUBSCRIBE[(<column_comma-list>)] ON <table_name> TO <user_name>;

REVOKE TEMPORARY SUBSCRIBE[(<column_comma-list>)]ON <table_name> FROM
<user_name>;
To set a subscription as active, an application issues a SET SUBSCRIPTION
statement.

Important:
The user issues a SET SUBSCRIPTION command as usual giving the name of the base
table instead of a subscription name.

Argument Description

<column_comma-list>

<table_name>

user_name

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

150

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Description:

Example: Retrieving Changed Views from ISQL

SET SUBSCRIPTION "Employees" ACTIVE;
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
COMMIT;
<Another user reassigns an existing employee to another department and gives
another employee a raise>
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<change> NAME DEPARTMENT SALARY
update joe sales 50000
update mary finance 75000
SET CHANGES;
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<change> NAME DEPARTMENT SALARY
update <same> sales <same>
update <same> <same> 75000
COMMIT;
SET SUBSCRIPTION "Employees" INACTIVE;

ISQL has a collection of SET statements that toggle a display set. The SET CHANGES display
toggle alternates between showing the column data value with its change status as a
subordinated annotation. The <change> column is a pseudo column that shows the type of DML
statement that modified the value of a column. All of this change state is returned by the
XSQLVAR.SQLIND member of the new XSQLDA structure.

Minimal support for changed data views is provided by InterBase SQL with the addition of a IS
SAME or IS NOT SAME clause as the following example illustrates:

Important:
Using IS NOT SAME in SELECT queries

SELECT NAME, DEPARTMENT, SALARY FROM "Employees" WHERE SALARY IS NOT SAME;
<change> NAME DEPARTMENT SALARY
update mary finance 75000

We see that Joe's department reassignment is not returned since he received no compensation
adjustment for a lateral move.

See Also

GRANT
REVOKE
GRANT SUBSCRIBE
CREATE SUBSCRIPTION
DROP SUBSCRIPTION

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

151

SET SUBSCRIPTION
Data Definition Guide

9.76. INSERT

Adds one or more new rows to a specified table. Available in gpre , DSQL, and isql .

INSERT [TRANSACTION transaction] INTO object [(<col> [, <col> …])]
{VALUES (val [, val …]) | select_expr};

object = tablename | viewname
val = {:variable | constant | expr
| function | udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ?
} [COLLATE collation]
constant = num | 'string' | charsetname 'string'
function = CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)

Argument Description

<expr> A valid SQL expression that results in a single column value

<select_expr>
A SELECT that returns zero or more rows and where the number of columns
in each row is the same as the number of items to be inserted

Notes on the INSERT statement:

In SQL and isql , you cannot use val as a parameter placeholder (like “?”).
In DSQL and isql , val cannot be a variable.
You cannot specify a COLLATE clause for Blob columns.

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

TRANSACTION <transaction> Name of the transaction that controls the execution of the INSERT

•
•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

152

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

INTO <object> Name of an existing table or view into which to insert data

<col> Name of an existing column in a table or view into which to insert values

VALUES (<val> [, <val> …]) Lists values to insert into the table or view; values must be listed in the same
order as the target columns

<select_expr> Query that returns row values to insert into target columns

Description: INSERT stores one or more new rows of data in an existing table or view. INSERT
is one of the database privileges controlled by the GRANT and REVOKE statements.

Values are inserted into a row in column order unless an optional list of target columns is
provided. If the target list of columns is a subset of available columns, default or NULL values
are automatically stored in all unlisted columns.

If the optional list of target columns is omitted, the VALUES clause must provide values to insert
into all columns in the table.

To insert a single row of data, the VALUES clause should include a specific list of values to insert.

To insert multiple rows of data, specify a select_expr that retrieves existing data from another
table to insert into this one. The selected columns must correspond to the columns listed for
insert.

Important:
It is legal to select from the same table into which insertions are made, but this practice
is not advised because it may result in infinite row insertions.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which
transaction controls the INSERT operation. The TRANSACTION clause is not available in DSQL or
isql .

Examples: The following statement, from an embedded SQL application, adds a row to a table,
assigning values from host-language variables to two columns:

EXEC SQL
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:emp_no, :proj_id);

SQL STATEMENT AND FUNCTION REFERENCE

153

The next isql statement specifies values to insert into a table with a SELECT statement:

INSERT INTO PROJECTS
SELECT * FROM NEW_PROJECTS
WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

See Also

GRANT
REVOKE
SET TRANSACTION
UPDATE

9.77. INSERT CURSOR (BLOB)

Inserts data into a Blob cursor in units of a Blob segment-length or less in size. Available in
gpre .

INSERT CURSOR cursor
VALUES (:buffer [INDICATOR] :bufferlen);

Argument Description

<cursor> Name of the Blob cursor

VALUES Clause containing the name and length of the buffer variable to insert

<buffer> Name of host-variable buffer containing information to insert

INDICATOR Indicates that the length of data placed in the buffer follows

<bufferlen> Length, in bytes, of the buffer to insert

Description: INSERT CURSOR writes Blob data into a column. Data is written in units equal to
or less than the segment size for the Blob. Before inserting data into a Blob cursor:

Declare a local variable, <buffer>, to contain the data to be inserted.
Declare the length of the variable, <bufferlen>.
Declare a Blob cursor for INSERT and open it.

•
•
•
•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

154

Each INSERT into the Blob column inserts the current contents of <buffer>. Between
statements fill <buffer> with new data. Repeat the INSERT until each existing <buffer> is
inserted into the Blob.

Important:
INSERT CURSOR requires the INSERT privilege, a table privilege controlled by the
GRANT and REVOKE statements.

Example: The following embedded SQL statement shows an insert into the Blob cursor:

EXEC SQL
INSERT CURSOR BC VALUES (:line INDICATOR :len);

See Also

CLOSE (BLOB)
DECLARE CURSOR (BLOB)
FETCH (BLOB)
OPEN (BLOB)

9.78. MAX()

Retrieves the maximum value in a column. Available in gpre , DSQL, and isql .

MAX ([ALL] val | DISTINCT val)

Argument Description

ALL Searches all values in a column

DISTINCT Eliminates duplicate values before finding the largest

<val>
A column, constant, host-language variable, expression, non-aggregate
function, or UDF

Description: MAX() is an aggregate function that returns the largest value in a specified
column, excluding NULL values. If the number of qualifying rows is zero, MAX() returns a NULL
value.

When MAX() is used on a CHAR , VARCHAR , or Blob text column, the largest value returned
varies depending on the character set and collation in use for the column. A default character set

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

155

can be specified for an entire database with the DEFAULT CHARACTER SET clause in
CREATE DATABASE , or specified at the column level with the COLLATE clause in
CREATE TABLE .

Example: The following embedded SQL statement demonstrates the use of SUM() , AVG() ,
MIN() , and MAX() :

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also

AVG()
COUNT()
CREATE DATABASE
CREATE TABLE
MIN()
SUM()

9.79. MIN()

Retrieves the minimum value in a column. Available in gpre , DSQL, and isql .

MIN ([ALL] val | DISTINCT val)

Argument Description

ALL Searches all values in a column

DISTINCT Eliminates duplicate values before finding the smallest

<val>
A column, constant, host-language variable, expression, non-aggregate
function, or UDF

Description: MIN() is an aggregate function that returns the smallest value in a specified
column, excluding NULL values. If the number of qualifying rows is zero, MIN() returns a NULL
value.

When MIN() is used on a CHAR , VARCHAR , or Blob text column, the smallest value returned
varies depending on the character set and collation in use for the column. Use the

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

156

DEFAULT CHARACTER SET clause in CREATE DATABASE to specify a default character set
for an entire database, or the COLLATE clause in CREATE TABLE to specify a character set at
the column level.

Example: The following embedded SQL statement demonstrates the use of SUM() , AVG() ,
MIN() , and MAX() :

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also

AVG()
COUNT()
CREATE DATABASE
CREATE TABLE
MAX()
SUM()

9.80. NULLIF()

The NULLIF function returns a null value if the arguments are equal, otherwise it returns the value
of the first argument.

NULLIF (<expression1>, <expression2>)

Description: The COALESCE and NULLIF expressions are common, shorthand forms of use for
the CASE expression involving the NULL state. A COALESCE expression consists of a list of value
expressions. It evaluates to the first value expression in the list that evaluates to non-NULL. If
none of the value expressions in the list evaluates to non-NULL then the COALESCE expression
evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are
unequal then the NULLIF expression evaluates to the first value expression in the list. Otherwise,
it evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib
database:

select NULLIF(department, head_dept) from department

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

157

9.81. OPEN

Retrieve specified rows from a cursor declaration. Available in gpre and DSQL.

SQL form:

OPEN [TRANSACTION transaction] cursor;

DSQL form:

OPEN [TRANSACTION transaction] cursor [USING SQL DESCRIPTOR xsqlda]

Blob form: See OPEN (BLOB)..

Argument Description

TRANSACTION <transaction> Name of the transaction that controls execution of OPEN

<cursor> Name of a previously declared cursor to open

USING DESCRIPTOR <xsqlda>
Passes the values corresponding to the prepared statement’s parameters
through the extended descriptor area (XSQLDA)

Description: OPEN evaluates the search condition specified in a cursor’s DECLARE CURSOR
statement. The selected rows become the active set for the cursor.

A cursor is a one-way pointer into the ordered set of rows retrieved by the SELECT in a
DECLARE CURSOR statement. It enables sequential access to retrieved rows in turn. There are
four related cursor statements:

Stage Statement Purpose

1 DECLARE CURSOR
Declares the cursor; the SELECT statement
determines rows retrieved for the cursor

2 OPEN
Retrieves the rows specified for retrieval with
DECLARE CURSOR ; the resulting rows

become the cursor’s active set

SQL STATEMENT AND FUNCTION REFERENCE

158

Stage Statement Purpose

3 FETCH

Retrieves the current row from the active set,
starting with the first row

Subsequent FETCH statements advance the
cursor through the set

4 CLOSE Closes the cursor and release system resources

Examples: The following embedded SQL statement opens a cursor:

EXEC SQL
OPEN C;

See Also

CLOSE
DECLARE CURSOR
FETCH

9.82. OPEN (BLOB)

Opens a previously declared Blob cursor and prepares it for reading or inserting. Available in
gpre .

OPEN [TRANSACTION name] cursor
{INTO | USING} :blob_id;

Argument Description

TRANSACTION <name> Specifies the transaction under which the cursor is opened Default: The default
transaction

<cursor> Name of the Blob cursor

INTO | USING

Depending on Blob cursor type, use one of these:

INTO : For INSERT BLOB

USING : For READ BLOB

<blob_id> Identifier for the Blob column

•

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

159

Description: OPEN prepares a previously declared cursor for reading or inserting Blob data.
Depending on whether the DECLARE CURSOR statement declares a READ or INSERT BLOB
cursor, OPEN obtains the value for Blob ID differently:

For a READ BLOB , the <blob_id> comes from the outer TABLE cursor.
For an INSERT BLOB , the <blob_id> is returned by the system.

Examples: The following embedded SQL statements declare and open a Blob cursor:

EXEC SQL
DECLARE BC CURSOR FOR
INSERT BLOB PROJ_DESC INTO PRJOECT;
EXEC SQL
OPEN BC INTO :blob_id;

See Also

CLOSE (BLOB)
DECLARE CURSOR (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)

9.83. PREPARE

Prepares a dynamic SQL (DSQL) statement for execution. Available in gpre .

PREPARE [TRANSACTION transaction] statement
[INTO SQL DESCRIPTOR xsqlda] FROM {:variable | 'string'};

Argument Description

TRANSACTION <transaction> Name of the transaction under control of which the statement is executed.

<statement>
Establishes an alias for the prepared statement that can be used by subsequent
DESCRIBE and EXCUTE statements.

INTO <xsqlda>
Specifies an XSQLDA to be filled in with the description of the select-list
columns in the prepared statement.

<variable> | `<string>’
DSQL statement to PREPARE ; can be a host-language variable or a string

literal.

•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

160

Description: PREPARE readies a DSQL statement for repeated execution by:

Checking the statement for syntax errors.
Determining data types of optionally specified dynamic parameters.
Optimizing statement execution.
Compiling the statement for execution by EXECUTE .

PREPARE is part of a group of statements that prepare DSQL statements for execution.

Statement Purpose

PREPARE Readies a DSQL statement for execution.

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

After a statement is prepared, it is available for execution as many times as necessary during the
current session. To prepare and execute a statement only once, use EXECUTE IMMEDIATE .

<statement> establishes a symbolic name for the actual DSQL statement to prepare. It is not
declared as a host-language variable. Except for C programs, gpre does not distinguish
between uppercase and lowercase in <statement>, treating “B” and “b” as the same character.
For C programs, use the gpre-either_case switch to activate case sensitivity during
preprocessing.

If the optional INTO clause is used, PREPARE also fills in the extended SQL descriptor area
(XSQLDA) with information about the data type, length, and name of select-list columns in the
prepared statement. This clause is useful only when the statement to prepare is a SELECT .

Note:
The DESCRIBE statement can be used instead of the INTO clause to fill in the XSQLDA for
a select list.

The FROM clause specifies the actual DSQL statement to PREPARE . It can be a host-language
variable, or a quoted string literal. The DSQL statement to PREPARE can be any SQL data
definition, data manipulation, or transaction-control statement.

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

161

Examples: The following embedded SQL statement prepares a DSQL statement from a host-
variable statement. Because it uses the optional INTO clause, the assumption is that the DSQL
statement in the host variable is a SELECT .

EXEC SQL
PREPARE Q INTO xsqlda FROM :buf;

Note:
The previous statement could also be prepared and described in the following manner:

EXEC SQL
PREPARE Q FROM :buf;
EXEC SQL
DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

See Also

DESCRIBE
EXECUTE
EXECUTE IMMEDIATE

9.84. RELEASE SAVEPOINT

RELEASE SAVEPOINT <savepoint_name>

Description: Releasing a savepoint destroys savepoint named by the identifier without affecting
any work that has been performed subsequent to its creation.

See Also

SAVEPOINT
ROLLBACK

9.85. REVOKE

Withdraws privileges from users for specified database objects. Available in - either_case ,
DSQL, and isql .

REVOKE [GRANT OPTION FOR] privilege ON [TABLE] {tablename | viewname}
FROM {object | userlist | rolelist | GROUP UNIX_group}
| EXECUTE ON PROCEDURE procname FROM {object | userlist}
| role_granted FROM {PUBLIC | role_grantee_list}};
privileges = ALL [PRIVILEGES] | privilege_list
privilege_list = {
SELECT

•
•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

162

| DELETE
| INSERT
| ENCRYPT ON ENCRYPTION
| DECRYPT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
}[, privilege_list …]
object = {
 PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}[, object …]
userlist = [USER] username [, [USER] username …]
rolelist = rolename [, rolename …]
role_granted = rolename [, rolename …]
role_grantee_list = [USER] username [, [USER] username …]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<privilege_list>
Name of privilege to be granted; valid options are SELECT , DELETE ,
INSERT , ENCRYPT ON ENCRYPTION, DECRYPT, UPDATE , and REFERENCES .

GRANT OPTION FOR
Removes grant authority for privileges listed in the REVOKE statement from
<userlist>; cannot be used with <object>.

<col> Column for which the privilege is revoked.

<tablename> Name of an existing table for which privileges are revoked.

<viewname> Name of an existing view for which privileges are revoked.

GROUP <unix_group> On a UNIX system, the name of a group defined in /etc/group .

<object> Name of an existing database object from which privileges are to be revoked.

<userlist> A list of users from whom privileges are to be revoked.

SQL STATEMENT AND FUNCTION REFERENCE

163

Argument Description

<rolename> An existing role created with the CREATE ROLE statement.

<role_grantee_list>
A list of users to whom <rolename> is granted; users must be in the InterBase
security database (admin.ib by default).

Description: REVOKE removes privileges from users or other database objects. Privileges are
operations for which a user has authority. The following table lists SQL privileges:

Privilege Removes a user’s privilege to …

ALL
Perform SELECT , DELETE , INSERT , UPDATE , REFERENCES , and
EXECUTE .

SELECT Retrieve rows from a table or view.

DELETE Remove rows from a table or view.

DECRYPT
After encrypting a column, the database owner or the individual table owner
can grant decrypt permission to users who need to access the values in an
encrypted column.

ENCRYPT ON ENCRYPTION
Enables the database owner or individual table owner to use a specific
encryption key to encrypt a database or column. Only the SYSDSO (Data
Security Owner) can grant encrypt permission.

INSERT Store new rows in a table or view.

UPDATE
Change the current value in one or more columns in a table or view; can be
restricted to a specified subset of columns.

REFERENCES
Reference the specified columns with a foreign key; at a minimum, this must be
granted to all the columns of the primary key if it is granted at all.

EXECUTE Execute a stored procedure.

GRANT OPTION FOR revokes a user right to GRANT privileges to other users.

SQL STATEMENT AND FUNCTION REFERENCE

164

The following limitations should be noted for REVOKE :

Only the user who grants a privilege can revoke that privilege.
A single user can be assigned the same privileges for a database object by any number of
other users. A REVOKE issued by a user only removes privileges previously assigned by that
particular user.
Privileges granted to all users with PUBLIC can only be removed by revoking privileges
from PUBLIC .
When a role is revoked from a user, all privileges that granted by that user to others because
of authority gained from membership in the role are also revoked.
For more information about the REVOKE ENCRYPT ON ENCRYPTION and
REVOKE DECRYPT permissions, see “Encrypting Your Data” in the Data Definition Guide.

Examples: The following isql statement takes the SELECT privilege away from a user for a
table:

REVOKE SELECT ON COUNTRY FROM MIREILLE;

The following isql statement withdraws EXECUTE privileges for a procedure from another
procedure and a user:

REVOKE EXECUTE ON PROCEDURE GET_EMP_PROJ
FROM PROCEDURE ADD_EMP_PROJ, LUIS;

See Also

GRANT

9.86. ROLLBACK

Restores the database to its state prior to the start of the current transaction or savepoint.
Available in gpre , DSQL, and isql .

ROLLBACK [TRANSACTION name] [TO SAVEPOINT <name>][WORK][RELEASE];

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

•
•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

165

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

TRANSACTION <name> Specifies the transaction to roll back in a multiple-transaction application.
[Default: roll back the default transaction].

TO SAVEPOINT <name> Specifies the savepoint to roll back to.

WORK Optional word allowed for compatibility.

RELEASE Detaches from all databases after ending the current transaction; SQL only.

Description: ROLLBACK undoes changes made to a database by the current transaction, then
ends the transaction. It breaks the program connection to the database and frees system
resources. Use RELEASE in the last ROLLBACK to close all open databases. Wait until a program
no longer needs the database to release system resources.

The TRANSACTION clause can be used in multiple-transaction SQL applications to specify which
transaction to roll back. If omitted, the default transaction is rolled back. The TRANSACTION
clause is not available in DSQL.

Note:
RELEASE, available only in SQL, detaches from all databases after ending the current
transaction. In effect, this option ends database processing. RELEASE is supported for
backward compatibility with older versions of InterBase. The preferred method of
detaching is with DISCONNECT.

Examples: The following isql statement rolls back the default transaction:

ROLLBACK;

The next embedded SQL statement rolls back a named transaction:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

See Also

COMMIT
DISCONNECT
Embedded SQL Guide

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

166

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

9.87. SAVEPOINT

SAVEPOINT <savepoint_name>

Description: A savepoint allows a transaction to be partially rolled back. Updates that are made
after a named savepoint is established can be rolled back by issuing a ROLLBACK command of
the following form:

ROLLBACK [TRANSACTION transaction_name] TO SAVEPOINT savepoint_name;

If no transaction name is specified, the default transaction is used.

A savepoint name can be any valid SQL identifier. Savepoint names must be unique within their
atomic execution context. If you assign a name that is already in use, the existing savepoint is
released and the name is applied to the current savepoint. An application, for example, is an
execution context, as is each trigger and stored procedure. Thus, if you have an application with
several triggers, you can have a savepoint named SV1 within the application and also within each
trigger and stored procedure.

See Also

RELEASE SAVEPOINT
ROLLBACK

9.88. SELECT

Retrieves data from one or more tables. Available in gpre , DSQL, and isql .

9.88.1. Syntax

SELECT [TRANSACTION transact] [DISTINCT | ALL] {* | <val> [, <val> …]}
[INTO :var [, :var …]]

FROM <tableref> [, <tableref> …]
[WHERE <search_condition>]
[GROUP BY col [COLLATE collation] [, col [COLLATE collation] …] [HAVING
<search_condition>]
[UNION [ALL] select_expr][PLAN <plan_expr>]
[ORDER BY <order_list>]
[ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]]
[FOR UPDATE [OF col [, col …]]];

val = {col [array_dim]
| :variable | constant | expr
| funct | udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ? }

•
•

SQL STATEMENT AND FUNCTION REFERENCE

167

[COLLATE collation] [AS alias]

array_dim = [[x:]y [, [x:]y …]]

constant = num | 'string' | charsetname 'string'

funct = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
| CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)

tableref = <joined_table> | <table_primary>

joined_table = tableref join_type JOIN tableref
ON search_condition | (joined_table)

join_type = [INNER] JOIN
| {LEFT | RIGHT | FULL } [OUTER]}

search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val
| val [NOT] LIKE val [ESCAPE val]
| val [NOT] IN (val [, val …] | select_list)
| val IS [NOT] NULL
| val {>= | <=} val
| val [NOT] {= | < | >} val
| {ALL | SOME | ANY} (select_list)
| EXISTS (select_expr)
| SINGULAR (select_expr)
| val [NOT] CONTAINING val
| val [NOT] STARTING [WITH] val
| (search_condition)
| NOT search_condition
| search_condition OR search_condition
| search_condition AND search_condition

operator = {= | < | > | <= | >= | !< | !> | <> | !=}

table_primary = [{table | view | procedure} [[AS] alias]] | <derived_table>

derived_table = query_expression [AS] alias

plan_expr = [JOIN | [SORT] [MERGE]] ({plan_item | plan_expr}
[, {plan_item | plan_expr} …])

plan_item = {table | alias}
{NATURAL | INDEX (index [, index …]) | ORDER index}

order_list = {col | int} [COLLATE collation]
[ASC[ENDING] | DESC[ENDING]]
[, order_list …]

SQL STATEMENT AND FUNCTION REFERENCE

168

Argument Description

<expr> A valid SQL expression that results in a single value.

<select_one> A SELECT on a single column that returns exactly one value.

<select_list> A SELECT on a single column that returns zero or more rows.

<select_expr> A SELECT on a list of values that returns zero or more rows.

Argument Description

TRANSACTION transact
Name of the transaction under control of which the statement is executed; SQL
only.

SELECT [DISTINCT | ALL]
Specifies data to retrieve

DISTINCT prevents duplicate values from being returned.
ALL , the default, retrieves every value.

{* | <val> [, <val> …]}

The asterisk (*) retrieves all columns for the specified tables.

<val> [, <val> …] retrieves a list of specified columns, values, and
expressions.

INTO :<var> [, <var> …]
Singleton select in embedded SQL only; specifies a list of host-language
variables into which to retrieve values.

FROM <tableref> [, <tablere
f> …]

List of tables, views, stored procedures or derived tables from which to retrieve
data; list can include joins and joins can be nested.

<joined_table> A table reference consisting of a JOIN .

<join_type> Type of join to perform. Default: INNER .

<table_primary> Name of an existing table, view, stored procedure or a derived table.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

169

Argument Description

alias Alternate name for a table, view, or column.

<derived_table>
A result set of a SELECT query that you can use in the FROM clause. See
Derived Tables (SELECT FROM SELECT) for more information and examples.

WHERE <search_condition>

Specifies a condition that limits rows retrieved to a subset of all available
rows.
A WHERE clause can contain its own SELECT statement, referred to as a
subquery.

GROUP BY col [, col …]
Groups related rows based on common column values; used in conjunction
with HAVING . To learn about the enhancements to GROUP BY introduced in
InterBase 2017 Update 1 Refer to: Enhancements to GROUP BY and ORDER BY.

COLLATE collation Specifies the collation order for the data retrieved by the query.

HAVING <search_condition>
Used with GROUP BY ; specifies a condition that limits the grouped rows
returned.

UNION [ALL]

Combines the results of two or more SELECT statements to produce a
single, dynamic table without duplicate rows.
The ALL option keeps identical rows separate instead of folding them
together into one.

PLAN <plan_expr>
Specifies the query plan that should be used by the query optimizer instead of
one it would normally choose.

<plan_item> Specifies a table and index method for a plan.

ORDER BY <order_list>

Specifies columns to order, either by column name or ordinal number in the
query, and the sort order (ASC or DESC) for the returned rows. To learn
about the enhancements to ORDER BY introduced in InterBase 2017 Update 1
Refer to: Enhancements to GROUP BY and ORDER BY.

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

170

Argument Description

ROWS <value>

[TO <upper_value>]

[BY <step_value>]

[PERCENT][WITH TIES]

<value> is the total number of rows to return if used by itself.
<value> is the starting row number to return if used with TO .
<value> is the percent if used with PERCENT .
<upper_value> is the last row or highest percent to return.

If <step_value> = <n> , returns every <n> th row, or <n> percent rows.
PERCENT causes all previous ROWS values to be interpreted as percents.
WITH TIES returns additional duplicate rows when the last value in the

ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY .

FOR UPDATE
Specifies columns listed after the SELECT clause of a DECLARE CURSOR
statement that can be updated using a WHERE CURRENT OF clause.

9.88.2. Description

SELECT retrieves data from tables, views, or stored procedures. Variations of the SELECT
statement make it possible to:

Retrieve a single row or part of a row from a table. This operation is referred to as a
singleton select.

Note:
In embedded applications, all SELECT statements that occur outside the context of a
cursor must be singleton selects.

Retrieve multiple rows, or parts of rows, from a table.
In embedded applications, multiple row retrieval is accomplished by embedding a
SELECT within a DECLARE CURSOR statement.
In isql , SELECT can be used directly to retrieve multiple rows.

Retrieve related rows, or parts of rows, from a join of two or more tables.
Retrieve all rows, or parts of rows, from union of two or more tables.
Return portions or sequential portions of a larger result set; useful for Web developers,
among others.

All SELECT statements consist of two required clauses (SELECT , FROM), and possibly others
(INTO , WHERE , GROUP BY , HAVING , UNION , PLAN , ORDER BY , ROWS).

For more information on how to use SELECT in isql , see the Operations Guide. For a
complete explanation of SELECT and its clauses, see the Embedded SQL Guide.

•
•
•
•
•
•
•

•

•
•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

171

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Derived Tables (SELECT FROM SELECT)

A derived table is the result set of a SELECT query that you can use in the FROM clause. You
may find it useful to think of a derived table as a view with statement-level scope. This allows you
the expressive flexibility to use a view-like structure without defining a database schema view, or
allows the user to obtain the same benefit in an ad-hoc query without requiring a database
administer to create a view definition.

You can use derived tables in triggers and stored procedures as well as user applications, but you
must have proper access privileges on the underlying base tables and views accessed by a
derived table.

Dynamic SQL and isql support derived table syntax, Embedded SQL does not support derived
table syntax. For further info on Derived Tables refer to SQL Derived Table Support

Examples With Derived Tables

The following simple example shows how you can use derived tables:

SELECT elj.job_code,
elj.job_title

FROM (SELECT job_code,
job_title

FROM job
WHERE max_salary < 50000) AS elj;

The statement queries the EMPLOYEE table for entry-level jobs.

The following is a more complex statement using derived tables:

SELECT emp.emp_no,
emp.full_name,
emp.job_code,
job.job_grade,
job.job_title

FROM (SELECT emp_no,
full_name,
job_code,
job_grade,
job_country

FROM employee) AS emp,
(SELECT job_code,

job_grade,
job_country,
job_title

FROM job) AS job

1.

2.

SQL STATEMENT AND FUNCTION REFERENCE

172

http://docwiki.embarcadero.com/InterBase/15/en/SQL_Derived_Table_Support

WHERE (emp.job_code = job.job_code) AND
(emp.job_grade = job.job_grade) AND
(emp.job_country = job.job_country) AND
(emp.job_country = 'USA');

The following example shows a derived table with a subquery:

SELECT eid,
ename

FROM (SELECT e.emp_no,
e.full_name

FROM employee e
WHERE e.job_country =

(SELECT e1.job_country
FROM employee e1
WHERE emp_no = 144)) AS emp (eid, ename);

Additional Notes on Derived Tables

Derived tables can be nested.
Derived tables can be unions and can be used in unions. They can contain aggregate
functions, subselects and joins, and can themselves be used in aggregate functions,
subselects and joins. They can also be or contain queries on selectable stored procedures.

Additional Notes on SELECT

When declaring arrays, you must include the outermost brackets, shown below in bold. For
example, the following statement creates a 5 by 5 two-dimensional array of strings, each of
which is 6 characters long:

my_array = varchar(6)[5,5]

Use the colon (:) to specify an array with a starting point other than 1. The following
example creates an array of integer that begins at 10 and ends at 20:

my_array = integer[20:30]

In SQL and isql , you cannot use val as a parameter placeholder (like ?).
In DSQL and isql , val cannot be a variable.
You cannot specify a COLLATE clause for Blob columns.
You cannot specify a GROUP BY clause for Blob and array columns.

3.

•
•

•

•

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

173

9.88.3. Examples

The following isql statement selects columns from a table:

SELECT job_grade,
job_code,
job_country,
max_salary

FROM project;

The next isql statement uses the * wildcard to select all columns and rows from a table:

SELECT *
FROM countries;

The following embedded SQL statement uses an aggregate function to count all rows in a
table that satisfy a search condition specified in the WHERE clause:

EXEC SQL
SELECT COUNT (*)
INTO :cnt
FROM country
WHERE population > 5000000;

The next isql statement establishes a table alias in the SELECT clause and uses it to
identify a column in the WHERE clause:

SELECT c.city
FROM cities c
WHERE c.population < 1000000;

The following isql statement selects two columns and orders the rows retrieved by the
second of those columns:

SELECT city,
state

FROM cities
ORDER BY state;

The next isql statement performs a left join:

SELECT city,
state_name

FROM cities c
left join states s
ON s.state = c.state
WHERE c.city starting WITH 'San';

1.

2.

3.

4.

5.

6.

SQL STATEMENT AND FUNCTION REFERENCE

174

The following isql statement specifies a query optimization plan for ordered retrieval,
utilizing an index for ordering:

SELECT *
FROM cities
PLAN (cities ORDER cities_1)
ORDER BY city;

The next isql statement specifies a query optimization plan based on a three-way join
with two indexed column equalities:

SELECT *
FROM cities c,

states s,
mayors m

WHERE c.city = m.city
AND c.state = m.state PLAN
join (state NATURAL, cities INDEX dupe_city, mayors INDEX mayors_1);

The next example queries two of the system tables, RDB$CHARACTER_SETS and
RDB$COLLATIONS to display all the available character sets, their ID numbers, number of
bytes per character, and collations. Note the use of ordinal column numbers in the
ORDER BY clause.

SELECT rdb$character_set_name,
rdb$character_set_id,
rdb$bytes_per_character,
rdb$collation_name

FROM rdb$character_sets
join rdb$collations

ON rdb$character_sets.rdb$character_set_id =
rdb$collations.rdb$character_set_iefd
ORDER BY 1,4;

The following examples reward the best performing sales people and terminate the least
performing members of the sales team. The examples show how a Web developer, for
example, could split the result set in half for display purposes.

SELECT salesman,
sales_dollars,
sales_region

FROM salespeople
ORDER BY sales_dollars DESC
rows 1 TO 50;

SELECT salesman,
sales_dollars,
sales_region

FROM salespeople

7.

8.

9.

10.

SQL STATEMENT AND FUNCTION REFERENCE

175

ORDER BY sales_dollars DESC
rows 50 TO 100 WITH ties;

Reward the best 100 performing salesmen with a 15 percent bonus:

UPDATE salespeople
SET sales_bonus = 0.15 * sales_dollars
order BY sales_dollars DESC
ROWS 100 WITH ties;

Eliminate the worst five percent of the sales force:

DELETE
FROM salespeople
order by sales_dollars
ROWS 5 percent WITH ties;

9.88.4. Enhancements to GROUP BY and ORDER BY

InterBase 2017 Update 1 introduces enhancements to GROUP BY and ORDER BY syntax that are
not necessarily SQL standard, but nonetheless allow expressive behavior of grouping and
ordering query result sets. For more information refer to: Enhancements to GROUP BY and
ORDER BY.

See Also

DECLARE CURSOR
DELETE
INSERT
UPDATE
Embedded SQL Guide
Common table expressions

9.88.5. Enhancements to GROUP BY and ORDER BY

For: 2017 Update 1 and above only.

This section describes enhancements to GROUP BY and ORDER BY syntax that are not necessarily
SQL standard, but nonetheless allow expressive behavior of grouping and ordering query result
sets.

11.

12.

•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

176

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/What%27s_New_in_InterBase_2017_Update_1

Usability

GROUP BY has been enhanced to take in an ordinal value (INT) referring to a select list item
position. In addition, both GROUP BY and ORDER BY have been enhanced to take in an "expr"
that would result in a single value.

syntax:

SELECT [TRANSACTION transact] [DISTINCT | ALL] {* | <val> [, <val> …]}
[INTO :var [, :var …]]

FROM <tableref> [, <tableref> …]
[WHERE <search_condition>]
[GROUP BY {col | INT | expr} [COLLATE collation] [, {col | INT | expr} [COLLATE
collation] …] [HAVING <search_condition>]
[UNION [ALL] select_expr][PLAN <plan_expr>]
[ORDER BY <order_list>]
[ROWS VALUE [TO upper_value] [BY step_value][PERCENT][WITH TIES]]
[FOR UPDATE [OF col [, col …]]];

order_list = {col | INT | expr} [COLLATE collation]
[ASC[ENDING] | DESC[ENDING]]
[, order_list …]

expr ::= A valid SQL expression that results in a single value.
Index definition using a COMPUTED BY <expression>
CREATE TABLE t1 (

dummy0 integer,
f1 integer not null,
f2 integer not null,
f3 integer not null,
f3_min_f2 computed by (f3 - f2),
first_name VARCHAR(10) DEFAULT 'Give me ',
last_name VARCHAR(10) DEFAULT 'a name'

);

/* optional expression index definitions to illustrate optimized queries using
the index */
CREATE INDEX idx_expr_t1_mul ON t1 COMPUTED BY (f1 * f2);
CREATE INDEX idx_expr_t1_udf ON t1 COMPUTED BY (UPPER(first_name) ||
UPPER(last_name));

Sample queries:

The query optimizer in InterBase will tries to match up the index, if available, to expressions in the
query that match the index definitions.

SQL STATEMENT AND FUNCTION REFERENCE

177

/* Following sample queries are optimized to use the expression index, if
available; SET PLAN ON to see the plan.
 Otherwise, the ORDER BY and GROUP BY <expr> will execute by sorting the result
set as needed. */

/* ORDER BY */
-- by expression
select f1, f2, f1 * f2 from t1 ORDER BY (f1 * f2);
-- by ordinal position
select (f1 * f2), (f1 + f2) from t1 WHERE f1 * f2 = 100 ORDER BY 1, 2;
select f1 * f2 from t1 PLAN (T1 ORDER IDX_EXPR_T1_MUL) ORDER BY 1;

/* GROUP BY */
-- by ordinal position
select f1 * f2, count(*) from t1 GROUP BY 1;
-- by expression
select (f1 * f2), count(*) from t1 GROUP BY (f1 * f2);

Requirements and Constraints

An expression in a GROUP BY or ORDER BY will only be optimized to use an underlying
index if Expression Index support is enabled in the database engine version you are using.
Please note that Expression Index support is available only starting with InterBase 2017
Update 1 version database engine.
UNION ALL queries with ORDER BY <expr> are not optimized to use any underlying
Expression Index, yet.

Migration issues

None. As these are new extensions to existing support for GROUP BY and ORDER BY ,
earlier versions did not support such syntax. Take care not to have the new syntax in Stored
Procedures or Triggers in database files that are deployed to earlier InterBase versions. You
will need InterBase 2017 Update 1 version database engine at a minimum.

