
Data Definition Guide
InterBase 2009

Copyright © 1994-2009 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111 U.S.A.
All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners.
This software/documentation contains proprietary information of Embarcadero Technologies, Inc.; it is
provided under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and
Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with Restricted Rights, as defined in FAR 552.227-14, Rights in
Data-General, including Alternate III (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of
such changes and additions. Embarcadero Technologies, Inc. does not warrant that this
documentation is error-free.

Contents

Tables . 9
Figures . 11

Chapter 1
Using the Data Definition Guide
What is data definition? 1-1
Who should use this guide 1-2
Topics covered in this guide 1-3
Using isql . 1-4
Using a data definition file. 1-4

Chapter 2
Designing Databases
Overview of design issues 2-1

Database versus data model 2-2
Design goals 2-2

Design framework 2-3
Analyzing requirements 2-3
Collecting and analyzing data 2-4
Identifying entities and attributes 2-4
Designing tables 2-6
Determining unique attributes 2-7
Developing a set of rules 2-7

Specifying a data type 2-8
Choosing international character sets 2-8
Specifying domains 2-9
Setting default values and NULL status 2-9
Defining integrity constraints 2-10
Defining CHECK constraints 2-10

Establishing relationships between objects 2-10
Enforcing referential integrity 2-11
Normalizing the database 2-12

Eliminating repeating groups 2-12
Removing partially-dependent columns . . . 2-14
Removing transitively-dependent columns. . 2-14
When to break the rules. 2-15

Choosing indexes. 2-16
Increasing cache size 2-16
Creating a multifile, distributed database 2-17

Planning security. 2-17
Naming Objects 2-17

Chapter 3
Creating Databases
What you should know 3-1

Creating a database 3-2
File naming conventions 3-2
Using a data definition file 3-2
Using CREATE DATABASE 3-2

Creating a single-file database. 3-3
Creating a multifile database 3-4
Using LENGTH to specify a secondary file . . 3-4
Specifying the starting page number of a

secondary file 3-4
Specifying user name and password. 3-5
Specifying database page size 3-5
Specifying the default character set 3-6
When there is no default character set 3-6

Read-only databases. 3-6
Altering a database 3-7
Dropping a database 3-8
Creating a database shadow 3-8

Advantages of shadowing 3-8
Limitations of shadowing 3-9
Before creating a shadow 3-9
Using CREATE SHADOW 3-10

Creating a single-file shadow 3-10
Shadow location 3-10
Creating a multifile shadow 3-11
Auto mode and manual mode 3-11
Conditional shadows. 3-12

Dropping a shadow 3-13
Expanding the size of a shadow 3-13
Using isql to extract data definitions 3-14

Extracting an InterBase 4.0 database 3-14
Extracting a 3.x database 3-14

Chapter 4
Specifying Data types
About InterBase data types 4-1
Where to specify data types. 4-3
Defining numeric data types 4-4

Integer data types 4-4
Fixed-decimal data types 4-5

NUMERIC data type 4-5
DECIMAL data type 4-5
How fixed-decimal data types are stored . . . 4-6
Specifying NUMERIC and DECIMAL with scale

and precision 4-7
Numeric input and exponents 4-7
3

Specifying data types using embedded
applications 4-8

Considering migration for NUMERIC and
DECIMAL data types 4-8

Migrating databases with NUMERIC and
DECIMAL data types 4-8

Using exact numeric data types in arithmetic 4-9
Floating-point data types4-10

Date and time data types 4-11
Converting to the DATE, TIME, and TIMESTAMP data

types . 4-11
How InterBase stores date values 4-12

Character data types 4-12
Specifying a character set 4-13

Characters vs. bytes. 4-13
Using CHARACTER SET NONE. 4-13
About collation order4-14

Fixed-length character data 4-14
CHAR(n) or CHARACTER(n)4-14
NCHAR(n) or NATIONAL CHAR(n) 4-15

Variable-length character data 4-15
VARCHAR(n) 4-15
NCHAR VARYING(n) 4-16

The BOOLEAN data type. 4-16
Defining BLOB data types 4-17

BLOB columns. 4-17
BLOB segment length 4-18

Defining segment length 4-18
Segment syntax4-18

BLOB subtypes 4-19
BLOB filters 4-20
Using BLOBs with VARCHAR data. 4-20

About text BLOB syntax 4-20
Defining arrays 4-22

Multi-dimensional arrays. 4-23
Specifying subscript ranges for array dimensions . .

4-23
Converting data types 4-24

Implicit type conversions 4-24
Explicit type conversions 4-25

Chapter 5
Working with Domains
Creating domains 5-1

Specifying the domain data type 5-2
Specifying domain defaults 5-3
Specifying NOT NULL. 5-3
Specifying domain CHECK constraints 5-4
Using the VALUE keyword 5-4

Specifying domain collation order 5-5
Altering domains 5-5
Dropping a domain 5-6

Chapter 6
Working with Tables
Before creating a table 6-1
Creating tables . 6-2

Defining columns 6-2
Required attributes. 6-2
Optional attributes 6-3
Specifying the data type 6-3
Casting data types 6-4
Defining a character set 6-4
The COLLATE clause 6-4
Defining domain-based columns 6-5
Defining expression-based columns 6-5
Specifying column default values 6-6
Specifying NOT NULL 6-7

Defining integrity constraints 6-7
PRIMARY KEY and UNIQUE constraints . . . 6-7
Using the FOREIGN KEY to enforce referential

integrity 6-8
Referencing tables owned by others 6-10
Circular references. 6-10
How to declare constraints. 6-11

Defining a CHECK constraint 6-12
Using the EXTERNAL FILE option 6-13

Restrictions 6-14
Importing external files 6-15
Exporting InterBase tables to an external file 6-16

Altering tables 6-17
Before using ALTER TABLE 6-17

Saving existing data 6-18
Dropping columns 6-19

Using ALTER TABLE 6-19
Adding a new column to a table 6-19
Adding new table constraints 6-20
Dropping an existing column from a table . 6-20
Dropping existing constraints from a column 6-21
Modifying columns in a table 6-22
Summary of ALTER TABLE arguments . . . 6-23

Dropping tables 6-24
Dropping a table. 6-24
DROP TABLE syntax. 6-24

SQL global temporary tables 6-25
Creating a SQL global temporary table 6-25
Altering a SQL global temporary table 6-25
Requirements and constraints 6-26
4

Chapter 7
Working with Indexes
Index basics . 7-1
When to index . 7-2
Creating indexes 7-2

Using CREATE INDEX. 7-2
Preventing duplicate entries 7-3
Specifying index sort order 7-3

When to use a multi-column index. 7-4
Examples using multi-column indexes. 7-4

Improving index performance 7-5
ALTER INDEX: deactivating an index 7-5
SET STATISTICS: recomputing index selectivity . 7-6
Dropping a user-defined index 7-7

Chapter 8
Working with Views
Introduction . 8-1
Advantages of views. 8-2
Creating views . 8-3

Specifying view column names 8-3
Using the SELECT statement 8-3
Using expressions to define columns 8-4
Types of views: read-only and update-able . . . 8-5

View privileges 8-5
Examples of views 8-5

Inserting data through a view 8-6
Using WITH CHECK OPTION 8-6
Examples 8-6

Dropping views 8-7

Chapter 9
Working with Stored Procedures
Overview of stored procedures 9-1
Working with procedures 9-2

Using a data definition file 9-2
Calling stored procedures 9-3
Privileges for stored procedures 9-3

Creating procedures 9-4
CREATE PROCEDURE syntax 9-4
Procedure and trigger language 9-5

Syntax errors in stored procedures 9-7
The procedure header 9-8

Declaring input parameters 9-8
Declaring output parameters 9-8

The procedure body 9-9
BEGIN … END statements 9-9
Using variables 9-9

Using assignment statements 9-11
Using SELECT statements 9-11
Using FOR SELECT … DO statements 9-12
Using WHILE … DO statements 9-12
Using IF … THEN … ELSE statements 9-13
Using event alerters 9-13
Adding comments 9-14
Creating nested and recursive procedures . . 9-14
Using SUSPEND, EXIT, and END with procedures

9-15
Altering and dropping stored procedures 9-17

Altering stored procedures 9-17
ALTER PROCEDURE syntax 9-18
Dropping procedures 9-18
Drop procedure syntax 9-18
Altering and dropping procedures in use 9-19

Using stored procedures 9-20
Using executable procedures in isql. 9-20
Using select procedures in isql 9-20

Using WHERE and ORDER BY clauses . . . 9-23
Selecting aggregates from procedures 9-23

Viewing arrays with stored procedures 9-24
Exceptions . 9-26

Creating exceptions 9-26
Altering exceptions 9-26
Dropping exceptions 9-26
Raising an exception in a stored procedure . . . 9-27

Handling errors 9-27
Handling exceptions. 9-28
Handling SQL errors 9-28
Handling InterBase errors 9-29
Examples of error behavior and handling 9-29

Chapter 10
Working with Triggers
About triggers. 10-1

Working with triggers 10-2
Using a data definition file 10-2

Creating triggers 10-2
CREATE TRIGGER syntax. 10-3
InterBase procedure and trigger language . . . 10-4

Syntax errors in triggers 10-6
The trigger header 10-7
The trigger body. 10-7

NEW and OLD context variables 10-8
Using generators 10-9

Altering triggers 10-10
Altering a trigger header 10-10
Altering a trigger body 10-11
5

Dropping triggers 10-11
Using triggers 10-12

Triggers and transactions. 10-12
Triggers and security 10-13
Triggers as event alerters 10-13
Updating views with triggers. 10-14

Exceptions . 10-15
Raising an exception in a trigger 10-15
Error handling in triggers 10-16

Chapter 11
Working with Generators
About generators. 11-1
Creating generators 11-1
Setting or resetting generator values. 11-2
Using generators 11-2
Dropping generators 11-3

Chapter 12
Planning Security
Overview of SQL access privileges12-1

Default security and access 12-2
Privileges available. 12-2
SQL ROLES 12-3

Granting privileges 12-4
Granting privileges to a whole table 12-4
Granting access to columns in a table 12-5
Granting privileges to a stored procedure or trigger .

12-5
Multiple privileges and multiple grantees 12-6

Granting multiple privileges 12-6
Granting all privileges 12-6
Granting privileges to multiple users 12-7

Granting privileges to a list of users 12-7
Granting privileges to a UNIX group. 12-7
Granting privileges to all users 12-7

Granting privileges to a list of procedures 12-8
Using roles to grant privileges 12-8

Granting privileges to a role 12-8
Granting a role to users. 12-9

Granting users the right to grant privileges 12-9
Grant authority restrictions. 12-9
Grant authority implications 12-10

Granting privileges to execute stored procedures . 12-11
Granting access to views. 12-11

Update-able views 12-12
Read-only views 12-13

Revoking user access 12-13

Revocation restrictions 12-14
Revoking multiple privileges 12-14
Revoking all privileges 12-15
Revoking privileges for a list of users 12-15
Revoking privileges for a role. 12-15
Revoking a role from users 12-15
Revoking EXECUTE privileges 12-16
Revoking privileges from objects 12-16
Revoking privileges for all users 12-16
Revoking grant authority 12-16

Using views to restrict data access 12-17

Chapter 13
Encrypting Your Data
About InterBase encryption. 13-1

About industry encryption standards 13-2
Who can create encryption?. 13-3

Creating the SYSDSO user 13-3
An overview of encryption tasks 13-4
Requirements and support. 13-4

Using isql to enable and implement encryption . . 13-5
Setting the System Encryption Password (SEP) 13-5

Altering the database to create the SEP . . . 13-5
Removing the System Encryption Password

(SEP) . 13-6
Creating encryption keys 13-6

Setting a user-defined password for an encryption
key . 13-8

Dropping an encryption key 13-8
Granting encryption permission to the database

owner . 13-9
Encrypting data 13-9

About the encryption commands 13-9
Setting a decrypt default value for a column13-10
Encrypting blob columns 13-10

Decrypting data 13-11
Granting decrypt permission 13-11

Permissions for roles and views 13-12
Revoking encrypt and decrypt permissions . . 13-12

Using IBConsole to set up and perform encryption13-13
Enabling EUA and performing encryption when

creating a new database 13-13
Enabling EUA and performing encryption on an

existing database. 13-14
Performing database-level encryption using

IBConsole 13-15
Decrypting the database 13-17

Performing column-level encryption using
IBConsole 13-17
6

Encrypting backup files 13-18
Avoiding embedded spaces in GBAK encrypt/

decrypt and sep statements 13-18
Encrypting a database backup file 13-19
Decrypting a database backup file during a restore .

13-19
Additional guidelines for encrypting and decrypting

database backup files 13-19

Chapter 14
Character Sets and
Collation Orders
About character sets and collation orders 14-1
Character set storage requirements 14-2
InterBase character sets 14-2
Character sets for DOS 14-6

Character sets for Microsoft Windows 14-7

UNICODE_BE and UNICODE_LE Character Sets .
14-7

Additional character sets and collations. 14-8
Specifying defaults 14-8

Specifying a default character set for a database 14-8
Specifying a character set for a column in a table . .

14-9
Specifying a character set for a client connection14-9

Specifying collation orders 14-10
Specifying collation order for a column . . . 14-10
Specifying collation order in a comparison operation

14-10
Specifying collation order in an ORDER BY clause . .

14-10
Specifying collation order in a GROUP BY clause . .

14-11

Index . I-1
7

8

Tables

1.1 Chapter list for the Data Definition Guide . . 1-3
2.1 List of entities and attributes 2-5
2.2 EMPLOYEE table 2-7
2.3 PROJECT table 2-11
2.4 EMPLOYEE table 2-11
2.5 DEPARTMENT table 2-13
2.6 DEPARTMENT table 2-13
2.7 DEPT_LOCATIONS table 2-13
2.8 PROJECT table 2-14
2.9 PROJECT table 2-14
2.10 PROJECT table 2-15
2.11 EMPLOYEE table 2-15
3.1 Auto vs. manual shadows. 3-12
4.1 Data types supported by InterBase 4-2
4.2 NUMERIC and DECIMAL data type storage:

dialects 1 and 3 4-6
4.3 NUMERIC and DECIMAL data type storage based

on precision and scale 4-6
4.4 Blob subtypes 4-19
4.5 Text BLOB Example Result 4-22

4.6 Minimum character lengths for numeric
conversions 4-25

6.1 The EMPLOYEE table 6-7
6.2 The PROJECT table 6-8
6.3 The EMPLOYEE table 6-8
6.4 Referential integrity check options 6-9
6.5 Valid data type conversions using ALTER

COLUMN and ALTER DOMAIN 6-23
9.1 Arguments of the CREATE PROCEDURE

statement . 9-5
9.2 Procedure and trigger language extensions . . 9-6
9.3 SUSPEND, EXIT, and END 9-16
10.1 Arguments of the CREATE TRIGGER statement . .

10-3
10.2 Procedure and trigger language extensions . 10-5
12.1 SQL access privileges 12-2
13.1 Encryption implementation tasks 13-4
13.2 Encryption Key Options 13-7
14.1 Character sets and collation orders 14-3
14.2 Character sets corresponding to DOS code pages .

14-6
9

10

Figures

2.1 Identifying relationships between objects . . . 2-4
4.1 Blob relationships 4-18
6.1 Circular references. 6-10
13.1 Enabling EUA and encryption. 13-14

13.2 Encryption wizard, initial page 13-15
13.3 Step 1: Enter the SYSDSO password. . . . 13-16
13.4 Step 2: Create the SEP 13-16
13.5 Step 3: Create an encryption key 13-17
11

12

C h a p t e r

Chapter 1Using the Data
Definition Guide

The InterBase Data Definition Guide provides information on the following topics:

• Designing and creating databases

• Working with InterBase structures and objects, including data types, domains, tables,
indexes, and views

• Working with tools and utilities such as stored procedures, triggers, Blob filters, and
generators

• Planning and implementing database security

• Character sets and collation orders

What is data definition?
An InterBase database is created and populated using SQL statements, which can be
divided into two major categories: data definition language (DDL) statements and data
manipulation language (DML) statements.

The underlying structures of the database—its tables, views, and indexes—are created
using DDL statements. Collectively, the objects defined with DDL statements are known
as metadata. Data definition is the process of creating, modifying, and deleting metadata.
Conversely, DML statements are used to populate the database with data, and to
manipulate existing data stored in the structures previously defined with DDL statements.
The focus of this book is how to use DDL statements. For more information on using DML
statements, see the Language Reference Guide.
C h a p t e r 1 U s i n g t h e D a t a D e f i n i t i o n G u i d e 1-1

W h o s h o u l d u s e t h i s g u i d e
DDL statements that create metadata begin with the keyword CREATE, statements that
modify metadata begin with the keyword ALTER, and statements that delete metadata begin
with the keyword DROP. Some of the basic data definition tasks include:

• Creating a database (CREATE DATABASE).

• Creating tables (CREATE TABLE).

• Altering tables (ALTER TABLE).

• Dropping tables (DROP TABLE).

InterBase stores database metadata and other information about it in system tables, which
are automatically created when you create a database. All system table names begin with
“RDB$”. Examples of system tables include RDB$RELATIONS, which has information about
each table in the database, and RDB$FIELDS, which has information on the domains in the
database.

Writing to these system tables without sufficient knowledge can corrupt a database.
Therefore, public users can only select from them. The database owner and SYSDBA user
have full read and write privileges and can assign these privileges to others if they wish.
For more information about the system tables, see the Language Reference Guide.

Important If you have permission, you can directly modify columns of a system table, but unless you
understand all of the interrelationships between the system tables, modifying them directly
can adversely affect other system tables and corrupt your database.

Who should use this guide
The Data Definition Guide is a resource for programmers, database designers, and users
who create or change an InterBase database or its elements.

This book assumes the reader has:

• Previous understanding of relational database concepts.

• Read the isql chapter in the InterBase Operations Guide.
1-2 D a t a D e f i n i t i o n G u i d e

T o p i c s c o v e r e d i n t h i s g u i d e
Topics covered in this guide
The following table lists and describes the chapters in the Data Definition Guide:

Table 1.1 Chapter list for the Data Definition Guide

Chapter Description SQL statements

Chapter 1, “Using the Data
Definition Guide”

• Overview of InterBase Data Definition
features

• Using isql, the SQL Data Definition
Utility

Chapter 2, “Designing
Databases”

• Planning and designing a database
• Understanding data integrity rules and

using them in a database
• Planning physical storage

Chapter 3, “Creating
Databases”

Creating an InterBase database CREATE/ALTER/DROP
DATABASE
CREATE/ALTER/DROP
SHADOW

Chapter 4, “Specifying Data
types”

Choosing a data type CREATE/ALTER TABLE
CREATE/ALTER DOMAIN

Chapter 5, “Working with
Domains”

Creating, altering, and dropping domains CREATE/ALTER/DROP
DOMAIN

Chapter 6, “Working with
Tables”

• Creating and altering database tables,
columns, and domains

• Setting up referential integrity

CREATE/ALTER/DROP TABLE

Chapter 7, “Working with
Indexes”

Creating and dropping indexes CREATE/ALTER/DROP INDEX

Chapter 8, “Working with
Views”

• Creating and dropping views
• Using WITH CHECK OPTION

CREATE/DROP VIEW

Chapter 9, “Working with
Stored Procedures”

• Using stored procedures
• What you can do with stored procedures

CREATE/ALTER/DROP
PROCEDURE
CREATE/ALTER/DROP
EXCEPTION

Chapter 10, “Working with
Triggers”

Using triggers, what you can do with
triggers

CREATE/ALTER/DROP
TRIGGER
CREATE/ALTER/DROP
EXCEPTION

Chapter 11, “Working with
Generators”

Creating, setting, and resetting generators CREATE GENERATOR
SET GENERATOR
C h a p t e r 1 U s i n g t h e D a t a D e f i n i t i o n G u i d e 1-3

U s i n g i s q l
Using isql
You can use isql to interactively create, update, and drop metadata, or you can input a file
to isql that contains data definition statements, which is then executed by isql without
prompting the user. It is usually preferable to use a data definition file because it is easier to
modify the file than to retype a series of individual SQL statements, and the file provides a
record of the changes made to the database.

The isql interface can be convenient for simple changes to existing data, or for querying
the database and displaying the results. You can also use the interactive interface as a
learning tool. By creating one or more sample databases, you can quickly become more
familiar with InterBase.

Using a data definition file
A data definition file can include statements to create, alter, or drop a database, or any other
SQL statement. To issue SQL statements through a data definition file, follow these steps:

1 Use a text editor to create the data definition file. Each DDL statement should be
followed by a COMMIT to ensure its visibility to all subsequent DDL statements in the
data definition file.

2 Save the file.

3 Input the file into isql. For information on how to input the data definition file using
Windows ISQL, see the Operations Guide. For information on how to input the data
definition file using command-line isql, see the Operations Guide

Chapter 12, “Planning
Security”

Securing data and system catalogs with
SQL: tables, views, triggers, and
procedures

GRANT, REVOKE

Chapter 13, “Encrypting Your
Data”

Encrypt database and/or specific columns
in a database; create specific users and
password types; grant and revoke encrypt
and decrypt permissions.

CREATE ENCRYPTION,
ENCRYPT, DECRYPT

Chapter 14, “Character Sets
and Collation Orders”

Specifying character sets and collation
orders

CHARACTER SET COLLATE

Table 1.1 Chapter list for the Data Definition Guide

Chapter Description SQL statements
1-4 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 2Designing Databases
This chapter provides a general overview of how to design an InterBase database—it is not
intended to be a comprehensive description of the principles of database design. This
chapter includes:

• An overview of basic design issues and goals

• A framework for designing the database

• InterBase-specific suggestions for designing your database

• Suggestions for planning database security

Overview of design issues
A database describes real-world organizations and their processes, symbolically
representing real-world objects as tables and other database objects. Once the information
is organized and stored as database objects, it can be accessed by applications or a user
interface displayed on desktop workstations and computer terminals.

The most significant factor in producing a database that performs well is good database
design. Logical database design is an iterative process which consists of breaking down
large, heterogeneous structures of information into smaller, homogenous data objects. This
process is called normalization. The goal of normalization is to determine the natural
relationships between data in the database. This is done by splitting a table into two or
more tables with fewer columns. When a table is split during the normalization process,
there is no loss of data because the two tables can be put back together with a join
operation. Simplifying tables in this manner allows the most compatible data elements and
attributes to be grouped into one table.
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-1

O v e r v i e w o f d e s i g n i s s u e s
Database versus data model
It is important to distinguish between the description of the database, and the database
itself. The description of the database is called the data model and is created at design time.
The model is a template for creating the tables and columns; it is created before the table or
any associated data exists in the database. The data model describes the logical structure of
the database, including the data objects or entities, data types, user operations, relationships
between objects, and integrity constraints.

In the relational database model, decisions about logical design are completely
independent of the physical structure of the database. This separation allows great
flexibility.

• You do not have to define the physical access paths between the data objects at
design time, so you can query the database about almost any logical relationship that
exists in it.

• The logical structures that describe the database are not affected by changes in
the underlying physical storage structures. This capability ensures cross-platform
portability. You can easily transport a relational database to a different hardware
platform because the database access mechanisms defined by the data model remain the
same regardless of how the data is stored.

• The logical structure of the database is also independent of what the end-user
sees. The designer can create a customized version of the underlying database tables
with views. A view displays a subset of the data to a given user or group. Views can be
used to hide sensitive data, or to filter out data that a user is not interested in. For more
information on views, see Chapter 8, “Working with Views.”

Design goals
Although relational databases are very flexible, the only way to guarantee data integrity
and satisfactory database performance is a solid database design—there is no built-in
protection against poor design decisions. A good database design:

• Satisfies the users’ content requirements for the database. Before you can design the
database, you must do extensive research on the requirements of the users and how the
database will be used.

• Ensures the consistency and integrity of the data. When you design a table, you
define certain attributes and constraints that restrict what a user or an application can
enter into the table and its columns. By validating the data before it is stored in the table,
the database enforces the rules of the data model and preserves data integrity.

• Provides a natural, easy-to-understand structuring of information. Good design
makes queries easier to understand, so users are less likely to introduce inconsistencies
into the data, or to be forced to enter redundant data. This facilitates database updates
and maintenance.
2-2 D a t a D e f i n i t i o n G u i d e

D e s i g n f r a m e w o r k
• Satisfies the users’ performance requirements. Good database design ensures better
performance. If tables are allowed to be too large, or if there are too many (or too few)
indexes, long waits can result. If the database is very large with a high volume of
transactions, performance problems resulting from poor design are magnified.

Design framework
The following steps provide a framework for designing a database:

1 Determine the information requirements for the database by interviewing prospective
users.

2 Analyze the real-world objects that you want to model in your database. Organize the
objects into entities and attributes and make a list.

3 Map the entities and attributes to InterBase tables and columns.

4 Determine an attribute that will uniquely identify each object.

5 Develop a set of rules that govern how each table is accessed, populated, and modified.

6 Establish relationships between the objects (tables and columns).

7 Plan database security.

The following sections describe each of these steps in more detail.

Analyzing requirements
The first step in the design process is to research the environment that you are trying to
model. This involves interviewing prospective users in order to understand and document
their requirements. Ask the following types of questions:

• Will your applications continue to function properly during the implementation phase?
Will the system accommodate existing applications, or will you need to restructure
applications to fit the new system?

• Whose applications use which data? Will your applications share common data?

• How do the applications use the data stored in the database? Who will be entering the
data, and in what form? How often will the data objects be changed?

• What access do current applications require? Do your applications use only one
database, or do they need to use several databases which might be different in structure?
What access do they anticipate for future applications, and how easy is it be to
implement new access paths?

• Which information is the most time-critical, requiring fast retrieval or updates?
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-3

C o l l e c t i n g a n d a n a l y z i n g d a t a
Collecting and analyzing data
Before designing the database objects—the tables and columns—you need to organize and
analyze the real-world data on a conceptual level. There are four primary goals:

• Identify the major functions and activities of your organization. For example: hiring
employees, shipping products, ordering parts, processing paychecks, and so on.

• Identify the objects of those functions and activities. Building a business operation
or transaction into a sequence of events will help you identify all of the entities and
relationships the operation entails. For example, when you look at a process like “hiring
employees,” you can immediately identify entities such as the JOB, the EMPLOYEE, and
the DEPARTMENT.

• Identify the characteristics of those objects. For example, the
EMPLOYEE entity might include such information as EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, JOB, SALARY, and so on.

• Identify certain relationships between the objects For example, how do the
EMPLOYEE, JOB, and DEPARTMENT entities relate to each other? The employee has one
job title and belongs to one department, while a single department has many employees
and jobs. Simple graphical flow charts help to identify the relationships.

Figure 2.1 Identifying relationships between objects

Identifying entities and attributes
Based on the requirements that you collect, identify the objects that need to be in the
database—the entities and attributes. An entity is a type of person, object, or thing that
needs to be described in the database. It might be an object with a physical existence, like a
person, a car, or an employee, or it might be an object with a conceptual existence, like a
company, a job, or a project. Each entity has properties, called attributes, that describe it.
For example, suppose you are designing a database that must contain information about

Departme

Employe Employe Employe

Job Job
2-4 D a t a D e f i n i t i o n G u i d e

I d e n t i f y i n g e n t i t i e s a n d a t t r i b u t e s
each employee in the company, departmental-level information, information about current
projects, and information about customers and sales. The example below shows how to
create a list of entities and attributes that organizes the required data.

Table 2.1 List of entities and attributes

Entities Attributes

EMPLOYEE Employee Number

Last Name

First Name

Department Number

Job Code

Phone Extension

Salary

DEPARTMENT Department Number

Department Name

Department Head Name

Department Head Employee
Number

Budget

Location

Phone Number

PROJECT Project ID

Project Name

Project Description

Team Leader

Product

CUSTOMER Customer Number

Customer Name

Contact Name

Phone Number

Address
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-5

D e s i g n i n g t a b l e s
By listing the entities and associated attributes this way, you can begin to eliminate
redundant entries. Do the entities in your list work as tables? Should some columns be
moved from one group to another? Does the same attribute appear in several entities? Each
attribute should appear only once, and you need to determine which entity is the primary
owner of the attribute. For example, DEPARTMENT HEAD NAME should be eliminated
because employee names (FIRST NAME and LAST NAME) already exist in the EMPLOYEE
entity. DEPARTMENT HEAD EMPLOYEE NUM can then be used to access all of the
employee-specific information by referencing EMPLOYEE NUMBER in the EMPLOYEE
entity. For more information about accessing information by reference, see “Establishing
relationships between objects” on page 2-10.

The next section describes how to map your lists to actual database objects—entities to
tables and attributes to columns.

Designing tables
In a relational database, the database object that represents a single entity is a table, which
is a two-dimensional matrix of rows and columns. Each column in a table represents an
attribute. Each row in the table represents a specific instance of the entity. After you
identify the entities and attributes, create the data model, which serves as a logical design
framework for creating your InterBase database. The data model maps entities and
attributes to InterBase tables and columns, and is a detailed description of the database—
the tables, the columns, the properties of the columns, and the relationships between tables
and columns.

The example below shows how the EMPLOYEE entity from the entities/attributes list has
been converted to a table.

SALES PO Number

Customer Number

Sales Rep

Order Date

Ship Date

Order Status

Table 2.1 List of entities and attributes (continued)

Entities Attributes
2-6 D a t a D e f i n i t i o n G u i d e

D e t e r m i n i n g u n i q u e a t t r i b u t e s
Each row in the EMPLOYEE table represents a single employee. EMP_NO, LAST_NAME,
FIRST_NAME, DEPT_NO, JOB_CODE, PHONE_EXT, and SALARY are the columns that
represent employee attributes. When the table is populated with data, rows are added to the
table, and a value is stored at the intersection of each row and column, called a field. In the
EMPLOYEE table, “Smith” is a data value that resides in a single field of an employee
record.

Determining unique attributes
One of the tasks of database design is to provide a way to uniquely identify each
occurrence or instance of an entity so that the system can retrieve any single row in a table.
The values specified in the table’s primary key distinguish the rows from each other. A
PRIMARY KEY or UNIQUE constraint ensures that values entered into the column or set of
columns are unique in each row. If you try to insert a value in a PRIMARY KEY or UNIQUE
column that already exists in another row of the same column, InterBase prevents the
operation and returns an error.

For example, in the EMPLOYEE table, EMP_NO is a unique attribute that can be used to
identify each employee in the database, so it is the primary key. When you choose a value
as a primary key, determine whether it is inherently unique. For example, no two social
security numbers or driver’s license numbers are ever the same. Conversely, you should
not choose a name column as a unique identifier due to the probability of duplicate values.
If no single column has this property of being inherently unique, then define the primary
key as a composite of two or more columns which, when taken together, are unique.

A unique key is different from a primary key in that a unique key is not the primary
identifier for the row, and is not typically referenced by a foreign key in another table. The
main purpose of a unique key is to force a unique value to be entered into the column. You
can have only one primary key defined for a table, but any number of unique keys.

Developing a set of rules
When designing a table, you need to develop a set of rules for each table and column that
establishes and enforces data integrity. These rules include:

• Specifying a data type

Table 2.2 EMPLOYEE table

EMP_N
O

LAST_NAM
E

FIRST_NAM
E

DEPT_N
O

JOB_COD
E

PHONE_EX
T

SALAR
Y

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-7

D e v e l o p i n g a s e t o f r u l e s
• Choosing international character sets

• Creating a domain-based column

• Setting default values and NULL status

• Defining integrity constraints and cascading rules

• Defining CHECK constraints

Specifying a data type
Once you have chosen a given attribute as a column in the table, you must choose a data
type for the attribute. The data type defines the set of valid data that the column can
contain. The data type also determines which operations can be performed on the data, and
defines the disk space requirements for each data item.

The general categories of SQL data types include:

• Character data types

• Whole number (integer) data types

• Fixed and floating decimal data types

• Data types for dates and times

• A Blob data type to represent data of unspecified length and structure, such as graphics
and digitized voice; blobs can be numeric, text, or binary

For more information about data types supported by InterBase, see Chapter 4,
“Specifying Data types.”

Choosing international character sets
When you create the database, you can specify a default character set. A default character
set determines:

• What characters can be used in CHAR, VARCHAR, and BLOB text
columns.

• The default collation order that is used in sorting a column.

The collation order determines the order in which values are sorted. The COLLATE clause
of CREATE TABLE allows users to specify a particular collation order for columns defined
as CHAR and VARCHAR text data types. You must choose a collation order that is supported
for the column’s given character set. The collation order set at the column level overrides a
collation order set at the domain level.

Choosing a default character set is primarily intended for users who are interested in
providing a database for international use. For example, the following statement creates a
database that uses the ISO8859_1 character set, typically used to support European
languages:
2-8 D a t a D e f i n i t i o n G u i d e

D e v e l o p i n g a s e t o f r u l e s
CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET ISO8859_1;

You can override the database default character set by creating a different character set for
a column when specifying the data type. The data type specification for a CHAR,
VARCHAR, or BLOB text column definition can include a CHARACTER SET clause to specify
a particular character set for a column. If you do not specify a character set, the column
assumes the default database character set. If the database default character set is
subsequently changed, all columns defined after the change have the new character set, but
existing columns are not affected.

If you do not specify a default character set at the time the database is created, the character
set defaults to NONE. This means that there is no character set assumption for the columns;
data is stored and retrieved just as it was originally entered. You can load any character set
into a column defined with NONE, but you cannot load that same data into another column
that has been defined with a different character set. No transliteration will be performed
between the source and the destination character sets.

For a list of the international character sets and collation orders that InterBase supports, see
Chapter 14, “Character Sets and Collation Orders.”

Specifying domains
When several tables in the database contain columns with the same definitions and data
types, you can create domain definitions and store them in the database. Users who create
tables can then reference the domain definition to define column attributes locally.

For more information about creating and referencing domains, see Chapter 5, “Working
with Domains.”

Setting default values and NULL status
When you define a column, you have the option of setting a DEFAULT value. This value is
used whenever an INSERT or UPDATE on the table does not supply an explicit value for the
column. Defaults can save data entry time and prevent data entry errors. For example, a
possible default for a DATE column could be today’s date; in a Y/N flag column for saving
changes, “Y” could be the default. Column-level defaults override defaults set at the
domain level. Some examples:

stringfld VARCHAR(10) DEFAULT ‘abc’
integerfld INTEGER DEFAULT 1
numfld NUMERIC(15,4) DEFAULT 1.5
datefld1 DATE DEFAULT ‘5/5/2005’
datefld2 DATE DEFAULT ‘TODAY’
userfld VARCHAR(12) DEFAULT USER

The last two lines show special InterBase features: ‘TODAY’ defaults to the current date,
and USER is the user who is performing an insert to the column.
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-9

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
Assign a NULL default to insert a NULL into the column if the user does not enter a value.
Assign NOT NULL to force the user to enter a value, or to define a default value for the
column. NOT NULL must be defined for PRIMARY KEY and UNIQUE key columns.

Defining integrity constraints
Integrity constraints are rules that govern column-to-table and table-to-table relationships,
and validate data entries. They span all transactions that access the database and are
maintained automatically by the system. Integrity constraints can be applied to an entire
table or to an individual column. A PRIMARY KEY or UNIQUE constraint guarantees that no
two values in a column or set of columns are the same.

Data values that uniquely identify rows (a primary key) in one table can also appear in
other tables. A foreign key is a column or set of columns in one table that contain values
that match a primary key in another table. The ON UPDATE and ON DELETE referential
constraints allow you to specify what happens to the referencing foreign key when the
primary key changes or is deleted.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.” For more information on the reasons for using foreign keys,
see “Establishing relationships between objects” on page 2-10.

Defining CHECK constraints
Along with preventing the duplication of values using UNIQUE and PRIMARY KEY
constraints, you can specify another type of data entry validation. A CHECK constraint
places a condition or requirement on the data values in a column at the time the data is
entered. The CHECK constraint enforces a search condition that must be true in order to
insert into or update the table or column.

Establishing relationships between objects
The relationship between tables and columns in the database must be defined in the design.
For example, how are employees and departments related? An employee can have only one
department (a one-to-one relationship), but a department has many employees (a one-to-
many relationship). How are projects and employees related? An employee can be working
on more than one project, and a project can include several employees (a many-to-many
relationship). Each of these different types of relationships has to be modeled in the
database.

The relational model represents one-to-many relationships with primary key/foreign key
pairings. Refer to the following two tables. A project can include many employees, so to
avoid duplication of employee data, the PROJECT table can reference employee information
with a foreign key. TEAM_LEADER is a foreign key referencing the primary key, EMP_NO,
in the EMPLOYEE table.
2-10 D a t a D e f i n i t i o n G u i d e

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.”

Enforcing referential integrity
The primary reason for defining foreign keys is to ensure that the integrity of the data is
maintained when more than one table references the same data—rows in one table must
always have corresponding rows in the referencing table. InterBase enforces referential
integrity in the following ways:

• Before a foreign key can be added, the unique or primary keys that the foreign key
references must already be defined.