9.88.6. Common table expressions

A Common Table Expression (CTE) returns a temporary result set than can be referenced in
SELECT , INSERT , UPDATE , or DELETE statements. CTE's can help to simplify complex
subqueries and joins, making the code more readable and easier to maintain. CTE's can also be
seen as alternatives to views and derived tables. CTEs are part of the ANSI SQL 99 specification.

You define a CTE using the WITH operator. The CTE compromises two sections. On the first
section, define the <cte name> of the operator followed by the (<column name>) it
contains, you can define more than one column. You can define more than one CTE after the

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

178

http://docwiki.embarcadero.com/InterBase/15/en/SQL_Derived_Table_Support

WITH operator. The next section, known as query definition, uses the AS operator followed by
the (<SELECT query>) to populate the columns set on the first section. After defining a CTE
you can use a <query> on the defined CTE.

WITH
Cities_CTE (Zip, City)
AS
(
SELECT zip_code, city_name
FROM
NationalDB.city_info
)
SELECT
Zip, City
FROM
Cities_CTE

When defining CTE's it's not required to use the same name table and column names as the
referenced ones.

Examples

The following examples show the use of CTEs, this examples use the DEPARTMENT table from the
employee database. You can find the database at
C:\ProgramData\Embarcadero\InterBase\gds_db\examples\database\

Example 1

/* Using Recursive CTE, List all departments that have sub-departments under them
*/
WITH RECURSIVE CTE_RECS (DEPT_NO, HEAD_DEPT, DEPT_LEVEL) AS

(
/* Anchor query: Get a department that does not have a higher-level head

department */
SELECT DEPT_NO, HEAD_DEPT, 0 AS DEPT_LEVEL

FROM DEPARTMENT D
WHERE HEAD_DEPT IS NULL /* Anchor query condition */

UNION ALL /* Mandatory clause for Recursive CTE */

/* Main recursive CTE query; uses and feeds source result set for generating
more records; see use of CTE_RECS below in the JOIN clause */

SELECT SUB.DEPT_NO, SUB.HEAD_DEPT, CAST(CR.DEPT_LEVEL+1 as int)
FROM DEPARTMENT SUB INNER JOIN CTE_RECS CR ON SUB.HEAD_DEPT = CR.DEPT_NO

)
SELECT * FROM CTE_RECS;

SQL STATEMENT AND FUNCTION REFERENCE

179

Example 2

/* Using Recursive CTE, List all departments that have sub-departments under
them.
 An optional "Terminating Clause" can be provided in the recursive part of the
query to limit the number of recursive iterations.
 e.g.
 only up to Level 1 head departments
 */
WITH RECURSIVE CTE_RECS (DEPT_NO, HEAD_DEPT, DEPT_LEVEL) AS

(
/* Anchor query: Get a department that does not have a higher-level head

department */
SELECT DEPT_NO, HEAD_DEPT, 0 AS DEPT_LEVEL

FROM DEPARTMENT D
WHERE HEAD_DEPT IS NULL /* Anchor query condition */

UNION ALL /* Mandatory clause for Recursive CTE */

/* Main recursive CTE query; uses and feeds source result set for generating
more records; see use of CTE_RECS below in the JOIN clause */

SELECT SUB.DEPT_NO, SUB.HEAD_DEPT, CAST(CR.DEPT_LEVEL+1 as int)
FROM DEPARTMENT SUB INNER JOIN CTE_RECS CR ON SUB.HEAD_DEPT = CR.DEPT_NO

WHERE CR.DEPT_LEVEL <= 1 /* Terminating Clause */
)

SELECT * FROM CTE_RECS;

See Also:

Derived Tables

9.89. SET DATABASE

Declares a database handle for database access. Available in gpre .

SET {DATABASE | SCHEMA} dbhandle =
[GLOBAL | STATIC | EXTERN][COMPILETIME][FILENAME] 'dbname'
[USER 'name' PASSWORD 'string']
[RUNTIME [FILENAME]
{'dbname' | :<var}>
[USER {'name' | :<var}> PASSWORD {'string' |:<var}>]];

Argument Description

<dbhandle>
An alias for a specified database

Must be unique within the program.
Used in subsequent SQL statements that support database handles.

•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

180

Argument Description

GLOBAL [Default] Makes this database declaration available to all modules.

STATIC Limits scope of this database declaration to the current module.

EXTERN
References a database declaration in another module, rather than actually
declaring a new handle.

COMPILETIME

Identifies the database used to look up column references during
preprocessing.

If only one database is specified in SET DATABASE , it is used both at run
time and compile time.

‘<dbname>’
Location and path name of the database associated with <dbhandle>;
platform-specific.

RUNTIME
Specifies a database to use at run time if different than the one specified for
use during preprocessing.

<var> Host-language variable containing a database specification, user name, or
password.

USER ‘<name>’
A valid user name on the server where the database resides

Used with PASSWORD to gain database access on the server.
Required for PC client attachments, optional for all others.

PASSWORD ‘<string>’
A valid password on the server where the database resides

Used with USER to gain database access on the server.
Required for PC client attachments, optional for all others.

Description: SET DATABASE declares a database handle for a specified database and associates
the handle with that database. It enables optional specification of different compile-time and
run-time databases. Applications that access multiple databases simultaneously must use
SET DATABASE statements to establish separate database handles for each database.

dbhandle is an application-defined name for the database handle. Usually handle names are
abbreviations of the actual database name. Once declared, database handles can be used in
subsequent CONNECT , COMMIT , and ROLLBACK statements. They can also be used within
transactions to differentiate table names when two or more attached databases contain tables
with the same names.

•

•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

181

dbname is a platform-specific file specification for the database to associate with dbhandle. It
should follow the file syntax conventions for the server where the database resides.

GLOBAL , STATIC , and EXTERN are optional parameters that determine the scope of a
database declaration. The default scope, GLOBAL , means that a database handle is available to
all code modules in an application. STATIC limits database handle availability to the code
module where the handle is declared. EXTERN references a global database handle in another
module.

The optional COMPILETIME and RUNTIME parameters enable a single database handle to refer
to one database when an application is preprocessed, and to another database when an
application is run by a user. If omitted, or if only a COMPILETIME database is specified, InterBase
uses the same database during preprocessing and at run time.

The USER and PASSWORD parameters are required for all PC client applications, but are optional
for all other remote attachments. The user name and password are verified by the server in the
security database before permitting remote attachments to succeed.

Examples: The following embedded SQL statement declares a handle for a database:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';

The next embedded SQL statement declares different databases at compile time and run time. It
uses a host-language variable to specify the run-time database.

EXEC SQL
SET DATABASE EMDBP = 'employee.ib' RUNTIME :db_name;

See Also

COMMIT
CONNECT
ROLLBACK
SELECT
Operations Guide

9.90. SET GENERATOR

Sets a new value for an existing generator. Available in gpre , DSQL, and isql .

SET GENERATOR name TO <int>;

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

182

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing generator

<int> Value to which to set the generator, an integer from –263 to 263 – 1

Description: SET GENERATOR initializes a starting value for a newly created generator, or resets
the value of an existing generator. A generator provides a unique, sequential numeric value
through the GEN_ID() function. If a newly created generator is not initialized with SET
GENERATOR , its starting value defaults to zero.

<int> is the new value for the generator. When the GEN_ID() function inserts or updates a
value in a column, that value is <int> plus the increment specified in the GEN_ID() step
parameter. Any value that can be stored in a DECIMAL(18,0) can be specified as the value in a SET
GENERATOR statement.

Generators return a 64-bit value, and wrap around only after 264 invocations (assuming an
increment of 1). Use an ISC-INT64 variable to hold the value returned by a generator.

Tip:
To force a generator’s first insertion value to 1, use SET GENERATOR to specify a starting
value of 0, and set the step value of the GEN_ID() function to 1.

Important:
When resetting a generator that supplies values to a column defined with
PRIMARY KEY or UNIQUE integrity constraints, be careful that the new value does not
enable duplication of existing column values, or all subsequent insertions and updates
will fail.

Example: The following isql statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

If GEN_ID() now calls this generator with a step value of 1, the first number it returns is 1,001.

SQL STATEMENT AND FUNCTION REFERENCE

183

See Also

CREATE GENERATOR
CREATE PROCEDURE
CREATE TRIGGER
GEN_ID()

9.91. SET NAMES (Reference)

Specifies an active character set to use for subsequent database attachments. Available in gpre ,
and isql .

SET NAMES [charset | :var];

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<charset>
Name of a character set that identifies the active character set for a given
process; default: NONE .

<var>
Host variable containing string identifying a known character set name

Must be declared as a character set name.
SQL only.

Description: SET NAMES specifies the character set to use for subsequent database
attachments in an application. It enables the server to translate between the default character set
for a database on the server and the character set used by an application on the client.

SET NAMES must appear before the SET DATABASE and CONNECT statements are affected.

Tip:
Use a host-language variable with SET NAMES in an embedded application to specify a
character set interactively.

For a complete list of character sets recognized by InterBase, see Character Sets and Collation
Orders. Choice of character sets limits possible collation orders to a subset of all available
collation orders. Given a specific character set, a specific collation order can be specified when
data is selected, inserted, or updated in a column.

•
•
•
•

•
•

SQL STATEMENT AND FUNCTION REFERENCE

184

http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders
http://docwiki.embarcadero.com/InterBase/15/en/Character_Sets_and_Collation_Orders

Important:
If you do not specify a default character set, the character set defaults to NONE . Using
character set NONE means that there is no character set assumption for columns; data is
stored and retrieved just as you originally entered it. You can load any character set into
a column defined with NONE , but you cannot load that same data into another column
that has been defined with a different character set. No transliteration is performed
between the source and destination character sets, so in most cases, errors occur during
assignment.

Example: The following statements demonstrate the use of SET NAMES in an embedded SQL
application:

EXEC SQL
SET NAMES ISO8859_1;
EXEC SQL
SET DATABASE DB1 = 'employee.ib';
EXEC SQL
CONNECT;

The next statements demonstrate the use of SET NAMES in isql :

SET NAMES LATIN1;
CONNECT 'employee.ib';

See Also

CONNECT
SET DATABASE
Data Definition Guide
Command-line Options

9.92. SET SQL DIALECT

Declares the SQL Dialect for database access. Available in gpre and isql .

SET SQL DIALECT n;

Argument Description

<n> The SQL Dialect type, either 1, 2, or 3

Description: SET SQL DIALECT declares the SQL Dialect for database access.

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

185

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Invoking_isql#Command-line_Options

n is the SQL Dialect type 1, 2, or 3. If no dialect is specified, the default dialect is set to that of the
specified compile-time database. If the default dialect is different than the one specified by the
user, a warning is generated and the default dialect is set to the user-specified value.

SQL Dialect Used for

1 InterBase 5 and earlier compatibility.

2
Transitional dialect used to flag changes when migrating
from dialect 1 to dialect 3.

3
Current InterBase; allows you to use delimited identifiers,
exact numerics, and DATE , TIME , and TIMESTAMP data
types.

Examples: The following embedded SQL statement sets the SQL Dialect to 3:

EXEC SQL
SET SQL DIALECT 3;

See Also

SHOW SQL DIALECT

9.93. SET STATISTICS

Recomputes the selectivity of a specified index. Available in gpre , DSQL, and isql .

SET STATISTICS INDEX name;

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name of an existing index for which to recompute selectivity

•

SQL STATEMENT AND FUNCTION REFERENCE

186

Description: SET STATISTICS enables the selectivity of an index to be recomputed. Index
selectivity is a calculation, based on the number of distinct rows in a table, that is made by the
InterBase optimizer when a table is accessed. It is cached in memory, where the optimizer can
access it to calculate the optimal retrieval plan for a given query. For tables where the number of
duplicate values in indexed columns radically increases or decreases, periodically recomputing
index selectivity can improve performance.

Only the creator of an index can use SET STATISTICS .

Note:
SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

Example: The following embedded SQL statement recomputes the selectivity for an index:

EXEC SQL
SET STATISTICS INDEX MINSALX;

See Also

ALTER INDEX
CREATE INDEX
DROP INDEX

9.94. SET SUBSCRIPTION

A user is then granted SUBSCRIBE privilege to subscribe to the
subscription in order to track changes on the listed tables:

SET SUBSCRIPTION [<subscription_name> [, <subscription_name> ...]] [AT
<destination>] {ACTIVE | INACTIVE};

Argument Description

<subscription_name> Implied by the user identity of the database

<user_name> User identify of the database connection

Description: The following example activates two subscriptions and returns changed data sets
from the subscribed tables.

The COMMIT updates all subscriptions for schema objects referenced during the transaction
to set the last observed timestamp and transaction context.

•
•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

187

The COMMIT RETAIN does not change the last observed state and maintains the current
snapshot as always.

The subscription is deactivated for the connection, which makes any subsequent queries
against the subscribed schema objects return normal data sets, without regard to the
changed data status.
Any number of subscriptions can be activated simultaneously during a database connection.

Example:

SET SUBSCRIPTION "Employee_Changes", "Customer_Deletes" AT 'smartphone_123'

ACTIVE;

SELECT NAME, DEPARTMENT, SALARY FROM "Employees";

SELECT * FROM "Customers";

COMMIT or COMMIT RETAIN;

SET SUBSCRIPTION "Employee_Changes", "Customer_Deletes" AT 'smartphone_123'

INACTIVE;

See Also

GRANT
REVOKE
CREATE SUBSCRIPTION
SHOW SUBSCRIPTION
DROP SUBSCRIPTION
GRANT SUBSCRIBE
GRANT TEMPORARY SUBSCRIBE
Data Definition Guide

9.95. SET TRANSACTION

Starts a transaction and optionally specifies its behavior. Available in ESQL (GPRE) , DSQL, and
ISQL .

SET TRANSACTION [NAME transaction]
[READ WRITE | READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]
| READ COMMITTED [[NO] RECORD_VERSION]}]
[RESERVING reserving_clause
| USING dbhandle [, dbhandle …]]
[[NO] SAVEPOINT];

•

•

•

•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

188

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

reserving_clause = table [, table …]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, reserving_clause]

Important:
In SQL statements passed to DSQL, omit the terminating semicolon. In embedded
applications written in C and C++, and in isql , the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

NAME <transaction>
Specifies the name for this transaction.

<transaction> is a previously declared and initialized host-language variable.
SQL only.

READ WRITE [Default] Specifies that the transaction can read and write to tables.

READ ONLY Specifies that the transaction can only read tables.

WAIT
[Default] Specifies that a transaction wait for access if it encounters a lock
conflict with another transaction.

NO WAIT
Specifies that a transaction immediately return an error if it encounters a lock
conflict.

ISOLATION LEVEL
Specifies the isolation level for this transaction when attempting to access the
same tables as other simultaneous transactions; default: SNAPSHOT .

RESERVING <reserving_clause> Reserves lock for tables at transaction start.

USING <dbhandle> [, <dbhandle>
…]

Limits database access to a subset of available databases; SQL only.

NO SAVEPOINT

If NO SAVEPOINT is mentioned, the transaction is executed without starting an
implicit savepoint for any SQL statements that execute within the context of
that transaction. By default, InterBase starts an implicit savepoint to guarantee
the atomicity of an SQL statement. For more information, see Chapter 5,
"Working with Transactions" section on "Working with the NO SAVEPOINT
Option" in the API Guide.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

189

Description: SET TRANSACTION starts a transaction, and optionally specifies its database
access, lock conflict behavior, and level of interaction with other concurrent transactions
accessing the same data. It can also reserve locks for tables. As an alternative to reserving tables,
multiple database SQL applications can restrict a transaction access to a subset of connected
databases.

Important:
Applications preprocessed with the gpre - manual switch must explicitly start each
transaction with a SET TRANSACTION statement.

SET TRANSACTION affects the default transaction unless another transaction is specified in the
optional NAME clause. Named transactions enable support for multiple, simultaneous
transactions in a single application. All transaction names must be declared as host-language
variables at compile time. In DSQL, this restriction prevents dynamic specification of transaction
names.

By default a transaction has READ WRITE access to a database. If a transaction only needs to
read data, specify the READ ONLY parameter.

When simultaneous transactions attempt to update the same data in tables, only the first update
succeeds. No other transaction can update or delete that data until the controlling transaction is
rolled back or committed. By default, transactions WAIT until the controlling transaction ends,
then attempt their own operations. To force a transaction to return immediately and report a lock
conflict error without waiting, specify the NO WAIT parameter.

ISOLATION LEVEL determines how a transaction interacts with other simultaneous
transactions accessing the same tables. The default ISOLATION LEVEL is SNAPSHOT . It
provides a repeatable-read view of the database at the moment the transaction starts. Changes
made by other simultaneous transactions are not visible.

SNAPSHOT TABLE STABILITY provides a repeatable read of the database by ensuring that
transactions cannot write to tables, though they may still be able to read from them.

READ COMMITTED enables a transaction to see the most recently committed changes made by
other simultaneous transactions. It can also update rows as long as no update conflict occurs.
Uncommitted changes made by other transactions remain invisible until committed.
READ COMMITTED also provides two optional parameters:

NO RECORD_VERSION , the default, reads only the latest version of a row. If the WAIT lock
resolution option is specified, then the transaction waits until the latest version of a row is
committed or rolled back, and retries its read.
RECORD_VERSION reads the latest committed version of a row, even if more recent
uncommitted version also resides on disk.

•

•

SQL STATEMENT AND FUNCTION REFERENCE

190

The RESERVING clause enables a transaction to register its desired level of access for specified
tables when the transaction starts instead of when the transaction attempts its operations on that
table. Reserving tables at transaction start can reduce the possibility of deadlocks.

The USING clause, available only in SQL, can be used to conserve system resources by limiting
the number of databases a transaction can access.

Examples: The following embedded SQL statement sets up the default transaction with an
isolation level of READ COMMITTED . If the transaction encounters an update conflict, it waits to
get control until the first (locking) transaction is committed or rolled back.

EXEC SQL
SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:

EXEC SQL
SET TRANSACTION NAME T1 READ COMMITTED;

The following embedded SQL statement reserves three tables:

EXEC SQL
SET TRANSACTION NAME TR1
ISOLATION LEVEL READ COMMITTED
NO RECORD_VERSION WAIT
RESERVING TABLE1, TABLE2 FOR SHARED WRITE,
TABLE3 FOR PROTECTED WRITE;

See Also

COMMIT
ROLLBACK
SET NAMES (Reference)
Embedded SQL Guide

9.95.1. Exclusive Isolation Level

Introduction

A Tool performing online reorganization of tables may need temporary exclusive table access to
perform its functions. Transactions use exclusive table access to acquire an exclusive lock on a
target table, and they are the only ones able to execute SELECT , INSERT , UPDATE , and
DELETE on a table. When a transaction acquires an exclusive lock, other transactions with lock
requests must wait until the lock is released or downgraded to a compatible level. Transactions

•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

191

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

that maintain exclusive table access can modify data on a table without interference from other
transactions. This isolation level is different from TABLE STABILITY and PROTECTED access
because it does not allow other transactions to select from the table.

Usage

Use the SET TRANSACTION statement to specify the TABLE EXCLUSIVITY clause, or use the
existing RESERVING clause to request exclusive access to one or more tables.
TABLE EXCLUSIVITY acquires exclusive access to every table that a transaction accesses during
statement execution. The RESERVING clause acquires exclusive access to a list of tables at
transaction startup. To use the RESERVING clause, specify
FOR <table_list> EXCLUSIVE [READ | WRITE] . Note that there is no difference between
READ and WRITE because both modes do not allow other transactions to access the table. As
with TABLE STABILITY , there is an increased likelihood of lock conflicts and waits when this
isolation level is used. In addition to isc_tpb_shared and isc_tpb_protected , you can use
isc_tpb_exclusive in a transaction parameter block (TPB) to specify exclusive table access
when calling isc_start_transaction() at the API level.

Requirements and Constraints

It is possible to acquire exclusive table access even if one or more statements or requests
that access the table have been prepared.
It is possible to acquire exclusive table access even if one or more statements or requests
that access the table have been executed as long as they have not yet accessed the table.

Migration issues

Prior to InterBase 2017, isc_tpb_exclusive could be used, but it allowed select access
by concurrent transactions. Starting with InterBase 2017, a transaction has to wait until those
readers terminate and subsequent readers block until the transaction with exclusive access
terminates or downgrades the exclusive lock.
ALTER TABLE ... ALTER COLUMN for encryption and TRUNCATE TABLE acquire
exclusive table access to perform their function.
InterBase 2017 introduced the InterBase-specific SQL reserved keywords EXCLUSIVITY and
EXCLUSIVE.

9.95.2. Wait time

Introduction

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

192

To acquire lockable resources, InterBase transaction lock can wait indefinitely, wait an specified
period of time, or do not wait and return an error immediately. When a transaction holds a lock
on a resource at a level incompatible with the requested lock level, this resource is inaccessible to
other transactions. lockable resources can be tables, rows, or transaction entities.

Usage

This is the SQL syntax to specify a lock resolution mode:

SET TRANSACTION {[NO] WAIT};

WAIT implies wait indefinitely until a resource lock is acquired.

To specify a wait period use an optional WAIT clause in seconds. This is the time a transaction
waits for a lock on a resource:

SET TRANSACTION WAIT [<number> [SECONDS]];

An isc_lock_timeout error code returns if the lock on the resource cannot be acquired
during the wait period.

For example, consider attempting to truncate a table. Table truncate attempts to acquire an
exclusive lock on the target table and referencing tables that have a foreign key constraint on the
target table. It is desirable to specify a wait time for the transaction if other transactions are using
the table actively.

SQL> set transaction wait 10 seconds;
SQL> truncate table salary_history;
Statement failed, SQLCODE = -901

lock time-out on wait transaction
-unsuccessful metadata update
-object SALARY_HISTORY is in use
SQL>

There is a new transaction parameter block (TPB) parameter called isc_tpb_wait_time for use
with InterBase transaction APIs: isc_start_transaction() ,
isc_reconnect_transaction() , and isc_start_multiple() . It is followed by the literal
"4" denoting a byte count and four bytes in little endian format denoting the wait period in
seconds. Here are two examples specifying a 30 second and 300 second (5 minute) wait period,
respectively:

isc_tpb_wait_time, 4, 30, 0, 0, 0
isc_tpb_wait_time, 4, 44, 1, 0, 0

SQL STATEMENT AND FUNCTION REFERENCE

193

There is an InterClient/JDBC extension API method for class
interbase.interclient.Connection: setLockResolution(int mode, int
waitTime)
The existing method setLockResolution(int mode) is equivalent to
setLockResolution(int mode, 0) .

/* Set transaction timeout to 1 minute */

Driver driver = interbase.interclient.Driver();
Connection connection = driver.connect(url, properties);
(interbase.interclient.Connection
connection).setLockResolution(LOCK_RESOLUTION_WAIT, 60);

It is expected that FireDAC, IBX and ODBC frameworks will provide low-level integrated support
for the feature.

Requirements and Constraints

The WAIT period is a positive integer between 1 and 32,767, inclusive. This is the equivalent
of about 9 hours.
Underlying remote and local protocols pass a 32-bit integer so that this limit can be
increased without modifying the protocols.
The feature is available through Dynamic SQL but not Static (Embedded) SQL.
The feature is available through InterClient/JDBC API.
The feature may not be visible as a transaction property by FireDAC, IBX or ODBC
frameworks, but should be available as pass-through DSQL.

Migration issues

The WAIT optional clause is not recognized by SQL parsers in InterBase versions older than
2017.
The isc_tpb_wait_time TPB parameter is not recognized at the API level by InterBase
versions older than 2017.

9.96. SHOW SQL DIALECT

Returns the current client SQL Dialect setting and the database SQL Dialect value. Available in
gpre and isql .

SHOW SQL DIALECT;

Description: SHOW SQL DIALECT returns the current client SQL Dialect setting and the
database SQL Dialect value, either 1, 2, or 3.

•

•

•
•
•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

194

SQL Dialect Used for

1 InterBase 5 and earlier compatibility

2
Transitional dialect used to flag changes when migrating
from dialect 1 to dialect 3.

3
Current InterBase; allows you to use delimited identifiers,
exact numerics, and DATE , TIME , and TIMESTAMP data
types.

Examples: The following embedded SQL statement returns the SQL Dialect:

EXEC SQL
SHOW SQL DIALECT;

See Also

SET SQL DIALECT

9.97. SHOW SUBSCRIPTION

9.97.1. Syntax

SHOW {SUBSCRIPTION [<subscription_name>] | SUBSCRIPTIONS};

Argument Description

<subscription_name> The name of the subscription that you want to display.

9.97.2. Description

To display a list of all subscriptions, use the SHOW SUPSCRIPTIONS command. If you only want
to display one supscription, use the SHOW SUPSCRIPTION <subscription_name> command.

9.97.3. Example

SHOW SUBSCRIPTIONS;
Subscription Name

•

SQL STATEMENT AND FUNCTION REFERENCE

195

===
SUB_CUSTOMER_DELETES
SUB_EMPLOYEE_CHANGES
SUB_VARIOUS_CHANGES

SHOW SUBSCRIPTION sub_employee_changes;
Subscription name: SUB_EMPLOYEE_CHANGES
Owner: SYSDBA
Description: Subscribe to changes in EMPLOYEE table

EMPLOYEE (SALARY, DEPT_NO, EMP_NO)

SHOW SUBSCRIPTION sub_customer_deletes;
Subscription name: SUB_CUSTOMER_DELETES
Owner: SYSDBA
Description: Subscribe to deletes in CUSTOMER table

CUSTOMER FOR ROW (DELETE)

SHOW SUBSCRIPTION sub_various_changes;
Subscription name: SUB_VARIOUS_CHANGES
Owner: SYSDBA
Description: Subscribe to various changes on multiple tables

EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE),
CUSTOMER FOR ROW (INSERT, UPDATE, DELETE),
SALES FOR ROW (UPDATE),
DEPARTMENT (LOCATION) FOR ROW (UPDATE)

See Also

GRANT
REVOKE
CREATE SUBSCRIPTION
DROP SUBSCRIPTION
SET SUBSCRIPTION
GRANT SUBSCRIBE
GRANT TEMPORARY SUBSCRIBE
Data Definition Guide

9.98. SUM()

Totals the numeric values in a specified column. Available in gpre , DSQL, and isql .

SUM ([ALL] val | DISTINCT val)

Argument Description

ALL Totals all values in a column

DISTINCT Eliminates duplicate values before calculating the total

•
•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

196

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

Argument Description

<val>
A column, constant, host-language variable, expression, non-aggregate
function, or UDF that evaluates to a numeric data type

Description: SUM() is an aggregate function that calculates the sum of numeric values for a
column. If the number of qualifying rows is zero, SUM() returns a NULL value.

Example: The following embedded SQL statement demonstrates the use of SUM(), AVG() ,
MIN() , and MAX() :

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

See Also

AVG()
COUNT()
MAX()
MIN()

9.99. Truncate Table

9.99.1. Introduction

InterBase 2017 introduced the SQL reserved keyword TRUNCATE. The Truncate Table command
allows users and applications to empty the contents of a database table. This feature is useful for
tables where rows require frequent deletion. The Truncate Table command performs faster,
requires less I/O, and journals and archives much less information than an equivalent
DELETE FROM table command. ETL applications or other applications can benefit from the
combination of TRUNCATE TABLE with the NO RESERVE SPACE table allocation option when
they stage large amounts of data that are deleted after use or moved to a more permanent
location such as a history table.

9.99.2. Requirements and Constraints

The Truncate Table command obtains exclusive and protected write locks, this can have a
visible effect on concurrent transactions that try to access tables being truncated. Although
the table is being truncated anyways, all layers of the dependent table tree hierarchy in a

•
•
•
•

1.

SQL STATEMENT AND FUNCTION REFERENCE

197

TRUNCATE CASCADE are locked, and in a TRUNCATE DEFERRED these locks are held until
the transaction terminates.
As a consequence of the previous point, users may run Truncate Table commands using a
transaction with NO WAIT or a WAIT TIME limit. This way the transaction could rollback
the operation if a timeout occurs or retry a limited number of times.
It is not possible to truncate system tables, temporary tables, and views. For optimization
and performance reasons the engine truncates physically some of these tables types, users
don't have access to this functionality. However, users might perceive better performance.
External tables can be truncated.
It's not possible to track who executed a Truncate Table command. InterBase does not
support FOR EACH STATEMENT triggers that enable users to write a triggered action for a
Truncate Table command.

9.99.3. How it works

Truncate Table operates at table level rather than at row level, it acts on the stored data inside a
table instead of the metadata. Truncate Table deletes all the rows of a table in similar way to a
DELETE FROM <table> command, but it doesn't perform row level actions like DELETE
triggers, check constrains, and index maintenance. Truncate Table is usually faster than row-level
deletion.

The Truncate Table command is not under transaction control. When you empty a table, it is not
possible to undo the action even if you roll back the transaction that executed it. Only a point-in-
time recovery can recover the data from InterBase journal archives. Truncated tables don't have
storage allocated for row data, indexes, or blobs.

The Truncate Table command is sensitive to other tables' foreign key constraints that reference
the table being truncated. In it's simplest form, foreign key constrains disallow table truncation.
InterBase Truncate Table provides several non-SQL and run-time extensions to override this
restriction. This enables a more liberal interpretation of the command enable execution in
situations that do not compromise existing foreign key constraints. Although Truncate Table is
not under transaction control, it is possible to make it behave as if it were by deferring its
execution until after the effects of the transaction in which it is contained have been committed
or rolled back.

9.99.4. Truncate Table syntax

TRUNCATE TABLE <table_name> [IMMEDIATE|DEFERRED] [RESTRICT|CASCADE]

When using the truncate Table command, please consider these points:

IMMEDIATE is implicit if neither IMMEDIATE nor DEFERRED are specified. IMMEDIATE
and DEFERRED are unreserved keywords.

2.

3.

4.
5.

•

SQL STATEMENT AND FUNCTION REFERENCE

198

RESTRICT is implicit if neither RESTRICT nor CASCADE are specified.

For example:

TRUNCATE TABLE <table_name>

is the same as:

TRUNCATE TABLE <table_name> IMMEDIATE RESTRICT

Use the IMMEDIATE qualifier to execute the Truncate Table command immediately and to
empty the content of the table.
Use the DEFERRED qualifier to execute the Truncate Table command when the transaction
terminates with COMMIT or ROLLBACK . COMMIT guarantees all the transactional work
before emptying the target table. ROLLBACK cancels the Truncate Table Command.
When you specify the RESTRICT qualifier the Truncate Table command only succeeds if no
foreign key constrains reference the target table. The Truncate Table command only executes
if the table has self-referencing foreign key constrains.
When you specify the CASCADE qualifier, declare all the foreign key constrains of
referencing tables with the ON DELETE CASCADE action, or the foreign key constrains not
declared must reference currently "empty" tables. This condition applies recursively to
referencing tables, if any table violates this condition the Truncate Table command fails with
a foreign key violation error.

Note:
In this context "empty" means the table has no data storage allocated to it. A table with
no rows still has storage allocated to it. This can happen when all rows have been
deleted with one or more DELETE statements, but concurrent transactions still have
earlier versions of the row in their snapshots, or the rows and their earlier versions are
not in any transactions' snapshots but have not yet been garbage collected.

To immediately make those foreign key dependent tables empty, Truncate Table can be run
against such tables if logic dictates. A Truncate Table statement is allowed to be called from
InterBase triggers and stored procedures assuming they have been granted the TRUNCATE
privilege.

9.99.5. Truncate Table privilege

Execution of a Truncate Table command requires a TRUNCATE privilege. By default, this privilege
is granted only to the table owner and SYSDBA initially. The TRUNCATE privilege must be
specifically granted to any other authorization identifier as it is not considered a member of ALL
privileges.

•

•

•

•

•

SQL STATEMENT AND FUNCTION REFERENCE

199

{GRANT | REVOKE} TRUNCATE ON <table_name> {TO | FROM} <grantee> [WITH GRANT
OPTION]

Note:
The TRUNCATE privilege is not required on referencing tables with non-
ON DELETE CASCADE foreign key constraints when checking if those tables are empty.

[1]

↑ : In this context "empty" means the table has no data storage allocated to it. A table with
no rows still has storage allocated to it.

9.99.6. Truncate Table operation

The Truncate Table command is executed in two phases:

A locking phase.
A truncation phase.

Upon command, the returned target tables are always locked for exclusive access. If the
DEFERRED qualifier is specified, the truncation phase of the operation does not occur until
transaction COMMIT . Specifically, foreign dependent tables with non- ON DELETE CASCADE
reference constraints are only locked for protected write.

Because these tables are not being physically dismantled, reads can be allowed without blocking
on the empty table. The protected write lock prevents insertion of new rows that might have a
valid reference on a table with an imminent truncation.

If the CASCADE qualifier is specified, then the target table is locked as well as referencing tables
with foreign key constraints that depend on the target table. The locking protocol works in a top-
down fashion, locking the target table first followed by the referencing tables and recursively
applied to those referencing tables with ON DELETE CASCADE foreign key constraints. This is
referred to as a dependent table tree hierarchy.

The truncation protocol works in a bottom-up fashion. First, it truncates foreign dependent
tables, this prevents dangling foreign key references if the total execution fails unexpectedly
before completion. During this phase, all table data, index and blob storage is released back to
the database for reuse. Once the tables have been truncated, the table locks are downgraded to
the level they would have acquired for normal write access. For a consistency mode transaction
this is protected write. For a concurrency mode transaction this is shared write.

9.99.7. Truncate Table errors

1.

1.
2.

SQL STATEMENT AND FUNCTION REFERENCE

200

A lock error returns if an exclusive table lock cannot be acquired during the locking phase. The
error returned can be a isc_deadlock error or a transaction wait error depending on the
transaction's wait mode. If a transaction waits indefinitely for lock acquisition, it can only return a
isc_deadlock error due to a real deadlock with a concurrent transaction.

If the transaction is NO WAIT , it returns an isc_lock_conflict error immediately. If the
transaction requests a WAIT TIME , it returns isc_lock_timeout when waiting the specified
time for table lock acquisition.

It is also an error to execute a Truncate Table command from a READ_ONLY transaction or
database. During the truncation phase there is no expected way for an error to occur. However,
unexpected errors can occur due to extraneous circumstances.

If a transaction executing a Truncate Table command has open cursors on one or more of the
truncated tables, attempting to perform an UPDATE on those open cursors can return an
isc_table_truncated . Otherwise, if the fetch from the cursor is only for retrieval purposes,
the fetch operation returns as if there were no more remaining rows to fetch.

9.99.8. Truncate Table effect on Change Views

When a client database connection activates subscriptions containing one or more truncated
tables, the client receives two indications of the underlying truncate activity.

First, when a cursor opens (the SELECT operation is executed), a warning status vector
indicating isc_table_truncated returns with the name of the truncated table. A warning
status vector can chain together five separate isc_table_truncated status codes of
truncated tables in a SELECT statement . Clients can use this form of table notification to
truncate one or more corresponding tables on the client.For example, after executing the query:

if (isc_dsql_execute(status_vector, ...) == 0) /* after successful execution
check for warnings */

{
if (status_vector[2] == isc_arg_warning)

// A warning status vector for one or more truncated tables shall have the
following format.

status_vector[0] = isc_arg_gds
status_vector[1] = 0
status_vector[2] = isc_arg_warning

// The following sequence can be repeated up to 5 times
status_vector[3] = isc_table_truncated
status_vector[4] = isc_arg_string
status_vector[5] = name of table truncated

SQL STATEMENT AND FUNCTION REFERENCE

201

// status_vector terminator
status_vector[last element] = isc_arg_end

Second, on every fetch from the cursor, a SQLIND_TRUNCATE flag is set in the SQL indicator
member of a SQLVAR element for a column of a truncated table. Clients can use this form of
column notification to delete one or more rows in corresponding tables before using the other
SQLIND flags to decide on the appropriate row modification operation.

/* Bit flag definitions for SQLVAR.sqlind output variable */

#define SQLIND_NULL (short) (1 << 15)
#define SQLIND_INSERT (1 << 0)
#define SQLIND_UPDATE (1 << 1)
#define SQLIND_DELETE (1 << 2)
#define SQLIND_CHANGE (1 << 3)
#define SQLIND_TRUNCATE (1 << 4)
#define SQLIND_CHANGE_VIEW (1 << 5)

If the query returns no rows because there were no changes to the subscribed tables subsequent
to table truncation, then only the first method can be used. The second method will not work
since the SQLDA/SQLVAR element will not be populated because no rows have been returned.