• If information is changed in one place, it must be changed in every other place that it
appears. InterBase does this automatically when you use the ON UPDATE option to the
REFERENCES clause when defining the constraints for a table or its columns. You can
specify that the foreign key value be changed to match the new primary key value
(CASCADE), or that it be set to the column default (SET DEFAULT), or to null (SET
NULL). If you choose NO ACTION as the ON UPDATE action, you must manually ensure
that the foreign key is updated when the primary key changes. For example, to change a
value in the EMP_NO column of the EMPLOYEE table (the primary key), that value must
also be updated in the TEAM_LEADER column of the PROJECT table (the foreign key).

• When a row containing a primary key in one table is deleted, the meaning of any rows
in another table that contain that value as a foreign key is lost unless appropriate action
is taken. InterBase provides the ON DELETE option to the REFERENCES clause of
CREATE TABLE and ALTER TABLE so that you can specify whether the foreign key is

Table 2.3 PROJECT table

PROJ_ID
TEAM_LEAD
ER PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

Table 2.4 EMPLOYEE table

EMP_N
O

LAST_NA
ME

FIRST_NA
ME

DEPT_N
O

JOB_CO
DE

PHONE_EX
T

SALAR
Y

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-11

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
deleted, set to the column default, or set to null when the primary key is deleted. If you
choose NO ACTION as the ON DELETE action, you must manually delete the foreign key
before deleting the referenced primary key.

• InterBase also prevents users from adding a value in a column defined as a foreign key
that does not reference an existing primary key value. For example, to change a value in
the TEAM_LEADER column of the PROJECT table, that value must first be updated in the
EMP_NO column of the EMPLOYEE table.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.”

Normalizing the database
After your tables, columns, and keys are defined, look at the design as a whole and analyze
it using normalization guidelines in order to find logical errors. As mentioned in the
overview, normalization involves breaking down larger tables into smaller ones in order to
group data together that is naturally related.

Note A detailed explanation of the normal forms are out of the scope of this document. There are
many excellent books on the subject on the market.

When a database is designed using proper normalization methods, data related to other data
does not need to be stored in more than one place—if the relationship is properly specified.
The advantages of storing the data in one place are:

• The data is easier to update or delete.

• When each data item is stored in one location and accessed by reference, the possibility
for error due to the existence of duplicates is reduced.

• Because the data is stored only once, the possibility for introducing inconsistent data is
reduced.

In general, the normalization process includes:
• Eliminating repeating groups.

• Removing partially-dependent columns.

• Removing transitively-dependent columns.

An explanation of each step follows.

Eliminating repeating groups
When a field in a given row contains more than one value for each occurrence of the
primary key, then that group of data items is called a repeating group. This is a violation of
the first normal form, which does not allow multi-valued attributes.
2-12 D a t a D e f i n i t i o n G u i d e

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
Refer to the DEPARTMENT table. For any occurrence of a given primary key, if a column
can have more than one value, then this set of values is a repeating group. Therefore, the
first row, where DEPT_NO = “100”, contains a repeating group in the DEPT_LOCATIONS
column.

In the next example, even if you change the attribute to represent only one location, for
every occurrence of the primary key “100”, all of the columns contain repeating
information except for DEPT_LOCATION, so this is still a repeating group.

To normalize this table, we could eliminate the DEPT_LOCATION attribute from the
DEPARTMENT table, and create another table called DEPT_LOCATIONS. We could then
create a primary key that is a combination of DEPT_NO and DEPT_LOCATION. Now a
distinct row exists for each location of the department, and we have eliminated the
repeating groups.

Table 2.5 DEPARTMENT table

DEPT_N
O DEPARTMENT

HEAD_DEP
T BUDGET DEPT_LOCATIONS

100 Sales 000 1000000 Monterey, Santa Cruz, Salinas

600 Engineering 120 1100000 San Francisco

900 Finance 000 400000 Monterey

Table 2.6 DEPARTMENT table

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATION

100 Sales 000 1000000 Monterey

100 Sales 000 1000000 Santa Cruz

600 Engineering 120 1100000 San Francisco

100 Sales 000 1000000 Salinas

Table 2.7 DEPT_LOCATIONS table

DEPT_NO DEPT_LOCATION

100 Monterey

100 Santa Cruz

600 San Francisco

100 Salinas
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-13

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
Removing partially-dependent columns
Another important step in the normalization process is to remove any non-key columns that
are dependent on only part of a composite key. Such columns are said to have a partial key
dependency. Non-key columns provide information about the subject, but do not uniquely
define it.

For example, suppose you wanted to locate an employee by project, and you created the
PROJECT table with a composite primary key of EMP_NO and PROJ_ID.

The problem with this table is that PROJ_NAME, PROJ_DESC, and PRODUCT are attributes
of PROJ_ID, but not EMP_NO, and are therefore only partially dependent on the EMP_NO/
PROJ_ID primary key. This is also true for LAST_NAME because it is an attribute of
EMP_NO, but does not relate to PROJ_ID. To normalize this table, we would remove the
EMP_NO and LAST_NAME columns from the PROJECT table, and create another table called
EMPLOYEE_PROJECT that has EMP_NO and PROJ_ID as a composite primary key. Now a
unique row exists for every project that an employee is assigned to.

Removing transitively-dependent columns
The third step in the normalization process is to remove any non-key columns that depend
upon other non-key columns. Each non-key column must be a fact about the primary key
column. For example, suppose we added TEAM_LEADER_ID and PHONE_EXT to the
PROJECT table, and made PROJ_ID the primary key. PHONE_EXT is a fact about
TEAM_LEADER_ID, a non-key column, not about PROJ_ID, the primary key column.

To normalize this table, we would remove PHONE_EXT, change
TEAM_LEADER_ID to TEAM_LEADER, and make TEAM_LEADER a foreign key referencing
EMP_NO in the EMPLOYEE table.

Table 2.8 PROJECT table

EMP_NO PROJ_ID
LAST_NAM
E PROJ_NAME PROJ_DESC PRODUCT

44 DGPII Smith Automap blob data hardware

47 VBASE Jenner Video database blob data software

24 HWRII Stevens Translator upgrade blob data software

Table 2.9 PROJECT table

PROJ_ID
TEAM_LEADER
_ID

PHONE_E
XT PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 4929 Automap blob data hardware

VBASE 47 4967 Video database blob data software

HWRII 24 4668 Translator upgrade blob data software
2-14 D a t a D e f i n i t i o n G u i d e

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
When to break the rules
You should try to correct any normalization violations, or else make a conscious decision
to ignore them in the interest of ease of use or performance. Just be sure that you
understand the design trade-offs that you are making, and document your reasons. It might
take several iterations to reach a design that is a desirable compromise between purity and
reality, but this is the heart of the design process.

For example, suppose you always want data about dependents every time you look up an
employee, so you decide to include DEP1_NAME, DEP1_BIRTHDATE, and so on for DEP1
through DEP30, in the EMPLOYEE table. Generally speaking, that is terrible design, but the
requirements of your application are more important than the abstract purity of your
design. In this case, if you wanted to compute the average age of a given employee’s
dependents, you would have to explicitly add field values together, rather than asking for a
simple average. If you wanted to find all employees with a dependent named “Jennifer,”
you would have to test 30 fields for each employee instead of one. If those are not
operations that you intend to perform, then go ahead and break the rules. If the efficiency
attracts you less than the simplicity, you might consider defining a view that combines
records from employees with records from a separate DEPENDENTS table.

While you are normalizing your data, remember that InterBase offers direct support for
array columns, so if your data includes, for example, hourly temperatures for twenty cities
for a year, you could define a table with a character column that contains the city name, and
a 24 by 366 matrix to hold all of the temperature data for one city for one year. This would
result in a table containing 20 rows (one for each city) and two columns, one NAME column
and one TEMP_ARRAY column. A normalized version of that record might have 366 rows
per city, each of which would hold a city name, a Julian date, and 24 columns to hold the
hourly temperatures.

Table 2.10 PROJECT table

PROJ_I
D

TEAM_LEADE
R PROJ_NAME

PROJ_DES
C PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

Table 2.11 EMPLOYEE table

EMP_N
O

LAST_NA
ME

FIRST_NAM
E

DEPT_N
O

JOB_CO
DE

PHONE_E
XT

SALA
RY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-15

E s t a b l i s h i n g r e l a t i o n s h i p s b e t w e e n o b j e c t s
Choosing indexes
Once you have your design, you need to consider what indexes are necessary. The basic
trade-off with indexes is that more distinct indexes make retrieval by specific criteria
faster, but updating and storage slower. One optimization is to avoid creating several
indexes on the same column. For example, if you sometimes retrieve employees based on
name, department, badge number, or department name, you should define one index for
each of these columns. If a query includes more than one column value to retrieve,
InterBase will use more than one index to qualify records. In contrast, defining indexes for
every permutation of those three columns will actually slow both retrieval and update
operations.

When you are testing your design to find the optimum combination of indexes, remember
that the size of the tables affects the retrieval performance significantly. If you expect to
have tables with 10,000 to 100,000 records each, do not run tests with only 10 to 100
records.

Another factor that affects index and data retrieval times is page size. By increasing the
page size, you can store more records on each page, thus reducing the number of pages
used by indexes. If any of your indexes are more than 4 levels deep, you should consider
increasing the page size. If indexes on volatile data (data that is regularly deleted and
restored, or data that has index key values that change frequently) are less than three levels
deep, you should consider reducing your page size. In general, you should use a page size
larger than your largest record, although InterBase’s data compression will generally shrink
records that contain lots of string data, or lots of numeric values that are 0 or NULL. If
your records have those characteristics, you can probably store records on pages which are
20% smaller than the full record size. On the other hand, if your records are not
compressible, you should add 5% to the actual record size when comparing it to the page
size.

For more information on creating indexes, see Chapter 7, “Working with Indexes.”

Increasing cache size
When InterBase reads a page from the database onto disk, it stores that page in its cache,
which is a set of buffers that are reserved for holding database pages. Ordinarily, the
default cache size of 2,048 buffers is adequate. If your application includes joins of five or
more tables, InterBase automatically increases the size of the cache. If your application is
well localized, that is, it uses the same small part of the database repeatedly, you might
want to consider increasing the cache size so that you never have to release one page from
cache to make room for another.

You can use the gfix utility to increase the default number of buffers for a specific database
using the following command:

gfix -buffers n database_name

You can also change the default cache size for an entire server either by setting the value of
DATABASE_CACHE_PAGES in the configuration file or by changing is on the IB Settings
page of the InterBase Server Properties dialog on Windows platforms. This setting is not
2-16 D a t a D e f i n i t i o n G u i d e

P l a n n i n g s e c u r i t y
recommended because it affects all databases on the server and can easily result in overuse
of memory or in small caches, that are un-usable. It’s is better to tune your cache on a per-
database basis using gfix -buffers.

For more information about cache size, see the Embedded SQL Guide. For more
information about using gfix -buffers, see the Operations Guide.

Creating a multifile, distributed database
If you feel that your application performance is limited by disk bandwidth, you might
consider creating a multifile database and distributing it across several disks. Multifile
databases were designed to avoid limiting databases to the size of a disk on systems that do
not support multi-disk files.

Planning security
Planning security for a database is important. When implementing the database design, you
should answer the following questions:

• Who will have authority to use InterBase?

• Who will have authority to open a particular database?

• Who will have authority to create and access a particular database object within a given
database?

For more information about database security, see Chapter 12, “Planning Security.”

Naming Objects
Valid names for InterBase objects must use the 7-bit ASCII character set (character set ID
2) and must have the following characteristics:

• no spaces

• not case sensitive

• not InterBase keywords

• a maximum of 68 bytes long: 67 bytes plus a null terminator

Using delimited identifiers You create metadata names that are case sensitive, can
contain spaces, and can be InterBase keywords by placing them double quotes. Such names
in double quotes are called delimited identifiers.

Tip When you use an object name without double quotes, InterBase maps all the characters to
uppercase. For example, if you create a table with a double-quote delimited name in all
uppercase, you can use the name subsequently without double quotes. For example:

CREATE TABLE “UPPERCASE_NAME”...
C h a p t e r 2 D e s i g n i n g D a t a b a s e s 2-17

N a m i n g O b j e c t s
SELECT * FROM UPPERCASE_NAME;
2-18 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 3Creating Databases
This chapter describes how to:

• Create a database with CREATE DATABASE

• Modify the database with ALTER DATABASE

• Delete a database with DROP DATABASE

• Create an in-sync, online duplication of the database for recovery purposes with
CREATE SHADOW

• Stop database shadowing with DROP SHADOW

• Increase the size of a shadow

• Extract metadata from an existing database

What you should know
Before creating the database, you should know:

• Where to create the database. Users who create databases need to know only the logical
names of the available devices in order to allocate database storage. Only the system
administrator needs to be concerned about physical storage (disks, disk partitions,
operating system files).

• The tables that the database will contain.

• The record size of each table, which affects what database page size you choose. A
record that is too large to fit on a single page requires more than one page fetch to read
or write to it, so access could be faster if you increase the page size.
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-1

C r e a t i n g a d a t a b a s e
• How large you expect the database to grow. The number of records also affects the page
size because the number of pages affects the depth of the index tree. Larger page size
means fewer total pages. InterBase operates more efficiently with a shallow index tree.

• The number of users that will be accessing the database.

Creating a database
Create a database in isql with an interactive command or with the CREATE DATABASE
statement in an isql script file. For a description of creating a database interactively with
IBConsole, see the Operations Guide.

Although you can create, alter, and drop a database interactively, it is preferable to use a
data definition file because it provides a record of the structure of the database. It is easier
to modify a source file than it is to start over by retyping interactive SQL statements.

File naming conventions
In earlier versions, InterBase database files were given a file extension of gdb by
convention. InterBase no longer recommends using gdb as the extension for database files,
since on some versions of Windows ME and Windows XP, any file that has this extension
is automatically backed up by the System Restore facility whenever it is touched. On those
two platforms, using the gdb extension for database names can result in a significant
detriment to performance. Linux and Solaris are not affected. InterBase now recommends
using ib as the extension for database names. Generally, InterBase fully supports each
platform’s file naming conventions, including the use of node and path names.

Using a data definition file
A data definition file contains SQL statements, including those for creating, altering, or
dropping a database. To issue SQL statements through a data definition file, follow these
steps:

1 Use a text editor to write the data definition file.

2 Save the file.

3 Process the file with isql.

Use -input in command-line isql or use IBConsole. For more information about
command-line isql and IBConsole, see the Operations Guide.

Using CREATE DATABASE
CREATE DATABASE establishes a new database and populates its system tables, which are
the tables that describe the internal structure of the database. CREATE DATABASE must
occur before creating database tables, views, and indexes.
3-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g a d a t a b a s e
CREATE DATABASE optionally allows you to do the following:

• Specify a user name and a password

• Change the default page size of the new database

• Specify a default character set for the database

• Add secondary files to expand the database

CREATE DATABASE must be the first statement in the data definition file.

Important In DSQL, CREATE DATABASE can be executed only with EXECUTE IMMEDIATE. The
database handle and transaction name, if present, must be initialized to zero prior to use.

The syntax for CREATE DATABASE is:

CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>]
[WITH ADMIN OPTION];

<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]

<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int
[<fileinfo>]

Important Use single quotes to delimit strings such as file names, user names, and passwords.

Creating a single-file database
Although there are many optional parameters, CREATE DATABASE requires only one
parameter, filespec, which is the new database file specification. The file specification
contains the device name, path name, and database name.

By default, a database is created as a single file, called the primary file. The following
example creates a single-file database, named employee.ib, in the current directory.

CREATE DATABASE 'employee.ib';

For more information about file naming conventions, see the Operations Guide.

Specifying file size for a single-file database
You can optionally specify a file length, in pages, for the primary file. For example, the
following statement creates a database that is stored in one 10,000-page- long file:

CREATE DATABASE 'employee.ib' LENGTH 10000;

If the database grows larger than the specified file length, InterBase extends the primary
file beyond the LENGTH limit until the disk space runs out. To avoid this, you can store a
database in more than one file, called a secondary file.

Note Use LENGTH for the primary file only if defining a secondary file in the same statement.
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-3

C r e a t i n g a d a t a b a s e
Creating a multifile database
A multifile database consists of a primary file and one or more secondary files. You cannot
specify what information goes into each secondary file because InterBase handles this
automatically. Each secondary file is typically assigned to a different disk than that of the
main database. In a multifile database, InterBase writes to the primary file until it has filled
the specified number of pages, then proceeds to fill the next specified secondary file.

When you define a secondary file, you can choose to specify its size in database pages
(LENGTH), or you can specify the initial page number of the following file (STARTING AT).
InterBase always treats the final file of a multifile database as dynamically sizeable: it
grows the last file as needed. Although specifying a LENGTH for the final file does not
return an error, a LENGTH specification for the last—or only—file of a database is
meaningless.

Important Whenever possible, create the database locally. If the database is created locally, secondary
file names can include a full file specification, including a host or node names as well as a
path and database file name. If you create the database on a remote server, secondary file
specifications cannot include a node name, and all secondary files must reside on the same
node.

Using LENGTH to specify a secondary file
The LENGTH parameter specifies the number of database pages for the file. The eventual
maximum file size is then the number of pages times the page size for the database. (See
“Specifying database page size” on page 3-5.) The following example creates a
database with a primary file and three secondary files. The primary file and the first two
secondary files are each 10,000 pages long.

CREATE DATABASE 'employee.ib'
FILE 'employee2.ib' STARTING AT PAGE 10001 LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES
FILE 'employee4.ib';

Note Because file-naming conventions are platform-specific, for the sake of simplicity, none of
the examples provided include the device and path name portions of the file specification.

Specifying the starting page number of a secondary file
If you do not declare a length for a secondary file, then you must specify a starting page
number. STARTING AT specifies the beginning page number for a secondary file. The PAGE
keyword is optional. You can specify a combination of length and starting page numbers
for secondary files.

If you specify a STARTING AT parameter that is inconsistent with a LENGTH parameter for
the previous file, the LENGTH specification takes precedence:

CREATE DATABASE 'employee.ib' LENGTH 10000
FILE 'employee2.ib' LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES
FILE 'employee4.ib';
3-4 D a t a D e f i n i t i o n G u i d e

C r e a t i n g a d a t a b a s e
The following example produces exactly the same results as the previous one, but uses a
mixture of LENGTH and STARTING AT:

CREATE DATABASE 'employee.ib'
FILE 'employee2.ib' STARTING AT 10001 LENGTH 10000 PAGES
FILE 'employee3.ib' LENGTH 10000 PAGES
FILE 'employee4.ib';

Specifying user name and password
If provided, the user name and password are checked against valid user name and password
combinations in the security database on the server where the database will reside. Only
the first eight characters of the password are significant.