Higher level database frameworks such as FireDAC may surface these truncate notifications with
supporting APIs (e.g., isTruncated() .)

9.99.9. Truncate Table examples

Consider a lottery drawing example:

TRUNCATE TABLE PENDING_LOTTERY_TICKETS DEFERRED;
INSERT INTO CURRENT_LOTTERY_DRAWING ... SELECT FROM PENDING_LOTTERY TICKETS;
COMMIT;

The day of the lottery drawing at 9:00 PM the TRUNCATE TABLE command is executed with a
DEFERRED status. Because the Truncate Table command obtains an exclusive lock, any attempts
to insert new lottery tickets at 9:00 PM have to wait. The CURRENT_LOTTERY_DRAWING table is
then populated with PENDING_LOTTERY_TICKETS . The PENDING_LOTTERY_TICKETS table is
truncated only after a successful COMMIT , this ensures the tickets are not lost before moving
them for the current lottery drawing. Once truncation completes, the
PENDING_LOTTERY_TICKETS exclusive lock is released, allowing pending lottery ticket INSERT
commands to complete and be eligible for the next lottery drawing.

Conversely, a bulk load operation would want to ensure a table is immediately emptied before
the load:

SQL STATEMENT AND FUNCTION REFERENCE

202

TRUNCATE TABLE CUSTOMER_ORDERS; /* IMMEDIATE is implied */
EXECUTE LOAD_CUSTOMER_ORDERS;
COMMIT;

A set of tables may form a composition hierarchy to represent the semantic notion of
containment:

INVOICE_HEADERS <-- INVOICE_DETAILS <-- {RAIN_CHECK_TICKET, DROP_SHIP_ADDRESS}

The dependent tables are all declared with ON DELETE CASCADE foreign key constraints. All the
invoices can be quickly dropped by executing:

TRUNCATE TABLE INVOICE_HEADERS CASCADE;

On the other hand, there may exist a lookup table of two-letter US State postal codes named
POSTAL_CODES that every document in an organization depends on. None of these dependent
tables register an ON DELETE CASCADE foreign key constraint with the lookup table.

POSTAL CODE STATE

CA California

MA Massachusetts

NC North Carolina

TX Texas

...

TRUNCATE TABLE POSTAL_CODES CASCADE;

Assuming that one or more of the foreign dependent tables are not empty, this command fails
with a FOREIGN KEY CONSTRAINT violation error. The foreign dependent tables are not
ON DELETE CASCADE and have storage allocated for their existing rows.

9.99.10. Truncate Table Tutorial

This section guides you in the use of the Truncate Table command and its qualifiers.

Creating a test database and tables

Create a Database.1.

SQL STATEMENT AND FUNCTION REFERENCE

203

CREATE DATABASE "truncate.ib";
COMIT;

Create a table named 'SOLO' that has no references from any other table.

CREATE TABLE SOLO (F1 INTEGER);
INSERT INTO SOLO VALUES (1);
COMMIT;

Create a table named 'SOLO_SELF_REF' and populate it with data, this table references itself.

CREATE TABLE SOLO_SELF_REF (EMP_NO INTEGER NOT NULL, MNGR_NO INTEGER,
PRIMARY KEY (EMP_NO));

ALTER TABLE SOLO_SELF_REF ADD FOREIGN KEY (MNGR_NO) REFERENCES SOLO_SELF_REF
(EMP_NO);
INSERT INTO SOLO_SELF_REF VALUES (1, 1);
INSERT INTO SOLO_SELF_REF VALUES (2, 1);
INSERT INTO SOLO_SELF_REF VALUES (3, 2);
INSERT INTO SOLO_SELF_REF VALUES (4, 2);
COMMIT;

Next, create the primary table called PT, and add a primary key on EMP_NO.

CREATE TABLE PT (EMP_NO INTEGER NOT NULL, SSN_NO INTEGER NOT NULL);
ALTER TABLE PT ADD PRIMARY KEY (EMP_NO);
INSERT INTO PT VALUES (1, 100);
INSERT INTO PT VALUES (2, 200);
INSERT INTO PT VALUES (3, 300);
INSERT INTO PT VALUES (4, 400);
COMMIT;

Create a table named "FT1" and add a foreign key reference, this references to PT with ON
DELETE CASCADE.

CREATE TABLE FT1 (MNGR_NO INTEGER NOT NULL, EMP_COUNT INTEGER, PRIMARY KEY
(MNGR_NO));
ALTER TABLE FT1 ADD FOREIGN KEY (MNGR_NO) REFERENCES PT (EMP_NO) ON DELETE
CASCADE;
INSERT INTO FT1 VALUES (1, 1);
INSERT INTO FT1 VALUES (2, 2);
COMMIT;

Truncate a table with no references from other tables

First check the number of records on each table.

2.

3.

4.

5.

1.

SQL STATEMENT AND FUNCTION REFERENCE

204

SELECT COUNT(*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

Next, truncate the SOLO table.

TRUNCATE TABLE SOLO;
COMMIT;

Next, truncate the SOLO_SELF_REF table with reference to self.

TRUNCATE TABLE SOLO_SELF_REF;
COMMIT;

Finally, check count of records on each table.

SELECT COUNT(*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate a table with no references from other tables using the DEFERRED qualifier

Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate the SOLO_SELF_REF table with DEFERRED qualifier. We now have exclusive access to
the table. No other requests allowed to read/write to the table.

TRUNCATE TABLE SOLO_SELF_REF DEFERRED;

We still have access to the table. Do new DML requests.

SELECT * FROM SOLO_SELF_REF;
INSERT INTO SOLO_SELF_REF VALUES (5, 2);
SELECT * FROM SOLO_SELF_REF;

Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

COMMIT will truncate now due to DEFERRED action

COMMIT;

2.

3.

4.

1.

2.

3.

4.

5.

SQL STATEMENT AND FUNCTION REFERENCE

205

Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate on a primary table cascades to table references with ON DELETE CASCADE definition

Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

TRUNCATE PT table with default RESTRICT qualifier

TRUNCATE TABLE PT;
COMMIT;

Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

TRUNCATE PT table with CASCADE qualifier

TRUNCATE TABLE PT CASCADE;
COMMIT;

Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

9.100. UPDATE

Changes the data in all or part of an existing row in a table, view, or active set of a cursor.
Available in gpre , DSQL, and isql .

SQL form:

UPDATE [TRANSACTION <transaction>] {table | view}
SET col = val [, col = val …]
[WHERE search_condition | WHERE CURRENT OF cursor]
[ORDER BY order_list]
[ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]];

6.

1.

2.

3.

4.

5.

SQL STATEMENT AND FUNCTION REFERENCE

206

DSQL and isql form:

UPDATE {table | view}
SET col = val [, col = val …]
[WHERE search_condition
[ORDER BY order_list]
[ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]]

val = {
col [array_dim]
| :variable
| constant
| expr
| function
| udf ([val [, val …]])
| NULL
| USER
| ?}
[COLLATE collation]
array_dim = [[x:]y [, [x:]y …]]
constant = num | 'string' | charsetname 'string'
function = CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)

<expr> = A valid SQL expression that results in a single value.

<search_condition> = See CREATE TABLE. for a full description.

Notes on the UPDATE statement:

In SQL and isql , you cannot use <val> as a parameter placeholder (like “?”).
In DSQL and isql , <val> cannot be a variable.
You cannot specify a COLLATE clause for Blob columns.

Argument Description

TRANSACTION <transaction> Name of the transaction under control of which the statement is executed

<table> | <view> Name of an existing table or view to update.

SET <col> = <val> Specifies the columns to change and the values to assign to those columns

WHERE <search_condition> Searched update only; specifies the conditions a row must meet to be modified

•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

207

Argument Description

WHERE CURRENT OF <cursor>
Positioned update only; specifies that the current row of a cursor active set is
to be modified

Not available in DSQL and isql

ORDER BY <order_list>
Specifies columns to order, either by column name or ordinal number in the
query, and the sort order (ASC or DESC) for the returned rows

ROWS <value>
[TO <upper_value>]
[BY <step_value>]
[PERCENT][WITH TIES]

<value> is the total number of rows to return if used by itself
<value> is the starting row number to return if used with TO
<value> is the percent if used with PERCENT
<upper_value> is the last row or highest percent to return
If <step_value> = <n>, returns every <n>th row, or <n> percent rows
PERCENT causes all previous ROWS values to be interpreted as percents
WITH TIES returns additional duplicate rows when the last value in the

ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY

Description: UPDATE modifies one or more existing rows in a table or view. UPDATE is one of
the database privileges controlled by GRANT and REVOKE .

For searched updates, the optional WHERE clause can be used to restrict updates to a subset of
rows in the table. Searched updates cannot update array slices.

Important:
Without a WHERE clause, a searched update modifies all rows in a table.

When performing a positioned update with a cursor, the WHERE CURRENT OF clause must be
specified to update one row at a time in the active set.

Note:
When updating a Blob column, UPDATE replaces the entire Blob with a new value.

Examples: The following isql statement modifies a column for all rows in a table:

UPDATE CITIES
SET POPULATION = POPULATION * 1.03;

The next embedded SQL statement uses a WHERE clause to restrict column modification to a
subset of rows:

EXEC SQL
UPDATE PROJECT

•

•
•
•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

208

SET PROJ_DESC = :blob_id
WHERE PROJ_ID = :proj_id;

See Also

DELETE
GRANT
INSERT
REVOKE
SELECT

9.101. UPPER()

Converts a string to all uppercase. Available in gpre , DSQL, and isql .

UPPER (val)

Argument Description

<val>
A column, constant, host-language variable, expression, function, or UDF that
evaluates to a character data type

Description: UPPER() converts a specified string to all uppercase characters. If applied to
character sets that have no case differentiation, UPPER() has no effect.

Examples: The following isql statement changes the name, BMatthews, to BMATTHEWS :

UPDATE EMPLOYEE
SET EMP_NAME = UPPER (BMatthews)
WHERE EMP_NAME = 'BMatthews';

The next isql statement creates a domain called PROJNO with a CHECK constraint that
requires the value of the column to be all uppercase:

CREATE DOMAIN PROJNO
AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

See Also

CAST()

9.102. WHENEVER

Traps SQLCODE errors and warnings. Available in gpre .

•
•
•
•
•

•

SQL STATEMENT AND FUNCTION REFERENCE

209

WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
{GOTO label | CONTINUE};

Argument Description

NOT FOUND Traps SQLCODE = 100, no qualifying rows found for the executed statement

SQLERROR Traps SQLCODE < 0, failed statement

SQLWARNING Traps SQLCODE > 0 AND < 100, system warning or informational message

GOTO <label> Jumps to program location specified by <label> when a warning or error
occurs

CONTINUE Ignores the warning or error and attempts to continue processing

Description: WHENEVER traps for SQLCODE errors and warnings. Every executable SQL
statement returns a SQLCODE value to indicate its success or failure. If SQLCODE is zero,
statement execution is successful. A non-zero value indicates an error, warning, or not found
condition.

If the appropriate condition is trapped for, WHENEVER can:

Use GOTO label to jump to an error-handling routine in an application.
Use CONTINUE to ignore the condition.

WHENEVER can help limit the size of an application, because the application can use a single
suite of routines for handling all errors and warnings.

WHENEVER statements should precede any SQL statement that can result in an error. Each
condition to trap for requires a separate WHENEVER statement. If WHENEVER is omitted for a
particular condition, it is not trapped.

Tip:
Precede error-handling routines with WHENEVER … CONTINUE statements to prevent
the possibility of infinite looping in the error-handling routines.

Example: In the following code from an embedded SQL application, three WHENEVER
statements determine which label to branch to for error and warning handling:

•
•

SQL STATEMENT AND FUNCTION REFERENCE

210

EXEC SQL
WHENEVER SQLERROR GO TO Error; /* Trap all errors. */
EXEC SQL
WHENEVER NOT FOUND GO TO AllDone; /* Trap SQLCODE = 100 */
EXEC SQL
WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings. */

For a complete discussion of error-handling methods and programming, see the Embedded SQL
Guide.

9.103. RECONNECT

Reconnects to the latest successfully connected database. RECONNECT is available in isql and
in IBConsole.

9.103.1. Syntax

isql :

RECONNECT [USER <username>] [PASSWORD <password>] [ROLE <rolename>] [CACHE
<number>] [lc_ctype <charset> DIALECT <dialect_number>];

Argument Description

USER <username>
String or host-language variable that specifies a user name for the database.
The server checks the user name against the security database. User names are
case-insensitive.

PASSWORD <password>
String or host-language variable, that specifies a password for the database.
The server checks the password against the security database. Passwords are
case-sensitive.

ROLE <rolename>

String or host-language variable up to 67 characters in size, that specifies the
role that the user adopts for this connection to the database. The user can
adopt at most one role per connection, and cannot switch roles (except by
reconnecting).

CACHE <number>

Sets the number of cache buffers for a database, which determines the number
of database pages a program can use at the same time. Values for <number>:

Default: 256
Maximum value: system-dependent

Note: a value of 256 or NONE clears the cache parameter.

•
•

SQL STATEMENT AND FUNCTION REFERENCE

211

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/IBConsole

Argument Description

lc_type <character set> Sets the character set, Use NONE to remove the character set.

DIALECT <dialect number> Sets the Dialect number, available values are: 1, 2, 3

9.103.2. Description

The RECONNECT statement connects to the last successfully connected database. All parameters
for the RECONNECT statement are optional. If you do not specify a parameter, RECONNECT uses
the value that you pass via Command-line Options.

9.103.3. Examples

RECONNECT;

RECONNECT USER 'sysdba' PASSWORD 'masterkey';

RECONNECT USER 'sysdba' PASSWORD 'masterkey' ROLE 'DBA';

See Also

CONNECT
DISCONNECT
Connecting to a Database Using isql
SET NAMES (Reference)
Isql_Command_Reference

•
•
•
•
•

SQL STATEMENT AND FUNCTION REFERENCE

212

http://docwiki.embarcadero.com/InterBase/15/en/Invoking_isql#Command-line_Options
http://docwiki.embarcadero.com/InterBase/15/en/Invoking_isql#Connecting_to_a_Database_Using_isql
http://docwiki.embarcadero.com/InterBase/15/en/Isql_Command_Reference

PROCEDURES AND TRIGGERS

InterBase procedure and trigger language is a complete programming language for writing
stored procedures and triggers in isql and DSQL. It includes:

SQL data manipulation statements: INSERT , UPDATE , DELETE , and singleton SELECT .
Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting, exceptions, and error handling.

Although stored procedures and triggers are used in entirely different ways and for different
purposes, they both use procedure and trigger language. Both triggers and stored procedures
can use any statements in procedure and trigger language, with some exceptions:

OLD and NEW context variables are unique to triggers.
Input and output parameters, and the SUSPEND and EXIT statements are unique to stored
procedures.

The Data Definition Guide explains how to create and use stored procedures and triggers. This
chapter is a reference for the statements that are unique to trigger and procedure language or
that have special syntax when used in triggers and procedures.

1. Creating Triggers and Stored Procedures

Stored procedures and triggers are defined with the CREATE PROCEDURE and
CREATE TRIGGER statements, respectively. Each of these statements is composed of a header
and a body.

The header contains::

The name of the procedure or trigger, unique within the database.
For a trigger:

A table name, identifying the table that causes the trigger to fire.
Statements that determine when the trigger fires.

For a stored procedure:

An optional list of input parameters and their data types.
If the procedure returns values to the calling program, a list of output parameters and their
data types.

The body contains: :

An optional list of local variables and their data types.

•
•

•
•

•
•

•
•

•

•
•

•

PROCEDURES AND TRIGGERS

213

http://docwiki.embarcadero.com/InterBase/15/en/Data_Definition_Guide

A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END . A block can itself include other blocks, so that there may be many levels of
nesting.

2. Statement Types Not Supported

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre . The following statement types are not supported in triggers or
stored procedures:

Data definition language statements: CREATE , ALTER , DROP ,
DECLARE EXTERNAL FUNCTION , and DECLARE FILTER
Transaction control statements: SET TRANSACTION , COMMIT , ROLLBACK
Dynamic SQL statements: PREPARE , DESCRIBE , EXECUTE
CONNECT/DISCONNECT , and sending SQL statements to another database
GRANT/REVOKE
SET GENERATOR
EVENT INIT/WAIT
BEGIN/END DECLARE SECTION
BASED ON
WHENEVER
DECLARE CURSOR
OPEN
FETCH

3. Nomenclature Conventions

This chapter uses the following nomenclature:

A block is one or more compound statements enclosed by BEGIN and END .
A compound statement is either a block or a statement.
A statement is a single statement in procedure and trigger language.

To illustrate in a syntax diagram:

<block> =
BEGIN
<compound_statement>
[<compound_statement> …]
END
<compound_statement> = <block> | statement;

•

•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

PROCEDURES AND TRIGGERS

214

4. Assignment Statement

Assigns a value to an input or output parameter or local variable. Available in triggers and stored
procedures.

<variable> = <expression>;

Argument Description

<variable> A local variable, input parameter, or output parameter.

<expression>
Any valid combination of variables, SQL operators, and expressions, including
user-defined functions (UDFs) and generators.

Description: An assignment statement sets the value of a local variable, input parameter, or
output parameter. Variables must be declared before they can be used in assignment statements.

Example: The first assignment statement below sets the value of x to 9. The second statement
sets the value of y at twice the value of x. The third statement uses an arithmetic expression to
assign z a value of 3.

DECLARE VARIABLE x INTEGER;
DECLARE VARIABLE y INTEGER;
DECLARE VARIABLE z INTEGER;
x = 9;
y = 2 * x;
z = 4 * x / (y - 6);

See Also

DECLARE VARIABLE
Input Parameters
Output Parameters

5. BEGIN ... END

Defines a block of statements executed as one. Available in triggers and stored procedures.

<block> =
BEGIN
<compound_statement>

[<compound_statement> <…>]
END

•
•
•

PROCEDURES AND TRIGGERS

215

<compound_statement> = {<block> | statement;}

Description: Each block of statements in the procedure body starts with a BEGIN statement and
ends with an END statement. As shown in the above syntax diagram, a block can itself contain
other blocks, so there may be many levels of nesting.

BEGIN and END are not followed by a semicolon. In isql , the final END in the procedure
body is followed by the semicolon.

The final END statement in a trigger terminates the trigger. The final END statement in a stored
procedure operates differently, depending on the type of procedure:

In a select procedure, the final END statement returns control to the application and sets
SQLCODE to 100, which indicates there are no more rows to retrieve.
In an executable procedure, the final END statement returns control and current values of
output parameters, if any, to the calling application.

Example: The following isql fragment of the DELETE_EMPLOYEE procedure shows two
examples of BEGIN … END blocks.

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN
ANY_SALES = 0;
. . .
IF (ANY_SALES > 0) THEN
BEGIN
EXCEPTION REASSIGN_SALES;
EXIT;
END
. . .
END
;

See Also

No Rows or Data Returned
SUSPEND

6. Comment

Comment syntax allows programmers to add comments to procedure and trigger code or SQL
scripts.

•

•

•
•

PROCEDURES AND TRIGGERS

216

There are two different types of comments that you can use:

The simple comment: A comment that starts with a special symbol and ends with a new
line.

Note:
The simple comment syntax is only available starting with database engine version
InterBase 2017.

-- comment text

The bracketed comment: A comment that starts and ends with a special symbol. It may be
multi-line.

/* comment text
more comment text
another line of comment text
*/

Regardless of the type of comment that you use, you may start a comment anywhere in a line,
but with a simple comment you need to keep in mind that the comment area stops after new
line. In order to use the simple comment syntax for a multi-line comment, you need to start each
line with the special symbol. For example:

A multi-line bracketed comment:

/* my multi-line
comment is this
text */

A multi-line simple comment:

-- my multi-line
-- comment is this
-- text

You can place comments on the same line as code, which makes them inline comments.

It is good programming practice to state the input and output parameters of a procedure in a
comment preceding the procedure. It is also often useful to comment local variable declarations
to indicate what each variable is used for.

Examples The following isql samples illustrate some ways to use comments:

1.

2.

•

•

PROCEDURES AND TRIGGERS

217

/*
* Procedure DELETE_EMPLOYEE : Delete an employee.
*
* Parameters:
* employee number
* Returns:
* --
*/
CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER; -- Number of sales for emp.
BEGIN
. . .

/* This script sets up Change Views Subscriptions
 on the EMPLOYEE table.
*/
CONNECT "emp.ib" user 'SYSDBA' password 'masterkey';
COMMIT;

CREATE SUBSCRIPTION sub ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

-- Create a subscription on Employee table
CREATE SUBSCRIPTION sub1 ON EMPLOYEE FOR ROW (INSERT, UPDATE);
COMMIT;

Simple comment followed by another SLC

-- One more comment
CREATE SUBSCRIPTION sub2 ON EMPLOYEE FOR ROW (INSERT);
COMMIT;

Simple comment followed by another SLC with leading whitespace

-- One more comment followed by leading whitespace before CREATE below
CREATE SUBSCRIPTION sub3 ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

SHOW SUBSCRIPTIONS;

SELECT COUNT(*)
-- inline comment 1
FROM RDB$DATABASE;

SELECT COUNT(*) -- inline comment 2
FROM RDB$DATABASE;

COMMIT;

•

•

PROCEDURES AND TRIGGERS

218

SET TERM ^;

Create a stored procedure with inline comments

CREATE PROCEDURE test_proc (
p1 INTEGER, -- Param 1
p2 VARCHAR(68) -- Param 2

)
RETURNS (op1 INTEGER) -- Output param
AS
declare variable v1 INTEGER;
declare variable v2 varchar(150); -- Variable 2
BEGIN

-- sample comment 1
-- sample comment 2
-- return input value multiplied by 10
v1 = p1 * 10;
op1 = v1;
SUSPEND;

END^
SET TERM ;^

COMMIT;
SHOW PROCEDURE test_proc;
SELECT op1 from test_proc (2, NULL);

7. DECLARE VARIABLE

Declares a local variable. Available in triggers and stored procedures.

DECLARE VARIABLE var data_type;

Argument Description

<var> Name of the local variable, unique within the trigger or procedure

<data_type> Data type of the local variable; can be any InterBase data type except arrays.

Description: Local variables are declared and used within a stored procedure. They have no
effect outside the procedure.

Local variables must be declared at the beginning of a procedure body before they can be used.
Each local variable requires a separate DECLARE VARIABLE statement, followed by a semicolon
(;).

Example: The following header declares the local variable, ANY_SALES :

•

PROCEDURES AND TRIGGERS

219

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN
. . .

See Also

Input Parameters
Output Parameters

8. EXCEPTION

Raises the specified exception. Available in triggers and stored procedures.

EXCEPTION name;

Argument Description

<name> Name of the exception being raised

Description: An exception is a user-defined error that has a name and an associated text
message. When raised, an exception:

Terminates the procedure or trigger in which it was raised and undoes any actions
performed (directly or indirectly) by the procedure or trigger.
Returns an error message to the calling application. In isql , the error message is displayed
to the screen.

Exceptions can be handled with the WHEN statement. If an exception is handled, it will behave
differently.

Example: The following isql statement defines an exception named REASSIGN_SALES :

CREATE EXCEPTION REASSIGN_SALES
'Reassign the sales records before deleting this employee.' ;

Then these statements from a procedure body raise the exception:

IF (ANY_SALES > 0) THEN
EXCEPTION REASSIGN_SALES;

•
•

•

•

PROCEDURES AND TRIGGERS

220

See Also

WHEN … DO

For more information on creating exceptions, see CREATE EXCEPTION.

9. EXECUTE PROCEDURE (Procedures)

Executes a stored procedure. Available in triggers and stored procedures.

EXECUTE PROCEDURE name [:<param> [, :<param> …]]
[RETURNING_VALUES :<param> [, :<param> …]];

Argument Description

<name>
Name of the procedure being executed. Must have been previously defined to
the database with CREATE PROCEDURE

[<param> [, <param> …]]
List of input parameters, if the procedure requires them

Can be constants or variables
Precede variables with a colon, except NEW and OLD context variables

[RETURNING_VALUES <param> [,
<param> …]]

List of output parameters, if the procedure returns values; precede each with a
colon, except NEW and OLD context variables

Description: A stored procedure can itself execute a stored procedure. Each time a stored
procedure calls another procedure, the call is said to be nested because it occurs in the context
of a previous and still active call to the first procedure. A stored procedure called by another
stored procedure is known as a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve
repetitive steps. Each invocation of a procedure is referred to as an instance, since each
procedure call is a separate entity that performs as if called from an application, reserving
memory and stack space as required to perform its tasks.

Note:
Stored procedures can be nested up to 1,000 levels deep. This limitation helps to
prevent infinite loops that can occur when a recursive procedure provides no absolute
terminating condition. Nested procedure calls may be restricted to fewer than 1,000
levels by memory and stack limitations of the server.

•

•
•

PROCEDURES AND TRIGGERS

221

Example: The following example illustrates a recursive procedure, FACTORIAL , which calculates
factorials. The procedure calls itself recursively to calculate the factorial of NUM , the input
parameter.

CREATE PROCEDURE FACTORIAL (NUM INT)
RETURNS (N_FACTORIAL DOUBLE PRECISION)
AS
DECLARE VARIABLE NUM_LESS_ONE INT;
BEGIN
IF (NUM = 1) THEN
BEGIN /**** Base case: 1 factorial is 1 ****/
N_FACTORIAL = 1;
EXIT;
END
ELSE
BEGIN
/**** Recursion: num factorial = num * (num-1) factorial ****/
NUM_LESS_ONE = NUM - 1;
EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE
RETURNING_VALUES N_FACTORIAL;
N_FACTORIAL = N_FACTORIAL * NUM;
EXIT;
END
END;

See Also

CREATE PROCEDURE
Input Parameters
Output Parameters

For more information on executing procedures, see EXECUTE PROCEDURE.

10. EXECUTE STATEMENT

Embedding a variation of EXECUTE STATEMENTS within a Stored Procedure.

Description: Store procedure developers can now embed three variations of EXECUTE
STATEMENT within their Stored Procedures. The variations depend on the number of rows
returned from the EXECUTE STATEMENT command. The variations are: No rows or data returned,
One row of data returned, and Any number of data rows returned.

10.1. No Rows or Data Returned

EXECUTE STATEMENT <statement>

•
•
•

PROCEDURES AND TRIGGERS

222

Argument Description

<statement> A SQL statement returning no rows of data.

Examples:

CREATE PROCEDURE EXEC_STMT_NO_RET (proc_name varchar(20))
AS
DECLARE VARIABLE EMPNO INTEGER;
DECLARE VARIABLE EXECSTMT VARCHAR(150);
BEGIN

SELECT MAX(EMP_NO) from EMPLOYEE into EMPNO;

EXECSTMT = 'EXECUTE PROCEDURE' || proc_name || '(' || cast (EMPNO as
varchar(10)) || ')';

EXECUTE STATEMENT EXECSTMT;

END

10.2. One Row of Data Returned

EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]

Argument Description

<select-statement> SQL statement returning one or no rows of data.

<var> Valid procedure variable, the ":" is optional.

Example:

CREATE PROCEDURE EXEC_STMT_SINGLETON (TABLE_NAME VARCHAR(50))
AS
DECLARE VARIABLE MAXEMPNO INTEGER;
BEGIN
EXECUTE STATEMENT 'SELECT MAX(EMP_NO) FROM ' || TABLE_NAME INTO :MAXEMPNO;
END

PROCEDURES AND TRIGGERS

223

10.3. Any Number of Data Rows Returned

FOR EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]

DO <compound-statement>

Argument Description

<select-statement> SQL statement returning one or zero rows of data.

<var> Valid procedure variable. The : is optional.

Example:

CREATE PROCEDURE EXEC_STMT_ANY (TABLE_NAME VARCHAR(50), INT_FIELD INTEGER)
RETURNS
(INT_RETVAR INTEGER)
AS
DECLARE VARIABLE IFIELD INTEGER;
BEGIN
FOR EXECUTE STATEMENT
'SELECT ' || INT_FIELD || ' FROM ' || TABLE_NAME INTO :IFIELD
DO

IF (IFIELD = 0) THEN
INT_RETVAR = 0;

ELSE
INT_RETVAR = INT_RETVAR + IFIELD;

SUSPEND;
END

10.4. Requirements and Constraints (EXECUTE STATEMENT)

There are constrains and peculiarities with using EXECUTE STATEMENT:

Starting with InterBase XE7 Update 1, there is a new requirement on FOR EXECUTE
STATEMENT to match every item in the SELECT list with a corresponding item in the INTO
list.
The Statement is "prepared" every time it is executed, which affects the performance of the
Stored Procedure.
No checks are done on the statement when the procedure is created; dependency checks
are not done when the procedure is created, also the checks for existence of tables or
column names referred in the execute statement are not performed. All these checks are
done at execute time and results in errors if an error condition occurs.
The feature can be used to perform DDL operations.

•

•

•

•

PROCEDURES AND TRIGGERS

224

All statements are executed based on the privileges of the user executing the Stored
Procedure.
SQL statements, "COMMIT:”, "COMMIT RETAIN", "ROLLBACK", "ROLLBACK RETAIN", and
“CREATE DATABASE” are not supported with “EXECUTE STATEMENT”. These statements
return the code isc_exec_stmt_disallow error.

See Also

For information on error messages added with the function, see : “Error Codes and Messages”

11. FOR SELECT…DO

Repeats a block or statement for each row retrieved by the SELECT statement. Available in
triggers and stored procedures.

FOR <select_expr> DO <compound_statement>

Argument Description

<select_expr>
SELECT statement that retrieves rows from the database; the INTO clause is

required and must come last

<compound_statement>
Statement or block executed once for each row retrieved by the SELECT
statement

Description: FOR SELECT is a loop statement that retrieves the row specified in the <-
select_expr> and performs the statement or block following DO for each row retrieved.

The <select_expr> is a normal SELECT , except the INTO clause is required and must be the
last clause.

Example: The following isql statement selects department numbers into the local variable,
RDNO , which is then used as an input parameter to the DEPT_BUDGET procedure:

FOR SELECT DEPT_NO
FROM DEPARTMENT
WHERE HEAD_DEPT = :DNO
INTO :RDNO
DO
BEGIN
EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNING_VALUES :SUMB;
TOT = TOT + SUMB;
END

•

•

PROCEDURES AND TRIGGERS

225

See Also

SELECT (Procedures)

12. IF...THEN ... ELSE

Conditional statement that performs a block or statement in the IF clause if the specified
condition is TRUE , otherwise performs the block or statement in the optional ELSE clause.
Available in triggers and stored procedures.

IF (<condition>)
THEN <<compound_statement>>
[ELSE <<compound_statement>>]

Argument Description

<condition>
Boolean expression that evaluates to TRUE , FALSE , or UNKNOWN ; must be
enclosed in parentheses

THEN <compound_statement> Statement or block executed if <condition> is TRUE

ELSE <compound_statement> Optional statement or block executed if <condition> is not TRUE

Description: The IF … THEN … ELSE statement selects alternative courses of action by testing
a specified condition.

<condition> is an expression that must evaluate to TRUE to execute the statement or block
following THEN . The optional ELSE clause specifies an alternative statement or block executed
if <condition> is not TRUE .

Example: The following lines of code illustrate the use of IF… THEN , assuming the variables
LINE2 , FIRST , and LAST have been previously declared:

. . .
IF (FIRST IS NOT NULL) THEN
LINE2 = FIRST || ' ' || LAST;
ELSE
LINE2 = LAST;
. . .

See Also

WHILE … DO

•

•

PROCEDURES AND TRIGGERS

226

13. Input Parameters (Procedures)

Used to pass values from an application to a stored procedure. Available in stored procedures
only.

CREATE PROCEDURE <|name> [(<param data_type> [, <param data_type …>])]

Description: Input parameters are used to pass values from an application to a stored
procedure. They are declared in a comma-delimited list in parentheses following the procedure
name in the header of CREATE PROCEDURE . Once declared, they can be used in the procedure
body anywhere a variable can appear.

Input parameters are passed by value from the calling program to a stored procedure. This
means that if the procedure changes the value of an input variable, the change has effect only
within the procedure. When control returns to the calling program, the input variable will still
have its original value.

Input parameters can be of any InterBase data type. However, arrays of data types are not
supported.

Example: The following procedure header, from an isql script, declares two input parameters,
EMP_NO and PROJ_ID :

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
. . .

See Also

DECLARE VARIABLE

For more information on declaring input parameters in a procedure header, see CREATE
PROCEDURE.

14. NEW Context Variables

Indicates a new column value in an INSERT or UPDATE operation. Available only in triggers.

NEW.column

Argument Description

<column> Name of a column in the affected row

•

PROCEDURES AND TRIGGERS

227

Description: Triggers support two context variables: OLD and NEW . A NEW context variable
refers to the new value of a column in an INSERT or UPDATE operation.

Context variables are often used to compare the values of a column before and after it is
modified. Context variables can be used anywhere a regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INSERT and
tries to assign a value to NEW.column will have no effect. However, the actual column values are
not altered until after the action, so triggers that reference values from their target tables will not
see a newly inserted or updated value unless they fire after UPDATE or INSERT .

Example: The following script is a trigger that fires after the EMPLOYEE table is updated, and
compares an employee’s old and new salary. If there is a change in salary, the trigger inserts an
entry in the SALARY_HISTORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY,
PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

See Also

OLD Context Variables

For more information on creating triggers, see CREATE TRIGGER.

15. OLD Context Variables

Indicates a current column value in an UPDATE or DELETE operation. Available in triggers only.

OLD.column

Argument Description

<column> Name of a column in the affected row

Description: Triggers support two context variables: OLD and NEW . An OLD context variable
refers to the current or previous value of a column in an INSERT or UPDATE operation.

•

PROCEDURES AND TRIGGERS

228

Context variables are often used to compare the values of a column before and after it is
modified. Context variables can be used anywhere a regular variable can be used.

Example: The following script is a trigger that fires after the EMPLOYEE table is updated, and
compares an employee’s old and new salary. If there is a change in salary, the trigger inserts an
entry in the SALARY_HISTORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, ‘NOW’, USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

See Also

NEW Context Variables

For more information about creating triggers, see CREATE TRIGGER.

16. Output Parameters (Procedures)

Used to return values from a stored procedure to the calling application. Available in stored
procedures only.

CREATE PROCEDURE <name> [(<param data type> [, <param data type …>])]
[RETURNS (<param data type> [, <param data type> …])]

Description: Output parameters are used to return values from a procedure to the calling
application. They are declared in a comma-delimited list in parentheses following the RETURNS
keyword in the header of CREATE PROCEDURE . Once declared, they can be used in the
procedure body anywhere a variable can appear. They can be of any InterBase data type. Arrays
of data types are not supported.

If output parameters are declared in the header of a procedure, the procedure must assign them
values to return to the calling application. Values can be derived from any valid expression in the
procedure.

A procedure returns output parameter values to the calling application with a SUSPEND
statement. An application receives values of output parameters from a select procedure by using
the INTO clause of the SELECT statement. An application receives values of output parameters
from an executable procedure by using the RETURNING_VALUES clause.

•

PROCEDURES AND TRIGGERS

229

In a SELECT statement that retrieves values from a procedure, the column names must match
the names and data types of the output parameters of the procedure. In an EXECUTE
PROCEDURE statement, the output parameters need not match the names of the output
parameters of the procedure, but the data types must match.

Example: The following isql script is a procedure header declares five output parameters,
HEAD_DEPT , DEPARTMENT , MNGR_NAME , TITLE , and EMP_CNT :

CREATE PROCEDURE ORG_CHART RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT
CHAR(25), MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

See Also

For more information on declaring output parameters in a procedure, see CREATE PROCEDURE.

17. POST EVENT

Posts an event. Available in triggers and stored procedures.

POST_EVENT 'event_name' | <col | variable>;

Argument Description

<event_name> Name of the event being posted; must be enclosed in quotes

col Name of a column whose value the posting will be based on

variable Name of a string variable in the stored procedure or trigger

Description: POST_EVENT posts an event to the event manager. When an event occurs, this
statement will notify the event manager, which alerts applications waiting for the named event.