Important Windows client applications must create their databases on a remote server. For these
remote connections, the user name and password are not optional. Windows clients must
provide the USER and PASSWORD options with CREATE DATABASE before connecting to a
remote server.

The following statement creates a database with a user name and password:

CREATE DATABASE 'employee.ib' USER 'SALES' PASSWORD 'mycode';

Specifying database page size
You can override the default page size of 4,096 bytes for database pages by specifying a
different PAGE_SIZE. PAGE_SIZE can be 1024, 2048, 4096, 8192, or 16384. The next
statement creates a single-file database with a page size of 2048 bytes:

CREATE DATABASE 'employee.ib' PAGE_SIZE 2048;

When to increase page size
Increasing page size can improve performance for several reasons:

• Indexes work faster because the depth of the index is kept to a minimum.

• Keeping large rows on a single page is more efficient. (A row that is too large to fit on a
single page requires more than one page fetch to read or write to it.)

BLOB data is stored and retrieved more efficiently when it fits on a single page. If most
transactions involve only a few rows of data, a smaller page size might be appropriate,
since less data needs to be passed back and forth and less memory is used by the disk
cache.

Changing page size for an existing database
To change a page size of an existing database, follow these steps:

1 Back up the database.

2 Restore the database using the PAGE_SIZE option to specify a new page size.

For more detailed information on backing up the database, see the Operations Guide.
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-5

C r e a t i n g a d a t a b a s e
Specifying the default character set
DEFAULT CHARACTER SET allows you to optionally set the default character set for the
database. The character set determines:

• What characters can be used in CHAR, VARCHAR, and BLOB text columns.

• The default collation order that is used in sorting a column.

Choosing a default character set is useful for all databases, even those where international
use is not an issue. Choice of character set determines if transliteration among character
sets is possible. For example, the following statement creates a database that uses the
ISO8859_1 character set, typically used in Europe to support European languages:

CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET 'ISO8859_1';

For a list of the international character sets and collation orders that InterBase supports, see
Chapter 14, “Character Sets and Collation Orders.”

When there is no default character set
If you do not specify a default character set, the character set defaults to NONE. Using
CHARACTER SET NONE means that there is no character set assumption for columns; data
is stored and retrieved just as you originally entered it. You can load any character set into
a column defined with NONE, but you cannot load that same data into another column that
has been defined with a different character set. No transliteration will be performed
between the source and destination character sets, so in most cases, errors will occur during
the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET
NONE);
SET NAMES LATIN1;
INSERT INTO MYDATA (PART_NUMBER) VALUES ('à');
SET NAMES DOS437;
SELECT * FROM MYDATA;

The data (“à”) is returned just as it was entered, without the à being transliterated from the
input character (LATIN1) to the output character (DOS437). If the column had been set to
anything other than NONE, the transliteration would have occurred.

Read-only databases
By default, databases are in read-write mode at creation time. Such databases must be on a
writable file system even if they are used only for SELECT, because InterBase writes
information about transaction states to a data structure in the database file.
3-6 D a t a D e f i n i t i o n G u i d e

A l t e r i n g a d a t a b a s e
You have the option of changing a database to read-only mode. Such databases can reside
on read-only file systems, such as CD-ROMs. To change the mode of a database to read-
only, you can either use gfix (or the equivalent choice in IBConsole), or you can back up
the database and restore it in read-only mode. See the Operations Guide for details on
how to change the mode of a database using gfix, gbak, or IBConsole.

Altering a database
Use ALTER DATABASE to add one or more secondary files to an existing database.
Secondary files are useful for controlling the growth and location of a database. They
permit database files to be spread across storage devices, but must remain on the same
node as the primary database file. For more information on secondary files, see “Creating
a multifile database” on page 3-4.

A database can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

ALTER DATABASE requires exclusive access to the database. For more information about
exclusive database access, see “Shutting down and restarting databases” in the “Database
Configuration and Maintenance” chapter of the Operations Guide.

The syntax for ALTER DATABASE is:

ALTER {DATABASE | SCHEMA}
{ADD add_clause | DROP drop_clause | SET set_clause};

add_clause = FILE 'filespec' [fileinfo] [add_clause] | ADMIN OPTION

<fileinfo> = {LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }[<fileinfo>]

drop_clause = ADMIN OPTION

set_clause = {FLUSH INTERVAL <number> | NO FLUSH INTERVAL | GROUP
COMMINT | NO GROUP COMMIT | LINGER INTERVAL <number> | NO LINGER
INTERVAL | RECLAIM INTERVAL <number> | NO RECLAIM INTERVAL}

You must specify a range of pages for each file either by providing the number of pages in
each file, or by providing the starting page number for the file.

Note It is never necessary to specify a length for the last—or only—file, because InterBase
always dynamically sizes the last file and will increase the file size as necessary until all
the available space is used.

The first example adds two secondary files to the currently connected database by
specifying the starting page numbers:

ALTER DATABASE
ADD FILE 'employee2.ib' STARTING AT PAGE 10001
ADD FILE 'employee3.ib' STARTING AT PAGE 20001
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-7

D r o p p i n g a d a t a b a s e
The next example does nearly the same thing as the previous example, but it specifies the
secondary file length rather than the starting page number. The difference is that in the
previous example, the original file will grow until it reaches 10000 pages. In the second
example, InterBase starts the secondary file at the next available page and begins using it
immediately.

ALTER DATABASE
ADD FILE 'employee2.ib' LENGTH 10000
ADD FILE 'employee3.ib'

Dropping a database
DROP DATABASE is the command that deletes the database currently connected to,
including any associated shadow and log files. Dropping a database deletes any data it
contains. A database can be dropped by its creator, the SYSDBA user, and any users with
operating system root privileges.

The following statement deletes the current database:

DROP DATABASE;

Creating a database shadow
InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called shadowing. This section describes
the various tasks involved in shadowing, as well as the advantages and limitations of
shadowing. The main tasks in setting up and maintaining shadowing are as follows:

• CREATING A SHADOW Shadowing begins with the creation of a shadow. A shadow is
an identical physical copy of a database. When a shadow is defined for a database,
changes to the database are written simultaneously to its shadow. In this way, the
shadow always reflects the current state of the database. For information about the
different ways to define a shadow, see “Using CREATE SHADOW” on page 3-10.

• DELETING A SHADOW If shadowing is no longer desired, the shadow can be deleted.
For more information about deleting a shadow, see “Dropping a shadow” on
page 3-13.

• ADDING FILES TO A SHADOW A shadow can consist of more than one file. As
shadows grow in size, files can be added to accommodate the increased space
requirements.

Advantages of shadowing
Shadowing offers several advantages:

• Recovery is quick: Activating a shadow makes it available immediately.
3-8 D a t a D e f i n i t i o n G u i d e

C r e a t i n g a d a t a b a s e s h a d o w
• Creating a shadow does not require exclusive access to the database.

• You can control the allocation of disk space. A shadow can span multiple files on
multiple disks.

• Shadowing does not use a separate process. The database process handles writing to the
shadow.

• Shadowing runs behind the scenes and needs little or no maintenance.

Limitations of shadowing
Shadowing has the following limitations:

• Shadowing is useful only for recovery from hardware failures or accidental deletion of
the database. User errors or software failures that corrupt the database are duplicated in
the shadow.

• Recovery to a specific point in time is not possible. When a shadow is activated, it takes
over as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

• Shadowing can occur only to a local disk. InterBase does not support shadowing to an
NFS file system, mapped drive, tape, or other media.

Before creating a shadow
Before creating a shadow, consider the following questions:

• Where will the shadow reside?

A shadow should be created on a different disk from where the main database resides.
Because shadowing is intended as a recovery mechanism in case of disk failure,
maintaining a database and its shadow on the same disk defeats the purpose of shadowing.

• How will the shadow be distributed?

A shadow can be created as a single disk file called a shadow file or as multiple files called
a shadow set. To improve space allocation and disk I/O, each file in a shadow set can be
placed on a different disk.

• If something happens that makes a shadow unavailable, should users be allowed to
access the database?

If a shadow becomes unavailable, InterBase can either deny user access until shadowing is
resumed, or InterBase can allow access even though database changes are not being
shadowed. Depending on which database behavior is desired, the database administrator
(DBA) creates a shadow either in auto mode or in manual mode. For more information
about these modes, see “Auto mode and manual mode” on page 3-11.

• If a shadow takes over for a database, should a new shadow be automatically created?

To ensure that a new shadow is automatically created, create a conditional shadow. For
more information, see “Conditional shadows” on page 3-12.
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-9

C r e a t i n g a d a t a b a s e s h a d o w
Using CREATE SHADOW

Use the CREATE SHADOW statement to create a database shadow. Because this does not
require exclusive access, it can be done without affecting other users. A shadow can be
created using a combination of the following options:

• Single-file or multifile shadows

• Auto or manual shadows

• Conditional shadows

These options are not mutually exclusive. For example, you can create a single-file,
manual, conditional shadow.

The syntax of CREATE SHADOW is:

CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]
'filespec' [LENGTH [=] int [PAGE[S]]] [<secondary_file>];

Where:

<secondary_file> = FILE 'filespec' [<fileinfo>] [<secondary_file>]

<fileinfo> = {LENGTH[=]int [PAGE[S]] | STARTING [AT [PAGE]] int } [<fileinfo>]

Creating a single-file shadow
To create a single-file shadow for the database employee.ib, enter:

CREATE SHADOW 1 'employee.shd';

The shadow is associated with the currently connected database, employee.ib. The name of
the shadow file is employee.shd, and it is identified by a shadow set number, 1, in this
example. The shadow set number tells InterBase that all of the shadow files listed are
grouped together under this identifier.

To verify that the shadow has been created, enter the isql command SHOW DATABASE:

SHOW DATABASE;

Database: employee.ib
Shadow 1: '/usr/InterBase/employee.shd' auto
PAGE_SIZE 1024
Number of DB pages allocated = 392
Sweep interval = 20000

The page size of the shadow is the same as that of the database.

Shadow location
On non-NFS systems, which includes all Microsoft Windows machines, the shadow must
reside on the same host as the database. You cannot specify a different host name or a
mapped drive as the location of the shadow.
3-10 D a t a D e f i n i t i o n G u i d e

C r e a t i n g a d a t a b a s e s h a d o w
On UNIX systems, it is possible to place the shadow on any NFS-mounted directory, but
you run the risk of losing the shadow if you experience problems with NFS, so this is not a
recommended procedure.

Creating a multifile shadow
You can create multifile shadows, similarly to the way you create multifile databases. To
create a multifile shadow, specify the name and size of each file in the shadow set. File
specifications are platform-specific.

The following examples illustrate the creation of a multifile shadow on a UNIX platform.
They create the shadow files on the A, B, and C drives of the IB_bckup node.

The first example creates a shadow set consisting of three files. The primary file,
employee.shd, is 10,000 database pages in length and the first secondary file is 20,000
database pages long. The final secondary file, as always, grows as needed.

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000
FILE 'D:/shadows/employee2.shd' LENGTH 5000
FILE 'D:/shadows/employee3.shd';

Instead of specifying the page length of secondary files, you can specify their starting
pages. The previous example could be entered as follows:

CREATE SHADOW 1 'D:/shadows/employee.shd' LENGTH 10000
FILE 'D:/shadows/employee2.shd' STARTING AT 10000
FILE 'D:/shadows/employee3.shd' STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and
starting pages for the shadow just created:

SHOW DATABASE;
Database: employee.ib
 Owner: SYSDBA
 Shadow 1: "D:\SHADOWS\EMPLOYEE.SHD" auto length 10000
 file D:\SHADOWS\EMPLOYEE2.SHD starting 10000
 file D:\SHADOWS\EMPLOYEE3.SHD starting 30000
PAGE_SIZE 1024
Number of DB pages allocated = 462
Sweep interval = 20000

Note The page length allocated for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

Auto mode and manual mode
A shadow can become unavailable for the same reasons a database becomes unavailable:
disk failure, network failure, or accidental deletion. If a shadow becomes unavailable, and
it was created in AUTO mode, database operations continue automatically without
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-11

C r e a t i n g a d a t a b a s e s h a d o w
shadowing. If a shadow becomes unavailable, and it was created in MANUAL mode, further
access to the database is denied until the database administrator intervenes. The benefits of
AUTO mode and MANUAL mode are compared in the following table:

Auto mode
The AUTO keyword directs the CREATE SHADOW statement to create a shadow in AUTO
mode:

CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation continues even if the shadow becomes inoperable. If the
original shadow was created as a conditional shadow, a new shadow is automatically
created. If the shadow was not conditional, you must create a new shadow manually. For
more information about conditional shadows, see “Conditional shadows” on
page 3-12.

Manual mode
The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in
manual mode:

CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
connections to the database are prevented. To allow database connections again, the
database administrator must remove the old shadow file, delete references to it, and create
a new shadow.

Conditional shadows
A shadow can be defined so that if it replaces a database, a new shadow will be
automatically created, allowing shadowing to continue uninterrupted. A shadow defined
with this behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the CREATE
SHADOW statement. For example:

CREATE SHADOW 3 CONDITIONAL 'employee.shd';

Table 3.1 Auto vs. manual shadows

Mode Advantage Disadvantage

AUTO Database operation is
uninterrupted

Creates a temporary period when the
database is not shadowed; the DBA might
be unaware that the database is operating
without a shadow.

MANUAL Prevents the database from
running unintentionally without a
shadow

Halts database operation until the problem is
fixed; needs intervention of the DBA
3-12 D a t a D e f i n i t i o n G u i d e

D r o p p i n g a s h a d o w
Creating a conditional file directs InterBase to automatically create a new shadow. This
happens in either of two cases:

• The database or one of its shadow files becomes unavailable.

• The shadow takes over for the database due to hardware failure.

Dropping a shadow
To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. DROP SHADOW deletes shadow references from a database’s metadata, as well
as the physical files on disk.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating
system root privileges.

DROP SHADOW syntax
DROP SHADOW set_num;

The following example drops all of the files associated with the shadow set
number 1:

DROP SHADOW 1;

If you need to look up the shadow number, use the isql command SHOW DATABASE.

SHOW DATABASE;

Database: employee.ib
Shadow 1: 'employee.shd' auto
PAGE_SIZE 1024
Number of DB pages allocated = 392
Sweep interval = 20000

Expanding the size of a shadow
If a database is expected to increase in size, or if the database is already larger than the
space available for a shadow on one disk, you might need to expand the size of the shadow.
To do this, drop the current shadow and create a new one containing additional files. To
add a shadow file, first use DROP SHADOW to delete the existing shadow, then use CREATE
SHADOW to recreate it with the desired number of secondary files.

The page length allocated for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.
C h a p t e r 3 C r e a t i n g D a t a b a s e s 3-13

U s i n g i s q l t o e x t r a c t d a t a d e f i n i t i o n s
Using isql to extract data definitions
isql enables you to extract data definition statements from a database and store them in an
output file. All keywords and objects are extracted into the file in uppercase.

The output file enables users to:

• Examine the current state of a database’s system tables. This is especially useful when
the database has changed significantly since its creation.

• Create a database with schema definitions that are identical to the extracted database.

• Make changes to the database, or create a new database source file with a text editor.

Extracting an InterBase 4.0 database
You can use Windows ISQL on a Windows client PC to extract data definition statements.
On some servers, you can also use command-line isql on the server platform to extract data
definition statements. For more information on using Windows ISQL and command-line
isql, see the Operations Guide.

Extracting a 3.x database
To extract metadata from a 3.x database, use command-line isql on the server. Use the -a
switch instead of -x. The difference between the -x option and the -a option is that the -x
option extracts metadata for SQL objects only, and the -a option extracts all DDL for the
named database. The syntax can differ depending upon operating system requirements.

The following command extracts the metadata from the employee.ib database into the file,
newdb.sql:

isql -a employee.ib -o newdb.sql

For more information on using command-line isql, see the Operations Guide.
3-14 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 4Specifying Data types
This chapter describes the following:

• All of the data types that are supported by InterBase, and the allowable operations on
each type

• Where to specify the data type, and which data definition statements reference or define
the data type

• How to specify a default character set

• How to create each data type, including BLOB data

• How to create arrays of data types

• How to perform data type conversions

About InterBase data types
When creating a new column in an InterBase table, the primary attribute that you must
define is the data type, which establishes the set of valid data that the column can contain.
Only values that can be represented by that data type are allowed. Besides establishing the
set of valid data that a column can contain, the data type defines the kinds of operations
that you can perform on the data. For example, numbers in INTEGER columns can be
manipulated with arithmetic operations, while CHARACTER columns cannot.

The data type also defines how much space each data item occupies on the disk. Choosing
an optimum size for the data value is an important consideration when disk space is
limited, especially if a table is very large.

InterBase supports the following data types:

• INTEGER and SMALLINT

• FLOAT and DOUBLE PRECISION
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-1

A b o u t I n t e r B a s e d a t a t y p e s
• NUMERIC and DECIMAL

• DATE, TIME, and TIMESTAMP

• CHARACTER and VARYING CHARACTER

• BOOLEAN

• BLOB
InterBase provides the Blob data type to store data that cannot easily be stored in one of the
standard SQL data types. A BLOB is used to store data objects of indeterminate and
variable size, such as bit-mapped graphics images, vector drawings, sound files, video
segments, chapter or book-length documents, or any other kind of multimedia information.

InterBase also supports arrays of most data types. An array is a matrix of individual items
composed of any single InterBase data type (except BLOB). An array can have from 1 to 16
dimensions. An array can be handled as a single entity, or manipulated item-by-item.

A TIMESTAMP data type is supported that includes information about year, month, day of
the month, and time. The TIMESTAMP data type is stored as two long integers, and requires
conversion to and from InterBase when entered or manipulated in a host-language
program. The DATE data type includes information on the year, month, and day of the
month. The TIME data type includes information about time in hours, minutes, seconds,
and tenths, hundredths, and thousandths of seconds.