Example: The following statement posts an event named “new_order”:

POST_EVENT 'new_order';

The next statement posts an event based on the current value of a column:

POST_EVENT NEW.COMPANY;

The next statement posts an event based on a string variable previously declared:

PROCEDURES AND TRIGGERS

230

myval = 'new_order:' || NEW.COMPANY;
POST_EVENT myval;

See Also

EVENT INIT
EVENT WAIT

For more information on events, see the Embedded SQL Guide.

18. SELECT (Procedures)

Retrieves a single row that satisfies the requirements of the search condition. The same as
standard singleton SELECT , with some differences in syntax. Available in triggers and stored
procedures.

<select_expr> = <select_clause> <from_clause>
[<where_clause>] [<group_by_clause>]
[<having_clause>]
[<union_expression>] [<plan_clause>]
[<ordering_clause>]
<into_clause>;

Description: In a stored procedure, use the SELECT statement with an INTO clause to retrieve
a single row value from the database and assign it to a host variable. The SELECT statement
must return at most one row from the database, like a standard singleton SELECT . The INTO
clause is required and must be the last clause in the statement.

The INTO clause comes at the end of the SELECT statement to allow the use of UNION
operators. UNION is not allowed in singleton SELECT statements in embedded SQL.

Example: The following statement is a standard singleton SELECT statement in an embedded -
application:

EXEC SQL
SELECT SUM(BUDGET), AVG(BUDGET)
INTO :TOT_BUDGET, :AVG_BUDGET
FROM DEPARTMENT
WHERE HEAD_DEPT = :HEAD_DEPT

To use the above SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :HEAD_DEPT
INTO :TOT_BUDGET, :AVG_BUDGET;

•
•

PROCEDURES AND TRIGGERS

231

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

See Also

FOR SELECT…DO

For a complete explanation of the standard SELECT syntax, see SELECT.

19. SUSPEND

Suspends execution of a select procedure until the next FETCH is issued and returns values to
the calling application. Available in stored procedures only.

SUSPEND;

Description: The SUSPEND statement:

Suspends execution of a stored procedure until the application issues the next FETCH .
Returns values of output parameters, if any.

A procedure should ensure that all output parameters are assigned values before a SUSPEND .

SUSPEND should not be used in an executable procedure. Use EXIT instead to indicate to the
reader explicitly that the statement terminates the procedure.

The following table summarizes the behavior of SUSPEND , EXIT , and END .

SUSPEND, EXIT, and END

Procedure type SUSPEND EXIT END

Select procedure

Suspends execution of
procedure until next
FETCH is issued

Returns output values

Jumps to final END

Returns control to
application
Sets SQLCODE to 100
(end of record stream)

Executable procedure
Jumps to final END
Not recommended

Jumps to final END
Returns values
Returns control to
application

Note:
If a SELECT procedure has executable statements following the last SUSPEND in the
procedure, all of those statements are executed, even though no more rows are
returned to the calling program. The procedure terminates with the final END statement,
which sets SQLCODE to 100.

The SUSPEND statement also delimits atomic statement blocks in select procedures. If an error
occurs in a select procedure—either a SQLCODE error, GDSCODE error, or exception—the

•

•
•

•

•

•

•

•
•

•
•

PROCEDURES AND TRIGGERS

232

statements executed since the last SUSPEND are undone. Statements before the last SUSPEND
are never undone, unless the transaction comprising the procedure is rolled back.

Example: The following procedure illustrates the use of SUSPEND and EXIT :

CREATE PROCEDURE P RETURNS (R INTEGER)
AS
BEGIN
R = 0;
WHILE (R < 5) DO
BEGIN
R = R + 1;
SUSPEND;
IF (R = 3) THEN
EXIT;
END
END;

If this procedure is used as a select procedure in isql , for example,

SELECT * FROM P;

then it will return values 1, 2, and 3 to the calling application, since the SUSPEND statement
returns the current value of r to the calling application until r = 3, when the procedure performs
an EXIT and terminates.

If the procedure is used as an executable procedure in isql , for example,

EXECUTE PROCEDURE P;

then it will return 1, since the SUSPEND statement will terminate the procedure and return the
current value of r to the calling application. Since SUSPEND should not be used in executable
procedures, EXIT would be used instead, indicating that when the statement is encountered,
the procedure is exited.

See Also

No Rows or Data Returned
BEGIN … END

20. WHEN...DO

Error-handling statement that performs the statements following DO when the specified error
occurs. Available in triggers and stored procedures.

WHEN {<error> [, <error> …] | ANY}
DO <<compound_statement>>

•
•

PROCEDURES AND TRIGGERS

233

<error>=
{EXCEPTION exception_name | SQLCODE number | GDSCODE errcode}

Argument Description

EXCEPTION <exception_name> The name of an exception already in the database

SQLCODE <number> A SQLCODE error code number

GDSCODE <errcode>
An InterBase error code. Refer to InterBase Status Array Error Codes and strip
isc_ before mentioning the error code with GDSCODE usage. For example:
GDSCODE lock_conflict.

ANY Keyword that handles any of the above types of errors.

<compound_statement> Statement or block executed when any of the specified errors occur.

Important:
If used, WHEN must be the last statement in a BEGIN…END block. It should come after
SUSPEND , if present.

Description: Procedures can handle three kinds of errors with a WHEN statement:

Exceptions raised by EXCEPTION statements in the current procedure, in a nested
procedure, or in a trigger fired as a result of actions by such a procedure.
SQL errors reported in SQLCODE .
InterBase error codes.

The WHEN ANY statement handles any of the three types.

20.1. Handling Exceptions (WHEN … DO)

Instead of terminating when an exception occurs, a procedure can respond to and perhaps
correct the error condition by handling the exception. When an exception is raised, it:

Terminates execution of the BEGIN … END block containing the exception and undoes any
actions performed in the block.
Backs out one level to the next BEGIN … END block and seeks an exception-handling
(WHEN) statement, and continues backing out levels until one is found. If no WHEN
statement is found, the procedure is terminated and all its actions are undone.

•

•
•

•

•

PROCEDURES AND TRIGGERS

234

Performs the ensuing statement or block of statements specified after WHEN , if found.
Returns program control to the block or statement in the procedure following the WHEN
statement.

Note:
An exception that is handled with WHEN does not return an error message.

20.2. Handling SQL Errors (WHEN … DO)

Procedures can also handle error numbers returned in SQLCODE . After each SQL statement
executes, SQLCODE contains a status code indicating the success or failure of the statement. It
can also contain a warning status, such as when there are no more rows to retrieve in a
FOR SELECT loop.

20.3. Handling InterBase Error Codes

Procedures can also handle InterBase error codes. For example, suppose a statement in a
procedure attempts to update a row already updated by another transaction, but not yet
committed. In this case, the procedure might receive an InterBase error code, isc_lock_conflict.
Perhaps if the procedure retries its update, the other transaction may have rolled back its
changes and released its locks. By using a WHEN GDSCODE statement, the procedure can handle
lock conflict errors and retry its operation.

Example: For example, if a procedure attempts to insert a duplicate value into a column defined
as a PRIMARY KEY , InterBase will return SQLCODE -803. This error can be handled in a
procedure with the following statement:

WHEN SQLCODE -803
DO
BEGIN
. . .

For example, the following procedure, from an isql script, includes a WHEN statement to
handle errors that may occur as the procedure runs. If an error occurs and SQLCODE is as
expected, the procedure continues with the new value of B. If not, the procedure cannot handle
the error, and rolls back all actions of the procedure, returning the active SQLCODE .

CREATE PROCEDURE NUMBERPROC (A INTEGER) RETURNS (B INTEGER) AS
BEGIN
B = 0;
BEGIN
UPDATE R SET F1 = F1 + :A;
UPDATE R SET F2 = F2 * F2;
UPDATE R SET F1 = F1 + :A;
WHEN SQLCODE -803 DO
B = 1;

•
•

PROCEDURES AND TRIGGERS

235

END
EXIT;
END;

See Also

EXCEPTION

For more information about InterBase error codes and SQLCODE values, see Error Codes and
Messages.

20.4. Handling Exceptions (WHEN … DO)

Instead of terminating when an exception occurs, a procedure can respond to and perhaps
correct the error condition by handling the exception. When an exception is raised, it:

Terminates execution of the BEGIN … END block containing the exception and undoes any
actions performed in the block.
Backs out one level to the next BEGIN … END block and seeks an exception-handling
(WHEN) statement, and continues backing out levels until one is found. If no WHEN
statement is found, the procedure is terminated and all its actions are undone.
Performs the ensuing statement or block of statements specified after WHEN , if found.
Returns program control to the block or statement in the procedure following the WHEN
statement.

Note: An exception that is handled with WHEN does not return an error message.

21. WHILE ... DO

Performs the statement or block following DO as long as the specified condition is TRUE .
Available in triggers and stored procedures.

WHILE (<condition>) DO
<<compound_statement>>

Argument Description

<condition>
Boolean expression tested before each execution of the statement or block
following DO

<compound_statement> Statement or block executed as long as <condition> is TRUE

Description: WHILE … DO is a looping statement that repeats a statement or block of
statements as long as a condition is true. The condition is tested at the start of each loop.

•

•

•

•
•

PROCEDURES AND TRIGGERS

236

Example: The following procedure, from an isql script, uses a WHILE … DO loop to compute
the sum of all integers from one up to the input parameter:

CREATE PROCEDURE SUM_INT (I INTEGER) RETURNS (S INTEGER)
AS
BEGIN
S = 0;
WHILE (I > 0) DO
BEGIN
S = S + I;
I = I - 1;
END
END;

If this procedure is called from isql with the command:

EXECUTE PROCEDURE SUM_INT 4;

then the results will be:

S
==========
10

See Also

IF…THEN … ELSE
FOR SELECT…DO

•
•

PROCEDURES AND TRIGGERS

237

KEYWORDS

The table in this chapter lists keywords, words reserved from use in SQL programs and isql
(Interactive SQL). The list includes DSQL, isql , and gpre keywords.

Keywords are defined for special purposes, and are sometimes called reserved words. A keyword
cannot occur in a user-declared identifier or as the name of a table, column, index, trigger, or
constraint, unless it is enclosed in double quotes. Keywords are:

Part of statements
Used as statements
Names of standard data structures or data types

1. InterBase Keywords

These keywords are reserved words in all dialects.

Beginning with InterBase 6, you cannot create objects in a dialect 1 database that have any
of these keywords as object names (identifiers).
You can migrate a version 5 database that contains these keywords used as identifiers to
version 6 or later dialect 1 without changing the object names: a column could be named
“YEAR”, for instance.

Version 5 clients can access these keyword identifiers without error.
Version 6 and later clients cannot access keywords that are used as identifiers. In a dialect 1
database, you must change the names so that they are not keywords.
If you migrate directly to dialect 3, you can retain the names, but you must delimit them with
double quotes. To retain accessibility for older clients, put the names in all upper case.
Delimited identifiers are case sensitive.

Although TIME is a reserved word in version 6 and later dialect 1, you cannot use it as a
data type because such databases guarantee data type compatibility with version 5 clients.
In dialect 3 databases and clients, any reserved word can be used as an identifier as long as
it is delimited with double quotes.

ACTION ACTIVE ADD ADMIN

AFTER ALL ALTER AND

ANY AS ASC ASCENDING

AT AUTO AUTODDL AVG

BASED BASENAME BASE_NAME BEFORE

•
•
•

•

•

•
•

•

•

•

KEYWORDS

238

BEGIN BETWEEN BLOB BLOBEDIT

BOOLEAN BUFFER BY CACHE

CASCADE CASE CAST CHAR

CHARACTER CHARACTER_LENGTH CHAR_LENGTH CHECK

CHECK_POINT_LEN CHECK_POINT_LENGTH COALESCE COLLATE

COLLATION COLUMN COMMIT COMMITTED

COMPILETIME COMPUTED CLOSE CONDITIONAL

CONNECT CONSTRAINT CONTAINING CONTINUE

COUNT CREATE CSTRING CURRENT

CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP CURSOR

DATABASE DATE DAY DB_KEY

DEBUG DEC DECIMAL DECLARE

DECRYPT DEFAULT DELETE DESC

DESCENDING DESCRIBE DESCRIPTOR DISCONNECT

DISPLAY DISTINCT DO DOMAIN

DOUBLE DROP ECHO EDIT

ELSE ENCRYPT ENCRYPTION END

ENTRY_POINT ESCAPE EVENT EXCEPTION

EXECUTE EXISTS EXIT EXTERN

EXTERNAL EXTRACT FALSE FETCH

FILE FILTER FLOAT FOR

FOREIGN FOUND FREE_IT FROM

FULL FUNCTION GDSCODE GENERATOR

GEN_ID GLOBAL GOTO GRANT

GROUP GROUP_COMMIT_WAIT
GROUP_COMMIT_WAIT_
TIME HAVING

HELP HOUR IF IMMEDIATE

IN INACTIVE INDEX INDICATOR

INIT INNER INPUT INPUT_TYPE

INSERT INT INTEGER INTO

IS ISOLATION ISQL JOIN

KEYWORDS

239

KEY LC_MESSAGES LC_TYPE LEFT

LENGTH LEV LEVEL LIKE

LOGFILE LOG_BUFFER_SIZE LOG_BUF_SIZE LONG

MANUAL MAX MAXIMUM MAXIMUM_SEGMENT

MAX_SEGMENT MERGE MESSAGE MIN

MINIMUM MINUTE MODULE_NAME MONTH

NAMES NATIONAL NATURAL NCHAR

NO NOAUTO NOT NULL

NULLIF NUMERIC NUM_LOG_BUFS NUM_LOG_BUFFERS

OCTET_LENGTH OF ON ONLY

OPEN OPTION OR ORDER

OUTER OUTPUT OUTPUT_TYPE OVERFLOW

PAGE PAGELENGTH PAGES PAGE_SIZE

PARAMETERS PASSWORD PERCENT PLAN

POSITION POST_EVENT PRECISION PREPARE

PRESERVE PROCEDURE PROTECTED PRIMARY

PRIVILEGES PUBLIC QUIT

RAW_PARTITIONS RDB$DB_KEY READ REAL

RECORD_VERSION REFERENCES RELEASE RESERV

RESERVING RESTRICT RETAIN RETURN

RETURNING_VALUES RETURNS REVOKE RIGHT

ROLE ROLLBACK ROW ROWS

RUNTIME SCHEMA SECOND SEGMENT

SELECT SET SHADOW SHARED

SHELL SHOW SINGULAR SIZE

SMALLINT SNAPSHOT SOME SORT

SQLCODE SQLERROR SQLWARNING STABILITY

STARTING STARTS STATEMENT STATIC

SUSPEND TABLE TABLESPACE TEMPORARY

TERMINATOR THEN TIES TIME

TIMESTAMP TO TRANSACTION TRANSLATE

KEYWORDS

240

TRANSLATION TRIGGER TRIM TRUE

TYPE UNCOMMITTED UNION UNIQUE

UNKNOWN UPDATE UPPER USER

USING VALUE VALUES VARCHAR

VARIABLE VARYING VERSION VIEW

WAIT WEEKDAY WHEN WHENEVER

WHERE WHILE WITH WORK

WRITE YEAR YEARDAY

Note: The following keywords are specific to InterBase and are not part of the SQL standard.

WEEKDAY YEARDAY

KEYWORDS

241

ERROR CODES AND MESSAGES

This chapter summarizes InterBase error-handling options and error codes. Tables in this chapter
list SQLCODE and InterBase error codes and messages for embedded SQL, dynamic SQL (DSQL),
and interactive SQL (isql). For a detailed discussion of error handling, see the Embedded SQL
Guide.

1. Error Sources

Run-time errors occur at points of user input or program output. When you run a program or use
isql , the following types of errors may occur:

Error type Description Action

Database error

Database errors can result from any
one of many problems, such as
conversion errors, arithmetic
exceptions, and validation errors.

If you encounter one of these
messages:

Check any messages.
Check the file name or path name
and try again.

Bugcheck or internal error
Bugchecks reflect software problems
you should report.

If you encounter a bugcheck, execute
a traceback and save the output;
submit output and script along with a
copy of the database to InterBase
Software Corp.

2. Error Reporting and Handling

For reporting and dealing with errors, InterBase utilizes the SQLCODE variable and InterBase
codes returned in the status array.

Every executable SQL statement sets the SQLCODE variable, which can serve as a status indicator.
During preprocessing, gpre declares this variable automatically. An application can test for and
use the SQLCODE variable in one of three ways:

Use the WHENEVER statement to check the value of SQLCODE and direct the program to
branch to error-handling routines coded in the application.
Test for SQLCODE directly.
Combine WHENEVER and direct SQLCODE testing.

For SQL programs that must be portable between InterBase and other database management
systems, limit error-handling routines to one of these methods.

•
•

•

•
•

ERROR CODES AND MESSAGES

242

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

The InterBase status array displays information about errors that supplements SQLCODE
messages.

InterBase applications can check both the SQLCODE message and the message returned in the
status array.

2.1. Trapping Errors with WHENEVER

The WHENEVER statement traps SQL errors and warnings. WHENEVER tests SQLCODE return
values and branches to appropriate error-handling routines in the application. Error routines can
range from:

Simple reporting of errors and transaction rollback, or a prompt to the user to reenter a
query or data.
More sophisticated routines that react to many possible error conditions in predictable ways.

WHENEVER helps limit the size of an application, since it can call on a single suite of routines for
handling errors and warnings.

2.2. Checking SQLCODE Value Directly

Applications can test directly for a particular SQLCODE after each SQL statement. If that
SQLCODE occurs, the program can branch to a specific routine.

To handle specific error situations, combine checking for SQLCODE with general WHENEVER
statements. These steps outline the procedure, which is described in detail in the Embedded SQL
Guide:

Override the WHENEVER branching by inserting a WHENEVER SQLERROR CONTINUE
statement. The program now ignores SQLCODE .
Use a SQLCODE -checking statement to check for a particular SQLCODE and direct the
program to an alternative procedure.
To return to WHENEVER branching, insert a new WHENEVER statement.

Where portability is not an issue, additional information may be available in the InterBase status
array.

2.3. InterBase Status Array

Since each SQLCODE value can result from more than one type of error, the InterBase status
array (isc_status) provides additional messages that enable further inquiry into SQLCODE errors.

gpre automatically declares isc_status, an array of twenty 32-bit integers, for all InterBase
applications during preprocessing. When an error occurs, the status array is loaded with

•

•

1.

2.

3.

ERROR CODES AND MESSAGES

243

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

InterBase error codes, message string addresses, and sometimes other numeric, interpretive,
platform-specific error data.

This chapter lists all status array codes in SQLCODE Error Codes and Messages. To see the codes
online, display the ibase.h file. The location of this file is system-specific.

2.3.1. Access to Status Array Messages

InterBase provides the following library functions for retrieving and printing status array codes
and messages.

isc_print_sqlerror()

When SQLCODE < 0, this function prints the returned SQLCODE value, the corresponding SQL
error message, and any additional InterBase error messages in the status array to the screen. Use
within an error-handling routine.

isc_print_sqlerror (short SQLCODE, ISC_STATUS *status_vector);

isc_sql_interprete()

This function retrieves a SQL error message and stores it in a user-supplied buffer for later
printing, manipulation, or display. Allow a buffer length of 256 bytes to hold the message. Use
when building error display routines or if you are using a windowing system that does not permit
direct screen writes. Do not use this function when SQLCODE > 0.

isc_sql_interprete(short SQLCODE, char *buffer, short length);

2.3.2. Responding to Error Codes

After any error occurs, you have the following options: ignore the error, log the error and
continue processing, roll back the transaction and try again, or roll back the transaction and quit
the application.

For the following errors, it is recommended that you roll back the current transaction and try the
operation again:

Status array codes that require rollback and retry

ERROR CODES AND MESSAGES

244

Status array code Action to take

isc_convert_error
Conversion error: A conversion between data types failed;
correct the input and retry the operation.

isc_deadlock
Deadlock: Transaction conflicted with another transaction;
wait and try again.

isc_integ_fail
Integrity check: Operation failed due to a trigger; examine
the abort code, fix the error, and try again.

isc_lock_conflict
Lock conflict: Transaction unable to obtain the locks it
needed; wait and try again.

isc_no_dup
Duplicate index entry: Attempt to add a duplicate field;
correct field with duplicate and try again.

isc_not_valid
Validation error: Row did not pass validation test; correct
invalid row and try again.

2.4. For More Information

The following table is a guide to further information on planning and programming error-
handling routines:

Topic To find… See…

SQLCODE and error handling Complete discussion and
programming instructions

Embedded SQL Guide

List of SQLCODE codes and messages
SQLCODE codes and messages and

associated messages for embedded
SQL, DSQL, isql

This chapter: SQLCODE Codes and
Messages.

WHENEVER syntax Usage and syntax
SQL Statement and Function
Reference.

Programming WHENEVER Using and programming error-
handling routines

Embedded SQL Guide

ERROR CODES AND MESSAGES

245

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

Topic To find… See…

InterBase status array and functions Complete programming instructions Embedded SQL Guide

List of status array codes
Status array error codes and
associated messages for embedded
SQL, DSQL, isql

This chapter: InterBase Status Array.

3. SQLCODE Error Codes and Messages

This section lists SQLCODE error codes and associated messages in the following tables:

SQLCODE error messages summary
SQLCODE codes and messages

3.1. SQLCODE Error Messages Summary

This table summarizes the types of messages SQLCODE can pass to a program:

SQLCODE Message Meaning

<0 SQLERROR
Error: The statement did not complete; table
5.4 lists SQLCODE error numbers and
messages.

0 SUCCESS Successful completion

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND No qualifying records found; end of file

3.2. SQLCODE Codes and Messages

The following table lists SQLCODE s and associated messages for SQL and DSQL. Some
SQLCODE values have more than one text message associated with them. In these cases,
InterBase returns the most relevant string message for the error that occurred.

When code messages include the name of a database object or object type, the name is
represented by a code in the SQLCODE Text column:

<string>: String value, such as the name of a database object or object type.

•
•

•

ERROR CODES AND MESSAGES

246

http://docwiki.embarcadero.com/InterBase/15/en/Embedded_SQL_Guide

<long>: Long integer value, such as the identification number or code of a database object
or object type.
<digit>: Integer value, such as the identification number or code of a database object or
object type.
The InterBase number in the right-hand column is the actual error number returned in the
error status vector. You can use InterBase error-handling functions to report messages based
on these numbers instead of SQL code, but doing so results in non-portable SQL programs.

SQLCODE SQLCODE text InterBase number.

101
Segment buffer length shorter than
expected.

335544366L

100 No match for first value expression. 335544338L

100 Invalid database key. 335544354L

100
Attempted retrieval of more segments than
exist.

335544367L

100
Attempt to fetch past the last record in a
record stream.

335544374L

-84
Table/procedure has non-SQL security class
defined.

335544554L

-84 Column has non-SQL security class defined. 335544555L

-84
Procedure <string> does not return any
values.

335544668L

-103 Data Type for constant unknown. 335544571L

-104 Invalid request BLR at offset <long>. 335544343L

-104
BLR syntax error: expected <string> at
offset <long>, encountered <long>.

335544390L

•

•

•

ERROR CODES AND MESSAGES

247

SQLCODE SQLCODE text InterBase number.

-104 Context already in use (BLR error). 335544425L

-104 Context not defined (BLR error). 335544426L

-104 Bad parameter number. 335544429L

-104 335544440L

-104
Invalid slice description language at offset
<long>.

335544456L

-104 Invalid command. 335544570L

-104 Internal error. 335544579L

-104 Option specified more than once. 335544590L

-104 Unknown transaction option. 335544591L

-104 Invalid array reference. 335544592L

-104
Token unknown—line <long>, char
<long>.

335544634L

-104 Unexpected end of command. 335544608L

-104 Token unknown. 335544612L

-150 Attempted update of read-only table. 335544360L

-150 Cannot update read-only view <string>. 335544362L

-150 Not updatable. 335544446L

ERROR CODES AND MESSAGES

248

SQLCODE SQLCODE text InterBase number.

-150 Cannot define constraints on views. 335544546L

-151 Attempted update of read-only column. 335544359L

-155
<string> is not a valid base table of the
specified view.

335544658L

-157
Must specify column name for view select
expression.

335544598L

-158
Number of columns does not match select
list.

335544599L

-162 Dbkey not available for multi-table views. 335544685L

-170
Parameter mismatch for procedure
<string>.

335544512L

-170
External functions cannot have more than10
parameters.

335544619L

-171 Function <string> could not be matched. 335544439L

-171
Column not array or invalid dimensions
(expected <long>, encountered <long>).

335544458L

-171
Return mode by value not allowed for this
data type.

335544618L

-172 Function <string> is not defined. 335544438L

-204 Generator <string> is not defined. 335544463L

-204
Encryption <string> has bad length of
<string> bits.

336003096L

ERROR CODES AND MESSAGES

249

SQLCODE SQLCODE text InterBase number.

-204 Reference to invalid stream number. 335544502L

-204 CHARACTER SET <string> is not defined. 335544509L

-204 Procedure <string> is not defined. 335544511L

-204 Status code <string> unknown. 335544515L

-204 Exception <string> not defined. 335544516L

-204
Name of Referential Constraint not defined
in constraints table.

335544532L

-204 Could not find table/procedure for GRANT . 335544551L

-204
Implementation of text subtype <digit> not
located.

335544568L

-204 Data Type unknown. 335544573L

-204 Table unknown. 335544580L

-204 Procedure unknown. 335544581L

-204 COLLATION <string> is not defined. 335544588L

-204
COLLATION <string> is not valid for

specified CHARACTER SET .
335544589L

-204 Trigger unknown. 335544595L

-204
Alias <string> conflicts with an alias in the
same statement.

335544620L

ERROR CODES AND MESSAGES

250

SQLCODE SQLCODE text InterBase number.

-204
Alias <string> conflicts with a procedure in
the same statement.

335544621L

-204
Alias <string> conflicts with a table in the
same statement.

335544622L

-204
There is no alias or table named <string> at
this scope level.

335544635L

-204
There is no index <string> for table
<string>.

335544636L

-204
Invalid use of CHARACTER SET or
COLLATE .

335544640L

-204 BLOB SUB_TYPE <string> is not defined. 335544662L

-204
EXECUTE STATEMENT could not prepare
statement : <string>.

335544850

-204
SQL statement invalid as it returns no
records. SQL : <string>.

335544851

-204
Parameter mis-match for the statement :
<string>.

335544852

-204 Could not execute statement : <string>. 335544853

-204 EXECUTE STATEMENT fetch error. 335544854

-204
EXECUTE STATEMENT in this form must
return single row, not multiple rows.

335544855

-204
SQL statement not allowed in EXECUTE
STATEMENT : <string>.

335544857

ERROR CODES AND MESSAGES

251

SQLCODE SQLCODE text InterBase number.

-204
Statement evaluated to a NULL statement.
EXECUTE STATEMENT cannot execute a
NULL statement.

335544858

-205
Column <string> is not defined in table
<string>.

335544396L

-205 Could not find column for GRANT . 335544552L

-206 Column unknown. 335544578L

-206 Column is not a Blob. 335544587L

-206 Subselect illegal in this context. 335544596L

-208 Invalid ORDER BY clause. 335544617L

-219 Table <string> is not defined. 335544395L

-239 Cache length too small. 335544691L

-260 Cache redefined. 335544690L

-281 Table <string> is not referenced in plan. 335544637L

-282
Table <string> is referenced more than
once in plan; use aliases to distinguish.

335544638L

-282
The table <string> is referenced twice; use
aliases to differentiate.

335544643L

-282
Table <string> is referenced twice in view;
use an alias to distinguish.

335544659L

ERROR CODES AND MESSAGES

252

SQLCODE SQLCODE text InterBase number.

-282
View <string> has more than one base
table; use aliases to distinguish.

335544660L

-283
Table <string> is referenced in the plan but
not the from list.

335544639L

-284
Index <string> cannot be used in the
specified plan.

335544642L

-291
Column used in a PRIMARY/UNIQUE
constraint must be NOT NULL .

335544531L

-292
Cannot update constraints
(RDB$REF_CONSTRAINTS). 335544534L

-293
Cannot update constraints
(RDB$CHECK_CONSTRAINTS). 335544535L

-294
Cannot delete CHECK constraint entry -
(RDB$CHECK_CONSTRAINTS)

335544536L

-295
Cannot update constraints -
(RDB$RELATION_CONSTRAINTS). 335544545L

-296
Internal isc software consistency check
(invalid RDB$CONSTRAINT_TYPE) 335544547L

-297
Operation violates CHECK constraint
<string> on view or table.

335544558L

-313
Count of column list and variable list do not
match.

335544669L

-314
Cannot transliterate character between
character sets.

335544565L

ERROR CODES AND MESSAGES

253

SQLCODE SQLCODE text InterBase number.

-401
Invalid comparison operator for find
operation.

335544647L

-402 Attempted invalid operation on a Blob. 335544368L

-402
Blob and array data types are not supported
for <string> operation.

335544414L

-402 Data operation not supported. 335544427L

-406 Subscript out of bounds 335544457L

-407 Null segment of UNIQUE KEY . 335544435L

-413 Conversion error from string “ <string>” 335544334L

-413
Filter not found to convert type <long> to
type <long>.

335544454L

-501 Invalid request handle. 335544327L

-501 Attempt to reclose a closed cursor. 335544577L

-502 Declared cursor already exists. 335544574L

-502 Attempt to reopen an open cursor. 335544576L

-504 Cursor unknown. 335544572L

-508 No current record for fetch operation. 335544348L

-510 Cursor not updatable. 335544575L

-518 Request unknown. 335544582L

ERROR CODES AND MESSAGES

254

SQLCODE SQLCODE text InterBase number.

-519
The PREPARE statement identifies a
prepare statement with an open cursor.

335544688L

-530
Violation of FOREIGN KEY constraint: “
<string>”

335544466L

-530
Cannot prepare a
CREATE DATABASE/SCHEMA statement. 335544597L

-532 Transaction marked invalid by I/O error. 335544469L

-551
No permission for <string> access to
<string> <string>.

335544352L

-552
Only the owner of a table can reassign
ownership.

335544550L

-552
User does not have GRANT privileges for
operation.

335544553L

-553 Cannot modify an existing user privilege. 335544529L

-595 The current position is on a crack. 335544645L

-596
Illegal operation when at beginning of
stream.

335544644L

-597
Preceding file did not specify length, so
<string> must include starting page
number.

335544632L

-598 Shadow number must be a positive integer. 335544633L

-599 Gen.c: node not supported. 335544607L

ERROR CODES AND MESSAGES

255

SQLCODE SQLCODE text InterBase number.

-600
A node name is not permitted in a
secondary, shadow, cache or log file name.

335544625L

-600 Sort error: corruption in data structure. 335544680L

-601 Database or file exists. 335544646L

-604 Array declared with too many dimensions. 335544593L

-604 Illegal array dimension range. 335544594L

-605 Inappropriate self-reference of column. 335544682L

-607 Unsuccessful metadata update. 335544351L

-607 Cannot modify or erase a system trigger. 335544549L

-607
Array/Blob/ DATE/TIME/TIMESTAMP data
types not allowed in arithmetic.

335544657L

-615
Lock on table <string> conflicts with
existing lock.

335544475L

-615
Requested record lock conflicts with existing
lock.

335544476L

-615
Refresh range number <long> already in
use.

335544507L

-616
Cannot delete PRIMARY KEY being used in
FOREIGN KEY definition.

335544530L

-616
Cannot delete index used by an integrity
constraint.

335544539L

ERROR CODES AND MESSAGES

256

SQLCODE SQLCODE text InterBase number.

-616
Cannot modify index used by an integrity
constraint.

335544540L

-616
Cannot delete trigger used by a CHECK
Constraint.

335544541L

-616
Cannot delete column being used in an
integrity constraint.

335544543L

-616 There are <long> dependencies. 335544630L

-616 Last column in a table cannot be deleted. 335544674L

-617
Cannot update trigger used by a CHECK
Constraint.

335544542L

-617
Cannot rename column being used in an
integrity constraint.

335544544L

-618
Cannot delete index segment used by an
integrity constraint.

335544537L

-618
Cannot update index segment used by an
integrity constraint.

335544538L

-625
Validation error for column <string>, value
“ <string>”

335544347L

-637
Duplicate specification of <string> not
supported.

335544664L

-660
Non-existent PRIMARY or UNIQUE KEY
specified for FOREIGN KEY .

335544533L

-660 Cannot create index <string>. 335544628L

ERROR CODES AND MESSAGES

257

SQLCODE SQLCODE text InterBase number.

-663
Segment count of 0 defined for index
<string>.

335544624L

-663 Too many keys defined for index <string>. 335544631L

-663
Too few key columns found for index
<string> (incorrect column name?)

335544672L

-664
key size exceeds implementation restriction
for index “ <string>”

335544434L

-677 <string> extension error. 335544445L

-685 Invalid Blob type for operation. 335544465L

-685
Attempt to index Blob column in index
<string>.

335544670L

-685
Attempt to index array column in index
<string>.

335544671L

-689
Page <long> is of wrong type (expected
<long>, found <long>)

335544403L

-689 Wrong page type. 335544650L

-690
Segments not allowed in expression index
<string>.

335544679L

-691 New record size of <long> bytes is too big. 335544681L

-692
Maximum indexes per table (<digit>)
exceeded.

335544477L

ERROR CODES AND MESSAGES

258

SQLCODE SQLCODE text InterBase number.

-693
Too many concurrent executions of the
same request.

335544663L

-694
Cannot access column <string> in view
<string>.

335544684L

-802
Arithmetic exception, numeric overflow, or
string truncation.

335544321L

-803
Attempt to store duplicate value (visible to
active transactions) in unique index “
<string>”

335544349L

-803
Violation of PRIMARY or UNIQUE KEY
constraint: “ <string>”

335544665L

-804 Wrong number of arguments on call. 335544380L

-804
SQLDA missing or incorrect version, or

incorrect number/type of variables.
335544583L

-804 Count of columns not equal count of values. 335544584L

-804 Function unknown. 335544586L

-806
Only simple column names permitted for
VIEW WITH CHECK OPTION . 335544600L

-807
No where clause for
VIEW WITH CHECK OPTION . 335544601L

-808
Only one table allowed for
VIEW WITH CHECK OPTION . 335544602L

-809
DISTINCT , GROUP or HAVING not

permitted for VIEW WITH CHECK OPTION .
335544603L

ERROR CODES AND MESSAGES

259

SQLCODE SQLCODE text InterBase number.

-810
No subqueries permitted for
VIEW WITH CHECK OPTION . 335544605L

-811 Multiple rows in singleton select. 335544652L

-816 External file could not be opened for output. 335544651L

-817
Attempted update during read-only
transaction.

335544361L

-817 Attempted write to read-only Blob. 335544371L

-817 Operation not supported. 335544444L

-820 Metadata is obsolete. 335544356L

-820
Unsupported on-disk structure for file
<string>; found <long>, support <long>.

335544379L

-820 Wrong DYN version. 335544437L

-820
Minor version too high found <long>
expected <long>.

335544467L

-823 Invalid bookmark handle. 335544473L

-824 Invalid lock level <digit>. 335544474L

-825 Invalid lock handle. 335544519L

-826 Invalid statement handle. 335544585L

-827 Invalid direction for find operation. 335544655L

ERROR CODES AND MESSAGES

260

SQLCODE SQLCODE text InterBase number.

-828 Invalid key position. 335544678L

-829 Invalid column reference. 335544616L

-830 Column used with aggregate. 335544615L

-831
Attempt to define a second PRIMARY KEY
for the same table.

335544548L

-832
FOREIGN KEY column count does not

match PRIMARY KEY .
335544604L

-833 Expression evaluation not supported. 335544606L

-834 Refresh range number <long> not found. 335544508L

-835 Bad checksum. 335544649L

-836 Exception <digit>. 335544517L

-837 Restart shared cache manager. 335544518L

-838
Database <string> shutdown in <digit>
seconds

335544560L

-839 journal file wrong format. 335544686L

-840 Intermediate journal file full. 335544687L

-841 Too many versions. 335544677L

-842 Precision should be greater than 0 335544697L

ERROR CODES AND MESSAGES

261

SQLCODE SQLCODE text InterBase number.

-842 Scale cannot be greater than precision. 335544698L

-842 Short integer expected. 335544699L

-842 Long integer expected. 335544700L

-842 Unsigned short integer expected. 335544701L

-901 Invalid database key. 335544322L

-901 Unrecognized database parameter block. 335544326L

-901 Invalid Blob handle. 335544328L

-901 Invalid Blob ID. 335544329L

-901
Invalid parameter in transaction parameter
block.

335544330L

-901
Invalid format for transaction parameter
block.

335544331L

-901
Invalid transaction handle (expecting explicit
transaction start)

335544332L

-901
Attempt to start more than <long>
transactions.

335544337L

-901
Information type inappropriate for object
specified.

335544339L

-901
No information of this type available for
object specified.

335544340L

-901 Unknown information item. 335544341L

ERROR CODES AND MESSAGES

262

SQLCODE SQLCODE text InterBase number.

-901
Action cancelled by trigger (<long>) to
preserve data integrity.

335544342L

-901 Lock conflict on no wait transaction. 335544345L

-901
Program attempted to exit without finishing
database.

335544350L

-901 Transaction is not in limbo. 335544353L

-901 Blob was not closed. 335544355L

-901
Cannot disconnect database with open
transactions (<long> active)

335544357L

-901
Message length error (encountered <long>,
expected <long>)

335544358L

-901 No transaction for request. 335544363L

-901 Request synchronization error. 335544364L

-901 Request referenced an unavailable database. 335544365L

-901 Attempted read of a new, open Blob. 335544369L

-901
Attempted action on blob outside
transaction.

335544370L

-901
Attempted reference to Blob in unavailable
database.

335544372L

-901
Table <string> was omitted from the
transaction reserving list.

335544376L

ERROR CODES AND MESSAGES

263

SQLCODE SQLCODE text InterBase number.

-901
Request includes a DSRI extension not
supported in this implementation.

335544377L

-901 Feature is not supported. 335544378L

-901 <string>. 335544382L

-901
Unrecoverable conflict with limbo
transaction <long>.

335544383L

-901 Internal error. 335544392L

-901 Database handle not zero. 335544407L

-901 Transaction handle not zero. 335544408L

-901 Transaction in limbo. 335544418L

-901 Transaction not in limbo. 335544419L

-901 Transaction outstanding. 335544420L

-901 Undefined message number. 335544428L

-901 Blocking signal has been received. 335544431L

-901
Database system cannot read argument
<long>.

335544442L

-901
Database system cannot write argument
<long>.

335544443L

-901 <string>. 335544450L

ERROR CODES AND MESSAGES

264

SQLCODE SQLCODE text InterBase number.

-901 Transaction <long> is <string>. 335544468L

-901 Invalid statement handle. 335544485L

-901 Lock time-out on wait transaction. 335544510L

-901 Invalid service handle. 335544559L

-901 Wrong version of service parameter block. 335544561L

-901 Unrecognized service parameter block. 335544562L

-901 Service <string> is not defined. 335544563L

-901 INDEX <string>. 335544609L

-901 EXCEPTION <string>. 335544610L

-901 Column <string>. 335544611L

-901 Union not supported. 335544613L

-901 Unsupported DSQL construct. 335544614L

-901 Illegal use of keyword VALUE . 335544623L

-901 Table <string>. 335544626L

-901 Procedure <string>. 335544627L

-901
Specified domain or source column does
not exist.

335544641L

ERROR CODES AND MESSAGES

265

SQLCODE SQLCODE text InterBase number.

-901
Variable <string> conflicts with parameter
in same procedure.

335544656L

-901
Server version too old to support all
CREATE DATABASE options. 335544666L

-901 Cannot delete. 335544673L

-901 Sort error. 335544675L

-902
Internal isc software consistency check (
<string>)

335544333L

-902 Database file appears corrupt (<string>) 335544335L

-902
I/O error during “ <string>” operation for
file “ <string>”

335544344L

-902 Corrupt system table. 335544346L

-902 Operating system directive <string> failed. 335544373L

-902 Internal error. 335544384L

-902 Internal error. 335544385L

-902 Internal error. 335544387L

-902
Block size exceeds implementation
restriction.

335544388L

-902 Incompatible version of on-disk structure. 335544394L

-902 Internal error. 335544397L

ERROR CODES AND MESSAGES

266

SQLCODE SQLCODE text InterBase number.

-902 Internal error. 335544398L

-902 Internal error. 335544399L

-902 Internal error. 335544400L

-902 Internal error. 335544401L

-902 Internal error. 335544402L

-902 Database corrupted. 335544404L

-902 Checksum error on database page <long>. 335544405L

-902 Index is broken. 335544406L

-902
Transaction--request mismatch
(synchronization error)

335544409L

-902 Bad handle count. 335544410L

-902
Wrong version of transaction parameter
block.

335544411L

-902
Unsupported BLR version (expected
<long>, encountered <long>)

335544412L

-902 Wrong version of database parameter block. 335544413L

-902 Database corrupted. 335544415L

-902 Internal error. 335544416L

-902 Internal error. 335544417L

ERROR CODES AND MESSAGES

267

SQLCODE SQLCODE text InterBase number.

-902 Internal error. 335544422L

-902 Internal error. 335544423L

-902 Lock manager error. 335544432L

-902 SQL error code = <long>. 335544436L

-902 335544448L

-902 335544449L

-902 Cache buffer for page <long> invalid. 335544470L

-902
There is no index in table <string> with id
<digit>.

335544471L

-902
Your user name and password are not
defined. Ask your database administrator to
set up an InterBase login.

335544472L

-902
Enable journal for database before starting
online dump.

335544478L

-902 Online dump failure. Retry dump. 335544479L

-902 An online dump is already in progress. 335544480L

-902
No more disk/tape space. Cannot continue
online dump.

335544481L

-902
Maximum number of online dump files that
can be specified is 16

335544483L

-902 Database <string> shutdown in progress. 335544506L

ERROR CODES AND MESSAGES

268

SQLCODE SQLCODE text InterBase number.

-902 Long-term journaling already enabled. 335544520L

-902 Database <string> shutdown. 335544528L

-902 Database shutdown unsuccessful. 335544557L

-902 Cannot attach to password database. 335544653L

-902
Cannot start transaction for password
database.

335544654L

-902 Long-term journaling not enabled. 335544564L

-902 Dynamic SQL Error. 335544569L

-904
Invalid database handle (no active
connection)

335544324L

-904 Unavailable database. 335544375L

-904 Implementation limit exceeded. 335544381L

-904 Too many requests. 335544386L

-904 Buffer exhausted. 335544389L

-904 Buffer in use. 335544391L

-904 Request in use. 335544393L

-904 No lock manager available. 335544424L

-904
Unable to allocate memory from operating
system.

335544430L

ERROR CODES AND MESSAGES

269

SQLCODE SQLCODE text InterBase number.

-904 Update conflicts with concurrent update. 335544451L

-904 Object <string> is in use. 335544453L

-904 Cannot attach active shadow file. 335544455L

-904
A file in manual shadow <long> is
unavailable.

335544460L

-904 Cannot add index, index root page is full. 335544661L

-904 Sort error: not enough memory. 335544676L

-904
Request depth exceeded. (Recursive
definition?)

335544683L

-904 Size of optimizer block exceeded. 335544762L

-906 Product <string> is not licensed. 335544452L

-909 Drop database completed with errors. 335544667L

-911
Record from transaction <long> is stuck in
limbo.

335544459L

-913 Deadlock. 335544336L

-922 File <string> is not a valid database. 335544323L

-923 Connection rejected by remote interface. 335544421L

-923
Secondary server attachments cannot
validate databases.

335544461L

ERROR CODES AND MESSAGES

270

SQLCODE SQLCODE text InterBase number.

-923
Secondary server attachments cannot start
journaling.

335544462L

-924
Bad parameters on attach or create
database.

335544325L

-924 Database detach completed with errors. 335544441L

-924 Connection lost to pipe server. 335544648L

-926 No rollback performed. 335544447L

-999 InterBase error. 335544689L

4. InterBase Status Array Error Codes

This section lists InterBase error codes and associated messages returned in the status array in
the following tables. When code messages include the name of a database object or object type,
the name is represented by a code in the Message column:

<string>: String value, such as the name of a database object or object type.
<digit>: Integer value, such as the identification number or code of a database object or
object type.
<long>: Long integer value, such as the identification number or code of a database object
or object type.

The following table lists SQL Status Array codes for embedded SQL programs, DSQL, and isql .

Error code Number Message

isc_arith_except 335544321L
arithmetic exception, numeric overflow, or
string truncation

isc_bad_dbkey 335544322L invalid database key

isc_bad_db_format 335544323L file <string> is not a valid database

•
•

•

ERROR CODES AND MESSAGES

271

Error code Number Message

isc_bad_db_handle 335544324L
invalid database handle (no active
connection)

isc_bad_dpb_content 335544325L
bad parameters on attach or create
database

isc_bad_dpb_form 335544326L unrecognized database parameter block

isc_bad_req_handle 335544327L invalid request handle

isc_bad_segstr_handle 335544328L invalid Blob handle

isc_bad_segstr_id 335544329L invalid Blob ID

isc_bad_tpb_content 335544330L
invalid parameter in transaction parameter
block

isc_bad_tpb_form 335544331L
invalid format for transaction parameter
block

isc_bad_trans_handle 335544332L
invalid transaction handle (expecting explicit
transaction start)

isc_bug_check 335544333L
internal isc software consistency check
(<string>)

isc_convert_error 335544334L conversion error from string “<string>”

isc_db_corrupt 335544335L database file appears corrupt (<string>)

isc_deadlock 335544336L deadlock

isc_excess_trans 335544337L
attempt to start more than <long>
transactions

ERROR CODES AND MESSAGES

272

Error code Number Message

isc_from_no_match 335544338L no match for first value expression

isc_infinap 335544339L
information type inappropriate for object
specified

isc_infona 335544340L
no information of this type available for
object specified

isc_infunk 335544341L unknown information item

isc_integ_fail 335544342L
action cancelled by trigger (<long>) to
preserve data integrity

isc_invalid_blr 335544343L invalid request BLR at offset <long>

isc_io_error 335544344L
I/O error during “<string>” operation for file
“<string>”

isc_lock_conflict 335544345L lock conflict on no wait transaction

isc_metadata_corrupt 335544346L corrupt system table

isc_not_valid 335544347L
validation error for column <string>, value
“<string>”

isc_no_cur_rec 335544348L no current record for fetch operation

isc_no_dup 335544349L
attempt to store duplicate value (visible to
active transactions) in unique index
“<string>”

isc_no_finish 335544350L
program attempted to exit without finishing
database

isc_no_meta_update 335544351L unsuccessful metadata update

ERROR CODES AND MESSAGES

273

Error code Number Message

isc_no_priv 335544352L
no permission for <string> access to
<string> <string>

isc_no_recon 335544353L transaction is not in limbo

isc_no_record 335544354L invalid database key

isc_no_segstr_close 335544355L Blob was not closed

isc_obsolete_metadata 335544356L metadata is obsolete

isc_open_trans 335544357L
cannot disconnect database with open
transactions (<long> active)

isc_port_len 335544358L
message length error (encountered <long>,
expected <long>)

isc_read_only_field 335544359L attempted update of read-only column

isc_read_only_rel 335544360L attempted update of read-only table

isc_read_only_trans 335544361L
attempted update during read-only
transaction

isc_read_only_view 335544362L cannot update read-only view <string>

isc_req_no_trans 335544363L no transaction for request

isc_req_sync 335544364L request synchronization error

isc_req_wrong_db 335544365L request referenced an unavailable database

isc_segment 335544366L
segment buffer length shorter than
expected

ERROR CODES AND MESSAGES

274

Error code Number Message

isc_segstr_eof 335544367L
attempted retrieval of more segments than
exist

isc_segstr_no_op 335544368L attempted invalid operation on a Blob

isc_segstr_no_read 335544369L attempted read of a new, open Blob

isc_segstr_no_trans 335544370L
attempted action on Blob outside
transaction

isc_segstr_no_write 335544371L attempted write to read-only Blob

isc_segstr_wrong_db 335544372L
attempted reference to Blob in unavailable
database

isc_sys_request 335544373L operating system directive <string> failed

isc_stream_eof 335544374L
attempt to fetch past the last record in a
record stream

isc_unavailable 335544375L unavailable database

isc_unres_rel 335544376L
Table <string> was omitted from the
transaction reserving list

isc_uns_ext 335544377L
request includes a DSRI extension not
supported in this implementation

isc_wish_list 335544378L feature is not supported

isc_wrong_ods 335544379L
unsupported on-disk structure for file
<<string>>; found <<long>>, support
<<long>>

isc_wronumarg 335544380L wrong number of arguments on call

ERROR CODES AND MESSAGES

275

Error code Number Message

isc_imp_exc 335544381L Implementation limit exceeded

isc_random 335544382L <<string>>

isc_fatal_conflict 335544383L
unrecoverable conflict with limbo
transaction <<long>>

isc_badblk 335544384L internal error

isc_invpoolcl 335544385L internal error

isc_nopoolids 335544386L too many requests

isc_relbadblk 335544387L internal error

isc_blktoobig 335544388L
block size exceeds implementation
restriction

isc_bufexh 335544389L buffer exhausted

isc_syntaxerr 335544390L
BLR syntax error: expected <string> at offset
<long>, encountered <long>

isc_bufinuse 335544391L buffer in use

isc_bdbincon 335544392L internal error

isc_reqinuse 335544393L request in use

isc_badodsver 335544394L incompatible version of on-disk structure

isc_relnotdef 335544395L table <string> is not defined

ERROR CODES AND MESSAGES

276

Error code Number Message

isc_fldnotdef 335544396L
column <string> is not defined in table
<string>

isc_dirtypage 335544397L internal error

isc_waifortra 335544398L internal error

isc_doubleloc 335544399L internal error

isc_nodnotfnd 335544400L internal error

isc_dupnodfnd 335544401L internal error

isc_locnotmar 335544402L internal error

isc_badpagtyp 335544403L
page <long> is of wrong type (expected
<long>, found <long>)

isc_corrupt 335544404L database corrupted

isc_badpage 335544405L checksum error on database page <long>

isc_badindex 335544406L index is broken

isc_dbbnotzer 335544407L database handle not zero

isc_tranotzer 335544408L transaction handle not zero

isc_trareqmis 335544409L
transaction—request mismatch
(synchronization error)

isc_badhndcnt 335544410L bad handle count

ERROR CODES AND MESSAGES

277

Error code Number Message

isc_wrotpbver 335544411L
wrong version of transaction parameter
block

isc_wroblrver 335544412L
unsupported BLR version (expected <long>,
encountered <long>)

isc_wrodpbver 335544413L wrong version of database parameter block

isc_blobnotsup 335544414L
Blob and array data types are not supported
for <string> operation

isc_badrelation 335544415L database corrupted

isc_nodetach 335544416L internal error

isc_notremote 335544417L internal error

isc_trainlim 335544418L transaction in limbo

isc_notinlim 335544419L transaction not in limbo

isc_traoutsta 335544420L transaction outstanding

isc_connect_reject 335544421L connection rejected by remote interface

isc_dbfile 335544422L internal error

isc_orphan 335544423L internal error

isc_no_lock_mgr 335544424L no lock manager available

isc_ctxinuse 335544425L context already in use (BLR error)

ERROR CODES AND MESSAGES

278

Error code Number Message

isc_ctxnotdef 335544426L context not defined (BLR error)

isc_datnotsup 335544427L data operation not supported

isc_badmsgnum 335544428L undefined message number

isc_badparnum 335544429L bad parameter number

isc_virmemexh 335544430L
unable to allocate memory from operating
system

isc_blocking_signal 335544431L blocking signal has been received

isc_lockmanerr 335544432L lock manager error

isc_journerr 335544433L communication error with journal “<string>”

isc_keytoobig 335544434L
key size exceeds implementation restriction
for index “<string>”

isc_nullsegkey 335544435L null segment of UNIQUE KEY

isc_sqlerr 335544436L SQL error code = <long>

isc_wrodynver 335544437L wrong DYN version

isc_funnotdef 335544438L function <string> is not defined

isc_funmismat 335544439L function <string> could not be matched

isc_bad_msg_vec 335544440L

isc_bad_detach 335544441L database detach completed with errors

ERROR CODES AND MESSAGES

279

Error code Number Message

isc_noargacc_read 335544442L
database system cannot read argument
<long>

isc_noargacc_write 335544443L
database system cannot write argument
<long>

isc_read_only 335544444L operation not supported

isc_ext_err 335544445L <string> extension error

isc_non_updatable 335544446L not updatable

isc_no_rollback 335544447L no rollback performed

isc_bad_sec_info 335544448L

isc_invalid_sec_info 335544449L

isc_misc_interpreted 335544450L <string>

isc_update_conflict 335544451L update conflicts with concurrent update

isc_unlicensed 335544452L product <string> is not licensed

isc_obj_in_use 335544453L object <string> is in use

isc_nofilter 335544454L
filter not found to convert type <long> to
type <long>

isc_shadow_accessed 335544455L cannot attach active shadow file

isc_invalid_sdl 335544456L
invalid slice description language at offset
<long>

ERROR CODES AND MESSAGES

280

Error code Number Message

isc_out_of_bounds 335544457L subscript out of bounds

isc_invalid_dimension 335544458L
column not array or invalid dimensions
(expected <long>, encountered <long>)

isc_rec_in_limbo 335544459L
record from transaction <long> is stuck in
limbo

isc_shadow_missing 335544460L
a file in manual shadow <long> is
unavailable

isc_cant_validate 335544461L
secondary server attachments cannot
validate databases

isc_cant_start_journal 335544462L
secondary server attachments cannot start
journaling

isc_gennotdef 335544463L generator <string> is not defined

isc_cant_start_logging 335544464L
secondary server attachments cannot start
logging

isc_bad_segstr_type 335544465L invalid Blob type for operation

isc_foreign_key 335544466L
violation of FOREIGN KEY constraint:
“<string>”

isc_high_minor 335544467L
minor version too high found <long>
expected <long>

isc_tra_state 335544468L transaction <long> is <string>

isc_trans_invalid 335544469L transaction marked invalid by I/O error

isc_buf_invalid 335544470L cache buffer for page <long> invalid

ERROR CODES AND MESSAGES

281

Error code Number Message

isc_indexnotdefined 335544471L
there is no index in table <string> with id
<digit>

isc_login 335544472L
Your user name and password are not
defined. Ask your database administrator to
set up an InterBase login.

isc_invalid_bookmark 335544473L invalid bookmark handle

isc_bad_lock_level 335544474L invalid lock level <digit>

isc_relation_lock 335544475L
lock on table <string> conflicts with existing
lock

isc_record_lock 335544476L
requested record lock conflicts with existing
lock

isc_max_idx 335544477L
maximum indexes per table (<digit>)
exceeded

isc_jrn_enable 335544478L
enable journal for database before starting
online dump

isc_old_failure 335544479L online dump failure. Retry dump

isc_old_in_progress 335544480L an online dump is already in progress

isc_old_no_space 335544481L
no more disk/tape space. Cannot continue
online dump

isc_num_old_files 335544483L
maximum number of online dump files that
can be specified is 16

isc_bad_stmt_handle 335544485L invalid statement handle

ERROR CODES AND MESSAGES

282

Error code Number Message

isc_stream_not_defined 335544502L reference to invalid stream number

isc_shutinprog 335544506L database <string> shutdown in progress

isc_range_in_use 335544507L refresh range number <long> already in use

isc_range_not_found 335544508L refresh range number <long> not found

isc_charset_not_found 335544509L character set <string> is not defined

isc_lock_timeout 335544510L lock time-out on wait transaction

isc_prcnotdef 335544511L procedure <string> is not defined

isc_prcmismat 335544512L parameter mismatch for procedure <string>

isc_codnotdef 335544515L status code <string> unknown

isc_xcpnotdef 335544516L exception <string> not defined

isc_except 335544517L exception <digit>

isc_cache_restart 335544518L restart shared cache manager

isc_bad_lock_handle 335544519L invalid lock handle

isc_shutdown 335544528L database <string> shutdown

isc_existing_priv_mod 335544529L cannot modify an existing user privilege

isc_primary_key_ref 335544530L
Cannot delete PRIMARY KEY being used in
FOREIGN KEY definition.

ERROR CODES AND MESSAGES

283

Error code Number Message

isc_primary_key_notnull 335544531L
Column used in a PRIMARY / UNIQUE
constraint must be NOT NULL .

isc_ref_cnstrnt_notfound 335544532L
Name of Referential Constraint not defined
in constraints table.

isc_foreign_key_notfound 335544533L
Non-existent PRIMARY or UNIQUE KEY
specified for FOREIGN KEY .

isc_ref_cnstrnt_update 335544534L
Cannot update constraints
(RDB$REF_CONSTRAINTS).

isc_check_cnstrnt_update 335544535L
Cannot update constraints
(RDB$CHECK_CONSTRAINTS).

isc_check_cnstrnt_del 335544536L
Cannot delete CHECK constraint entry
(RDB$CHECK_CONSTRAINTS)

isc_integ_index_seg_del 335544537L
Cannot delete index segment used by an
Integrity Constraint

isc_integ_index_seg_mod 335544538L
Cannot update index segment used by an
Integrity Constraint

isc_integ_index_del 335544539L
Cannot delete index used by an Integrity
Constraint

isc_integ_index_mod 335544540L
Cannot modify index used by an Integrity
Constraint

isc_check_trig_del 335544541L
Cannot delete trigger used by a CHECK
Constraint

isc_check_trig_update 335544542L
Cannot update trigger used by a CHECK
Constraint

ERROR CODES AND MESSAGES

284

Error code Number Message

isc_cnstrnt_fld_del 335544543L
Cannot delete column being used in an
Integrity Constraint.

isc_cnstrnt_fld_rename 335544544L
Cannot rename column being used in an
Integrity Constraint.

isc_rel_cnstrnt_update 335544545L
Cannot update constraints
(RDB$RELATION_CONSTRAINTS).

isc_constaint_on_view 335544546L Cannot define constraints on views

isc_invld_cnstrnt_type 335544547L
internal isc software consistency check
(invalid RDB$CONSTRAINT_TYPE)

isc_primary_key_exists 335544548L
Attempt to define a second PRIMARY KEY
for the same table

isc_systrig_update 335544549L cannot modify or erase a system trigger

isc_not_rel_owner 335544550L
only the owner of a table may reassign
ownership

isc_grant_obj_notfound 335544551L could not find table/procedure for GRANT

isc_grant_fld_notfound 335544552L could not find column for GRANT

isc_grant_nopriv 335544553L
user does not have GRANT privileges for
operation

isc_nonsql_security_rel 335544554L
table/procedure has non-SQL security class
defined

isc_nonsql_security_fld 335544555L column has non-SQL security class defined

isc_shutfail 335544557L database shutdown unsuccessful

ERROR CODES AND MESSAGES

285

Error code Number Message

isc_check_constraint 335544558L
Operation violates CHECK constraint
<string> on view or table

isc_bad_svc_handle 335544559L invalid service handle

isc_shutwarn 335544560L
database <string> shutdown in <digit>
seconds

isc_wrospbver 335544561L wrong version of service parameter block

isc_bad_spb_form 335544562L unrecognized service parameter block

isc_svcnotdef 335544563L service <string> is not defined

isc_no_jrn 335544564L long-term journaling not enabled

isc_transliteration_failed 335544565L
Cannot transliterate character between
character sets

isc_text_subtype 335544568L
Implementation of text subtype <digit> not
located.

isc_dsql_error 335544569L Dynamic SQL Error

isc_dsql_command_err 335544570L Invalid command

isc_dsql_constant_err 335544571L Datatype for constant unknown

isc_dsql_cursor_err 335544572L Cursor unknown

isc_dsql_datatype_err 335544573L Datatype unknown

isc_dsql_decl_err 335544574L Declared cursor already exists

ERROR CODES AND MESSAGES

286

Error code Number Message

isc_dsql_cursor_update_err 335544575L Cursor not updatable

isc_dsql_cursor_open_err 335544576L Attempt to reopen an open cursor

isc_dsql_cursor_close_err 335544577L Attempt to reclose a closed cursor

isc_dsql_field_err 335544578L Column unknown

isc_dsql_internal_err 335544579L Internal error

isc_dsql_relation_err 335544580L Table unknown

isc_dsql_procedure_err 335544581L Procedure unknown

isc_dsql_request_err 335544582L Request unknown

isc_dsql_sqlda_err 335544583L
SQLDA missing or incorrect version, or

incorrect number/type of variables

isc_dsql_var_count_err 335544584L Count of columns not equal count of values

isc_dsql_stmt_handle 335544585L Invalid statement handle

isc_dsql_function_err 335544586L Function unknown

isc_dsql_blob_err 335544587L Column is not a Blob

isc_collation_not_found 335544588L COLLATION <string> is not defined

isc_collation_not_for_charset 335544589L
COLLATION <string> is not valid for

specified CHARACTER SET

isc_dsql_dup_option 335544590L Option specified more than once

ERROR CODES AND MESSAGES

287

Error code Number Message

isc_dsql_tran_err 335544591L Unknown transaction option

isc_dsql_invalid_array 335544592L Invalid array reference

isc_dsql_max_arr_dim_exceeded 335544593L Array declared with too many dimensions

isc_dsql_arr_range_error 335544594L Illegal array dimension range

isc_dsql_trigger_err 335544595L Trigger unknown

isc_dsql_subselect_err 335544596L Subselect illegal in this context

isc_dsql_crdb_prepare_err 335544597L
Cannot prepare a
CREATE DATABASE/SCHEMA statement

isc_specify_field_err 335544598L
must specify column name for view select
expression

isc_num_field_err 335544599L
number of columns does not match select
list

isc_col_name_err 335544600L
Only simple column names permitted for
VIEW WITH CHECK OPTION

isc_where_err 335544601L
No WHERE clause for
VIEW WITH CHECK OPTION

isc_table_view_err 335544602L
Only one table allowed for
VIEW WITH CHECK OPTION

isc_distinct_err 335544603L
DISTINCT , GROUP or HAVING not

permitted for VIEW WITH CHECK OPTION

isc_key_field_count_err 335544604L
FOREIGN KEY column count does not

match PRIMARY KEY

ERROR CODES AND MESSAGES

288

Error code Number Message

isc_subquery_err 335544605L
No subqueries permitted for
VIEW WITH CHECK OPTION

isc_expression_eval_err 335544606L expression evaluation not supported

isc_node_err 335544607L gen.c: node not supported

isc_command_end_err 335544608L Unexpected end of command

isc_index_name 335544609L INDEX <string>

isc_exception_name 335544610L EXCEPTION <string>

isc_field_name 335544611L COLUMN <string>

isc_token_err 335544612L Token unknown

isc_union_err 335544613L union not supported

isc_dsql_construct_err 335544614L Unsupported DSQL construct

isc_field_aggregate_err 335544615L column used with aggregate

isc_field_ref_err 335544616L invalid column reference

isc_order_by_err 335544617L invalid ORDER BY clause

isc_return_mode_err 335544618L
Return mode by value not allowed for this
datatype

isc_extern_func_err 335544619L
External functions cannot have more than 10
parameters

ERROR CODES AND MESSAGES

289

Error code Number Message

isc_alias_conflict_err 335544620L
alias <string> conflicts with an alias in the
same statement

isc_procedure_conflict_error 335544621L
alias <string> conflicts with a procedure in
the same statement

isc_relation_conflict_err 335544622L
alias <string> conflicts with a table in the
same statement

isc_dsql_domain_err 335544623L Illegal use of keyword VALUE

isc_idx_seg_err 335544624L
segment count of 0 defined for index
<string>

isc_node_name_err 335544625L
A node name is not permitted in a
secondary, shadow, cache or log file name

isc_table_name 335544626L TABLE <string>

isc_proc_name 335544627L PROCEDURE <string>

isc_idx_create_err 335544628L cannot create index <string>

isc_dependency 335544630L there are <long> dependencies

isc_idx_key_err 335544631L too many keys defined for index <string>

isc_dsql_file_length_err 335544632L
Preceding file did not specify length, so
<string> must include starting page number

isc_dsql_shadow_number_err 335544633L Shadow number must be a positive integer

isc_dsql_token_unk_err 335544634L Token unknown - line <long>, char <long>

ERROR CODES AND MESSAGES

290

Error code Number Message

isc_dsql_no_relation_alias 335544635L
there is no alias or table named <string> at
this scope level

isc_indexname 335544636L there is no index <string> for table <string>

isc_no_stream_plan 335544637L table <string> is not referenced in plan

isc_stream_twice 335544638L
table <string> is referenced more than once
in plan; use aliases to distinguish

isc_stream_not_found 335544639L
table <string> is referenced in the plan but
not the from list

isc_collation_requires_text 335544640L
Invalid use of CHARACTER SET or
COLLATE

isc_dsql_domain_not_found 335544641L
Specified domain or source column does
not exist

isc_index_unused 335544642L
index <string> cannot be used in the
specified plan

isc_dsql_self_join 335544643L
the table <string> is referenced twice; use
aliases to differentiate

isc_stream_bof 335544644L
illegal operation when at beginning of
stream

isc_stream_crack 335544645L the current position is on a crack

isc_db_or_file_exists 335544646L database or file exists

isc_invalid_operator 335544647L
invalid comparison operator for find
operation

ERROR CODES AND MESSAGES

291

Error code Number Message

isc_conn_lost 335544648L Connection lost to pipe server

isc_bad_checksum 335544649L bad checksum

isc_page_type_err 335544650L wrong page type

isc_ext_readonly_err 335544651L external file could not be opened for output

isc_sing_select_err 335544652L multiple rows in singleton select

isc_psw_attach 335544653L cannot attach to password database

isc_psw_start_trans 335544654L
cannot start transaction for password
database

isc_invalid_direction 335544655L invalid direction for find operation

isc_dsql_var_conflict 335544656L
variable <string> conflicts with parameter in
same procedure

isc_dsql_no_blob_array 335544657L
Array/Blob/ DATE / TIME / TIMESTAMP
data types not allowed in arithmetic

isc_dsql_base_table 335544658L
<string> is not a valid base table of the
specified view

isc_duplicate_base_table 335544659L
table <string> is referenced twice in view;
use an alias to distinguish

isc_view_alias 335544660L
view <string> has more than one base table;
use aliases to distinguish

isc_index_root_page_full 335544661L cannot add index, index root page is full.

ERROR CODES AND MESSAGES

292

Error code Number Message

isc_dsql_blob_type_unknown 335544662L BLOB SUB_TYPE <string> is not defined

isc_req_max_clones_exceeded 335544663L
Too many concurrent executions of the
same request

isc_dsql_duplicate_spec 335544664L
duplicate specification of <string> - not
supported

isc_unique_key_violation 335544665L
violation of PRIMARY or UNIQUE KEY
constraint: “<string>”

isc_srvr_version_too_old 335544666L
server version too old to support all
CREATE DATABASE options

isc_drdb_completed_with_errs 335544667L drop database completed with errors

isc_dsql_procedure_use_err 335544668L
procedure <string> does not return any
values

isc_dsql_count_mismatch 335544669L
count of column list and variable list do not
match

isc_blob_idx_err 335544670L
attempt to index Blob column in index
<string>

isc_array_idx_err 335544671L
attempt to index array column in index
<string>

isc_key_field_err 335544672L
too few key columns found for index
<string> (incorrect column name?)

isc_no_delete 335544673L cannot delete

isc_del_last_field 335544674L last column in a table cannot be deleted

ERROR CODES AND MESSAGES

293

Error code Number Message

isc_sort_err 335544675L sort error

isc_sort_mem_err 335544676L sort error: not enough memory

isc_version_err 335544677L too many versions

isc_inval_key_posn 335544678L invalid key position

isc_no_segments_err 335544679L
segments not allowed in expression index
<string>

isc_crrp_data_err 335544680L sort error: corruption in data structure

isc_rec_size_err 335544681L new record size of <long> bytes is too big

isc_dsql_field_ref 335544682L Inappropriate self-reference of column

isc_req_depth_exceeded 335544683L
request depth exceeded. (Recursive
definition?)

isc_no_field_access 335544684L
cannot access column <string> in view
<string>

isc_no_dbkey 335544685L dbkey not available for multi-table views

isc_dsql_open_cursor_request 335544688L
The prepare statement identifies a prepare
statement with an open cursor

isc_ib_error 335544689L InterBase error

isc_cache_redef 335544690L Cache redefined

isc_cache_too_small 335544691L Cache length too small

ERROR CODES AND MESSAGES

294

Error code Number Message

isc_precision_err 335544697L Precision should be greater than 0

isc_scale_nogt 335544698L Scale cannot be greater than precision

isc_expec_short 335544699L Short integer expected

isc_expec_long 335544700L Long integer expected

isc_expec_ushort 335544701L Unsigned short integer expected

isc_like_escape_invalid 335544702L Invalid ESCAPE sequence

isc_svcnoexe 335544703L
service <string> does not have an
associated executable

isc_net_lookup_err 335544704L Network lookup failure for host “<string>”

isc_service_unknown 335544705L Undefined service <string>/<string>

isc_host_unknown 335544706L Host unknown

isc_grant_nopriv_on_base 335544707L
user does not have GRANT privileges on
base table/view for operation

isc_dyn_fld_ambiguous 335544708L Ambiguous column reference.

isc_dsql_agg_ref_err 335544709L Invalid aggregate reference

isc_complex_view 335544710L
navigational stream <long> references a
view with more than one base table.

isc_unprepared_stmt 335544711L
attempt to execute an unprepared dynamic
SQL statement

ERROR CODES AND MESSAGES

295

Error code Number Message

isc_expec_positive 335544712L Positive value expected.

isc_dsql_sqlda_value_err 335544713L Incorrect values within SQLDA structure

isc_invalid_array_id 335544714L invalid Blob id

isc_ext_file_uns_op 335544715L
operation not supported for
EXTERNAL FILE table <string>

isc_svc_in_use 335544716L service is currently busy: <<string>>

isc_err_stack_limit 335544717L
stack size insufficient to execute current
request

isc_invalid_key 335544718L invalid key for find operation

isc_net_init_error 335544719L error initializing the network software

isc_loadlib_failure 335544720L unable to load required library <<string>>

isc_network_error 335544721L
unable to complete network request to host
“<<string>>”

isc_net_connect_err 335544722L failed to establish a connection

isc_net_connect_listen_err 335544723L
error while listening for an incoming
connection

isc_net_event_connect_err 335544724L
failed to establish a secondary connection
for event processing

isc_net_event_listen_err 335544725L
error while listening for an incoming event
connection request

ERROR CODES AND MESSAGES

296

Error code Number Message

isc_net_read_err 335544726L error reading data from the connection

isc_net_write_err 335544727L error writing data to the connection

isc_integ_index_deactivate 335544728L
cannot deactivate index used by an Integrity
Constraint

isc_integ_deactivate_primary 335544729L cannot deactivate primary index

isc_unsupported_network_drive 335544732L
access to databases on file servers is not
supported

isc_io_create_err 335544733L error while trying to create file

isc_io_open_err 335544734L error while trying to open file

isc_io_close_err 335544735L error while trying to close file

isc_io_read_err 335544736L error while trying to read from file

isc_io_write_err 335544737L error while trying to write to file

isc_io_delete_err 335544738L error while trying to delete file

isc_io_access_err 335544739L error while trying to access file

isc_udf_exception 335544740L
exception <<integer>> detected in blob
filter or user defined function

isc_lost_db_connection 335544741L connection lost to database

isc_no_write_user_priv 335544742L
user cannot write to
RDB$USER_PRIVILEGES

ERROR CODES AND MESSAGES

297

Error code Number Message

isc_token_too_long 335544743L token size exceeds limit

isc_max_att_exceeded 335544744L
maximum user count exceeded; contact
your database administrator

isc_login_same_as_role_name 335544745L

your login <<string>> is same as one of
the SQL role names; ask your database
administrator to set up a valid InterBase
login

isc_reftable_requires_pk 335544746L
“ REFERENCES table” without “(column)”;
requires PRIMARY KEY on referenced table

isc_usrname_too_long 335544747L
the username entered is too long. Maximum
length is 31 bytes.

isc_password_too_long 335544748L
the password specified is too long.
Maximum length is 8 bytes.

isc_usrname_required 335544749L a username is required for this operation.

isc_password_required 335544750L a password is required for this operation

isc_bad_protocol 335544751L the network protocol specified is invalid

isc_dup_usrname_found 335544752L
a duplicate user name was found in the
security database

isc_usrname_not_found 335544753L
the user name specified was not found in
the security database

isc_error_adding_sec_record 335544754L error while attempting to add the user

isc_error_modifying_sec_record 335544755L
error while attempting to modify the user
record

ERROR CODES AND MESSAGES

298

Error code Number Message

isc_error_deleting_sec_record 335544756L
error while attempting to delete the user
record

eisc_rror_updating_sec_db 335544757L error while updating the security database

isc_sort_rec_size_err 335544758L sort record size is too big

isc_bad_default_value 335544759L
cannot assign a NULL default value to a
column with a NOT NULL constraint

isc_invalid_clause 335544760L the specified user-entered string is not valid

isc_too_many_handles 335544761L too many open handles to database

isc_optimizer_blk_exc 335544762L
optimizer implementation limits are
exceeded; for example, only 256 conjuncts
(AND and OR) are allowed

ERROR CODES AND MESSAGES

299

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

This chapter describes the InterBase system tables, SQL system views, and Change Views.