The following table describes the data types supported by InterBase:

Table 4.1 Data types supported by InterBase

Name Size Range/Precision Description

BLOB Variable • None
• Blob segment size is limited to

64K

• Dynamically sizable data type
for storing large data such as
graphics, text, and digitized
voice

• Basic structural unit is the
segment

• Blob subtype describes Blob
contents

BOOLEAN 16 bits • TRUE
• FALSE
• UNKNOWN

• Represents truth values TRUE,
FALSE, and UNKNOWN

• Requires ODS 11 or higher,
any dialect

CHAR(n) n characters • 1 to 32,767 bytes
• Character set character size

determines the maximum
number of characters that can
fit in 32K

• Fixed length CHAR or text
string type

• Alternate keyword:
CHARACTER

DATE 32 bits 1 Jan 100 a.d.
to 29 Feb 32768 a.d.

• Stores a date as a 32-bit
longword
4-2 D a t a D e f i n i t i o n G u i d e

W h e r e t o s p e c i f y d a t a t y p e s
Where to specify data types
A data type is assigned to a column in the following situations:

• Creating a table using CREATE TABLE.

• Adding a new column to a table or altering a column using ALTER TABLE.

• Creating a global column template using CREATE DOMAIN.

DECIMAL (precision, scale) Variable
(16, 32, or
64 bits)

• precision = 1 to 18; specifies
at least precision digits of
precision to store

• scale = 0 to 18; specifies
number of decimal places must
be less than or equal to
precision

• Number with a decimal point
scale digits from the right

• Example: DECIMAL(10, 3)
holds numbers accurately in
the following format:
ppppppp.sss

DOUBLE PRECISION 64 bitsa 2.225 x 10–308 to 1.797 x 10308 IEEE double precision: 15 digits

FLOAT 32 bits 1.175 x 10–38 to 3.402 x 1038 IEEE single precision: 7 digits

INTEGER 32 bits –2,147,483,648 to 2,147,483,647 Signed long (longword)

NUMERIC (precision, scale) Variable (16,
32, or
64 bits)

• precision = 1 to 18; specifies
exactly precision digits of
precision to store

• scale = 0 to 18; specifies
number of decimal places and
must be less than or equal to
precision

• Number with a decimal point
scale digits from the right

• Example: NUMERIC(10,3)
holds numbers accurately in
the following format:
ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767 Signed short (word)

TIME 32 bits 0:00 AM-23:59:59.9999 PM Unsigned integer of InterBase
type ISC_TIME: time of day, in
units of 0.0001 seconds since
midnight

TIMESTAMP 64 bits 1 Jan 100 a.d.
to 29 Feb 32768 a.d.

InterBase type
ISC_TIMESTAMP; combines
DATE and TIME information

VARCHAR (n) n characters • 1 to 32,765 bytes
• Character set character size

determines the maximum
number of characters that can
fit in 32K

• Variable length CHAR or text
string type

• Alternate keywords: CHAR
VARYING, CHARACTER
VARYING

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

Table 4.1 Data types supported by InterBase (continued)

Name Size Range/Precision Description
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-3

D e f i n i n g n u m e r i c d a t a t y p e s
• Modifying a global column template using ALTER DOMAIN.

The syntax for specifying the data type with these statements is provided here for
reference.

<datatype> =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[<array_dim>]
| {DATE | TIME | TIMESTAMP} [<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]

For more information on how to create a data type using CREATE TABLE and ALTER TABLE,
see Chapter 6, “Working with Tables.” For more information on using CREATE DOMAIN
to define data types, see Chapter 5, “Working with Domains.”

Defining numeric data types
The numeric data types that InterBase supports include integer numbers of various sizes
(INTEGER and SMALLINT), floating-point numbers with variable precision (FLOAT,
DOUBLE PRECISION), and formatted, fixed-decimal numbers (DECIMAL and NUMERIC).

Integer data types
Integers are whole numbers. InterBase supports two integer data types: SMALLINT and
INTEGER. SMALLINT is a signed short integer with a range from –32,768 to 32,767.
INTEGER is a signed long integer with a range from –2,147,483,648 to 2,147,483,647. Both
are exact numerics.

The next two statements create domains with the SMALLINT and INTEGER data types:

CREATE DOMAIN EMPNO
AS SMALLINT;

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 99999);

You can perform the following operations on the integer data types:

• Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on
numeric values.

• Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.
4-4 D a t a D e f i n i t i o n G u i d e

D e f i n i n g n u m e r i c d a t a t y p e s
• Conversions. When performing arithmetic operations that involve mixed data types,
InterBase automatically converts between INTEGER, FLOAT, and CHAR data types. For
operations that involve comparisons of numeric data with other data types, InterBase
first converts the data to a numeric type, then performs the arithmetic operation or
comparison.

• Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. You can sort rows using the ORDER BY clause of a
SELECT statement in descending or ascending order.

Fixed-decimal data types
InterBase supports two SQL data types, NUMERIC and DECIMAL, for handling numeric
data with a fixed decimal point, such as monetary values. You can specify optional
precision and scale factors for both data types. These data types are also referred to as exact
numerics.

• Precision is the total number or maximum number of digits, both significant and
fractional, that can appear in a column of these data types. The allowable range for
precision is from 1 to a maximum of 18.

• Scale is the number of digits to the right of the decimal point that comprise the
fractional portion of the number. The allowable range for scale is from zero to precision;
in other words, scale must be less than or equal to precision.

The syntax for NUMERIC and DECIMAL is as follows:

NUMERIC[(precision [, scale])]
DECIMAL[(precision [, scale])]

You can specify NUMERIC and DECIMAL data types without precision or scale, with
precision only, or with both precision and scale.

NUMERIC data type
NUMERIC(x,y)

In the syntax above, InterBase stores exactly x digits. Of that number, exactly y digits are to
the right of the decimal point. For example,

NUMERIC(5,2)

declares that a column of this type always holds numbers with exactly five digits, with
exactly two digits to the right of the decimal point: ppp.ss.

DECIMAL data type
DECIMAL(x,y)

In the syntax above, InterBase stores at least x digits. Of that number, exactly y digits are to
the right of the decimal point. For example,

DECIMAL(5,2)
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-5

D e f i n i n g n u m e r i c d a t a t y p e s
declares that a column of this type must be capable of holding at least five but possibly
more digits and exactly two digits to the right of the decimal point: ppp.ss.

How fixed-decimal data types are stored
When you create a domain or column with a NUMERIC or DECIMAL data type, InterBase
determines which data type to use for internal storage based on the precision and scale that
you specify and the dialect of the database.

• NUMERIC and DECIMAL data types that are declared without either precision or scale are
stored as INTEGER.

• Defined with precision, with or without scale, they are stored as SMALLINT, INTEGER,
DOUBLE PRECISION or 64-bit integer. Storage type depends on both the precision and
the dialect of the database. Table 4.2 describes these relationships.

NUMERIC and DECIMAL data types with precision greater than 10 always produce an error
when you create a dialect 2 database. This forces you to examine each instance during a
migration. For more about migrating exact numerics, see “Migrating databases with
NUMERIC and DECIMAL data types” on page 4-8. For a broader discussion of
migration issues, see the migration appendix in the InterBase Operations Guide.

The following table summarizes how InterBase stores NUMERIC and
DECIMAL data types based on precision and scale:

Table 4.2 NUMERIC and DECIMAL data type storage: dialects 1 and 3

Precision Dialect 1 Dialect 3

1 to 4 • SMALLINT for NUMERIC
data types

• INTEGER for DECIMAL data
types

SMALLINT

5 to 9 INTEGER INTEGER

10 to 18 DOUBLE PRECISION INT64

Table 4.3 NUMERIC and DECIMAL data type storage based on precision and scale

Data type specified as… Data type stored as…

NUMERIC INTEGER

NUMERIC(4) SMALLINT

NUMERIC(9) INTEGER

NUMERIC(10) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

NUMERIC(4,2) SMALLINT

NUMERIC(9,3) INTEGER
4-6 D a t a D e f i n i t i o n G u i d e

D e f i n i n g n u m e r i c d a t a t y p e s
Specifying NUMERIC and DECIMAL with scale and precision
When a NUMERIC or DECIMAL data type declaration includes both precision and scale,
values containing a fractional portion can be stored, and you can control the number of
fractional digits. InterBase stores such values internally as SMALLINT, INTEGER, or 64-bit
integer data, depending on the precision specified. How can a number with a fractional
portion be stored as an integer value? For all SMALLINT and INTEGER data entered,
InterBase stores a scale factor, a negative number indicating how many decimal places are
contained in the number, based on the power of 10. A scale factor of –1 indicates a
fractional portion of tenths; a –2 scale factor indicates a fractional portion of hundredths.
You do not need to include the sign; it is negative by default.

For example, when you specify NUMERIC(4,2), InterBase stores the number internally as a
SMALLINT. If you insert the number 25.253, it is stored as a decimal 25.25, with 4 digits of
precision, and a scale of 2.

The number is divided by 10 to the power of scale (number/10scale) to produce a number
without a fractional portion.

See the Language Reference Guide for information about arithmetic operations using
exact and approximate numerics.

Numeric input and exponents
Any numeric string in DSQL or isql that can be stored as a DECIMAL(18,S) is evaluated
exactly, without the loss of precision that might result from intermediate storage as a
DOUBLE. A numeric string is recognized by the DSQL parser as a floating-point value
only if it contains an “e” or “E” followed by an exponent, which may be zero. For example,
DSQL recognizes 4.21 as a scaled exact integer, and passes it to the engine in that form.
On the other hand, DSQL recognizes 4.21E0 as a floating-point value.

NUMERIC(10,4) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

DECIMAL INTEGER

DECIMAL(4) INTEGER

DECIMAL(9) INTEGER

DECIMAL(10) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

DECIMAL(4,2) INTEGER

DECIMAL(9,3) INTEGER

DECIMAL(10,4) • DOUBLE PRECISION in dialect1
• INT64 in dialect 3

Table 4.3 NUMERIC and DECIMAL data type storage based on precision and scale

Data type specified as… Data type stored as…
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-7

D e f i n i n g n u m e r i c d a t a t y p e s
Specifying data types using embedded applications
DSQL applications such as isql can correct for the scale factor for SMALLINT and INTEGER
data types by examining the XSQLVAR sqlscale field and dividing to produce the correct
value.

Important Embedded applications cannot use or recognize small precision NUMERIC or DECIMAL
data types with fractional portions when they are stored as SMALLINT or INTEGER types.
To avoid this problem, create all NUMERIC and DECIMAL data types that are to be accessed
from embedded applications with a precision of 10 or more, which forces them to be stored
as 64-bit integer types. Remember to specify a scale if you want to control the precision
and scale.

Both SQL and DSQL applications handle NUMERIC and DECIMAL types stored as 64-bit
integer without problem.

Considering migration for NUMERIC and DECIMAL data types
NUMERIC and DECIMAL data types that have a precision greater than 9 are stored
differently in dialect 1 and dialect 3 databases. As you migrate your databases to dialect 3,
consider the following questions about columns defined with NUMERIC and DECIMAL data
types:

• Is the precision less than 10? There is no issue. You can migrate without taking any
action and there will be no change in the database and no effect on clients.

• For NUMERIC and DECIMAL columns with precision equal to or greater than 10, is
DOUBLE PRECISION an appropriate way to store your data?

• In many cases, the answer is “yes.” If you want to continue to store your data as
DOUBLE PRECISION, change the audiotape of the column to DOUBLE PRECISION
either before or after migrating your database to dialect 3. This doesn’t change any
functionality in dialect 3, but it brings the declaration into line with the storage mode.
In a dialect 3 database, newly-created columns of this type are stored as INT64, but
migrated columns are still stored as DOUBLE PRECISION. Changing the declaration
avoids confusion.

• DOUBLE PRECISION might not be appropriate or desirable for financial applications
and others that are sensitive to rounding errors. In this case, you need to take steps to
migrate your column so that it is stored as INT64 in dialect 3. As you make this
decision, remember that INT64 does not store the same range as DOUBLE PRECISION.
Check whether you will lose information in this conversion and whether this is
acceptable.

Migrating databases with NUMERIC and DECIMAL data types
Read the “considering migration” section above to decide whether you have columns in a
dialect 1 database that would be best stored as 64-bit INTs in a dialect 3 database. If this is
the case, follow these steps for each column:
4-8 D a t a D e f i n i t i o n G u i d e

D e f i n i n g n u m e r i c d a t a t y p e s
1 Back up your original database. Read the “migration” appendix in the Operations
Guide to determine what preparations you need to make before migrating the database.
Typically, this includes detecting metadata that uses double quotes around strings. After
making necessary preparations as indicated in the migration chapter, back up the
database using its current gbak version and restore it using the latest InterBase.

2 Use gfix -set_db_SQL_dialect 3 to change the database to dialect 3

3 Use the ALTER COLUMN clause of the ALTER DATABASE statement to change the name
of each affected column to something different from its original name. If column
position is going to be an issue with any of your clients, use ALTER COLUMN to change
the positions as well.

4 Create a new column for each one that you are migrating. Use the original column
names and if necessary, positions. Declare each one as a DECIMAL or NUMERIC with
precision greater than 9.

5 Use UPDATE to copy the data from each old column to its corresponding new column:

UPDATE tablename
SET new_col_name = old_col_name;

6 Check that your data has been successfully copied to the new columns and drop the old
columns.

Using exact numeric data types in arithmetic
In SQL dialect 1, when you divide two integers or two DECIMAL(9,2) values, the quotient
has type DOUBLE PRECISION; in other words, it is a floating-point value.

In SQL dialect 3, the quotient of two exact numeric values (SMALLINT, INTEGER,
NUMERIC(n,m) or DECIMAL(n.m)) is an exact numeric, with scale factor equal to the sum
of the scales of the dividend and divisor. Because a SMALLINT or INTEGER has a scale of
0, the quotient of two INTEGERs is an INTEGER, the quotient of a DECIMAL(9,2) and a
DECIMAL(12,3) is a DECIMAL(18,5).

In dialect 1, the fraction 1/3 is 0.33333333333333e0; in dialect 3 it is 0. When an
application does something that causes a CHECK condition to be checked, or a stored
procedure to be executed, or a trigger to fire, the processing that takes place is based on the
dialect under which the check, stored procedure, or trigger was defined, not the dialect in
effect when the application causes the check, stored procedure, or trigger to be executed.

For example, suppose that a database is migrated from InterBase 5 and thus has dialect 1;
that MYCOL1 and MYCOL2 are SQL INTEGERs; and that a table definition includes the
following:

CHECK(MYCOL1/MYCOL2>0.5)
which was defined using client dialect 1.

Now suppose that a dialect 3 client tries to insert a row in which MYCOL1 is 3 and
MYCOL2 is 5; because the CHECK was defined in dialect 1, the quotient will be
0.600000000000e0 and the row will pass the check condition, even though in the current
client’s dialect 3, the quotient would have been the integer 0 and the row would have failed
the check, so the insertion would have been refused.
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-9

D e f i n i n g n u m e r i c d a t a t y p e s
Floating-point data types
InterBase provides two floating-point data types, FLOAT and DOUBLE PRECISION; the only
difference is their size. FLOAT specifies a single-precision, 32-bit data type with a precision
of approximately 7 decimal digits. DOUBLE PRECISION specifies a double-precision, 64-bit
data type with a precision of approximately 15 decimal digits.

The precision of FLOAT and DOUBLE PRECISION is fixed by their size, but the scale is not,
and you cannot control the formatting of the scale. With floating numeric data types, the
placement of the decimal point can vary; the position of the decimal is allowed to “float.”
For example, in the same column, one value could be stored as 25.33333, and another
could be stored as 25.333.

Use floating-point numbers when you expect the placement of the decimal point to vary,
and for applications where the data values have a very wide range, such as in scientific
calculations.

If the value stored is outside of the range of the precision of the floating-point number, then
it is stored only approximately, with its least-significant digits treated as zeros. For
example, if the type is FLOAT, you are limited to 7 digits of precision. If you insert a 10-
digit number 25.33333312 into the column, it is stored as 25.33333.

The next statement creates a column, PERCENT_CHANGE, using a DOUBLE PRECISION
type:

CREATE TABLE SALARY_HISTORY
(. . .
PERCENT_CHANGE DOUBLE PRECISION

DEFAULT 0
NOT NULL
CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),

. . .);

You can perform the following operations on FLOAT and DOUBLE PRECISION data types:

• Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on the
integer portion of floating data.

• Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

• Conversions. When performing arithmetic operations that involve mixed data types,
InterBase automatically converts between INTEGER, FLOAT, and CHAR data types. For
operations that involve comparisons of numeric data with other data types, such as
CHARACTER and INTEGER, InterBase first converts the data to a numeric type, then
compares them numerically.

• Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. Sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.
4-10 D a t a D e f i n i t i o n G u i d e

D a t e a n d t i m e d a t a t y p e s
The following CREATE TABLE statement provides an example of how the different numeric
types can be used: an INTEGER for the total number of orders, a fixed DECIMAL for the
dollar value of total sales, and a FLOAT for a discount rate applied to the sale.

CREATE TABLE SALES
(. . .
QTY_ORDERED INTEGER

DEFAULT 1
CHECK (QTY_ORDERED >= 1),

TOTAL_VALUE DECIMAL (9,2)
CHECK (TOTAL_VALUE >= 0),

DISCOUNT FLOAT
DEFAULT 0
CHECK (DISCOUNT >= 0 AND DISCOUNT <= 1));

Date and time data types
InterBase supports DATE, TIME, and TIMESTAMP data types.

• DATE stores a date as a 32-bit longword. Valid dates are from January 1, 100 a.d. to
February 29, 32768 a.d.

• TIME stores time as a 32-bit longword. Valid times are from 00:00 AM to 23:59.9999
PM.

• TIMESTAMP is stored as two 32-bit longwords and is a combination of DATE and TIME.

The following statement creates TIMESTAMP columns in the SALES table:

CREATE TABLE SALES
(. . .
ORDER_DATE TIMESTAMP

DEFAULT 'now'
NOT NULL,

SHIP_DATE TIMESTAMP
CHECK (SHIP_DATE >= ORDER_DATE OR SHIP_DATE IS NULL),

. . .);

In the previous example, NOW returns the system date and time.

Converting to the DATE, TIME, and TIMESTAMP data
types
Most languages do not support the DATE, TIME, and TIMESTAMP data types. Instead, they
express them as strings or structures. These data types requires conversion to and from
InterBase when entered or manipulated in a host-language program. For example, you
could convert to the DATE data type in one of the following ways:

• Create a string in a format that InterBase understands (for example,
1-JAN-1999). When you insert the date into a DATE column, InterBase automatically
converts the text into the internal DATE format.
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-11

C h a r a c t e r d a t a t y p e s
• Use the call interface routines provided by InterBase to do the conversion.
isc_decode_date() converts from the InterBase internal DATE format to the C time
structure. isc_encode_date() converts from the C time structure to the internal InterBase
DATE format.