Important:
Only InterBase system object names can begin with the characters “ RDB$ ” or “ TMP$ ”.
No other object name in InterBase can begin with these character sequences, including
tables, views, triggers, stored procedures, indexes, generators, domains, and roles.

1. Overview of System Tables, Temporary Tables, and Views

The InterBase system tables contain and track metadata. InterBase automatically creates system
tables when a database is created. Each time a user creates or modifies metadata through data
definition, the SQL data definition utility automatically updates the system tables.

The temporary system tables allow access to information about the database and its connections
and a degree of control over transactions. By default, all users can select from permanent system
tables, but only the database owner and the SYSDBA user can write to them. To gain access to
temporary system tables, explicit access has to be granted to them by the database owner or the
SYSDBA. These users can grant write access to others if they wish. See the Operations Guide for
details about system table security.

SQL system views provide information about existing integrity constraints for a database. You
must create system views yourself by creating and running an isql script after database
definition.

To see system tables, use this isql command:

SHOW SYSTEM TABLES;

The following isql command lists system views along with database views:

SHOW VIEWS;

The Change Views feature uses InterBase multigenerational architecture to capture changes to
data. With this feature you can quickly find out what data has changed since you last viewed it.
Previously, to find this information, it involved triggers, logging, and/or transaction write-ahead
log scraping. It is time-consuming for the developer and affects the database performance for a
certain transaction load or change volume. With Change View, there is no performance overhead
on existing transactions because it maintains a consistent view of changed data observable by
other transactions. See Change Views (Reference) for the code that creates these views.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

300

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

2. System Tables

The following table lists all InterBase system tables. The names of system tables and the names of
the columns of system tables start with RDB$.

System table Description

RDB$CHARACTER_SETS Describes the valid character sets available in InterBase.

RDB$JOURNAL_ARCHIVES
Stores information about the repository of database and
journal archive files.

RDB$CHECK_CONSTRAINTS
Stores database integrity constraint information for
CHECK constraints. In addition, the table stores

information for constraints implemented with NOT NULL .

RDB$LOG_FILES RDB$LOG_FILES is deprecated.

RDB$COLLATIONS
Records the valid collating sequences available for use in
InterBase.

RDB$PAGES Keeps track of each page allocated to the database.

RDB$DATABASE Defines a database.

RDB$PROCEDURE_PARAMETERS
Stores information about each parameter for each of the
procedures of a database.

RDB$DEPENDENCIES
Keeps track of the tables and columns upon which other
system objects depend. These objects include views,
triggers, and computed columns.

RDB$PROCEDURES
Stores information about a stored procedures of a
database.

RDB$ENCRYPTIONS
Describes the characteristics of encryptions stored in the
database.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

301

System table Description

RDB$REF_CONSTRAINTS Stores information about referential integrity constraints.

RDB$EXCEPTIONS
Describes error conditions related to stored procedures,
including user-defined exceptions.

RDB$RELATION_CONSTRAINTS Stores information about integrity constraints for tables.

RDB$FIELD_DIMENSIONS Describes each dimension of an array column.

RDB$RELATION_FIELDS
For database tables, lists columns and describes column
characteristics for domains.

RDB$FIELDS Defines the characteristics of a column.

RDB$RELATIONS Defines some of the characteristics of tables and views.

RDB$FILES Lists the secondary files and shadow files for a database.

RDB$ROLES
Lists roles that have been defined in the database and the
owner of each role.

RDB$FILTERS Tracks information about a blob filter.

RDB$SECURITY_CLASSES
Defines access control lists and associates them with
databases, tables, views, and columns in tables and views.

RDB$FORMATS
Keeps track of the format versions of the columns in a
table.

RDB$TRANSACTIONS Keeps track of all multi-database transactions.

RDB$FUNCTION_ARGUMENTS Defines the attributes of a function argument.

RDB$TRIGGER_MESSAGES
Defines a trigger message and associates the message
with a particular trigger.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

302

System table Description

RDB$FUNCTIONS Defines a user-defined function.

RDB$TRIGGERS Defines triggers.

RDB$GENERATORS
Stores information about generators, which provide the
ability to generate a unique identifier for a table.

RDB$TYPES
Records enumerated data types and alias names for
InterBase character sets and collation orders.

RDB$INDEX_SEGMENTS Specifies the columns that comprise an index for a table.

RDB$USER_PRIVILEGES
Keeps track of the privileges assigned to a user through a
SQL GRANT statement.

RDB$INDICES
Defines the index structures that allow InterBase to locate
rows in the database more quickly.

RDB$USERS
Only permits users in that system table access to the
database.

RDB$VIEW_RELATIONS Not used by SQL objects.

RDB$SUBSCRIPTIONS Stores subscription information.

RDB$SUBSCRIBERS Stores subscribers information.

See Also

System Temporary Tables

2.1. RDB$CHARACTER SETS

RDB$CHARACTER_SETS describes the valid character sets available in InterBase.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

303

Column name Data type Length Description

RDB$CHARACTER_SET_NAME CHAR 67
Name of a character set that
InterBase recognizes.

RDB$FORM_OF_USE CHAR 67
Reserved for internal use.
Subtype 2.

RDB$NUMBER_OF_CHARACTE
RS

INTEGER

Number of characters in a
particular character set; for
example, the set of Japanese
characters.

RDB$DEFAULT_COLLATE_NAM
E

CHAR 67
Subtype 2: default collation
sequence for the character set.

RDB$CHARACTER_SET_ID SMALLINT
A unique identification for the
character set.

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the
character set is:

User-defined (value of 0 or
NULL).
System-defined (value of 1).

RDB$DESCRIPTION BLOB
Subtype text: Contains a user-
written description of the
character set.

RDB$FUNCTION_NAME CHAR 67
Reserved for internal use;
subtype 2.

RDB$BYTES_PER_CHARACTER SMALLINT Size of character in bytes.

2.2. RDB$JOURNAL ARCHIVES

RDB$JOURNAL_ARCHIVES stores information about the repository of database and journal
archive files.

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

304

Column name Data type Length Description

RDB$ARCHIVE_NAME VARCHAR 1024
The name of the archived
item.

RDB$ARCHIVE_TYPE CHAR 1

The type of the archived
item. 'D' indicates a
database dump. 'S'
indicates a secondary
database file of a database
dump. 'J' indicates a journal
file.

RDB$ARCHIVE_LENGTH INT64 8
Length of the archived item
as stored in bytes.

RDB$ARCHIVE_SEQUENCE INTEGER 4
Sequence number of
archive item.

RDB$ARCHIVE_TIMESTAMP TIMESTAMP 8
Timestamp when item was
stored in the archive.

RDB$DEPENDED_ON_SEQU
ENCE

INTEGER 4

Sequence of archived item
that this item depends on.
For 'S' archive types, it
would be the sequence
number of the 'D' primary
database dump file. For 'D'
archive types, it is the
sequence number of the
starting journal file for
recovering from the
archive.

RDB$DEPENDED_ON_TIME
STAMP

TIMESTAMP 8
As above, but the archive
timestamp for the
depended on archive item.

2.3. RDB$CHECK CONSTRAINTS

RDB$CHECK_CONSTRAINTS stores database integrity constraint information for CHECK
constraints. In addition, the table stores information for constraints implemented with NOT NULL.

Column name Data type Length Description

RDB$CONSTRAINT_NAME CHAR 67
Subtype 2: Name of a CHECK
or NOT NULL constraint

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

305

Column name Data type Length Description

RDB$TRIGGER_NAME CHAR 67

Subtype 2: Name of the trigger
that enforces the CHECK
constraint; for a NOT NULL
constraint, name of the source
column in
RDB$RELATION_FIELDS

2.4. RDB$COLLATIONS

RDB$COLLATIONS records the valid collating sequences available for use in InterBase.

Column name Data type Length Description

RDB$COLLATION_NAME CHAR 67
Name of a valid collation
sequence in InterBase.

RDB$COLLATION_ID SMALLINT
Unique identifier for the
collation sequence.

RDB$CHARACTER_SET_ID SMALLINT

Identifier of the underlying
character set of this collation
sequence.

Required before collation
can proceed.
Determines which character
set is in use Corresponds to
the
RDB$CHARACTER_SET_ID
column in the -
RDB$CHARACTER_SETS
table.

RDB$COLLATION_ATTRIBUTES SMALLINT Reserved for internal use.

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the
generator is:

User-defined (value of 0).
System-defined (value
greater than 0).

•

•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

306

Column name Data type Length Description

RDB$DESCRIPTION BLOB
Subtype Text: Contains a user-
written description of the
collation sequence.

RDB$FUNCTION_NAME CHAR 67 Reserved for internal use.

2.5. RDB$PAGES

RDB$PAGES keeps track of each page allocated to the database.

Important:
Modifying this table in any way corrupts a database.

Column name Data type Length Description

RDB$PAGE_NUMBER INTEGER
The physically allocated page
number

RDB$RELATION_ID SMALLINT
Identifier number of the table
for which this page is allocated

RDB$PAGE_SEQUENCE INTEGER

The sequence number of this
page in the table to other
pages allocated for the
previously identified table

RDB$PAGE_TYPE SMALLINT
Describes the type of page;
this information is for system
use only

2.6. RDB$DATABASE

RDB$DATABASE defines a database.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

307

Column name Data type Length Description

RDB$DESCRIPTION BLOB

Subtype Text: Contains a user-
written description of the
database; when a comment is
included in a CREATE, ALTER
SCHEMA or ALTER DATABASE
statement, isql writes to
this column.

RDB$RELATION_ID SMALLINT For internal use by InterBase

RDB$SECURITY_CLASS CHAR 67

Subtype 2: Security class
defined in the
RDB$SECURITY_CLASSES table;
the access control limits
described in the named
security class apply to all
database usage.

RDB$CHARACTER_SET_NAME CHAR 67
Subtype 2; Name of character
set

RDB$PAGE_CACHE INTEGER
Sets database page buffer
cache limit. Also, tries to
expand cache to that limit.

RDB$PROCEDURE_CACHE INTEGER

RDB$TRIGGER_CACHE INTEGER

RDB$RELATION_CACHE SMALLINT

RDB$FLUSH_INTERVAL INTEGER
Enables database flush. The
interval <number> is
interpreted in units of seconds.

RDB$LINGER_INTERVAL INTEGER
Allows a database to remain in
memory after the last user
detaches. Interval is seconds.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

308

Column name Data type Length Description

RDB$RECLAIM_INTERVAL INTEGER

Reclaim interval is in seconds.
Determines how often the
garbage collector thread will
run to release memory from
unused procedures, triggers,
and internal system queries
back to InterBase memory
heap.

RDB$SWEEP_INTERVAL INTEGER

RDB$GROUP_COMMIT CHAR(1)

RDB$PASSWORD_DIGEST VARCHAR(16)

2.7. RDB$PROCEDURE PARAMETERS

RDB$PROCEDURE_PARAMETERS stores information about each parameter for each of a
database’s procedures.

Column name Data type Length Description

RDB$PARAMETER_NAME CHAR 67 Parameter name

RDB$PROCEDURE_NAME CHAR 67
Name of the procedure in
which the parameter is used

RDB$PARAMETER_NUMBER SMALLINT Parameter sequence number

RDB$PARAMETER_TYPE SMALLINT

Parameter data type

Values are:

0 = input
1 = output

RDB$FIELD_SOURCE CHAR 67 Global column name

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

309

Column name Data type Length Description

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of the parameter

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the
parameter is:

User-defined (value of 0)
System-defined (value
greater than 0)

2.8. RDB$DEPENDENCIES

RDB$DEPENDENCIES keeps track of the tables and columns upon which other system objects
depend. These objects include views, triggers, and computed columns. InterBase uses this table
to ensure that a column or table cannot be deleted if it is used by any other object.

Column name Data type Length Description

RDB$DEPENDENT_NAME CHAR 67

Subtype 2; names the
object this table tracks: a
view, trigger, or computed
column.

RDB$DEPENDED_ON_NAM
E

CHAR 67
Subtype 2; names the table
referenced by the object
named above.

RDB$FIELD_NAME CHAR 67
Subtype 2; names the
column referenced by the
object named above.

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

310

Column name Data type Length Description

RDB$DEPENDENT_TYPE SMALLINT

Describes the object type of
the object referenced in the
RDB$DEPENDENT_NAME
column; type codes
(RDB$TYPES):

0 - table
1 - view
2 - trigger
3 - computed_field
4 - validation
5 - procedure
7 - exception
8 - user
9 - field
10 - index

All other values are reserved
for future use.

RDB$DEPENDED_ON_TYPE SMALLINT

Describes the object type of
the object referenced in the
RDB$DEPENDED_ON_NAM
E column; type codes
(RDB$TYPES):

0 - table
1 - view
2 - trigger
3 - computed_field
4 - validation
5 - procedure
7 - exception
8 - user
9 - field
10 - index
11 - generator
14 - External Functions
15 - Encryption

All other values are reserved
for future use.

2.9. RDB$PROCEDURES

RDB$PROCEDURES stores information about a database’s stored procedures.

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

311

Column name Data type Length Description

RDB$PROCEDURE_NAME CHAR 67 Procedure name

RDB$PROCEDURE_ID SMALLINT Procedure number

RDB$PROCEDURE_INPUTS SMALLINT Number of input parameters

RDB$PROCEDURE_

OUTPUTS
SMALLINT Number of output parameters

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of the procedure

RDB$PROCEDURE_SOURCE BLOB
Subtype Text: Source code for
the procedure

RDB$PROCEDURE_BLR BLOB
Subtype BLR: BLR (Binary
Language Representation) of
the procedure source

RDB$SECURITY_CLASS CHAR 67 Security class of the procedure

RDB$OWNER_NAME CHAR 67
User who created the
procedure (the owner for SQL
security purposes)

RDB$RUNTIME BLOB
Subtype Summary: Describes
procedure metadata; used for
performance enhancement

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the
procedure is:

User-defined (value of 0)
System-defined (value
greater than 0)

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

312

2.10. RDB$ENCRYPTIONS

RDB$ENCRYPTIONS describes the characteristics of encryptions stored in the database.

Column name Data type Length Description

RDB$ENCRYPTION_NAME CHAR 67
A unique name for the
encryption.

RDB$ENCRYPTION_TYPE CHAR 16

BASE: Defines a base
encryption that has its own
encryption value.

COPY: Copy of a BASE
encryption that shares the
same encryption value.

BACKUP: Defines an
encryption used to encrypt
database backup files.

RECOVERY: Defines an
encryption that can be used to
recover a password-protected
encryption when the password
has been lost or forgotten.
This encryption cannot be
used to perform database
encryption

RDB$ENCRYPTION_CIPHER CHAR 16
Encryption cipher algorithm.
This is AES (Advanced
Encryption Standard).

RDB$ENCRYPTION_ LENGTH SMALLINT

Encryption key length (bits)
must be one of these values
for AES: 128, 192 or 256. The
default is 128.

RDB$ENCRYPTION_INIT_
VECTOR

CHAR 6

RANDOM: specifies that
random bytes should be used
with cipher block chaining
(CBC) encryption mode.

<null>: default, specifies
electronic cookbook (ECB)
encryption mode used.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

313

Column name Data type Length Description

RDB$ENCRYPTION_PAD CHAR 6
RANDOM: pads value to be
encrypted with random bytes.

RDB$ENCRYPTION_VALUE CHAR 68
Encrypted value of the actual
encryption key value.

RDB$ENCRYPTION_SALT CHAR 68
Hash to verify decrypted value
of actual encryption key value
is correct.

RDB$ENCRYPTION_
TIMESTAMP

TIMESTAMP
Timestamp when encryption
key value was created or
refreshed.

RDB$ENCRYPTION_ID SMALLINT
Unique identifier for
Encryption key.

RDB$SECURITY_CLASS CHAR 67
Names a security class stored
in RDB$SECURITY_CLASSES.

RDB$OWNER_NAME CHAR 67 Owner of the encryption

RDB$PASSWORD2 VARCHAR 68
Password hash used to allow
access to the encryption.

RDB$SYSTEM_FLAG SMALLINT
0: User-defined 1: System-
defined.

RDB$FLAGS SMALLINT 2

1: random initialization vector
defined for cipher block
chaining encryption mode.

2: random padding of plaintext

4: encryption is marked for
deletion.

32: indicates one or more
subscriptions on the relation

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

314

Column name Data type Length Description

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of encryption.

2.11. RDB$REF CONSTRAINTS

RDB$REF_CONSTRAINTS stores referential integrity constraint information.

Column name Data type Length Description

RDB$3CONSTRAINT_NAME CHAR 67
Name of a referential
constraint

RDB$CONST_NAME_UQ CHAR 67
Name of a referenced
PRIMARY KEY or UNIQUE
constraint

RDB$MATCH_OPTION CHAR 7
Reserved for later use;
currently defaults to FULL

RDB$UPDATE_RULE CHAR 11

Specifies the type of action on
the foreign key when the
primary key is updated; values
are RESTRICT, NO ACTION,
CASCADE, SET NULL, or SET
DEFAULT

RDB$DELETE_RULE CHAR 11

Specifies the type of action on
the foreign key when the
primary key is DELETED; values
are RESTRICT, NO ACTION,
CASCADE, SET NULL, or SET
DEFAULT

2.12. RDB$EXCEPTIONS

RDB$EXCEPTIONS describes error conditions related to stored procedures, including user-
defined exceptions.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

315

Column name Data type Length Description

RDB$EXCEPTION_NAME CHAR 67 Subtype 2; exception name

RDB$EXCEPTION_NUMBER INTEGER Number for the exception

RDB$MESSAGE VARCHAR 78 Text of exception message

RDB$DESCRIPTION BLOB
Subtype Text: Text description
of the exception

RDB$SYSTEM_FLAG SMALLINT Displays null

2.13. RDB$RELATION CONSTRAINTS

RDB$RELATION_CONSTRAINTS stores information about integrity constraints for tables.

Column
name

Data type Length Description

RDB$CONSTRAINT_
NAME

CHAR 67 Name of a table constraint

RDB$CONSTRAINT_
TYPE

CHAR 11
Type of table constraint

Constraint types are:

PRIMARY KEY
UNIQUE
FOREIGN KEY

CHECK
NOT NULL

RDB$RELATION_NA
ME

CHAR 67
Name of the table for which the
constraint is defined

RDB$DEFERRABLE CHAR 3
Reserved for later use; currently defaults
to No

RDB$INITIALLY_DEF
ERRED

CHAR 3
Reserved for later use; currently defaults
to No

•
•
•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

316

Column
name

Data type Length Description

RDB$INDEX_NAME CHAR 67
Name of the index used by UNIQUE,
PRIMARY KEY, or FOREIGN KEY
constraints

2.14. RDB$FIELD DIMENSIONS

RDB$FIELD_DIMENSIONS describes each dimension of an array column.

Column name Data type Length Description

RDB$FIELD_NAME CHAR 67

Subtype 2; names the array
column described by this
table; the column name must
exist in the RDB$FIELD_NAME
column of RDB$FIELDS

RDB$DIMENSION SMALLINT

Identifies one dimension of
the ARRAY column; the first
dimension is identified by the
integer 0

RDB$LOWER_BOUND INTEGER
Indicates the lower bound of
the previously specified
dimension

RDB$UPPER_BOUND INTEGER
Indicates the upper bound of
the previously specified
dimension

2.15. RDB$RELATION FIELDS

For database tables, RDB$RELATION_FIELDS lists columns and describes column characteristics
for domains.

SQL columns are defined in RDB$RELATION_FIELDS. The column name is correlated in the
RDB$FIELD_SOURCE column to an underlying entry in RDB$FIELDS that contains a system name
(“SQL$<n>”). This entry includes information such as column type and length. For both domains
and simple columns, this table may contain default and nullability information.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

317

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67
Column name defined by the
user.

RDB$RELATION_NAME CHAR 67
Table name defined by the
user.

RDB$FIELD_SOURCE CHAR 67

Internal Column name that
matches up with
RDB$FIELDS.RDB$FIELD_NAME
.

RDB$QUERY_NAME CHAR 67
Alternate column name for use
in isql; supersedes the value in
RDB$FIELDS.

RDB$BASE_FIELD CHAR 67

Views only: The name of the
column from RDB$FIELDS in a
table or view that is the base
for a view column being
defined; for the base column:

RDB$BASE_FIELD provides
the column name.
RDB$VIEW_CONTEXT, a
column in this table,
provides the source table
name.

RDB$EDIT_STRING VARCHAR 125 Not used in SQL.

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

318

Column name Data Type Length Description

RDB$FIELD_POSITION SMALLINT

The position of the column in
relation to other columns:

isql obtains the ordinal
position for displaying
column values when printing
rows from this column.
gpre uses the column order
for SELECT and INSERT
statements.

If two or more columns in the
same table have the same
value for this column, those
columns appear in random
order.

RDB$QUERY_HEADER BLOB Not used in SQL.

RDB$UPDATE_FLAG SMALLINT
Not used by {{Product;
included for compatibility with
other DSRI-based systems.

RDB$FIELD_ID SMALLINT

Identifier for use in BLR (Binary
Language Representation) to
name the column.

Because this identifier
changes during backup and
restoration of the database,
try to use it in transient
requests only.
Do not modify this column.

RDB$VIEW_CONTEXT SMALLINT

Alias used to qualify view
columns by specifying the
table location of the base
column; it must have the same
value as the alias used in the
view BLR (Binary Language
Representation) for this
context stream.

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of the column
being defined.

•

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

319

Column name Data Type Length Description

RDB$DEFAULT_VALUE BLOB
Subtype BLR: BLR (Binary
Language Representation) for
default clause.

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the column
is:

User-defined (value of 0)
System-defined (value
greater than 0)

RDB$SECURITY_CLASS CHAR 67

Names a security class defined
in the
RDB$SECURITY_CLASSES table;
the access restrictions defined
by this security class apply to
all users of this column.

RDB$COMPLEX_NAME CHAR 67 Reserved for future use.

RDB$NULL_FLAG SMALLINT
Indicates whether the column
may contain NULL values.

RDB$DEFAULT_SOURCE BLOB
Subtype Text: SQL source to
define defaults.

RDB$COLLATION_ID SMALLINT
Unique identifier for the
collation sequence.

RDB$ENCRYPTION_ID SMALLINT
Identifies encryption ID from
RDB$ENCRYPTIONS used to
encrypt this column.

RDB$DECRYPT_DEFAULT_VALU
E

BLOB
Subtype BLR: BLR (Binary
Language Representation) for
decrypt default clause.

RDB$DECRYPT_DEFAULT_SOU
RCE

BLOB
Subtype Text: SQL to define
decrypt default.

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

320

Column name Data Type Length Description

RDB$FLAGS SMALLINT 2
1 = One or more subscriptions
on the field

2.16. RDB$FIELDS

RDB$FIELDS defines the characteristics of a column. Each domain or column has a
corresponding row in RDB$FIELDS . Columns are added to tables by means of an entry in the
RDB$RELATION_FIELDS table, which describes local characteristics.

For domains, RDB$FIELDS includes domain name, null status, and default values. SQL columns
are defined in RDB$RELATION_FIELDS . For both domains and simple columns,
RDB$RELATION_FIELDS can contain default and null status information.

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67

Unique name of a domain or
system-assigned name for a
column, starting with SQL
<nnn>; the actual column
names are stored in the
RDB$FIELD_SOURCE column

of RDB$RELATION_FIELDS .

RDB$QUERY_NAME CHAR 67 Not used for SQL objects.

RDB$VALIDATION_BLR BLOB Not used for SQL objects.

RDB$VALIDATION_SOURCE BLOB Not used for SQL objects.

RDB$COMPUTED_BLR BLOB

Subtype BLR; for computed
columns, contains the BLR
(Binary Language
Representation) of the
expression the database
evaluates at the time of
execution.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

321

Column name Data Type Length Description

RDB$COMPUTED_SOURCE BLOB

Subtype Text: For computed
columns, contains the original
CHAR source expression for

the column.

RDB$DEFAULT_VALUE BLOB
Stores default rule; subtype
BLR.

RDB$DEFAULT_SOURCE BLOB
Subtype Text; SQL description
of a default value.

RDB$FIELD_LENGTH SMALLINT

Length in bytes of the field this
row defines:

For CHAR , VARCHAR , and
NCHAR data types, this is the

maximum length of the field,
and InterBase uses this length
when creating indexes on
columns.

For non- CHAR related data
types, the column lengths are:

D_FLOAT - 8
DOUBLE - 8
DATE - 4
BLOB - 8
TIME - 4
INT64 - 8
SHORT - 2
LONG - 4
QUAD - 8
FLOAT - 4
TIMESTAMP - 8
BOOLEAN - 2

RDB$FIELD_PRECISION SMALLINT
Stores the precision for
numeric and decimal types.

RDB$FIELD_SCALE SMALLINT
Stores negative scale for
numeric and decimal types.

•
•
•
•
•
•
•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

322

Column name Data Type Length Description

RDB$FIELD_TYPE SMALLINT

Specifies the data type of the
column being defined;
changing the value of this
column automatically changes
the data type for all columns
based on the column being
defined.

Valid values are:

BLOB - 261
BLOB_ID - 45
BOOLEAN - 17
CHAR - 14
CSTRING - 40
D_FLOAT - 11
DOUBLE - 27
FLOAT - 10
INT64 - 16
INTEGER - 8
QUAD - 9
SMALLINT - 7
DATE - 12

(dialect 3 DATE)
TIME - 13
TIMESTAMP - 35
VARCHAR - 37

Restrictions:

The value of this column
cannot be changed to or
from BLOB .
Non-numeric data causes a
conversion error in a column
changed from CHAR to
numeric.

Changing data from CHAR to
numeric and back again
adversely affects index
performance; for best results,
delete and re-create indexes
when making this type of
change.

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

323

Column name Data Type Length Description

RDB$FIELD_SUB_TYPE SMALLINT

Used to distinguish types of
Blobs, CHAR values, and
integers.

1 If RDB$FIELD_TYPE is 261
(Blob), predefined subtypes
can be:

0 - unspecified
1 - text
2 - BLR (Binary Language
Representation)
3 - access control list
4 - reserved for future use
5 - encoded description of a
table’s current metadata
6 - description of multi-
database transaction that
finished irregularly

2 If RDB$FIELD_TYPE is 14
(CHAR), columns can be:

0 - type is unspecified
1 - fixed BINARY data

Corresponds to the
RDB$FIELD_SUB_TYPE

column in the
RDB$COLLATIONS table.

3 If RDB$FIELD_TYPE is 7
(SMALLINT), 8 (INTEGER),
or 16 (INT64), the original
declaration was:

0 or NULL -
RDB$FIELD_TYPE

1 - NUMERIC
2 - DECIMAL

RDB$MISSING_VALUE BLOB Not used for SQL objects.

RDB$MISSING_SOURCE BLOB Not used for SQL objects.

RDB$DESCRIPTION BLOB
Subtype Text: Contains a user-
written description of the
column being defined.

•
•
•

•
•
•

•

•
•

•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

324

Column name Data Type Length Description

RDB$SYSTEM_FLAG SMALLINT For system tables

RDB$QUERY_HEADER BLOB Not used for SQL objects.

RDB$SEGMENT_LENGTH SMALLINT
Used for Blob columns only; a
non-binding suggestion for
the length of Blob buffers.

RDB$EDIT_STRING VARCHAR 125 Not used for SQL objects.

RDB$EXTERNAL_LENGTH SMALLINT

Length of the column as it
exists in an external table; if
the column is not in an
external table, this value is 0.

RDB$EXTERNAL_SCALE SMALLINT

Scale factor for an external
column of an integer data
type; the scale factor is the
power of 10 by which the
integer is multiplied.

RDB$EXTERNAL_TYPE SMALLINT

Indicates the data type of the
column as it exists in an
external table; valid values are:

BLOB - 261
BLOB_ID - 45
BOOLEAN - 17
CHAR - 14
CSTRING - 40
D_FLOAT - 11
DOUBLE - 27
FLOAT - 10
INT64 - 16
INTEGER - 8
QUAD - 9
SMALLINT - 7
DATE - 12

(dialect 3 DATE)
TIME - 13
TIMESTAMP - 35
VARCHAR - 37

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

325

Column name Data Type Length Description

RDB$DIMENSIONS SMALLINT

For an ARRAY data type,
specifies the number of
dimensions in the array; for a
non-array column, the value is
0.

RDB$NULL_FLAG SMALLINT

Indicates whether a column
can contain a NULL value.

Valid values are:

Empty: Can contain NULL
values.
1: Cannot contain NULL
values.

RDB$CHARACTER_LENGTH SMALLINT

Length in characters of the
field this row defines:

For CHAR , VARCHAR , and
NCHAR data types, this is the

quotient of
RDB$FIELD_LENGTH divided

by the number of bytes per
character in the character set
of the field. For other data
types, this length value is not
meaningful, and should be
NULL .

RDB$COLLATION_ID SMALLINT
Unique identifier for the
collation sequence.

RDB$CHARACTER_SET_ID SMALLINT

ID indicating character set for
the character or Blob columns;
joins to the
CHARACTER_SET_ID column

of the
RDB$CHARACTER_SETS

system table.

RDB$SUBSCRIBE_FLAG SMALLINT 2
Indicates one or more
subscriptions of the field.

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

326

2.17. RDB$RELATIONS

RDB$RELATIONS defines some of the characteristics of tables and views. Other characteristics,
such as the columns included in the table and a description of each column, are stored in the
RDB$RELATION_FIELDS table.

Column name Data Type Length Description

RDB$VIEW_BLR BLOB

Subtype BLR: For a view,
contains the BLR (Binary
Language Representation) of
the query InterBase evaluates
at the time of execution.

RDB$VIEW_SOURCE BLOB
Subtype Text: For a view,
contains the original source
query for the view definition.

RDB$DESCRIPTION BLOB
Subtype Text: Contains a user-
written description of the table
being defined.

RDB$RELATION_ID SMALLINT

Contains the internal
identification number used in
BLR (Binary Language
Representation) requests; do
not modify this column.

RDB$SYSTEM_FLAG SMALLINT

Indicates the contents of a
table, either:

User-data (value of 0)
System information (value
greater than 0)

Do not set this column to 1
when creating tables.

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

327

Column name Data Type Length Description

RDB$DBKEY_LENGTH SMALLINT

Length of the database key.

Values are:

For tables: 8
For views: 8 times the
number of tables referenced
in the view definition.

Do not modify the value of this
column.

RDB$FORMAT SMALLINT
For InterBase internal use only;
do not modify.

RDB$FIELD_ID SMALLINT

The number of columns in the
table; this column is
maintained by InterBase: do
not modify the value of this
column.

RDB$RELATION_NAME CHAR 67
The unique name of the table
defined by this row

RDB$SECURITY_CLASS CHAR 67

Security class defined in the
RDB$SECURITY_CLASSES

table; access controls defined
in the security class apply to all
uses of this table.

RDB$EXTERNAL_FILE VARCHAR 253

The file in which the external
table is stored; if this is blank,
the table does not correspond
to an external file.

RDB$RUNTIME BLOB
Subtype Summary: Describes
table metadata; used for
performance enhancement.

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

328

Column name Data Type Length Description

RDB$EXTERNAL_DESCRIPTI
ON BLOB

Subtype
EXTERNAL_FILE_DESCRIPT
ION ;

user-written description of the
external file.

RDB$OWNER_NAME CHAR 67

Identifies the creator of the
table or view; the creator is
considered the owner for SQL
security (GRANT / REVOKE)
purposes.

RDB$DEFAULT_CLASS CHAR 67

Default security class that
InterBase applies to columns
newly added to a table using
the SQL security system.

RDB$FLAGS SMALLINT

1 = SQL-defined table
2 = Global temporary table
4 = <reserved for future
use>
8 = Delete temporary rows
on commit
16 = Preserve temporary
rows on commit; rows are
deleted on database detach
32 = Indicates one or more
subscriptions on the relation

RDB$DATA_BLOCKING_FACT
OR SMALLINT

ODS 15 and later creates a
new column which stores a
table-specific record blocking
factor. It is set during GBAK
restore based on the
characteristics of the restored
data.

If a table does not have a
table-specific data blocking
factor, this system column
queries as NULL.

•
•
•

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

329

Column name Data Type Length Description

RDB$BLOB_BLOCKING_FACT
OR SMALLINT

ODS 15 and later creates a
new column which stores a
table-specific blob blocking
factor. It is set during GBAK
restore based on the
characteristics of the restored
blobs.

If a table does not have a
table-specific blob blocking
factor, this system column
queries as NULL.

Note: If a table has Blob
columns and no indexes
defined, then the table uses
the database-wide blocking
factor as before.

2.18. RDB$FILES

RDB$FILES lists the secondary files and shadow files for a database.

Column name Data type Length Description

RDB$FILE_NAME VARCHAR 253
Names either a secondary file
or a shadow file for the
database.

RDB$FILE_SEQUENCE SMALLINT

Either the order that secondary
files are to be used in the
database or the order of files
within a shadow set.

RDB$FILE_START INTEGER
Specifies the starting page
number for a secondary file or
shadow file.

RDB$FILE_LENGTH INTEGER
Specifies the file length in
blocks.

RDB$FILE_FLAGS SMALLINT Reserved for system use.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

330

Column name Data type Length Description

RDB$SHADOW_NUMBER SMALLINT

Set number: indicates to which
shadow set the file belongs; if
the value of this column is 0 or
missing, InterBase assumes the
file being defined is a
secondary file, not a shadow
file.

2.19. RDB$ROLES

RDB$ROLES lists roles that have been defined in the database and the owner of each role.

Column name Data type Length Description

RDB$ROLE_NAME CHAR 67 Name of role being defined

RDB$OWNER_NAME CHAR 67
Name of InterBase user who is
creating the role

2.20. RDB$FILTERS

RDB$FILTERS tracks information about a Blob filter.

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67
Unique name for the filter
defined by this row

RDB$DESCRIPTION BLOB
Subtype Text: Contains a user-
written description of the filter
being defined

RDB$MODULE_NAME VARCHAR 253
Names the library where the
filter executable is stored

RDB$ENTRYPOINT CHAR 67
The entry point within the filter
library for the Blob filter being
defined

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

331

Column name Data type Length Description

RDB$INPUT_SUB_TYPE SMALLINT
The Blob subtype of the input
data

RDB$OUTPUT_SUB_TYPE SMALLINT
The Blob subtype of the
output data

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the filter is:

User-defined (value of 0)
System-defined (value
greater than 0)

2.21. RDB$SECURITY CLASSES

RDB$SECURITY_CLASSES defines access control lists and associates them with databases,
tables, views, and columns in tables and views. For all SQL objects, the information in this table is
duplicated in the RDB$USER_PRIVILEGES system table.

Column name Data type Length Description

RDB$SECURITY_CLASS CHAR 67

Security class being defined; if
the value of this column
changes, change its name in
the RDB$SECURITY_CLASS
column in RDB$_DATABASE
, RDB$RELATIONS , and
RDB$RELATION_FIELDS

RDB$ACL BLOB

Subtype ACL: Access control
list that specifies users and the
privileges granted to those
users

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of the security
class being defined

2.22. RDB$FORMATS

RDB$FORMATS keeps track of the format versions of the columns in a table. InterBase assigns the
table a new format number at each change to a column definition. Direct metadata operations

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

332

such as ALTER TABLE increment the format version; so do creating, dropping, activating, and
deactivating triggers. This table allows existing application programs to access a changed table,
without needing to be recompiled.

Note: InterBase allows only 255 changes to a metadata of a table. Once the limit is reached, the
database must be backed up and restored before more metadata changes can be made. Only
changes that affect a structure count of a row toward this limit. Changing a trigger from active to
inactive, for example, does not count toward the limit.

Column name Data Type Length Description

RDB$RELATION_ID SMALLINT
Names a table that exists in
RDB$RELATIONS .

RDB$FORMAT SMALLINT

Specifies the format number of
the table; a table can have any
number of different formats,
depending on the number of
updates to the table.

RDB$DESCRIPTOR BLOB

Subtype Format: Lists each
column in the table, along with
its data type, length, and scale
(if applicable).

2.23. RDB$TRANSACTIONS

RDB$TRANSACTIONS keeps track of all multi-database transactions.

Column name Data type Length Description

RDB$TRANSACTION_ID INTEGER

Identifies the multi-database
transaction being described

On ODS 15, it remains
INTEGER
On ODS 16, dialect 1 get a
"double precision" type
since it cannot support
dtype_int64
On ODS 16 or superior,
dialect 3 (the majority of
users) gets NUMERIC(18,0)
which is the native
dtype_int64 type.

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

333

Column name Data type Length Description

RDB$TRANSACTION_STATE SMALLINT

Indicates the state of the
transaction

Valid values are:

0 - limbo
1 - committed
2 - rolled back

RDB$TIMESTAMP DATE Reserved for future use

RDB$TRANSACTION_DESCRI
PTION BLOB

Subtype
TRANSACTION_DESCRIPTIO
N ;

describes a prepared multi-
database transaction, available
if the reconnect fails

2.24. RDB$FUNCTION ARGUMENTS

RDB$FUNCTION_ARGUMENTS defines the attributes of a function argument.

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67

Unique name of the function
with which the argument is
associated; must correspond
to a function name in
RDB$FUNCTIONS

RDB$ARGUMENT_POSITION SMALLINT

Position of the argument
described in the
RDB$FUNCTION_NAME

column in relation to the other
arguments

RDB$MECHANISM SMALLINT

Specifies whether the
argument is passed by value
(value of 0) or by reference
(value of 1)

•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

334

Column name Data type Length Description

RDB$FIELD_TYPE SMALLINT

Data type of the argument
being defined

Valid values are:

BLOB - 261
BLOB_ID - 45
BOOLEAN - 17
CHAR - 14
CSTRING - 40
D_FLOAT - 11
DOUBLE - 27
FLOAT - 10
INT64 - 16
INTEGER - 8
QUAD - 9
SMALLINT - 7
DATE - 12

(dialect 3 DATE)
TIME - 13
TIMESTAMP - 35
VARCHAR - 37

RDB$FIELD_SCALE SMALLINT

Scale factor for an argument
that has an integer data type;
the scale factor is the power of
10 by which the integer is
multiplied

RDB$FIELD_LENGTH SMALLINT

The length of the argument
defined in this row

Valid column lengths are:

BLOB - 8
BOOLEAN - 2
D_FLOAT - 8
DATE - 4
DOUBLE - 8
FLOAT - 4
INT64 - 8
LONG - 4
QUAD - 8
SHORT - 2
TIME - 4
TIMESTAMP - 8

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

335

Column name Data type Length Description

RDB$FIELD_SUB_TYPE SMALLINT

If RDB$FIELD_TYPE is 7
(SMALLINT), 8 (INTEGER
), or 16 (INT64) the

subtype can be:

0 or NULL -
RDB$FIELD_TYPE

1 - NUMERIC
2 - DECIMAL

RDB$CHARACTER_SET_ID SMALLINT
Unique numeric identifier for a
character set

RDB$FIELD_PRECISION SMALLINT
The declared precision of
the DECIMAL or NUMERIC
function argument

2.25. RDB$TRIGGER MESSAGES

RDB$TRIGGER_MESSAGES defines a trigger message and associates the message with a
particular trigger.

Column name Data type Length Description

RDB$TRIGGER_NAME CHAR 67

Names the trigger associated
with this trigger message; the
trigger name must exist in
RDB$TRIGGERS

RDB$MESSAGE_NUMBER SMALLINT

The message number of the
trigger message being
defined; the maximum number
of messages is 32,767

RDB$MESSAGE VARCHAR 78
The source for the trigger
message

2.26. RDB$FUNCTIONS

RDB$FUNCTIONS defines a user-defined function. RDB$FUNCTIONS

•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

336

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67 Unique name for a function

RDB$FUNCTION_TYPE SMALLINT Reserved for future use

RDB$QUERY_NAME CHAR 67
Alternate name for the
function that can be used in
isql

RDB$DESCRIPTION BLOB
Subtype Text: Contains a
user-written description of
the function being defined

RDB$MODULE_NAME VARCHAR 253
Names the function library
where the executable
function is stored

RDB$ENTRYPOINT CHAR 67
Entry point within the
function library for the
function being defined

RDB$RETURN_ARGUMENT SMALLINT

Position of the argument
returned to the calling
program; this position is
specified in relation to
other arguments

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the function
is:

User-defined (value of 0)
System-defined (value of 1)

2.27. RDB$TRIGGERS

RDB$TRIGGERS defines triggers.

Column name Data type Length Description

RDB$TRIGGER_NAME CHAR 67
Names the trigger being
defined.

RDB$RELATION_NAME CHAR 67

Name of the table associated
with the trigger being defined;
this name must exist in
RDB$RELATIONS .

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

337

Column name Data type Length Description

RDB$TRIGGER_SEQUENCE SMALLINT

Sequence number for the
trigger being defined;
determines when a trigger is
executed in relation to others
of the same type.

Triggers with the same
sequence number execute in
alphabetic order by trigger
name.
If this number is not
assigned by the user,
InterBase assigns a value of
0.

RDB$TRIGGER_TYPE SMALLINT

The type of trigger being
defined.

Values are:

1 - BEFORE INSERT
2 - AFTER INSERT
3 - BEFORE UPDATE
4 - AFTER UPDATE
5 - BEFORE DELETE
6 - AFTER DELETE

RDB$TRIGGER_SOURCE BLOB

Subtype Text: Original source
of the trigger definition; the
isql SHOW TRIGGERS

statement displays information
from this column.

RDB$TRIGGER_BLR BLOB
Subtype BLR: BLR (Binary
Language Representation) of
the trigger source.

RDB$DESCRIPTION BLOB

Subtype Text: User-written
description of the trigger
being defined; when including
a comment in a
CREATE TRIGGER or
ALTER TRIGGER statement,

isql writes to this column.

•

•

•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

338

Column name Data type Length Description

RDB$TRIGGER_INACTIVE SMALLINT

Indicates whether the trigger
being defined is:

Active (value of 0)
Inactive (value of 1)

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the trigger
is:

User-defined (value of 0)
System-defined (value
greater than 0)

RDB$FLAGS SMALLINT

1 = SQL-defined trigger

2 = ignore permission
checking

User-defined triggers require
that the user executing them
have underlying access
permission to the objects
accessed by the trigger.
However, internal, system-
defined triggers occasionally
need to bypass those
permission checks to enforce
database integrity.

2.28. RDB$GENERATORS

RDB$GENERATORS stores information about generators, which provide the ability to generate a
unique identifier for a table.

Column name Data type Length Description

RDB$GENERATOR_NAME CHAR 67
Name of the table to contain
the unique identifier produced
by the number generator

RDB$GENERATOR_ID SMALLINT
Unique system-assigned ID
number for the generator

•
•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

339

Column name Data type Length Description

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the
generator is:

User-defined (value of 0)
System-defined (value
greater than 0)

2.29. RDB$TYPES

RDB$TYPES records enumerated data types and alias names for InterBase character sets and
collation orders.

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67
Column for which the
enumerated data type is being
defined.

RDB$TYPE SMALLINT

Identifies the internal number
that represents the column
specified above; type codes
(same as
RDB$DEPENDENT_TYPES):

0 - table
1 - view
2 - trigger
3 - computed_field
4 - validation
5 - procedure
6 - expression index
7 - exception
8 - user
9 - field
10 - index
11 - generator
12 - user group
13 - role
14 - udf
15 - encryption
16 - subscription

All other values are reserved
for future use.

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

340

Column name Data Type Length Description

RDB$TYPE_NAME CHAR 67
Text that corresponds to the
internal number.

RDB$DESCRIPTION BLOB

Subtype Text: Contains a user-
written description of the
enumerated data type being
defined.

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the data
type is:

User-defined (value of 0)
System-defined (value
greater than 0)

2.30. RDB$INDEX SEGMENTS

RDB$INDEX_SEGMENTS specifies the columns that comprise an index for a table. Modifying
these rows corrupts rather than changes an index unless the RDB$INDICES row is deleted and
re-created in the same transaction.

Column name Data type Length Description

RDB$INDEX_NAME CHAR 67

The index associated with this
index segment; if the value of
this column changes, the
RDB$INDEX_NAME column in
RDB$INDICES must also be

changed

RDB$FIELD_NAME CHAR 67

The index segment being
defined; the value of this
column must match the value
of the RDB$FIELD_NAME
column in
RDB$RELATION_FIELDS

RDB$FIELD_POSITION SMALLINT
Position of the index segment
being defined; corresponds to
the sort order of the index

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

341

Column name Data type Length Description

RDB$STATISTICS DOUBLE PRECISION
OSD 16 - Segment-specific
statistics for index selectivity

2.31. RDB$USER PRIVILEGES

RDB$USER_PRIVILEGES keeps track of the privileges assigned to a user through a SQL GRANT
statement. There is one occurrence of this table for each user/privilege intersection.

Column name Data type Length Description

RDB$USER CHAR 67
Names the user who was
granted the privilege listed in
the RDB$PRIVILEGE column.

RDB$GRANTOR CHAR 67
Names the user who granted
the privilege.

RDB$PRIVILEGE CHAR 6

Identifies the privilege granted
to the user listed in the
RDB$USER column, above.

The character stored in the
field corresponds to the valid
values listed below.

Valid values are:

SELECT (S)
DELETE (D)
INSERT (I)
UPDATE (U)
REFERENCE (R)
MEMBER OF (M) (for roles)
DECRYPT (T)
ENCRYPT (E)
SUBSCRIBE (B)
EXECUTE (X)
TRUNCATE (Z)

RDB$GRANT_OPTION SMALLINT

Indicates whether the privilege
was granted with the
WITH GRANT OPTION (value

of 1) or not (value of 0).

•
•
•
•
•
•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

342

Column name Data type Length Description

RDB$RELATION_NAME CHAR 67
Identifies the table or role to
which the privilege applies.

RDB$FIELD_NAME CHAR 67
For update privileges,
identifies the column to which
the privilege applies.

RDB$USER_TYPE SMALLINT

RDB$OBJECT_TYPE SMALLINT

2.32. RDB$INDICES

RDB$INDICES defines the index structures that allow InterBase to locate rows in the database
more quickly. Because InterBase provides both simple indexes (a single-key column) and multi-
segment indexes (multiple-key columns), each index defined in this table must have
corresponding occurrences in the RDB$INDEX_SEGMENTS table.

Column name Data type Length Description

RDB$INDEX_NAME CHAR 67

Names the index being
defined; if the value of this
column changes, change its
value in the
RDB$INDEX_SEGMENTS table.

RDB$RELATION_NAME CHAR 67

Names the table associated
with this index; the table must
be defined in the
RDB$RELATIONS table.

RDB$INDEX_ID SMALLINT
Contains an internal identifier
for the index being defined; do
not write to this column.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

343

Column name Data type Length Description

RDB$UNIQUE_FLAG SMALLINT

Specifies whether the index
allows duplicate values.

Values:

0 - allows duplicate values
1 - does not allow duplicate
values

Eliminate duplicates before
creating a unique index.

RDB$DESCRIPTION BLOB
Subtype Text: User-written
description of the index.

RDB$SEGMENT_COUNT SMALLINT
Number of segments in the
index; a value of 1 indicates a
simple index.

RDB$INDEX_INACTIVE SMALLINT

Indicates whether the index is:

Active (value of 0)
Inactive (value of 1)

This is not set for system
tables.

RDB$INDEX_TYPE SMALLINT

Contains an internal identifier
for sort order, either ascending
(ASC) or descending (DESC):

ASC (value of 0)
DESC (value of 1)

RDB$FOREIGN_KEY CHAR 67
Name of FOREIGN KEY
constraint for which the index
is implemented.

RDB$SYSTEM_FLAG SMALLINT

Indicates whether the index is:

User-defined (value of 0)
System-defined (value
greater than 0)

•
•

•
•

•
•

•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

344

Column name Data type Length Description

RDB$EXPRESSION_BLR BLOB

Subtype BLR: Contains the BLR
(Binary Language
Representation) for the
expression, evaluated by the
database at execution time;
used for PC semantics.

RDB$EXPRESSION_SOURCE BLOB
Subtype Text: Contains original
text source for the column;
used for PC semantics.

RDB$STATISTICS
DOUBLE
 PRECIS
ION

Selectivity factor for the index;
the optimizer uses index
selectivity, a measure of
uniqueness for indexed
columns, to choose an access
strategy for a query.

RDB$INDEX_SPLIT_NULL SMALLINT
Indicates if index should store
NULL keys in different buckets.

2.33. RDB$USERS

RDB$USERS only permits users in that system table access to the database.

Column name Data type Length Description

RDB$USER_NAME (RDB$USE
R_NAME) VARCHAR(128)

CHARACTER SET
UNICODE_FSS Nullable

RDB$SYSTEM_USER_NAME
(RDB$USER_NAME) VARCHAR(128)

CHARACTER SET
UNICODE_FSS Nullable

RDB$GROUP_NAME (RDB$US
ER_NAME) VARCHAR(128)

CHARACTER SET
UNICODE_FSS Nullable

RDB$UID (RDB$UID) INTEGER Nullable

RDB$GID (RDB$GID) INTEGER Nullable

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

345

Column name Data type Length Description

RDB$PASSWORD (RDB$PASS
WORD) VARCHAR(32)

CHARACTER SET OCTETS
Nullable

RDB$USER_ACTIVE (RDB$U
SER_ACTIVE) CHAR(2) Nullable

RDB$USER_PRIVILEGE (RD
B$USER_PRIVILEGE) INTEGER Nullable

RDB$DESCRIPTION (RDB$D
ESCRIPTION) BLOB

segment 80, subtype
TEXT CHARACTER SET
UNICODE_FSS Nullable

RDB$FIRST_NAME
(RDB$NAME_PART)

VARCHAR(32)
CHARACTER SET
UNICODE_FSS Nullable

RDB$MIDDLE_NAME
(RDB$NAME_PART)

VARCHAR(32)
CHARACTER SET
UNICODE_FSS Nullable

RDB$LAST_NAME
(RDB$NAME_PART

VARCHAR(32)
CHARACTER SET
UNICODE_FSS Nullable

RDB$DEFAULT_ROLE
(RDB$USER)

CHAR(67)
CHARACTER SET
UNICODE_FSS Nullable

RDB$PASSWORD_DIGEST
(RDB$PASSWORD_DIGEST)

VARCHAR(16) Nullable

2.34. RDB$VIEW RELATIONS

RDB$VIEW_RELATIONS is not used by SQL objects.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

346

Column name Data type 7 Length Description

RDB$VIEW_NAME CHAR 67

Name of a view: The
combination of
RDB$VIEW_NAME and
RDB$VIEW_CONTEXT must

be unique

RDB$RELATION_NAME CHAR 67
Name of a table referenced
in the view definition

RDB$VIEW_CONTEXT SMALLINT

Alias used to qualify view
columns; must have the
same value as the alias used
in the view BLR (Binary
Language Representation)
for this query

RDB$CONTEXT_NAME CHAR 67

Textual version of the alias
identified in
RDB$VIEW_CONTEXT

This variable must:

Match the value of the
RDB$VIEW_SOURCE

column for the
corresponding table in
RDB$RELATIONS

Be unique in the view

2.35. RDB$SUBSCRIPTIONS

Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique
key on RDB$SUBSCRIPTION_NAME, RDB$SUBSCRIBER_NAME, RDB$DESTINATION. Additional
fields store control information to facilitate "check in" and "check out" of changed data.

This includes transaction IDs, timestamps and transactional context of last observation of
changed data on the schema object. The term "check out" denotes SELECT of changed columns
of rows from subscribed tables when a subscritpion has been activated. The term "check in"
refers to INSERT, UPDATE and DELETE of changed columns of rows from subscribed tables when
a subscription has been activated. A subscription becomes activated during a database session
with the execution of OPEN SUBSCRIPTION. It is deactivated with the execution of CLOSED
SUBSCRIPTION.

RDB$SUBSCRIPTION

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

347

Column name Data type Length Description

RDB$SUBSCRIPTION_NAME CHAR 67 Name of subscription

RDB$RELATION_NAME CHAR 67 Name of relation or view

RDB$FIELD_NAME CHAR 67 Name of field

RDB$DESCRIPTION BLOB
Subtype text: User-written
description of subscription

RDB$SECURITY CLASS CHAR 67
Security class of the
subscription (the owner for
SQL security purposes)

RDB$OWNER_NAME CHAR 67
User who created the
subscription

RDB$RUNTIME BLOB
Runtime binary information to
enhance performance

RDB$FLAGS SMALLINT 2

RDB$INSERT BOOLEAN 2 Inserts are tracked

RDB$UPDATE BOOLEAN 2 Updates are tracked

RDB$DELETE BOOLEAN 2 Deletes are tracked

RDB$CHANGE BOOLEAN 2
Tracks all operations, but
returns as soon as any column
changes

2.36. RDB$SUBSCRIBERS

The required Subscriber information is stored in a new system relation RDB$SUBSCRIBERS

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

348

Column name Data type Length Description

RDB$SUBSCRIBER_NAME CHAR 31 Name of subscribing user

RDB$SUBSCRIPTION_NAME CHAR 67 Name of subscription

RDB$DESTINATION CHAR 32 Destination of subscriber

RDB$FLAGS SMALLINT 2

RDB$CHECK_OUT_TRANSACT
ION_ID INT64 8

Transaction ID of last
subscription check out

RDB$CHECK_OUT_TIMESTAMP TIMESTAMP 8
Date and time of last
subscription check out

RDB$CHECK_OUT_OLDEST_
TRANSACTION_ID

INT64 8
Transaction of oldest active
transaction at check out

RDB$CHECK_OUT_TRANSACTI
ONS

BLOB
Set of active transaction IDs at
last transaction check out

RDB$CHECK_IN_TRANSACTIO
N_ID

INT64 8
Transaction ID of last
subscription check in

RDB$CHECK_IN_TIMESTAMP TIMESTAMP 8
Date and time of last
subscription check in

RDB$CHECK_IN_TRANSACTIO
NS

BLOB
Set of check in transaction IDs
by this subscription

3. System Temporary Tables

The InterBase server keeps a massive collection of information about its databases, connections,
transactions, and statements. This information is made available through the following system
temporary tables. For more information about using these tables, see the InterBase Operations
Guide.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

349

http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/15/en/Operations_Guide

ODS-16: In System Temporary Tables, Performance Monitoring data counters are updated to 64-
bit Integer type for dialect 3. Dialect 1 cannot support 64-bit Integer type, so a 64-bit Integer
type is internally convered to type "double" as it is same in size (8 bytes). It also accommodates
the large values for 64-bit addresses and counter values.

ODS 15 remains the same as before and only supports 32-bit Integer counters.

ODS <= 15 will continue to have 32-bit INTEGER counters as before (for both dialect 1 and
dialect 3 databases).
ODS >= 16 will have the counters defined as "double precision" data type for dialect 1
databases.
ODS >= 16 will have the counters defined as "NUMERIC(18,0)" data type for dialect 3
databases. As you know, by default, any new database is created as ODS 19, dialect 3.

Temporary table names begin with TMP$. InterBase offers the following system temporary
tables:

TMP$ATTACHMENTS TMP$DATABASE TMP$HEAPS

TMP$POOL_BLOCKS TMP$POOLS TMP$PROCEDURES

TMP$RELATIONS TMP$STATEMENTS TMP$TRANSACTIONS

TMP$TRIGGERS TMP$INDICES

3.1. TMP$ATTACHMENTS

The TMP$ATTACHMENTS table contains one row for each connection to a database.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$ATTACHMENT
_ID INTEGER

Connection
identifier

TMP$DATABASE_I
D INTEGER Database identifier

TMP$POOL_ID INTEGER Reserved

TMP$POOL_MEMOR
Y INTEGER DOUBLE PRECISION NUMERIC (18, 0) Reserved

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

350

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$STATEMENTS SMALLINT
Number of
compiled
statements

TMP$TRANSACTIO
NS SMALLINT

Number of active
transactions

TMP$TIMESTAMP TIMESTAMP
Connection create
timestamp

TMP$QUANTUM INTEGER DOUBLE PRECISION NUMERIC (18, 0) Units of execution

TMP$USER CHAR[67] User name

TMP$USER_IP_AD
DR CHAR [31] User IP address

TMP$USER_HOST CHAR [31] User host name

TMP$USER_PROCE
SS CHAR [31] User process ID

TMP$STATE CHAR [31]

Current State:
ACTIVE ,
CONNECTED

Allowed Update
actions: CANCEL ,
KEEPALIVE ,
SHUTDOWN

TMP$PRIORITY CHAR [31] Reserved

TMP$DBKEY_ID INTEGER DOUBLE PRECISION NUMERIC (18, 0)
Transaction ID of
dbkey

TMP$ACTIVE_SOR
TS SMALLINT

Number of active
sorts

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC (18, 0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC (18, 0)
Page marks all
database files

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

351

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records selected by
connection

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records inserted by
connection

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records updated by
connection

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records deleted by
connection

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record backouts

3.2. TMP$DATABASE

TMP$DATABASE contains one row for each database you are attached to.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1 (no
change, if

blank)

Data type for
>=ODS 16,

dialect 3 (no
change, if

blank)

Description

TMP$DATABASE_I
D INTEGER Database identifier

TMP$DATABASE_P
ATH VARCHAR[253] Database pathname

TMP$ATTACHMENT
S SMALLINT

Number of active
connections

TMP$STATEMENTS SMALLINT
Number of
compiled
statements

TMP$STATE CHAR[31]
FLUSH, SWEEP,
RECLAIM

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

352

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1 (no
change, if

blank)

Data type for
>=ODS 16,

dialect 3 (no
change, if

blank)

Description

TMP$ALLOCATED_
PAGES INTEGER

Pages allocated to
all database files

TMP$POOLS INTEGER
Number of memory
pools

TMP$PROCEDURES SMALLINT
Number of
procedures loaded

TMP$RELATIONS SMALLINT
Number of
relations loaded

TMP$TRIGGERS SMALLINT
Number of triggers
loaded

TMP$ACTIVE_THR
EADS SMALLINT

Active threads in
database

TMP$SORT_MEMOR
Y INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Sort buffer
allocated memory

TMP$CURRENT_ME
MORY INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Current memory
allocated database

TMP$MAXIMUM_ME
MORY INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Maximum memory
ever allocated

TMP$PERMANENT_
POOL_MEMORY INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Permanent pool
memory size

TMP$CACHE_POOL
_MEMORY INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Buffer pool
memory size

TMP$TRANSACTIO
NS SMALLINT

Number of active
transactions

TMP$TRANSACTIO
N_COMMITS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction
commits

TMP$TRANSACTIO
N_ROLLBACKS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction
rollbacks

TMP$TRANSACTIO
N_PREPARES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction
prepares

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

353

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1 (no
change, if

blank)

Data type for
>=ODS 16,

dialect 3 (no
change, if

blank)

Description

TMP$TRANSACTIO
N_DEADLOCKS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction
deadlocks

TMP$TRANSACTIO
N_CONFLICTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction update
conflicts

TMP$TRANSACTIO
N_WAITS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of
transaction wait for

TMP$NEXT_TRANS
ACTION INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Next transaction
number

TMP$OLDEST_INT
ERESTING INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Oldest interesting
transaction

TMP$OLDEST_ACT
IVE INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Oldest active
transaction

TMP$OLDEST_SNA
PSHOT INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Oldest snapshot
transaction

TMP$CACHE_BUFF
ERS INTEGER

Number of cache
buffers

TMP$CACHE_PREC
EDENCE INTEGER

Nodes in cache
precedence graph

TMP$CACHE_LATC
H_WAITS INTEGER DOUBLE PRECISION NUMERIC (18, 0) Buffer latch waits

TMP$CACHE_FREE
_WAITS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of waits for
a free buffer

TMP$CACHE_FREE
_WRITES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Number of writes
to free buffers

TMP$SWEEP_INTE
RVAL INTEGER

Sweep trigger
interval

TMP$SWEEP_ACTI
VE CHAR[1]

Y (active) N (not-
active)

TMP$SWEEP_RELA
TION CHAR[67]

Relation currently
being swept

TMP$SWEEP_RECO
RDS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records swept in
above relation

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

354

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1 (no
change, if

blank)

Data type for
>=ODS 16,

dialect 3 (no
change, if

blank)

Description

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC (18, 0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC (18, 0)
Page marks all
database files

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records selected
from database

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records inserted
into database

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records updated to
database

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Records deleted
from database

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION NUMERIC (18, 0)

Garbage collect
record backouts

3.3. TMP$HEAPS

TMP$HEAPS contains one row for each entry in the InterBase Random and Block heap.

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$HEAP_TYPE CHAR[31] RANDOM or BLOCK

TMP$HEX_ADDRES
S CHAR[31]

Memory address of
a free block in hex

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

355

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$ADDRESS DOUBLE PRECISION
NUMERIC

(18,0)
Memory address of
free block

TMP$FREE_MEMOR
Y INTEGER DOUBLE PRECISION

NUMERIC

(18,0)

Amount of free
memory in the
block

3.4. TMP$POOL BLOCKS

The TMP$POOL_BLOCKS table contains one row for each block of memory in each pool.

Column name
Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$POOL_ID INTEGER

TMP$ACC INTEGER

TMP$ARR INTEGER

TMP$ATT INTEGER

TMP$BCB INTEGER Buffer control block

TMP$BDB INTEGER
Buffer descriptor
block

TMP$BLB INTEGER Blob block

TMP$BLF INTEGER

TMP$BMS INTEGER

TMP$BTB INTEGER

TMP$BTC INTEGER

TMP$CHARSET INTEGER

TMP$CSB INTEGER
Compiler scratch
block

TMP$CSCONVERT INTEGER

TMP$DBB INTEGER Database block

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

356

Column name
Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$DCC INTEGER
Data compression
control block

TMP$DFW INTEGER
Deferred work
block

TMP$DLS INTEGER

TMP$EXT INTEGER

TMP$FIL INTEGER File block

TMP$FLD INTEGER

TMP$FMT INTEGER Format block

TMP$FRB INTEGER Free block

TMP$FUN INTEGER

TMP$HNK INTEGER Hunk block

TMP$IDB INTEGER

TMP$IDL INTEGER

TMP$IRB INTEGER

TMP$IRL INTEGER

TMP$LCK INTEGER Lock block

TMP$LWT INTEGER

TMP$MAP INTEGER

TMP$MFB INTEGER

TMP$NOD INTEGER Node block

TMP$OPT INTEGER

TMP$PRC INTEGER

TMP$PRE INTEGER Precedence block

TMP$PRM INTEGER

TMP$REC INTEGER Record block

TMP$REL INTEGER Relation block

TMP$REQ INTEGER Request block

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

357

Column name
Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RIV INTEGER

TMP$RSB INTEGER
Record source
block

TMP$RSC INTEGER

TMP$SAV INTEGER

TMP$SBM INTEGER
Sparse bitmap
block

TMP$SCL INTEGER

TMP$SDW INTEGER

TMP$SMB INTEGER Sort map block

TMP$SRPB INTEGER

TMP$STR INTEGER String block

TMP$SVC INTEGER

TMP$SYM INTEGER

TMP$TEXTTYPE INTEGER

TMP$TFB INTEGER
Temporary field
block

TMP$TPC INTEGER

TMP$TRA INTEGER Transaction block

TMP$USR INTEGER

TMP$VCL INTEGER Vector long block

TMP$VCT INTEGER

TMP$VCX INTEGER

TMP$XCP INTEGER

3.5. TMP$POOLS

The TMP$POOLS table contains one row for each current memory pool. A pool is a collection of
memory to support the allocation needs of an internal system object.

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

358

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$POOL_ID INTEGER Pool identifier

TMP$TYPE CHAR[31] Pool type

TMP$POOL_MEMOR
Y INTEGER DOUBLE PRECISION

Numeric

(18, 0)
Total memory in
pool

TMP$FREE_MEMOR
Y INTEGER DOUBLE PRECISION

Numeric

(18, 0)
Free memory in
pool

TMP$EXTEND_MEM
ORY INTEGER DOUBLE PRECISION

Numeric

(18, 0)
Memory by which
pool extended

TMP$FREE_STACK
_NODES SMALLINT

Free linked list stack
nodes

TMP$FREE_BITMA
P_BUCKETS SMALLINT

Free bitmap
buckets

TMP$FREE_BITMA
P_SEGMENTS INTEGER

Free bitmap
segments

3.6. TMP$PROCEDURES

The TMP$PROCEDURES table contains one row for each procedure executed since the current
connection began.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$PROCEDURE_
ID INTEGER Procedure identifier

TMP$DATABASE_I
D INTEGER Database identifier

TMP$PROCEDURE_
NAME CHAR[67] Procedure name

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMOR
Y INTEGER Pool memory size

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

359

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$CLONE SMALLINT
Cloned instance
number

TMP$TIMESTAMP TIMESTAMP
Start time of
procedure

TMP$USE_COUNT SMALLINT
Statements
compiled with
procedure

TMP$QUANTUM INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Units of execution

TMP$INVOCATION
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Number of calls to
procedure

TMP$PAGE_READS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page marks all
database files

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
procedure

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records inserted by
procedure

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records updated by
procedure

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

360

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records deleted by
procedure

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record backouts

3.7. TMP$RELATIONS

The TMP$RELATIONS table contains one row for each relation referenced since the current
connection began.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RELATION_I
D SMALLINT Relation identifier

TMP$DATABASE_I
D INTEGER Database identifier

TMP$RELATION_N
AME CHAR[67] Relation name

TMP$USE_COUNT SMALLINT
Statements
compiled against
relation

TMP$SWEEP_COUN
T SMALLINT

Database sweep or
garbage collector

TMP$SCAN_COUNT INTEGER Sequential scans

TMP$FORMATS SMALLINT
Number of relation
formats

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

361

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$POINTER_PA
GES INTEGER

Number of relation
pointer pages

TMP$DATA_PAGES INTEGER
Number of relation
data pages

TMP$GARBAGE_CO
LLECT_PAGES INTEGER

Number of data
pages to garbage
collect

TMP$PAGE_READS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page marks all
database files

TMP$RECORD_IDX
_SELECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
index retrieval

TMP$RECORD_SEQ
_SELECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
sequential scan

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records inserted
into relation

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records updated in
relation

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records deleted
from relation

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

362

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record backouts

3.8. TMP$STATEMENTS

The TMP$STATEMENTS table contains one row for each statement currently executing for any
current connection.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$STATEMENT_
ID INTEGER Statement identifier

TMP$ATTACHMENT
_ID INTEGER

Connection
identifier

TMP$TRANSACTIO
N_ID INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Transaction number

TMP$SQL VARCHAR[4094] SQL string

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMOR
Y INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Pool memory size

TMP$CLONE SMALLINT
Cloned instance
number

TMP$TIMESTAMP TIMESTAMP
Start time of
statement

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

363

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$QUANTUM INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Units of execution

TMP$INVOCATION
S INTEGER

Number of calls to
statement

TMP$STATE CHAR[31]

Current State:
ACTIVE ,
INACTIVE ,
STALLED ,
CANCELLED

Allowed Update
actions: CANCEL

TMP$PRIORITY CHAR[31] Reserved

TMP$PAGE_READS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page marks all
database files

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
statement

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records inserted by
statement

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records updated by
statement

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

364

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records deleted by
statement

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record backouts

3.9. TMP$TRANSACTIONS

The TMP$TRANSACTIONS table contains one row for each transaction that is active or in limbo.

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$TRANSACTIO
N_ID INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Transaction number

TMP$ATTACHMENT
_ID INTEGER

Connection
identifier

TMP$POOL_ID INTEGER

TMP$POOL_MEMOR
Y INTEGER DOUBLE PRECISION

NUMERIC

(18,0)

TMP$TIMESTAMP TIMESTAMP
Start time of
connection

TMP$SNAPSHOT INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Snapshot
transaction number

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

365

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$QUANTUM INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Units of execution

TMP$SAVEPOINTS INTEGER
savepoint number
of records

TMP$READONLY CHAR[1]
Transaction is read
only

TMP$WRITE CHAR[1]
Transaction has
written data

TMP$NOWAIT CHAR[1]
Transaction is no
wait

TMP$COMMIT_RET
AINING CHAR[1]

Commit retaining
performed

TMP$STATE CHAR[31]

ACTIVE , LIMBO
, COMMITTING ,
PRECOMMITTED

Allowed Update
actions: COMMIT ,
ROLLBACK

TMP$PRIORITY CHAR Reserved

TMP$TYPE CHAR[31]
SNAPSHOT ,
READ_COMMITTED

TMP$PAGE_READS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page reads all
database files

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page marks all
database files

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

366

Column name
Data type for

<=ODS 15

Data type for
>=ODS 16,

dialect 1

Data type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
transaction

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records inserted by
transaction

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records updated by
transaction

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records deleted by
transaction

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record backouts

3.10. TMP$TRIGGERS

The TMP$TRIGGERS table contains one row for each trigger executed since the current
connection began.

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$TRIGGER_ID INTEGER Trigger identifier

TMP$DATABASE_I
D INTEGER Database identifier

TMP$RELATION_N
AME CHAR[67]

Relation name for
trigger

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

367

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$TRIGGER_NA
ME CHAR[67] Trigger name

TMP$TRIGGER_TY
PE SMALLINT

The type of trigger
being defined
Values are:

1 - BEFORE INSERT

2 - AFTER INSERT

3 - BEFORE UPDATE

4 - AFTER UPDATE

5 - BEFORE DELETE

6 - AFTER DELETE

TMP$TRIGGER_SE
QUENCE SMALLINT

Sequence number
for the trigger
being defined;
determines when a
trigger is executed
in relation to others
of the same type.

Triggers with the
same sequence
number execute in
alphabetic order by
trigger name.

If this number is not
assigned by the user,
InterBase assigns a
value of 0.

TMP$TRIGGER_OR
DER CHAR[31]

Position of the
trigger

TMP$TRIGGER_OP
ERATION CHAR[31]

UPDATE, DELETE or
INSERT

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMOR
Y INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Pool memory size

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

368

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$CLONE SMALLINT
Cloned instance
number

TMP$TIMESTAMP TIMESTAMP Start time of trigger

TMP$QUANTUM INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Units of Execution

TMP$INVOCATION
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Number of calls to
trigger

TMP$PAGE_READS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page reads all
database file

TMP$PAGE_WRITE
S INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page writes all
database files

TMP$PAGE_FETCH
ES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION
NUMERIC

(18,0)
Page marks all
database files

TMP$RECORD_SEL
ECTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records selected by
trigger

TMP$RECORD_INS
ERTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records inserted by
trigger

TMP$RECORD_UPD
ATES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records updated by
trigger

TMP$RECORD_DEL
ETES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Records deleted by
procedure

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

369

Column name
Data Type for

<=ODS 15

Data Type for
>=ODS 16,

dialect 1

Data Type for
>=ODS 16,

dialect 3
Description

TMP$RECORD_PUR
GES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record purges

TMP$RECORD_EXP
UNGES INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record expunges

TMP$RECORD_BAC
KOUTS INTEGER DOUBLE PRECISION

NUMERIC

(18,0)
Garbage collect
record backout

3.11. TMP$INDICES

TMP$INDICES is a new system table included as part of the Performance Monitoring system
tables introduced in InterBase 2020 with ODS version 18. This table tracks all loaded indices per
table in the database with key metrics for monitoring. The table structure is as follows.