Note The string conversion described in the first bullet does not work in the other direction. To
read a date in an InterBase format and convert it to a C date variable, you must call
isc_decode_date().

For more information about how to convert DATE, TIME, and TIMESTAMP data types in C,
and how to use the CAST() function for type conversion using SELECT statements, refer to
“Using CAST() to convert dates and times” in Chapter 7, “Working with Dates and
Times” in the Embedded SQL Guide.

How InterBase stores date values
InterBase stores all date values correctly, including those after the year 2000. InterBase
always stores the full year value in a DATE or TIMESTAMP column, never the two-digit
abbreviated value. When a client application enters a two-digit year value, InterBase uses
the “sliding window” algorithm, described below, to make an inference about the century
and stores the full date value including the century. When you retrieve the data, InterBase
returns the full year value including the century information. It is up to client applications
to display the information with two or four digits.

InterBase uses the following sliding window algorithm to infer a century:

• Compare the two-digit year number entered to the current year modulo 100

• If the absolute difference is greater than 50, then infer that the century of the number
entered is 20, otherwise it is 19.

For a more detailed explanation of the InterBase algorithm and how it is applied, see the
“Working with Dates and Times” chapter in the Embedded SQL Guide.

Character data types
InterBase supports four character string data types:

1 A fixed-length character data type, called CHAR(n) or CHARACTER(n), where n is the
exact number of characters stored.

2 A variable-length character type, called VARCHAR(n) or CHARACTER VARYING(n),
where n is the maximum number of characters in the string.

3 An NCHAR(n) or NATIONAL CHARACTER(n) or NATIONAL CHAR(n) data type, which is
a fixed-length character string of n characters which uses the ISO8859_1 character set.

4 An NCHAR VARYING(n) or NATIONAL CHARACTER VARYING(n) or NATIONAL CHAR
VARYING(n) data type, which is a variable-length national character string up to a
maximum of n characters.
4-12 D a t a D e f i n i t i o n G u i d e

C h a r a c t e r d a t a t y p e s
Specifying a character set
When you define the data type for a column, you can specify a character set for the column
with the CHARACTER SET argument. This setting overrides the database default character
set that is assigned when the database is created.

You can also change the default character set, either with SET NAMES in command-line
isql, or with IBConsole using the Edit | Options selection to open the SQL options window
where you can specify a character set on the Options tab. For details about using interactive
SQL in either environment, see the Operations Guide.

The character set determines:

• What characters can be used in CHAR, VARCHAR, and BLOB text columns.

• The collation order to be used in sorting the column.

For example, the following statement creates a column that uses the ISO8859_1 character
set, which is typically used in Europe to support European languages:

CREATE TABLE EMPLOYEE
(FIRST_NAME VARCHAR(10) CHARACTER SET ISO8859_1,
. . .);

Note Collation order does not apply to BLOB data.

For a list of the international character sets and collation orders that are supported by
InterBase, see Chapter 14, “Character Sets and Collation Orders.”

Characters vs. bytes
InterBase limits a character column definition to 32,767 bytes. VARCHAR columns are
restricted to 32,765 bytes. In the case of a single-byte character column, one character is
stored in one byte, so you can define 32,767 (or 32,765 for VARCHAR) characters per
single-byte column without encountering an error.

For multi-byte character sets, to determine the maximum number of characters allowed in a
column definition, divide the internal byte storage limit for the data type by the number of
bytes for each character. Thus, two-byte character sets have a character limit of 16,383 per
field, and three-byte character sets have a limit of 10,922 characters per field. For
VARCHAR columns, the numbers are 16,382 and 10.921 respectively.

The following examples specify a CHAR data type using the UNICODE_FSS character set,
which has a maximum size of three bytes for a single character:

CHAR (10922) CHARACTER SET UNICODE_FSS; /* succeeds */

CHAR (10923) CHARACTER SET UNICODE_FSS; /* fails */

Using CHARACTER SET NONE
If a default character set was not specified when the database was created, the character set
defaults to NONE. Using CHARACTER SET NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally entered it. You
can load any character set into a column defined with NONE, but you cannot load that same
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-13

C h a r a c t e r d a t a t y p e s
data into another column that has been defined with a different character set. No
transliteration will be performed between the source and destination character sets, so in
most cases, errors will occur during the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);
SET NAMES LATIN1;

INSERT INTO MYDATA (PART_NUMBER) VALUES('à');
SET NAMES DOS437;

SELECT * FROM MYDATA;

The data (“à”) is returned just as it was entered, without the à being transliterated from the
input character (LATIN1) to the output character (DOS437). If the column had been set to
anything other than NONE, the transliteration would have occurred.

About collation order
Each character set has its own subset of possible collation orders. The character set that
you choose when you define the data type limits your choice of collation orders. The
collation order for a column is specified when you create the table.

For a list of the international character sets and collation orders that InterBase supports, see
Chapter 14, “Character Sets and Collation Orders.”

Fixed-length character data
InterBase supports two fixed-length string data types: CHAR(n), or alternately CHARACTER
(n), and NCHAR(n), or alternately NATIONAL CHAR(n).

CHAR(n) or CHARACTER(n)
The CHAR(n) or CHARACTER(n) data type contains character strings. The number of
characters n is fixed. For the maximum number of characters allowed for the character set
that you have specified, see Chapter 14, “Character Sets and Collation Orders.”

When the string to be stored or read contains less than n characters, InterBase fills in the
blanks to make up the difference. If a string is larger than n, then the value is truncated. If
you do not supply n, it will default to 1, so CHAR is the same as CHAR(1). The next
statement illustrates this:

CREATE TABLE SALES
(. . .
PAID CHAR

DEFAULT 'n'
CHECK (PAID IN ('y', 'n'), …);

Trailing blanks InterBase compresses trailing blanks when it stores fixed-length strings,
so data with trailing blanks uses the same amount of space as an equivalent variable-length
string. When the data is read, InterBase reinserts the blanks. This saves disk space when
the length of the data items varies widely.
4-14 D a t a D e f i n i t i o n G u i d e

C h a r a c t e r d a t a t y p e s
NCHAR(n) or NATIONAL CHAR(n)
NCHAR(n) is exactly the same as CHARACTER(n), except that it uses the ISO8859_1
character set by definition. Using NCHAR(n) is a shortcut for using the CHARACTER SET
clause to specify the ISO8859_1 character set for a column.

The next two CREATE TABLE examples are equivalent:

CREATE TABLE EMPLOYEE
(…
FIRST_NAME NCHAR(10),
LAST_NAME NCHAR(15), …);

CREATE TABLE EMPLOYEE
(…
FIRST_NAME CHAR(10) CHARACTER SET 'ISO8859_1',
LAST_NAME CHAR(15) CHARACTER SET 'ISO8859_1', …);

Variable-length character data
InterBase supports two variable-length string data types: VARCHAR(n), or alternately
CHAR(n) VARYING, and NCHAR(n), or alternately NATIONAL CHAR(n) VARYING.

Note InterBase provides SQL syntax that allows you to use BLOBs and VARCHAR data
interchangeably. For more information, see “Using BLOBs with VARCHAR data.”

VARCHAR(n)
VARCHAR(n)—also called CHAR VARYING(n), or CHARACTER VARYING(n)—allows you to
store the exact number of characters that is contained in your data, up to a maximum of n.
You must supply n; there is no default to 1.

If the length of the data within a column varies widely, and you do not want to pad your
character strings with blanks, use the VARCHAR(n) or CHARACTER VARYING(n) data type.

InterBase converts from variable-length character data to fixed-length character data by
adding spaces to the value in the varying column until the column reaches its maximum
length n. When the data is read, InterBase removes the blanks.

The main advantages of using the VARCHAR(n) data type are that it saves disk space, and
since more rows fit on a disk page, the database server can search the table with fewer disk
I/O operations. The disadvantage is that table updates can be slower than using a fixed-
length column in some cases.

The next statement illustrates the VARCHAR(n) data type:

CREATE TABLE SALES
(…
ORDER_STATUS VARCHAR(7)

DEFAULT 'new'
NOT NULL
CHECK (ORDER_STATUS IN ('new', 'open',

'shipped', 'waiting')), …);
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-15

T h e BOOLEAN d a t a t y p e
NCHAR VARYING(n)
NCHAR VARYING(n)—also called NATIONAL CHARACTER VARYING (n) or NATIONAL
CHAR VARYING(n)—is exactly the same as VARCHAR(n), except that the ISO8859_1
character set is used. Using NCHAR VARYING(n) is a shortcut for using the CHARACTER
SET clause of CREATE TABLE, CREATE DOMAIN, or ALTER TABLE to specify the
ISO8859_1 character set.

The BOOLEAN data type
The BOOLEAN data type is a 16-bit data type that represents TRUE and FALSE values in a
column. When not prohibited by a NOT NULL constraint, it also supports the UNKNOWN
truth value.

For ESQL and DSQL, the following types are defined in ibase.h:

#define SQL_BOOLEAN 590

In ISQL and IBConsole, the output for a BOOLEAN, regardless of values given, is always
TRUE, FALSE or UNKNOWN. However, using API function calls, UNKNOWN is treated as
NULL, TRUE returns 1, and FALSE returns 0.

Note InterBase looks for Booleans of the form “literal <relop> literal” that evaluate to FALSE and
returns a false Boolean inversion node to short-circuit data retrieval.

Examples The following code illustrates the use of the BOOLEAN data type:

CREATE TABLE AWARDS_1 (isEligible BOOLEAN, name VARCHAR(20));
INSERT INTO AWARDS_1 VALUES (TRUE, 'Jim Smith');
INSERT INTO AWARDS_1 VALUES (FALSE, 'John Buttler');

SELECT * FROM AWARDS_1;
ISELIGIBLE NAME
========== ====================
TRUE Jim Smith
FALSE John Buttler

SELECT * FROM AWARDS_1 WHERE isEligible = TRUE;
ISELIGIBLE NAME
========== ====================
TRUE Jim Smith

SELECT * FROM AWARDS_1 WHERE isEligible;

SQL Data
type Macro expression

C data type or
typedef

sqlind
used?

BOOLEAN SQL_BOOLEAN Signed short NO

BOOLEAN SQL_BOOELAN + 1 Signed short YES
4-16 D a t a D e f i n i t i o n G u i d e

D e f i n i n g BLOB d a t a t y p e s
ISELIGIBLE NAME
========== ====================
TRUE Jim Smith

SELECT * FROM AWARDS_1 WHERE NOT isEligible;

ISELIGIBLE NAME
========== ====================
FALSE John Buttler

Example 2:

SELECT * FROM AWARDS_1 WHERE isEligible = TRUE;

Defining BLOB data types
InterBase supports a dynamically sizable data type called a BLOB to store data that cannot
easily be stored in one of the standard SQL data types. A Blob is used to store very large
data objects of indeterminate and variable size, such as bit-mapped graphics images, vector
drawings, sound files, video segments, chapter or book-length documents, or any other
kind of multimedia information. Because a Blob can hold different kinds of information, it
requires special processing for reading and writing. For more information about Blob
handling, see the Embedded SQL Guide.

The BLOB data type provides the advantages of a database management system, including
transaction control, maintenance by database utilities, and access using SELECT, INSERT,
UPDATE, and DELETE statements. Use the BLOB data type to avoid storing pointers to non-
database files.

BLOB columns
You define BLOB columns in database tables just as you do non-BLOB columns. For
example, the following statement creates a table with a BLOB column:

CREATE TABLE PROJECT
(PROJ_ID PROJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,
PROJ_DESC BLOB,
TEAM_LEADER EMPNO,
PRODUCT PRODTYPE,
. . .);

Rather than storing BLOB data directly, a BLOB column stores a BLOB ID. A BLOB ID is a
unique numeric value that references BLOB data. The BLOB data is stored elsewhere in the
database, in a series of BLOB segments, which are units of BLOB data that are read and
written in chunks. InterBase writes data to a BLOB one segment at a time. Similarly, it reads
a BLOB one segment at a time.

The following diagram shows the relationship between a BLOB column containing a BLOB
ID and the BLOB data referenced by the BLOB ID:
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-17

D e f i n i n g BLOB d a t a t y p e s
Figure 4.1 Blob relationships

BLOB segment length
When a BLOB column is defined in a table, the BLOB definition can specify the expected
size of BLOB segments that are written to the column. Actually, for SELECT, INSERT, and
UPDATE operations, BLOB segments can be of varying length. For example, during
insertion, a BLOB might be read in as three segments, the first segment having length 30,
the second having length 300, and the third having length 3.

The length of an individual segment should be specified when it is written. For example,
the following code fragment inserts a BLOB segment. The segment length is specified in
the host variable, segment_length:

INSERT CURSOR BCINS VALUES (:write_segment_buffer :segment_length);

Defining segment length
gpre, the InterBase precompiler, is used to process embedded SQL statements inside
applications. The segment length setting, defined for a BLOB column when it is created, is
used to determine the size of the internal buffer where the BLOB segment data will be
written. This setting specifies (to gpre) the maximum number of bytes that an application
is expected to write to any segment in the column. The default segment length is 80.
Normally, an application should not attempt to write segments larger than the segment
length defined in the table; doing so overflows the internal segment buffer, corrupting
memory in the process.

The segment length setting does not affect InterBase system performance. Choose the
segment length most convenient for the specific application. The largest possible segment
length is 32 kilobytes (32,767 bytes).

Segment syntax
The following statement creates two BLOB columns, BLOB1, with a default segment size
of 80, and BLOB2, with a specified segment length of 512:

CREATE TABLE TABLE2
(BLOB1 BLOB,
BLOB2 BLOB SEGMENT SIZE 512);

BLOB ID ……

BLOB
column

Table row

BLOB data segment segment segment …
4-18 D a t a D e f i n i t i o n G u i d e

D e f i n i n g BLOB d a t a t y p e s
BLOB subtypes
When you define a BLOB column, you have the option of specifying a subtype. A BLOB
subtype is a positive or negative integer that describes the nature of the BLOB data
contained in the column. InterBase provides two predefined subtypes, 0, signifying that a
BLOB contains binary data, the default, and 1, signifying that a BLOB contains ASCII text.
User-defined subtypes must always be represented as negative integers. Positive integers
are reserved for use by InterBase.

Note TEXT is a keyword and can be used in a BLOB column declaration instead of the subtype
number.

For example, the following statement defines three BLOB columns: BLOB1 with subtype 0
(the default), BLOB2 with InterBase subtype 1 (TEXT), and BLOB3 with user-defined
subtype –1:

CREATE TABLE TABLE2
(BLOB1 BLOB,
BLOB2 BLOB SUB_TYPE 1,
BLOB3 BLOB SUB_TYPE –1);

The application is responsible for ensuring that data stored in a BLOB column agrees with
its subtype. For example, if subtype –10 denotes a certain data type in a particular
application, then the application must ensure that only data of that data type is written to a
BLOB column of subtype –10. InterBase does not check the type or format of BLOB data.

To specify both a default segment length and a subtype when creating a BLOB column, use
the SEGMENT SIZE option after the SUB_TYPE option, as in the following example:

CREATE TABLE TABLE2
(BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100 CHARACTER SET DOS437);

Table 4.4 Blob subtypes

Blob
subtype Description

0 Unstructured, generally applied to binary data or data of an indeterminate type

1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-19

D e f i n i n g BLOB d a t a t y p e s
BLOB filters
BLOB subtypes are used in conjunction with BLOB filters. A BLOB filter is a routine that
translates BLOB data from one subtype to another. InterBase includes a set of special
internal BLOB filters that convert from subtype 0 to subtype 1 (TEXT), and from InterBase
system subtypes to subtype 1 (TEXT). In addition to using the internal text filters,
programmers can write their own external filters to provide special data translation. For
example, an external filter might automatically translate from one bit-mapped image
format to another.

Note Associated with every filter is an integer pair that specifies the input subtype and the output
subtype. When declaring a cursor to read or write BLOB data, specify FROM and TO
subtypes that correspond to a particular BLOB filter. InterBase invokes the filter based on
the FROM and TO subtype specified by the read or write cursor declaration.

The display of BLOB subtypes in isql can be specified with SET BLOBDISPLAY in
command-line isql or with the Session | Advanced Settings command in Windows ISQL.

For more information about Windows ISQL and command-line isql, see the Operations
Guide. For more information about creating external BLOB filters, see the Embedded
SQL Guide.

Using BLOBs with VARCHAR data
All BLOB sub-types can be used interchangeably with VARCHAR data. However, with
BLOB SUB_TYPE 1, the BLOB is considered to have a character type, essentially making
the BLOB a CLOB datatype. For BLOB columns of SUB_TYPE 1, the server converts
character data to the column’s character type before inserting, updating or comparing the
data. For all other sub-types, the BLOB data type accepts character input and treats it just
as it would all other binary data. Hence, the BLOB datatype treats all textual data as an
array of bytes. Text data used in ISQL has a character set associated with it. This will most
likely be the character encoding of the machine running ISQL (or any other client).

The server does not perform any character set conversion in these cases. Again, the server
treats the data as an array of bytes. To convert or store the textual data to a particular
encoding (other than the system encoding), cast the character data to the required character
set.

About text BLOB syntax
The general syntax for the SQL SELECT statement with a BLOB data type is:

SELECT CAST (<blob-column-name> as CHAR[<n>]) FROM <table-name>;

To make text blobs interchangeable with VARCHAR data, you can use the following SQL
syntax:

INSERT INTO <table-name> values (<text values>, ….);
UPDATE <table_name> set <blob column name> = <text value>;

And:
4-20 D a t a D e f i n i t i o n G u i d e

D e f i n i n g BLOB d a t a t y p e s
SELECT CAST (<blob column name> as CHAR[128]) from table;
SELECT * from <table name> where cast (<blob column> as

VARCHAR[10]) =
“SMISTRY”;

In addition, store procedures which accept a BLOB can now accept a text value as a
parameter and implicitly be converted to a text blob. For example:

CREATE PROCEDURE MYTEST (AINT INTEGER, INBLOB BLOB)
AS
Declare variable var_blob blob;
begin
insert
var_blob

This procedure can now be called using the following syntax:

Execute procedure mytest (1, ‘hello world’);

You can use the SELECT CAST, UPDATE, and INSERT INTO statements with the
InterBase Client APIs. In such cases, InterBase returns the values as C structures.
Specifically, the returned XSQLVARS would be of the type SQLVARYING, with the
length of the text followed by the text data.

The following example demonstrates the use of the new SQL syntax for text BLOBs.

Example

/* Same syntax to create a table... */
/* Note all sub-types are supported; SUB_TYPE 1 forces conversion
*/
/* to the column’s character data type. */
CREATE TABLE BLOB_TEST (B_ID INT, BLOB_CL BLOB SUB_TYPE 1);
COMMIT;
/* New functionality for the INSERT statement... */
INSERT INTO BLOB_TEST VALUES (1, ‘Fellowship of the Ring’);
INSERT INTO BLOB_TEST VALUES (2, ‘The Two Towers’);
INSERT INTO BLOB_TEST VALUES (3, ‘Return of the Jedi’);
/* New syntax for UPDATE... */
UPDATE BLOB_TEST SET BLOB_CL=’Return of the King’ WHERE B_ID=3;
COMMIT;
/* New syntax for SELECT. The BLOB will be returned as a TEXT

string. */
SELECT B_ID, CAST (BLOB_CL AS VARCHAR(25)) FROM BLOB_TEST;
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-21

D e f i n i n g a r r a y s
Table 4.5 illustrates the result of these statements in ISQL:

Defining arrays
InterBase allows you to create arrays of data types. Using an array enables multiple data
items to be stored in a single column. InterBase can perform operations on an entire array,
effectively treating it as a single element, or it can operate on an array slice, a subset of
array elements. An array slice can consist of a single element, or a set of many contiguous
elements.

Using an array is appropriate when:

• The data items naturally form a set of the same data type.

• The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column.

• Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of any
InterBase data type except BLOB, and cannot be an array of arrays. All of the elements of a
particular array are of the same data type.

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an
array column is just like defining any other column, except that the array dimensions must
also be specified. For example, the following statement defines both a regular character
column, and a single-dimension, character array column containing four elements:

EXEC SQL
CREATE TABLE TABLE1

(NAME CHAR(10),
CHAR_ARR CHAR(10)[4]);

Array dimensions are always enclosed in square brackets following a column’s data type
specification.

For a complete discussion of CREATE TABLE and array syntax, see the Language
Reference. To learn more about the flexible data access provided by arrays, see the
Embedded SQL Guide.

Table 4.5 Text BLOB Example Result

B_ID BLOB_CL

1 Fellowship of the Ring

2 The Two Towers

3 Return of the King
4-22 D a t a D e f i n i t i o n G u i d e

D e f i n i n g a r r a y s
Multi-dimensional arrays
InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For example,
the following statement defines three INTEGER array columns with two, three, and four
dimensions respectively:

EXEC SQL
CREATE TABLE TABLE1

(INT_ARR2 INTEGER[4,5],
INT_ARR3 INTEGER[4,5,6],
INT_ARR4 INTEGER[4,5,6,7]);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for a total of
20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARR4 allocates 840
elements.

Important InterBase stores multi-dimensional arrays in row-major order. Some host languages, such
as FORTRAN, expect arrays to be in column-major order. In these cases, care must be taken
to translate element ordering correctly between InterBase and the host language.

Specifying subscript ranges for array dimensions
In InterBase, array dimensions have a specific range of upper and lower boundaries, called
subscripts. In many cases, the subscript range is implicit. The first element of the array is
element 1, the second element 2, and the last is element n. For example, the following
statement creates a table with a column that is an array of four integers:

EXEC SQL
CREATE TABLE TABLE1

(INT_ARR INTEGER[4]);

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly
defined when an array column is created. For example, C programmers, familiar with
arrays that start with a lower subscript boundary of zero, might want to create array
columns with a lower boundary of zero as well.

To specify array subscripts for an array dimension, both the lower and upper boundaries of
the dimension must be specified using the following syntax:

lower:upper

For example, the following statement creates a table with a single-dimension array column
of four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL
CREATE TABLE TABLE1

(INT_ARR INTEGER[0:3]);

The subscripts for this array are 0, 1, 2, and 3.
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-23

C o n v e r t i n g d a t a t y p e s
When creating multi-dimensional arrays with explicit array boundaries, separate each
dimension’s set of subscripts from the next with commas. For example, the following
statement creates a table with a two-dimensional array column where each dimension has
four elements with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLE1

(INT_ARR INTEGER[0:3, 0:3]);

Converting data types
Normally, you must use compatible data types to perform arithmetic operations, or to
compare data in search conditions. If you need to perform operations on mixed data types,
or if your programming language uses a data type that is not supported by InterBase, then
data type conversions must be performed before the database operation can proceed.
InterBase either automatically (dialect 1) converts the data to an equivalent data type (an
implicit type conversion), or you can use the CAST() function (dialect 3) in search
conditions to explicitly translate one data type into another for comparison purposes.

Note You cannot convert array data to any other data type, nor can any data type be converted to
an array. Individual elements of an array, however, behave like members of the array’s base
data type. To see how BLOBs can be converted to VARCHARS, see “Using BLOBs with
VARCHAR data.”

Implicit type conversions
InterBase supports several types of implicit type conversion. For example, comparing a
DATE or TIMESTAMP column to ‘6/7/2000’ causes the string literal ‘6/7/2000’ to be
converted implicitly to a DATE entity. An expression mixing integers with scaled numeric
types or float types implicitly converts the integer to a like type.

However, InterBase dialect 3 differs from dialect 1 in this respect: in dialect 3, implicit
string-to-integer conversion is not supported. For example, in the following operation:

3 + '1' = 4

• InterBase dialect 1 automatically converts the character “1” to an INTEGER for the
addition

• InterBase dialect 3 returns an error

In dialect 3, an explicit type conversion is needed:

3 + CAST(‘1’ AS INT)
The next example returns an error in either dialect, because InterBase cannot convert the
“a” to an INTEGER:

3 + 'a' = 4
4-24 D a t a D e f i n i t i o n G u i d e

C o n v e r t i n g d a t a t y p e s
Explicit type conversions
When InterBase cannot do an implicit type conversion, you must perform an explicit type
conversion using the CAST() function. Use CAST() to convert one data type to another inside
a SELECT statement. Typically, CAST() is used in the WHERE clause to compare different
data types. The syntax is:

CAST (value | NULL AS datatype)

Use CAST() to translate the following data types:

• DATE, TIME, or TIMESTAMP data type into a CHARACTER data type

• CHARACTER data type into a DATE, TIME, or TIMESTAMP data type

• TIMESTAMP data type into a TIME or DATE data type

• TIME or DATE data type into a TIMESTAMP data type

• BOOLEAN into a CHAR or VARCHAR

• BLOB subtype 1 into a VARCHAR

For example, in the following WHERE clause, CAST() is used to translate a CHAR data type,
INTERVIEW_DATE, to a DATE data type in order to compare against a DATE data type,
HIRE_DATE:

… WHERE HIRE_DATE = (CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST() is used to translate a DATE data type into a CHAR data type:

… WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

You can use CAST() to compare columns with different data types in the same table, or
across tables. For more information, refer to Chapter 7 of the Embedded SQL Guide.

Converting a numeric data type to a character type requires a minimum length for the
character type, as listed below.
Table 4.6 Minimum character lengths for numeric conversions

Data type

Minimum length for
converted character
type

Decimal 20

Double 22

Float 13

Integer 11

Numeric 22

Smallint 6
C h a p t e r 4 S p e c i f y i n g D a t a t y p e s 4-25

C o n v e r t i n g d a t a t y p e s
4-26 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 5Working with Domains
This chapter covers the following topics:

• Creating domains

• Altering domains

• Dropping a domain

Creating domains
When you create a table, you can use a global column definition, called a domain, to define
a column locally. Before defining a column that references a domain, you must first create
the domain definition in the database with CREATE DOMAIN. CREATE DOMAIN acts as a
template for defining columns in subsequent CREATE TABLE and ALTER TABLE statements.
For more information on creating and modifying tables, see Chapter 6, “Working with
Tables.”

Domains are useful when many tables in a database contain identical column definitions.
Columns based on a domain definition inherit all characteristics of the domain; some of
these attributes can be overridden by local column definitions.

Note You cannot apply referential integrity constraints to a domain.

When you create a domain in the database, you must specify a unique name for the domain
and specify the data type. Optionally, you provide default values and NULL status, CHECK
constraints, and a collation order.

The syntax for CREATE DOMAIN is:

CREATE DOMAIN domain [AS] <datatype>
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [CHECK (<dom_search_condition>)]
[COLLATE collation];
C h a p t e r 5 W o r k i n g w i t h D o m a i n s 5-1

C r e a t i n g d o m a i n s
Specifying the domain data type
The data type is the only required attribute that must be set for the domain—all other
attributes are optional. The data type defines the set of valid data that the column can
contain. The data type also determines the set of allowable operations that can be
performed on the data, and defines the disk space requirements for each data item.

The syntax for specifying the data type is:

<datatype> = SMALLINT
| INTEGER
| FLOAT
| DOUBLE PRECISION
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {DATE | TIME | TIMESTAMP}
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}

[(int)][CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(int)]
| BOOLEAN

<array_dim> = [x:y [, x1:y1 …]]
Note The outermost (boldface) brackets must be included when declaring arrays.

data type is the SQL data type for any column based on a domain. You cannot override the
domain data type with a local column definition.

The general categories of SQL data types include:

• Character data types.

• Integer data types.

• Decimal data types, both fixed and floating.

• A DATE data type to represent the date, a TIME data type to represent the time, and a
TIMESTAMP data type to represent both date and time.

• A BLOB data type to represent unstructured binary data, such as graphics and digitized
voice.

• Arrays of data types (except for BLOB data).

See Table 4.1 on page 4-2 for a complete list and description of data types that InterBase
supports.

For more information about data types, see Chapter 4, “Specifying Data types.”

The following statement creates a domain that defines an array of CHARACTER data type:

CREATE DOMAIN DEPTARRAY AS CHAR(67) [4:5];

The next statement creates a BLOB domain with a text subtype that has an assigned
character set:
5-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g d o m a i n s
CREATE DOMAIN DESCRIPT AS BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SJIS;

Specifying domain defaults
You can set an optional default value that is automatically entered into a column if you do
not specify an explicit value. Defaults set at the column level with CREATE TABLE or
ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could be
today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:

• literal: The default value is a user-specified string, numeric value, or date value.

• NULL: If the user does not enter a value, a NULL value is entered into the column.

• USER: The default is the name of the current user. If your operating system supports the
use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20) DEFAULT USER;

CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,
ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;

1-MAY-93 JSMITH 512.36

Specifying NOT NULL
You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed for any column that references this
domain. NOT NULL specified on the domain level cannot be overridden by a local column
definition.

Important If you have already specified NULL as a default value, be sure not to create contradictory
constraints by also assigning NOT NULL to the domain, as in the following example:

CREATE DOMAIN DOM1 INTEGER DEFAULT NULL, NOT NULL;
C h a p t e r 5 W o r k i n g w i t h D o m a i n s 5-3

C r e a t i n g d o m a i n s
Specifying domain CHECK constraints
You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. The CHECK constraint in a domain definition
sets a search condition (dom_search_condition) that must be true before data can be
entered into columns based on the domain.

The syntax of the search condition is:

<dom_search_condition> =
VALUE <operator> <val>
| VALUE [NOT] BETWEEN <val> AND <val>
| VALUE [NOT] LIKE <val> [ESCAPE <val>]
| VALUE [NOT] IN (<val> [, <val> …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING <val>
| VALUE [NOT] STARTING [WITH] <val>
| (<dom_search_condition>)
| NOT <dom_search_condition>
| <dom_search_condition> OR <dom_search_condition>
| <dom_search_condition> AND <dom_search_condition>

<operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

The following restrictions apply to CHECK constraints:

• A CHECK constraint cannot reference any other domain or column name.

• A domain can have only one CHECK constraint.

• You cannot override the domain’s CHECK constraint with a local CHECK constraint. A
column based on a domain can add additional CHECK constraints to the local column
definition.

Using the VALUE keyword
VALUE defines the set of values that is valid for the domain. VALUE is a placeholder for the
name of a column that will eventually be based on the domain. The search condition can
verify whether the value entered falls within a certain range, or match it to any one value in
a list of values.

Note If NULL values are allowed, they must be included in the CHECK constraint, as in the
following example:

CHECK ((VALUE IS NULL) OR (VALUE > 1000));

The next statement creates a domain where value must be > 1,000:

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 1000);
5-4 D a t a D e f i n i t i o n G u i d e

A l t e r i n g d o m a i n s
The following statement creates a domain that must have a positive value greater than
1,000, with a default value of 9,999.

CREATE DOMAIN CUSTNO
AS INTEGER
DEFAULT 9999
CHECK (VALUE > 1000);

The next statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

When a problem cannot be solved using comparisons, you can instruct the system to search
for a specific pattern in a character column. For example, the next search condition allows
only cities in California to be entered into columns that are based on the CALIFORNIA
domain:

CREATE DOMAIN CALIFORNIA
AS VARCHAR(25)
CHECK (VALUE LIKE '%, CA');

Specifying domain collation order
The COLLATE clause of CREATE DOMAIN allows you to specify a particular collation order
for columns defined as CHAR or VARCHAR text data types. You must choose a collation
order that is supported for the column’s given character set. The character set is either the
default character set for the entire database, or you can specify a different set in the
CHARACTER SET clause of the data type definition. The collation order set at the column
level overrides a collation order set at the domain level.

For a list of the collation orders available for each character set, see Chapter 14,
“Character Sets and Collation Orders.”

In the following statement, the domain, TITLE, overrides the database default character set,
specifying a DOS437 character set with a PDOX_INTL collation order:

CREATE DOMAIN TITLE AS
CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_INTL;

Altering domains
ALTER DOMAIN changes any aspect of an existing domain except its NOT NULL setting.
Changes that you make to a domain definition affect all column definitions based on the
domain that have not been overridden at the table level.

Note To change the NOT NULL setting of a domain, drop the domain and recreate it with the
desired combination of features.
C h a p t e r 5 W o r k i n g w i t h D o m a i n s 5-5

D r o p p i n g a d o m a i n
A domain can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

ALTER DOMAIN allows you to:

• Drop an existing default value

• Set a new default value

• Drop an existing CHECK constraint

• Add a new CHECK constraint

• Modify the domain name and data type

• Modify the data type of a column

The syntax for ALTER DOMAIN is:

ALTER DOMAIN { name | old_name TO new_name } {
[SET DEFAULT {literal | NULL | USER}]
| [DROP DEFAULT]
| [ADD [CONSTRAINT] CHECK (<dom_search_condition>)]
| [DROP CONSTRAINT]
| new_col_name
| TYPE data_type

};

The following statement sets a new default value for the CUSTNO domain:

ALTER DOMAIN CUSTNO SET DEFAULT 9999;

The following statement changes the name of the CUSTNO domain to CUSTNUM:

ALTER DOMAIN CUSTNO TO CUSTNUM;

The following statement changes the data type of the CUSTNUM domain to CHAR(20):

ALTER DOMAIN CUSTNUM TYPE CHAR(20);

The TYPE clause of ALTER DOMAIN does not allow you to make data type conversions
that could lead to data loss. For example, it does not allow you to change the number of
characters in a column to be less than the largest value in the column.

Dropping a domain
DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP operation
fails. To prevent failure, delete the columns based on the domain with ALTER TABLE before
executing DROP DOMAIN.

A domain can be dropped by its creator, the SYSDBA, and any users with operating
system root privileges.
5-6 D a t a D e f i n i t i o n G u i d e

D r o p p i n g a d o m a i n
The syntax of DROP DOMAIN is:

DROP DOMAIN name;

The following statement deletes a domain:

DROP DOMAIN COUNTRYNAME;
C h a p t e r 5 W o r k i n g w i t h D o m a i n s 5-7

D r o p p i n g a d o m a i n
5-8 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 6Working with Tables
This chapter describes:

• What to do before creating a table

• How to create database tables

• How to alter tables

• How to drop tables

Before creating a table
Before creating a table, you should:

• Design, normalize, create, and connect to a database

• Determine what tables, columns, and column definitions to create

• Create the domain definitions in the database

• Declare the table if an embedded SQL application both creates a table and populates the
table with data in the same program

For information on how to create, drop, and modify domains, see Chapter 5, “Working
with Domains.” The DECLARE TABLE statement must precede CREATE TABLE. For the
syntax of DECLARE TABLE, see the Language Reference.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-1

C r e a t i n g t a b l e s
Creating tables
You can create tables in the database with the CREATE TABLE statement. The syntax for
CREATE TABLE is:

CREATE TABLE table [EXTERNAL [FILE] 'filespec']
(<col_def> [, <col_def> | <tconstraint> ...]);

The first argument that you supply to CREATE TABLE is the table name, which is required,
and must be unique among all table and procedure names in the database. You must also
supply at least one column definition.

For the complete syntax, see CREATE TABLE in the “SQL Statement and
Function Reference” chapter of the Language Reference. This SQL reference is also
available in HTML format.

InterBase automatically imposes the default SQL security scheme on the table. The person
who creates the table (the owner), is assigned all privileges for it, including the right to
grant privileges to other users, triggers, and stored procedures. For more information on
security, see Chapter 12, “Planning Security.”

Metadata name length Database object names, including table, column, and domain
names can be up to 68 types in length: 67 bytes plus a NULL terminator.

For a detailed specification of CREATE TABLE syntax, see the Language Reference.

Defining columns
When you create a table in the database, your main task is to define the various attributes
and constraints for each of the columns in the table. The syntax for defining a column is:

<col_def> = col {datatype | COMPUTED [BY] (<expr>) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [<col_constraint>]
[COLLATE collation]

The next sections list the required and optional attributes that you can define for a column.

Required attributes
You are required to specify:

• A column name, which must be unique among the columns in the table.

• One of the following:

• A SQL data type (datatype).

• An expression (expr) for a computed column.

• A domain definition (domain) for a domain-based column.
6-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
Optional attributes
You have the option to specify:

• A default value for the column.

• Integrity constraints. Constraints can be applied to a set of columns (a table-level
constraint), or to a single column (a column-level constraint). Integrity constraints
include:

• The PRIMARY KEY column constraint, if the column is a PRIMARY KEY, and the
PRIMARY KEY constraint is not defined at the table level. Creating a PRIMARY KEY
requires exclusive database access.

• The UNIQUE constraint, if the column is not a PRIMARY KEY, but should still disallow
duplicate and NULL values.

• The FOREIGN KEY constraint, if the column references a PRIMARY KEY in another
table. Creating a FOREIGN KEY requires exclusive database access. The foreign key
constraint includes the ON UPDATE and ON DELETE mechanisms for specifying what
happens to the foreign key when the primary key is updated (cascading referential
integrity).

• A NOT NULL attribute does not allow NULL values. This attribute is required if the
column is a PRIMARY KEY or UNIQUE key.

• A CHECK constraint for the column. A CHECK constraint enforces a condition that must
be true before an insert or an update to a column or group of columns is allowed.