Note: Currently, only SQL queries support TMP$INDICES . IBConsole Performance Monitoring UI
does not yet enable a TMP$INDICES tab.

Column name
Datatype for ODS
>= 18, dialect 1

Datatype for ODS
>= 18, dialect 3

Description

TMP$DATABASE_ID INTEGER INTEGER Database identifier

TMP$RELATION_NAME CHAR (67) CHAR (67) Relation name

TMP$INDEX_NAME CHAR (67) CHAR (67) Index name

TMP$INDEX_TYPE CHAR (31) CHAR (31)

Index Type; types include
PRIMARY KEY ,
FOREIGN KEY ,
UNIQUE , NON-UNIQUE ,
EXPRESSION

TMP$INDEX_SEGMENTS SMALLINT SMALLINT
Number of segments/
columns in the index
definition

TMP$INDEX_MAX_KEYS
IZE SMALLINT SMALLINT

Maximum index key size
allowed in the index

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

370

Column name
Datatype for ODS
>= 18, dialect 1

Datatype for ODS
>= 18, dialect 3

Description

TMP$INDEX_DEPTH SMALLINT SMALLINT

Depth of the index B-tree
structure. Larger the
depth, more the time
taken to fetch a record.
Consider increasing
database page size to
reduce depth.

TMP$INVOCATIONS DOUBLE PRECISION NUMERIC (18,0)
Number of requests that
have used this index for
retrieval

TMP$PAGE_READS DOUBLE PRECISION NUMERIC (18,0) Not used, yet.

TMP$PAGE_WRITES DOUBLE PRECISION NUMERIC (18,0)
Number of index page/
buckets that have been
written to

TMP$PAGE_FETCHES DOUBLE PRECISION NUMERIC (18,0)
Number of index page/
buckets that have been
fetched

TMP$PAGE_SPLITS DOUBLE PRECISION NUMERIC (18,0)

Number of index page/
buckets that have been
split to accommodate a
new index node insertion

TMP$PAGE_REVERSE_S
PLITS DOUBLE PRECISION NUMERIC (18,0)

Number of times 2 less-
populated index page/
buckets have been
combined

TMP$PAGE_NAVIGATIO
NS DOUBLE PRECISION NUMERIC (18,0)

Number of index page/
buckets that have been
read for a navigation
request; ORDER BY

TMP$RECORD_INSERTS DOUBLE PRECISION NUMERIC (18,0)
Number of new index
nodes inserted

TMP$RECORD_UPDATES DOUBLE PRECISION NUMERIC (18,0)

Number of index nodes
updated; updates are a
combination of 1 delete
(of old key) and 1 insert
(of new key)

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

371

Column name
Datatype for ODS
>= 18, dialect 1

Datatype for ODS
>= 18, dialect 3

Description

TMP$RECORD_DELETES DOUBLE PRECISION NUMERIC (18,0)

Number of index nodes
deleted; sometimes
reflect a negative
number if update related
delete node have not
been garbage collected
yet

TMP$NODE_WALKS DOUBLE PRECISION NUMERIC (18,0)

Number of index nodes
traversed in total, in all
levels (depth); include
nonleaf (pointer pages)
and leaf (record nodes)
page nodes

TMP$NONLEAF_NODE_W
ALKS DOUBLE PRECISION NUMERIC (18,0)

Number of nonleaf index
page nodes traversed/
walked

TMP$LEAF_NODE_WALK
S DOUBLE PRECISION NUMERIC (18,0)

Number of leaf index
page nodes traversed/
walked

TMP$EQUALITY_MATCH
ES DOUBLE PRECISION NUMERIC (18,0)

Number of index nodes/
records retrieved for an
equality match; "a = b",
JOIN , IN list, etc.

TMP$RANGE_MATCHES DOUBLE PRECISION NUMERIC (18,0)

Number of index nodes/
records retrieved for a
range retrieval;
BETWEEN , "a > b", etc.

Usage

List all indices for a specific relation/table

SELECT * FROM TMP$INDICES
WHERE TMP$RELATION_NAME='foo';

List all indices with depth greater than 3

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

372

SELECT * FROM TMP$INDICES
WHERE TMP$INDEX_DEPTH > 3;

List all indices with more than 10 segments

SELECT * FROM TMP$INDICES
WHERE TMP$INDEX_SEGMENTS > 10;

List all indices that are index type 'FOREIGN KEY'

SELECT * FROM TMP$INDICES
WHERE TMP$INDEX_TYPE='FOREIGN KEY';

List all indices with tons of delete operations leading to reverse page splits. This is a good
indicator that index selectivity needs to be recalculated.

SELECT * FROM TMP$INDICES
WHERE TMP$PAGE_REVERSE_SPLITS > 1000;

List all indices with tons of insert/update/delete operations; similar to above. This is a good
indicator that index selectivity needs to be recalculated.

SELECT * FROM TMP$INDICES
WHERE TMP$RECORD_INSERTS > 1000

OR TMP$RECORD_UPDATES > 1000
OR TMP$RECORD_DELETES > 1000;

List all indices that have very low activity; could indicate unnecessary index definitions, or,
UNIQUE index on the same table where a PRIMARY KEY exists on the same set of columns. The
SQL optimizer will typically use only one of PRIMARY KEY or UNIQUE index and seldom use the
other. In this case, you may want to drop the UNIQUE index, and let the PRIMARY KEY remain.

SELECT * FROM TMP$INDICES
WHERE TMP$PAGE_FETCHES < 100; /* set to your needs */

4. System Views

You can create a SQL script using the code provided in this section to create four views that
provide information about existing integrity constraints for a database. You must create the

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

373

database prior to creating these views. SQL system views are a subset of system views defined in
the SQL-92 standard. Since they are defined by ANSI SQL-92, the names of the system views and
their columns do not start with RDB$.

The CHECK_CONSTRAINTS view:

CREATE VIEW CHECK_CONSTRAINTS (
CONSTRAINT_NAME,
CHECK_CLAUSE
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$TRIGGER_SOURCE
FROM RDB$CHECK_CONSTRAINTS RC, RDB$TRIGGERS RT
WHERE RT.RDB$TRIGGER_NAME = RC.RDB$TRIGGER_NAME;

The CONSTRAINTS_COLUMN_USAGE view:

CREATE VIEW CONSTRAINTS_COLUMN_USAGE (
TABLE_NAME,
COLUMN_NAME,
CONSTRAINT_NAME
) AS
SELECT RDB$RELATION_NAME, RDB$FIELD_NAME, RDB$CONSTRAINT_NAME
FROM RDB$RELATION_CONSTRAINTS RC, RDB$INDEX_SEGMENTS RI
WHERE RI.RDB$INDEX_NAME = RC.RDB$INDEX_NAME;

The REFERENTIAL_CONSTRAINTS view:

CREATE VIEW REFERENTIAL_CONSTRAINTS (
CONSTRAINT_NAME,
UNIQUE_CONSTRAINT_NAME,
MATCH_OPTION,
UPDATE_RULE,
DELETE_RULE
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$CONST_NAME_UQ, RDB$MATCH_OPTION,
RDB$UPDATE_RULE, RDB$DELETE_RULE
FROM RDB$REF_CONSTRAINTS;

The TABLE_CONSTRAINTS view:

CREATE VIEW TABLE_CONSTRAINTS (
CONSTRAINT_NAME,
TABLE_NAME,
CONSTRAINT_TYPE,
IS_DEFERRABLE,
INITIALLY_DEFERRED
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$RELATION_NAME,
RDB$CONSTRAINT_TYPE, RDB$DEFERRABLE, RDB$INITIALLY_DEFERRED
FROM RDB$RELATION_CONSTRAINTS;

•

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

374

4.1. CHECK CONSTRAINTS

CHECK_CONSTRAINTS identifies all CHECK constraints defined in the database.

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67
Unique name for the CHECK
constraint; nullable

CHECK_CLAUSE BLOB

Subtype Text: Nullable; original
source of the trigger
definition, stored in the
RDB$TRIGGER_SOURCE
COLUMN in RDB$TRIGGERS

4.2. CONSTRAINTS COLUMN USAGE

CONSTRAINTS_COLUMN_USAGE identifies columns used by PRIMARY KEY and UNIQUE
constraints. For FOREIGN KEY constraints, this view identifies the columns defining the
constraint.

Column name Data type Length Description

TABLE_NAME CHAR 67
Table for which the constraint
is defined; nullable

COLUMN_NAME CHAR 67
Column used in the constraint
definition; nullable

CONSTRAINT_NAME CHAR 67
Unique name for the
constraint; nullable

4.3. REFERENTIAL CONSTRAINTS

REFERENTIAL_CONSTRAINTS identifies all referential constraints defined in a database.

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67
Unique name for the
constraint; nullable

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

375

Column name Data type Length Description

UNIQUE_CONSTRAINT_NAME CHAR 67

Name of the UNIQUE or
PRIMARY KEY constraint

corresponding to the specified
referenced column list;
nullable

MATCH_OPTION CHAR 7
Reserved for future use; always
set to FULL ; nullable

UPDATE_RULE CHAR 11
Reserved for future use; always
set to RESTRICT ; nullable

DELETE_RULE CHAR 11
Reserved for future use; always
set to RESTRICT ; nullable

4.4. TABLE CONSTRAINTS

TABLE_CONSTRAINTS identifies all constraints defined in a database.

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67
Unique name for the
constraint; nullable

TABLE_NAME CHAR 67
Table for which the constraint
is defined; nullable

CONSTRAINT_TYPE CHAR 11

Possible values are UNIQUE ,
PRIMARY KEY ,
FOREIGN KEY , and CHECK ;

nullable

IS_DEFERRABLE CHAR 3
Reserved for future use; always
set to No; nullable

INITIALLY_DEFERRED CHAR 3
Reserved for future use; always
set to No; nullable

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

376

5. Change Views (Reference)

Change Views can be subscribed to in order to view data that has changed across database
connections. The effect is a long-lived transaction spanning multiple database connections.

Specifically, the subscription tracks all row inserts, updates, and deletes to one or more
tables at a column-level granularity over a disconnected, extended period of time.
The InterBase SQL query language is modified to search on columns where data has
changed since the prior observation.
These data changes are tracked at a column granularity.

5.1. Using Change Views

See Getting Started with Change Views for a complete explanation of these topics:

ODS Platform Updates
Migration Issues and Dependencies
Requirements and Constraints

Requirements
Constraints
Backup/Restore Considerations
Deferred Constraints Checking
Trigger Inactivation
Database Restore from a Backup

5.2. Creating Subscriptions to Change Views (Reference)

To establish interest in observing changed data on a set of tables beyond the natural boundary of
a database connection, a subscription must be created on a list of tables (base tables or views).

In creating subscriptions you would

Grant Subscribe: Grants the user subscribe privileges

Set Subscription: To set a subscription as active, an application issues a SET SUBSCRIPTION
statement. The SET SUBSCRIPTION statement allows multiple subscriptions to be activated and
includes an AT clause to denote a destination or device name as a recipient of subscribed
changes. The subscriber user name is implied by the user identity of the database connection.

See Creating Subscriptions to Change Views or a complete explanation and examples of how to
create subscriptions.

•

•

•

•
•
•

•
•
•
•
•
•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

377

http://docwiki.embarcadero.com/InterBase/15/en/Getting_Started_with_Change_Views
http://docwiki.embarcadero.com/InterBase/15/en/Creating_Subscriptions_to_Change_Views

5.3. Statement Execution (Reference)

Once a statement is prepared, it is unnecessary to re-prepare the statement due to subscription
activation or deactivation. A statement dynamically adjusts to the subscription environment of
the transaction when it begins execution. Statement execution is also consistent in that once it
begins, it returns change view result sets even if the subscription is deactivated before the full
resultset has been fetched.

See Statement Execution for a complete explanation of how the Statement Execution feature
works.

5.4. Change View API Support

Change Views API support is provided through the extended SQLVAR structure, XSQLVAR, via a
new interpretation of the SQLIND member. To review, a developer places a pointer to a variable
in XSQLVAR.SQLIND to request NULL state. When the query is executed, InterBase places a zero
at that pointer address if the column value for the returned row is non-NULL and sets it to -1 if it
is NULL.

See Change Views API Support or a complete explanation of how the Statement Execution
feature works.

5.5. Change View SQL Language Support

To display a list of subscriptions defined in the database, you can execute the
SHOW SUBSCRIPTIONS command. To display details for a particular subscription, you can
execute SHOW SUBSCRIPTION .

See Change Views SQL Language Support for examples showing a retooling of the ISQL
command-line utility that supports change views.

5.6. Metadata Support (Reference)

Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique
key on RDB$SUBSCRIPTION_NAME , RDB$SUBSCRIBER_NAME , RDB$DESTINATION . Additional
fields store control information to facilitate "check in" and "check out" of changed data. This
includes transaction IDs, timestamps and transactional context of last observation of changed
data on the schema object.

The term "check out" denotes SELECT of changed columns of rows from subscribed tables
when a subscription has been activated.
The term "check in" refers to INSERT , UPDATE and DELETE of changed columns of rows
from subscribed tables when a subscription has been activated.

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

378

http://docwiki.embarcadero.com/InterBase/15/en/Statement_Execution
http://docwiki.embarcadero.com/InterBase/15/en/Change_Views_API_Support
http://docwiki.embarcadero.com/InterBase/15/en/Change_Views_SQL_Language_Support

A subscription becomes activated during a database session with the execution of
SET SUBSCRIPTION ACTIVE .
It is deactivated with the execution of SET SUBSCRIPTION INACTIVE .

RDB$SUBSCRIPTION and RDB$SUBSCRIBERS are new tables covering the subscription/
subscriber elements. The other tables listed show columns that have been updated or added to
an existing table.

For more information on the new and updated columns for the implementation of the Change
View feature see Metadata Support.

5.7. Metadata Support (Reference)

Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique
key on RDB$SUBSCRIPTION_NAME , RDB$SUBSCRIBER_NAME , RDB$DESTINATION . Additional
fields store control information to facilitate "check in" and "check out" of changed data. This
includes transaction IDs, timestamps and transactional context of last observation of changed
data on the schema object.

The term "check out" denotes SELECT of changed columns of rows from subscribed tables
when a subscription has been activated.
The term "check in" refers to INSERT , UPDATE and DELETE of changed columns of rows
from subscribed tables when a subscription has been activated.
A subscription becomes activated during a database session with the execution of
SET SUBSCRIPTION ACTIVE .
It is deactivated with the execution of SET SUBSCRIPTION INACTIVE .

RDB$SUBSCRIPTION and RDB$SUBSCRIBERS are new tables covering the subscription/
subscriber elements. The other tables listed show columns that have been updated or added to
an existing table.

For more information on the new and updated columns for the implementation of the Change
View feature see Metadata Support.

•

•

•

•

•

•

SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS

379

http://docwiki.embarcadero.com/InterBase/15/en/Metadata_Support
http://docwiki.embarcadero.com/InterBase/15/en/Metadata_Support

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE
REFERENCE GUIDE)

CHAR , VARCHAR , and text Blob columns in InterBase can use many different character sets. A
character set defines the symbols that can be entered as text in a column, and its also defines the
maximum number of bytes of storage necessary to represent each symbol. In some character
sets, such as ISO8859_1, each symbol requires only a single byte of storage. In others, such as
UNICODE_FSS , each symbol requires from 1 to 3 bytes of storage.

Each character set also has an implicit collation order that specifies how its symbols are sorted
and ordered. Some character sets also support alternative collation orders. In all cases, choice of
character set limits choice of collation orders.

This chapter lists available character sets and their corresponding collation orders and describes
how to specify:

Default character set for an entire database.
Alternative character set and collation order for a particular column in a table.
Client application character set that the server should use when translating data between
itself and the client.
Collation order for a value in a comparison operation.
Collation order in an ORDER BY or GROUP BY clause.

1. InterBase Character Sets and Collation Orders

The following table lists each character set that can be used in InterBase. For each character set,
the minimum and maximum number of bytes used to store each character is listed, and all
collation orders supported for that character set are also listed. The first collation order for a
given character set is that default collation of the set, the one that is used if no COLLATE clause
specifies an alternative order.

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

ASCII 2 1 byte 1 byte ASCII

BIG_5 56 2 bytes 1 byte BIG_5

•
•
•

•
•

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

380

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

CYRL 50 1 byte 1 byte

CYRL

DB_RUS

PDOX_CYRL

DOS437 10 1 byte 1 byte

DOS437

DB_DEU437

DB_ESP437

DB_FIN437

DB_FRA437

DB_ITA437

DB_NLD437

DB_SVE437

DB_UK437

DB_US437

PDOX_ASCII

PDOX_INTL

PDOX_SWEDFIN

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

381

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

DOS850 11 1 byte 1 byte

DOS850

DB_DEU850

DB_ESP850

DB_FRA850

DB_FRC850

DB_ITA850

DB_NLD850

DB_PTB850

DB_SVE850

DB_UK850

DB_US850

DOS852 45 1 byte 1 byte

DOS852

DB_CSY

DB_PLK

DB_SLO

PDOX_CSY

PDOX_HUN

PDOX_PLK

PDOX_SLO

DOS857 46 1 byte 1 byte
DOS857

DB_TRK

DOS860 13 1 byte 1 byte
DOS860

DB_PTG860

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

382

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

DOS861 47 1 byte 1 byte
DOS861

PDOX_ISL

DOS863 14 1 byte 1 byte
DOS863

DB_FRC863

DOS865 12 1 byte 1 byte

DOS865

DB_DAN865

DB_NOR865

PDOX_NORDAN4

EUCJ_0208 6 2 bytes 1 byte EUJC_0208

GB_2312 57 2 bytes 1 byte GB_2312

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

383

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

ISO8859_1 21 1 byte 1 byte

ISO8859_1

CC_ESPLAT1

CC_PTBRLAT1

DA_DA

DE_DE

DU_NL

EN_UK

EN_US

ES_ES

FI_FI

FR_CA

FR_FR

IS_IS

IT_IT

NO_NO

PT_PT

SV_SV

ISO8859_2 22 1 byte 1 byte

ISO8859_2

CS_CZ

PL_PL

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

384

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

ISO8859_15 39 1 byte 1 byte

ISO8859_15

DA_DA9

DE_DE9

DU_NL9

EN_UK9

EN_US9

ES_ES9

FI_FI9

FR_CA9

FR_FR9

IS_IS9

IT_IT9

NO_NO9

PT_PT9

SV_SV9

KO18R 58 1 byte 1 byte RU_RU

KSC_5601 44 2 bytes 1 byte
KSC_5601

KSC_DICTIONARY

NEXT 19 1 byte 1 byte

NEXT

NXT_DEU

NXT_FRA

NXT_ITA

NXT_US

NONE 0 1 byte 1 byte NONE

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

385

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

OCTETS 1 1 byte 1 byte OCTETS

SJIS_0208 5 2 bytes 1 byte SJIS_0208

UNICODE_BE
UCS2BE

8 2 bytes 2 bytes N/A at this time

UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS

UNICODE_LE
UCS2LE

64 2 byte 2 bytes N/A

UTF_8 59 4 byte 1 bytes N/A at this time.

WIN1250 51 1 byte 1 byte

WIN1250

PXW_CSY

PXW_HUNDC

PXW_PLK

PXW_SLOV

WIN1251 52 1 byte 1 byte
WIN1251

PXW_CYRL

WIN1252 53 1 byte 1 byte

WIN1252

PXW_INTL

PXW_INTL850

PXW_NORDAN4

PXW_SPAN

PXW_SWEDFIN

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

386

Character
set

Char.
set ID

Max.
char. size

Min.
char. size

Collation
orders

WIN1253 54 1 byte 1 byte
WIN1253

PXW_GREEK

WIN1254 55 1 byte 1 byte
WIN1254

PXW_TURK

1.1. Character Set Storage Requirements (Language Reference Guide)

Knowing the storage requirements of a particular character set is important, because InterBase
restricts the maximum amount of storage in each field in the column to 32,767 bytes for CHAR
columns and 32,765 for VARCHAR columns. In the case of a single-byte character column, one
character is stored in one byte, so you can define 32,767 (or 32,765 for VARCHAR) characters per
single-byte column without encountering an error.

For multi-byte character sets, to determine the maximum number of characters allowed in a
column definition, divide the internal byte storage limit for the data type by the number of bytes
for each character. Thus, two-byte character sets have a character limit of 16,383 per field, and
three-byte character sets have a limit of 10,922 characters per field. For VARCHAR columns, the
numbers are 16,382 and 10.921 respectively.

The following examples specify a CHAR data type using the UNICODE_FSS character set, which
has a maximum size of three bytes for a single character:

CHAR (10922) CHARACTER SET UNICODE_FSS; /* succeeds
*/
CHAR (10923) CHARACTER SET UNICODE_FSS; /* fails */

1.2. Support for Paradox and dBASE

Many character sets and their corresponding collations are provided to support Paradox for
DOS , Paradox for Windows, dBASE for DOS , and dBASE for Windows.

1.2.1. Character Sets for DOS (Support for Paradox and dBASE)

The following character sets correspond to MS-DOS code pages, and should be used to specify
character sets for InterBase databases that are accessed by Paradox for DOS and d BASE for
DOS :

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

387

Character set DOS code page

DOS437 437

DOS850 850

DOS852 852

DOS857 857

DOS860 860

DOS861 861

DOS863 863

DOS865 865

The names of collation orders for these character sets that are specific to Paradox begin “ PDOX ”.
For example, the DOS865 character set for DOS code page 865 supports a Paradox collation
order for Norwegian and Danish called “ PDOX_NORDAN4 ”.

The names of collation orders for these character sets that are specific to d BASE begin “DB”. For
example, the DOS437 character set for DOS code page 437 supports a d BASE collation order
for Spanish called “ DB_ESP437 ”.

For more information about DOS code pages, and Paradox and d BASE collation orders, see the
appropriate Paradox and d BASE documentation and driver books.

1.2.2. Character Sets for Microsoft Windows (Support for Paradox and dBASE)

There are five character sets that support Windows client applications, such as Paradox for
Windows. These character sets are WIN1250, WIN1251, WIN1252, WIN1253, and WIN1254.

The names of collation orders for these character sets that are specific to Paradox for Windows
begin “PXW”. For example, the WIN1252 character set supports a Paradox for Windows collation
order for Norwegian and Danish called “ PXW_NORDAN4 ”.

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

388

For more information about Windows character sets and Paradox for Windows collation orders,
see the appropriate Paradox for Windows documentation and driver books.

1.3. Additional Character Sets and Collations (Language Reference Guide)

Support for additional character sets and collation orders is constantly being added to InterBase.
To see if additional character sets and collations are available for a newly created database,
connect to the database with isql , then use the following set of queries to generate a list of
available character sets and collations:

SELECT RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID
FROM RDB$CHARACTER_SETS
ORDER BY RDB$CHARACTER_SET_NAME;
SELECT RDB$COLLATION_NAME, RDB$CHARACTER_SET_ID
FROM RDB$COLLATIONS
ORDER BY RDB$COLLATION_NAME;

2. Specifying Character Sets

This section provides details on how to specify character sets. Specifically, it covers how to
specify the following:

The default character set for a database
A character set for a table column
The character set for a client attachment
The collation order for a column
The collation order in comparisons
The collation order for ORDER BY and GROUP BY clauses

2.1. Default Character Set for a Database

A database’s default character set designation specifies the character set the server uses to tag
CHAR , VARCHAR , and text Blob columns in the database when no other character set
information is provided. When data is stored in such columns without additional character set
information, the server uses the tag to determine how to store and transliterate that data. A
default character set should always be specified for a database when it is created with
CREATE DATABASE .

To specify a default character set, use the DEFAULT CHARACTER SET clause of
CREATE DATABASE . For example, the following statement creates a database that uses the
ISO8859_1 character set:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;

•
•
•
•
•
•

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

389

Important:
If you do not specify a character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored
and retrieved just as you originally entered it. You can load any character set into a
column defined with NONE , but you cannot later move that data into another column
that has been defined with a different character set. In this case, no transliteration is
performed between the source and destination character sets, and errors may occur
during assignment.

For the complete syntax of CREATE DATABASE , see CREATE DATABASE.

2.2. Character Set for a Column in a Table

Character sets for individual columns in a table can be specified as part of the column’s CHAR or
VARCHAR data type definition. When a character set is defined at the column level, it overrides
the default character set declared for the database. For example, the following isql statements
create a database with a default character set of ISO8859_1, then create a table where two
column definitions include a different character set specification:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;
CREATE TABLE RUS_NAME(
LNAME VARCHAR(30) NOT NULL CHARACTER SET CYRL,
FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,
);

For the complete syntax of CREATE TABLE , see CREATE TABLE.

2.3. Character Set for a Client Attachment

When a client application, such as isql , connects to a database, it may have its own character
set requirements. The server providing database access to the client does not know about these
requirements unless the client specifies them. The client application specifies its character set
requirement using the SET NAMES statement before it connects to the database.

SET NAMES specifies the character set the server should use when translating data from the
database to the client application. Similarly, when the client sends data to the database, the
server translates the data from the client’s character set to the database’s default character set
(or the character set for an individual column if it differs from the database’s default character
set).

For example, the following isql command specifies that isql is using the DOS437 character
set. The next command connects to the europe database created above, in Specifying a
Character Set for a Column in a Table:

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

390

http://docwiki.embarcadero.com/InterBase/15/en/Specifying_Defaults#Specifying_a_Character_Set_for_a_Column_in_a_Table
http://docwiki.embarcadero.com/InterBase/15/en/Specifying_Defaults#Specifying_a_Character_Set_for_a_Column_in_a_Table

SET NAMES DOS437;
CONNECT 'europe.ib' USER 'JAMES' PASSWORD 'U4EEAH';

For the complete syntax of SET NAMES , see SET NAMES (Reference). For the complete syntax of
CONNECT , see CONNECT.

2.4. Collation Order for a Column

When a CHAR or VARCHAR column is created for a table, either with CREATE TABLE or
ALTER TABLE , the collation order for the column can be specified using the COLLATE clause.
COLLATE is especially useful for character sets such as ISO8859_1 or DOS437 that support many
different collation orders.

For example, the following isql ALTER TABLE statement adds a new column to a table, and
specifies both a character set and a collation order:

ALTER TABLE 'FR_CA_EMP'
ADD ADDRESS VARCHAR(40) CHARACTER SET ISO8859_1 NOT NULL
COLLATE FR_CA;

For the complete syntax of ALTER TABLE , see ALTER TABLE.

2.5. Collation Order in Comparison

When CHAR or VARCHAR values are compared in a WHERE clause, it can be necessary to specify
a collation order for the comparisons if the values being compared use different collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE clause
after the value. For example, in the following WHERE clause fragment from an embedded
application, the value to the left of the comparison operator is forced to be compared using a
specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For the complete syntax of the WHERE clause, see SELECT .

2.6. Collation Order in ORDER BY

When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary to
specify a collation order for the ordering, especially if columns used for ordering use different
collation orders.

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

391

To specify the collation order to use for ordering a column in the ORDER BY clause, include a
COLLATE clause after the column name. For example, in the following ORDER BY clause, the
collation order for two columns is specified:

. . .
ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see SELECT.

2.7. Collation Order in a GROUP BY clause

When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary to
specify a collation order for the grouping, especially if columns used for grouping use different
collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause, include a
COLLATE clause after the column name. For example, in the following GROUP BY clause, the
collation order for two columns is specified:

. . .
GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see SELECT.

CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)

392

	USING THE INTERBASE LANGUAGE REFERENCE
	Who Should Use this Book
	Topics Covered in This Book

	SQL STATEMENT AND FUNCTION REFERENCE
	SQL Flavors
	Embedded SQL (ESQL)
	Dynamic SQL (DSQL)
	Stored Procedure and Trigger Language
	Interactive SQL (isql)

	SQL Dialects
	Dialects
	Transition Features

	Database Object Naming Conventions (Language Reference Guide)
	Statement List
	Function List (Language Reference Guide)
	Data Types (Language Reference Guide)
	Exact Numerics (Language Reference Guide)
	Addition and Subtraction
	Multiplication
	Division

	Error Handling (Language Reference Guide)
	Statement and Function Reference (Language Reference Guide)
	ALTER DATABASE
	ALTER DOMAIN
	ALTER EXCEPTION
	ALTER INDEX
	ALTER PROCEDURE
	ALTER TABLE
	ALTER TRIGGER
	ALTER USER
	AVG()
	BASED ON
	BEGIN DECLARE SECTION
	CASE
	CAST()
	CLOSE
	CLOSE (BLOB)
	COALESCE()
	COMMIT
	CONNECT
	COUNT()
	CREATE DATABASE
	CREATE DOMAIN
	CREATE ENCRYPTION
	CREATE EXCEPTION
	CREATE GENERATOR
	CREATE INDEX
	Expression Index

	CREATE JOURNAL
	CREATE JOURNAL ARCHIVE
	Journal Archive Management

	CREATE PROCEDURE
	CREATE ROLE
	CREATE SHADOW
	CREATE SUBSCRIPTION
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DECLARE CURSOR
	DECLARE CURSOR (BLOB)
	DECLARE EXTERNAL FUNCTION
	DECLARE FILTER
	DECLARE STATEMENT
	DECLARE TABLE
	DELETE
	DESCRIBE
	DISCONNECT
	DROP DATABASE
	DROP DOMAIN
	DROP ENCRYPTION
	DROP EXCEPTION
	DROP EXTERNAL FUNCTION
	DROP FILTER
	DROP GENERATOR
	DROP INDEX
	DROP JOURNAL
	DROP JOURNAL ARCHIVE
	DROP PROCEDURE
	DROP ROLE
	DROP SHADOW
	DROP SUBSCRIPTION
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	END DECLARE SECTION
	EVENT INIT
	EVENT WAIT
	EXECUTE
	EXECUTE IMMEDIATE
	EXECUTE PROCEDURE
	EXTRACT()
	FETCH
	FETCH (BLOB)
	GEN ID()
	GRANT
	GRANT SUBSCRIBE
	GRANT TEMPORARY SUBSCRIBE
	INSERT
	INSERT CURSOR (BLOB)
	MAX()
	MIN()
	NULLIF()
	OPEN
	OPEN (BLOB)
	PREPARE
	RELEASE SAVEPOINT
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	Syntax
	Description
	Derived Tables (SELECT FROM SELECT)
	Examples With Derived Tables
	Additional Notes on Derived Tables

	Additional Notes on SELECT

	Examples
	Enhancements to GROUP BY and ORDER BY
	Enhancements to GROUP BY and ORDER BY
	Usability
	syntax:
	Sample queries:

	Requirements and Constraints
	Migration issues

	Common table expressions
	Examples
	Example 1
	Example 2

	SET DATABASE
	SET GENERATOR
	SET NAMES (Reference)
	SET SQL DIALECT
	SET STATISTICS
	SET SUBSCRIPTION
	SET TRANSACTION
	Exclusive Isolation Level
	Introduction
	Usage
	Requirements and Constraints
	Migration issues

	Wait time

	SHOW SQL DIALECT
	SHOW SUBSCRIPTION
	Syntax
	Description
	Example

	SUM()
	Truncate Table
	Introduction
	Requirements and Constraints
	How it works
	Truncate Table syntax
	Truncate Table privilege
	Truncate Table operation
	Truncate Table errors
	Truncate Table effect on Change Views
	Truncate Table examples
	Truncate Table Tutorial
	Creating a test database and tables
	Truncate a table with no references from other tables
	Truncate a table with no references from other tables using the DEFERRED qualifier
	Truncate on a primary table cascades to table references with ON DELETE CASCADE definition

	UPDATE
	UPPER()
	WHENEVER
	RECONNECT
	Syntax
	Description
	Examples

	PROCEDURES AND TRIGGERS
	Creating Triggers and Stored Procedures
	Statement Types Not Supported
	Nomenclature Conventions
	Assignment Statement
	BEGIN ... END
	Comment
	DECLARE VARIABLE
	EXCEPTION
	EXECUTE PROCEDURE (Procedures)
	EXECUTE STATEMENT
	No Rows or Data Returned
	One Row of Data Returned
	Any Number of Data Rows Returned
	Requirements and Constraints (EXECUTE STATEMENT)

	FOR SELECT…DO
	IF...THEN ... ELSE
	Input Parameters (Procedures)
	NEW Context Variables
	OLD Context Variables
	Output Parameters (Procedures)
	POST EVENT
	SELECT (Procedures)
	SUSPEND
	WHEN...DO
	Handling Exceptions (WHEN … DO)
	Handling SQL Errors (WHEN … DO)
	Handling InterBase Error Codes
	Handling Exceptions (WHEN … DO)

	WHILE ... DO

	KEYWORDS
	InterBase Keywords

	ERROR CODES AND MESSAGES
	Error Sources
	Error Reporting and Handling
	Trapping Errors with WHENEVER
	Checking SQLCODE Value Directly
	InterBase Status Array
	Access to Status Array Messages
	isc_print_sqlerror()
	isc_sql_interprete()

	Responding to Error Codes

	For More Information

	SQLCODE Error Codes and Messages
	SQLCODE Error Messages Summary
	SQLCODE Codes and Messages

	InterBase Status Array Error Codes

	SYSTEM TABLES, TEMPORARY TABLES, AND VIEWS
	Overview of System Tables, Temporary Tables, and Views
	System Tables
	RDB$CHARACTER SETS
	RDB$JOURNAL ARCHIVES
	RDB$CHECK CONSTRAINTS
	RDB$COLLATIONS
	RDB$PAGES
	RDB$DATABASE
	RDB$PROCEDURE PARAMETERS
	RDB$DEPENDENCIES
	RDB$PROCEDURES
	RDB$ENCRYPTIONS
	RDB$REF CONSTRAINTS
	RDB$EXCEPTIONS
	RDB$RELATION CONSTRAINTS
	RDB$FIELD DIMENSIONS
	RDB$RELATION FIELDS
	RDB$FIELDS
	RDB$RELATIONS
	RDB$FILES
	RDB$ROLES
	RDB$FILTERS
	RDB$SECURITY CLASSES
	RDB$FORMATS
	RDB$TRANSACTIONS
	RDB$FUNCTION ARGUMENTS
	RDB$TRIGGER MESSAGES
	RDB$FUNCTIONS
	RDB$TRIGGERS
	RDB$GENERATORS
	RDB$TYPES
	RDB$INDEX SEGMENTS
	RDB$USER PRIVILEGES
	RDB$INDICES
	RDB$USERS
	RDB$VIEW RELATIONS
	RDB$SUBSCRIPTIONS
	RDB$SUBSCRIBERS

	System Temporary Tables
	TMP$ATTACHMENTS
	TMP$DATABASE
	TMP$HEAPS
	TMP$POOL BLOCKS
	TMP$POOLS
	TMP$PROCEDURES
	TMP$RELATIONS
	TMP$STATEMENTS
	TMP$TRANSACTIONS
	TMP$TRIGGERS
	TMP$INDICES
	Usage

	System Views
	CHECK CONSTRAINTS
	CONSTRAINTS COLUMN USAGE
	REFERENTIAL CONSTRAINTS
	TABLE CONSTRAINTS

	Change Views (Reference)
	Using Change Views
	Creating Subscriptions to Change Views (Reference)
	Statement Execution (Reference)
	Change View API Support
	Change View SQL Language Support
	Metadata Support (Reference)
	Metadata Support (Reference)

	CHARACTER SETS AND COLLATION ORDERS (LANGUAGE REFERENCE GUIDE)
	InterBase Character Sets and Collation Orders
	Character Set Storage Requirements (Language Reference Guide)
	Support for Paradox and dBASE
	Character Sets for DOS (Support for Paradox and dBASE)
	Character Sets for Microsoft Windows (Support for Paradox and dBASE)

	Additional Character Sets and Collations (Language Reference Guide)

	Specifying Character Sets
	Default Character Set for a Database
	Character Set for a Column in a Table
	Character Set for a Client Attachment
	Collation Order for a Column
	Collation Order in Comparison
	Collation Order in ORDER BY
	Collation Order in a GROUP BY clause