• A CHARACTER SET can be specified for a single column when you define the data type.
If you do not specify a character set, the column assumes the database character set as a
default.

Specifying the data type
When creating a table, you must specify the data type for each column. The data type
defines the set of valid data that the column can contain. The data type also determines the
set of allowable operations that can be performed on the data, and defines the disk space
requirements for each data item.

The syntax for specifying the data type is:

<datatype> =
{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION}[<array_dim>]
| {DATE|TIME|TIMESTAMP}[<array_dim>]
| {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]

[<array_dim>] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [<array_dim>]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
| BOOLEAN
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-3

C r e a t i n g t a b l e s
<array_dim> = [x:y [, x1:y1 ...]]

Note subtype_name can be a TEXT value.

Note The outermost (boldface) brackets must be included when declaring arrays.

Supported data types
The general categories of data types that are supported include:

• Character data types

• Integer data types

• Decimal data types, both fixed and floating

• A DATE data type to represent the date, a TIME data type to represent the time, and a
TIMESTAMP data type to represent both the date and time

• A BOOLEAN data type

• A BLOB data type to represent unstructured binary data, such as graphics and digitized
voice.

• Arrays of data types (except for BLOB data).

See Table 4.1 on page 4-2 for a complete list and description of data types that InterBase
supports.

Casting data types
If your application programming language does not support a particular data type, you can
let InterBase automatically convert the data to an equivalent data type (an implicit type
conversion), or you can use the CAST() function in search conditions to explicitly translate
one data type into another for comparison purposes. For more information about specifying
data types and using the CAST() function, see Chapter 4, “Specifying Data types.”

Defining a character set
The data type specification for a CHAR, VARCHAR, or BLOB text column definition can
include a CHARACTER SET clause to specify a particular character set for a column. If you
do not specify a character set, the column assumes the default database character set. If the
database default character set is subsequently changed, all columns defined after the
change have the new character set, but existing columns are not affected. For a list of
available character sets recognized by InterBase, see Chapter 14, “Character Sets and
Collation Orders.”

The COLLATE clause
The collation order determines the order in which values are sorted. The
COLLATE clause of CREATE TABLE allows you to specify a particular collation order for
columns defined as CHAR and VARCHAR text data types. You must choose a collation order
that is supported for the column’s given character set. The character set is either the default
character set for the entire database, or you can specify a different set in the CHARACTER
SET clause of the data type definition. The collation order set at the column level overrides
a collation order set at the domain level.
6-4 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
In the following statement, BOOKNO keeps the default collating order for the database’s
default character set. The second (TITLE) and third (EUROPUB) columns specify different
character sets and collating orders.

CREATE TABLE BOOKADVANCE (BOOKNO CHAR(6),
TITLE CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_INTL,
EUROPUB CHAR(50) CHARACTER SET ISO8859_1 COLLATE FR_FR);

For a list of the available characters sets and collation orders that InterBase recognizes, see
Chapter 14, “Character Sets and Collation Orders.”

Defining domain-based columns
When you create a table, you can set column attributes by using an existing domain
definition that has been previously stored in the database. A domain is a global column
definition. Domains must be created with the CREATE DOMAIN statement before you can
reference them to define columns locally. For information on how to create a domain, see
Chapter 5, “Working with Domains.”

Domain-based columns inherit all the characteristics of a domain, but the column
definition can include a new default value, additional CHECK constraints, or a collation
clause that overrides the domain definition. It can also include additional column
constraints. You can specify a NOT NULL setting if the domain does not already define one.

Note You cannot override the domain’s NOT NULL setting with a local column definition.

For example, the following statement creates a table, COUNTRY, referencing the domain,
COUNTRYNAME, which was previously defined with a data type of VARCHAR(15):

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

Defining expression-based columns
A computed column is one whose value is calculated each time the column is accessed at
run time. The syntax is:

<col_name> COMPUTED [BY] (<expr>);

If you do not specify the data type, InterBase calculates an appropriate one. expr is any
arithmetic expression that is valid for the data types in the columns; it must return a single
value, and cannot be an array or return an array. Columns referenced in the expression must
exist before the COMPUTED [BY] clause can be defined.

For example, the following statement creates a computed column, FULL_NAME, by
concatenating the LAST_NAME and FIRST_NAME columns.

CREATE TABLE EMPLOYEE
(FIRST_NAME VARCHAR(10) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME));
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-5

C r e a t i n g t a b l e s
The next example creates a table with a calculated column (NEW_SALARY) using the
previously created EMPNO and SALARY domains.

CREATE TABLE SALARY_HISTORY (EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECISION
DEFAULT 0
NOT NULL
CHECK (PERCENT_CHANGE BETWEEN –50 AND 50),
NEW_SALARY COMPUTED BY

(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO)

ON UPDATE CASCADE
ON DELETE CASCADE);

Note Constraints on computed columns are not enforced, but InterBase does not return an error
if you do define such a constraint.

Specifying column default values
You can set an optional default value that is automatically entered into a column if you do
not specify an explicit value. Defaults set at the column level with CREATE TABLE or
ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could be
today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:

• literal—The default value is a user-specified string, numeric value, or date value.

• NULL—If the user does not enter a value, a NULL value is entered into the column.

• USER—The default is the name of the current user. If your operating system supports
the use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)
DEFAULT USER;

CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,
ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;
6-6 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
Specifying NOT NULL
You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed in the column. You cannot override a
NOT NULL setting that has been set at a domain level with a local column definition.

Note If you have already specified NULL as a default value, be sure not to create contradictory
constraints by also specifying the NOT NULL attribute, as in the following example:

CREATE TABLE MY_TABLE (COUNT INTEGER DEFAULT NULL NOT NULL);

Defining integrity constraints
InterBase allows you to optionally apply certain constraints to a column, called integrity
constraints, which are the rules that govern column-to-table and table-to-table
relationships, and validate data entries. They span all transactions that access the database
and are automatically maintained by the system. Integrity constraints can be applied to an
entire table or to an individual column.

PRIMARY KEY and UNIQUE constraints
The PRIMARY KEY and UNIQUE integrity constraints ensure that the values entered into a
column or set of columns are unique in each row. If you try to insert a duplicate value in a
PRIMARY KEY or UNIQUE column, InterBase returns an error. When you define a UNIQUE
or PRIMARY KEY column, determine whether the data stored in the column is inherently
unique. For example, no two social security numbers or driver’s license numbers are ever
the same. If no single column has this property, then define the primary key as a composite
of two or more columns which, when taken together, are unique.

In the EMPLOYEE table, EMP_NO is the primary key that uniquely identifies each employee.
EMP_NO is the primary key because no two values in the column are alike. If the EMP_NO
column did not exist, then no other column is a candidate for primary key due to the high
probability for duplication of values. LAST_NAME, FIRST_NAME, and JOB_TITLE fail
because more than one employee can have the same first name, last name, and job title. In
a large database, a combination of LAST_NAME and FIRST_NAME could still result in
duplicate values. A primary key that combines LAST_NAME and PHONE_EXT might work,
but there could be two people with identical last names at the same extension. In this table,
the EMP_NO column is actually the only acceptable candidate for the primary key because
it guarantees a unique number for each employee in the table.

Table 6.1 The EMPLOYEE table

EMP_NO LAST_NAME FIRST_NAME JOB_TITLE PHONE_EXT

10335 Smith John Engineer 4968

21347 Carter Catherine Product Manager 4967

13314 Jones Sarah Senior Writer 4800
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-7

C r e a t i n g t a b l e s
A table can have only one primary key. If you define a PRIMARY KEY constraint at the table
level, you cannot do it again at the column level. The reverse is also true; if you define a
PRIMARY KEY constraint at the column level, you cannot define a primary key at the table
level. You must define the NOT NULL attribute for a PRIMARY KEY column in order to
preserve the uniqueness of the data values in that column.

Like primary keys, a unique key ensures that no two rows have the same value for a
specified column or ordered set of columns. You must define the NOT NULL attribute for a
UNIQUE column. A unique key is different from a primary key in that the UNIQUE
constraint specifies alternate keys that you can use to uniquely identify a row. You can have
more than one unique key defined for a table, but the same set of columns cannot make up
more than one PRIMARY KEY or UNIQUE constraint for a table. Like a primary key, a
unique key can be referenced by a foreign key in another table.

Using the FOREIGN KEY to enforce referential integrity
A foreign key is a column or set of columns in one table that correspond in exact order to a
column or set of columns defined as a primary key in another table. For example, in the
PROJECT table, TEAM_LEADER is a foreign key referencing the primary key, EMP_NO in the
EMPLOYEE table.

The primary reason for defining foreign keys is to ensure that data integrity is maintained
when more than one table uses the same data: rows in the referencing table must always
have corresponding rows in the referenced table.

InterBase enforces referential integrity in the following ways:

• The unique or primary key columns must already be defined before you can create the
foreign key that references them.

Table 6.2 The PROJECT table

PROJ_ID TEAM_LEADER PROJ_NAME PROJ_DESC PRODUCT

DGPII 44 Automap blob data hardware

VBASE 47 Video database blob data software

HWRII 24 Translator upgrade blob data software

Table 6.3 The EMPLOYEE table

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000

48 Carter Catherine 900 Sales 4967 72500

36 Smith Jane 600 Admin 4800 37500
6-8 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
• Referential integrity checks are available in the form of the ON UPDATE and ON DELETE
options to the REFERENCES statement. When you create a foreign key by defining a
column or table REFERENCES constraint, you can specify what should happen to the
foreign key when the referenced primary key changes. The options are:

• If you do not use the ON UPDATE and ON DELETE options when defining foreign keys,
you must make sure that when information changes in one place, it changes in all
referencing columns as well. Typically, you write triggers to do this. For example, to
change a value in the EMP_NO column of the EMPLOYEE table (the primary key), that
value must also be updated in the TEAM_LEADER column of the PROJECT table (the
foreign key).

• If you delete a row from a table that is a primary key, you must first delete all foreign
keys that reference that row. If you use the ON DELETE CASCADE option when defining
the foreign keys, InterBase does this for you.

When you specify SET DEFAULT as the action, the default value used is the one in effect
when the referential integrity constraint was defined. When the default for a foreign key
column is changed after the referential integrity constraint is set up, the change does not
have an effect on the default value used in the referential integrity constraint.

• You cannot add a value to a column defined as a foreign key unless that value exists in
the referenced primary key. For example, to enter a value in the TEAM_LEADER column
of the PROJECT table, that value must first exist in the EMP_NO column of the
EMPLOYEE table.

The following example specifies that when a value is deleted from a primary key, the
corresponding values in the foreign key are set to NULL. When the primary key is updated,
the changes are cascaded so that the corresponding foreign key values match the new
primary key values.

Table 6.4 Referential integrity check options

Action
specified Effect on foreign key

NO ACTION [Default] The foreign key does not change (can cause the primary key
update or delete to fail due to referential integrity checks)

CASCADE The corresponding foreign key is updated or deleted as appropriate to the
new value of the primary key

SET DEFAULT Every column of the corresponding foreign key is set to its default value;
fails if the default value of the foreign key is not found in the primary key

SET NULL Every column of the corresponding foreign key is set to NULL
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-9

C r e a t i n g t a b l e s
CREATE TABLE PROJECT {
. . .
TEAM LEADER INTEGER REFERENCES EMPLOYEE (EMP_NO)
ON DELETE SET NULL
ON UPDATE CASCADE
. . .};

Referencing tables owned by others
If you want to create a foreign key that references a table owned by someone else, that
owner must first use the GRANT command to grant you REFERENCES privileges on that
table. Alternately, the owner can grant REFERENCES privileges to a role and then grant that
role to you. See Chapter 12, “Planning Security” and the Language Reference for more
information on granting privileges to users and roles. See the Language Reference for more
on creating and dropping roles.

Circular references
When two tables reference each other’s foreign keys and primary keys, a circular reference
exists between the two tables. In the following illustration, the foreign key in the
EMPLOYEE table, DEPT_NO, references the primary key, DEPT_NO, in the DEPARTMENT
table. Therefore, the primary key, DEPT_NO must be defined in the DEPARTMENT table
before it can be referenced by a foreign key in the EMPLOYEE table. In the same manner,
EMP_NO, which is the EMPLOYEE table’s primary key, must be created before the
DEPARTMENT table can define EMP_NO as its foreign key.

Figure 6.1 Circular references

The problem with circular referencing occurs when you try to insert a new row into either
table. Inserting a new row into the EMPLOYEE table causes a new value to be inserted into
the DEPT_NO (foreign key) column, but you cannot insert a value into the foreign key
column unless that value already exists in the DEPT_NO (primary key) column of the
DEPARTMENT table. It is also true that you cannot add a new row to the DEPARTMENT table
unless the values placed in the EMP_NO (foreign key) column already exist in the EMP_NO
(primary key) column of the EMPLOYEE table. Therefore, you are in a deadlock situation
because you cannot add a new row to either table!

PRIMARY KEY FOREIGN KEY

emp_no dept_no

PRIMARY KEY FOREIGN KEY

dept_no emp_no

EMPLOYEE

DEPARTMENT
6-10 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
InterBase gets around the problem of circular referencing by allowing you to insert a NULL
value into a foreign key column before the corresponding primary key value exists. The
following example illustrates the sequence for inserting a new row into each table:

• Insert a new row into the EMPLOYEE table by placing “1” in the EMP_NO primary key
column, and a NULL in the DEPT_NO foreign key column.

• Insert a new row into the DEPARTMENT table, placing “2” in the DEPT_NO primary key
column, and “1” in the foreign key column.

• Use ALTER TABLE to modify the EMPLOYEE table. Change the DEPT_NO column from
NULL to “2.”

How to declare constraints
When declaring a table-level or a column-level constraint, you can optionally name the
constraint using the CONSTRAINT clause. If you omit the CONSTRAINT clause, InterBase
generates a unique system constraint name which is stored in the
RDB$RELATION_CONSTRAINTS system table.

Tip To ensure that the constraint names are visible in RDB$RELATION_CONSTRAINTS, commit
your transaction before trying to view the constraint in the RDB$RELATION_CONSTRAINTS
system table.

The syntax for a column-level constraint is:

<col_constraint> = [CONSTRAINT constraint] <constraint_def>
[<col_constraint> ...]

<constraint_def> =
UNIQUE | PRIMARY KEY
| CHECK (<search_condition>)
| REFERENCES other_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

The syntax for a table-level constraint is:

<tconstraint> = [CONSTRAINT constraint] <tconstraint_def>
[<tconstraint> ...]

<tconstraint_def> = {PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …])

REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (<search_condition>)

Tip Although naming a constraint is optional, assigning a descriptive name with the
CONSTRAINT clause can make the constraint easier to find for changing or dropping, and
easier to find when its name appears in a constraint violation error message.

The following statement illustrates how to create a simple, column-level PRIMARY KEY
constraint:
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-11

C r e a t i n g t a b l e s
CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,

 CURRENCY VARCHAR(10) NOT NULL);

The next example illustrates how to create a UNIQUE constraint at both the
column level and the table level:

CREATE TABLE STOCK
(MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

Defining a CHECK constraint
You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. Use CHECK constraints to enforce a condition
that must be true before an insert or an update to a column or group of columns is allowed.
The search condition verifies whether the value entered falls within a certain permissible
range, or matches it to one value in a list of values. The search condition can also compare
the value entered with data values in other columns.

Note A CHECK constraint guarantees data integrity only when the values being verified are in the
same row that is being inserted and deleted. If you try to compare values in different rows
of the same table or in different tables, another user could later modify those values, thus
invalidating the original CHECK constraint that was applied at insertion time.

In the following example, the CHECK constraint is guaranteed to be satisfied:

CHECK (VALUE (COL_1 > COL_2));
INSERT INTO TABLE_1 (COL_1, COL_2) VALUES (5,6);

The syntax for creating a CHECK constraint is:

CHECK (<search condition>);

<search_condition> =
<val> <operator> {<val> | (<select_one>)}
| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]
| <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
| <val> IS [NOT] NULL
| <val> {[NOT] {= | < | >} | >= | <=}

{ALL | SOME | ANY} (<select_list>)
| EXISTS (<select_expr>)
| SINGULAR (<select_expr>)
| <val> [NOT] CONTAINING <val>
| <val> [NOT] STARTING [WITH] <val>
| (<search_condition>)
| NOT <search_condition>
| <search_condition> OR <search_condition>
| <search_condition> AND <search_condition>
6-12 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
When creating CHECK constraints, the following restrictions apply:

• A CHECK constraint cannot reference a domain.

• A column can have only one CHECK constraint.

• On a domain-based column, you cannot override a CHECK constraint imposed by the
domain with a local CHECK constraint. A column based on a domain can add additional
CHECK constraints to the local column definition.

In the next example, a CHECK constraint is placed on the SALARY domain. VALUE is a
placeholder for the name of a column that will eventually be based on the domain.

CREATE DOMAIN BUDGET
AS NUMERIC(12,2)
DEFAULT 0
CHECK (VALUE > 0);

The next statement illustrates PRIMARY KEY, FOREIGN KEY, CHECK, and the referential
integrity constraints ON UPDATE and ON DELETE. The PRIMARY KEY constraint is based on
three columns, so it is a table-level constraint. The FOREIGN KEY column (JOB_COUNTRY)
references the PRIMARY KEY column (COUNTRY) in the table, COUNTRY. When the
primary key changes, the ON UPDATE and ON DELETE clauses guarantee that the foreign
key column will reflect the changes. This example also illustrates using domains
(JOBCODE, JOBGRADE, COUNTRYNAME, SALARY) and a CHECK constraint to define
columns:

CREATE TABLE JOB
(JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
JOB_TITLE VARCHAR(25) NOT NULL,
MIN_SALARY SALARY NOT NULL,
MAX_SALARY SALARY NOT NULL,
JOB_REQUIREMENT BLOB(400,1),
LANGUAGE_REQ VARCHAR(15) [5],
PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)

ON UPDATE CASCADE
ON DELETE CASCADE,

CHECK (MIN_SALARY < MAX_SALARY));

Using the EXTERNAL FILE option
The EXTERNAL FILE option creates a table for which the data resides in an external table or
file, rather than in the InterBase database. External files are ASCII text that can also be
read and manipulated by non-InterBase applications. In the syntax for CREATE TABLE, the
filespec that accompanies the EXTERNAL keyword is the fully qualified file specification
for the external data file. You can modify the external file outside of InterBase, since
InterBase accesses it only when needed.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-13

C r e a t i n g t a b l e s
Use the EXTERNAL FILE option to:

• Import data from a flat external file in a known fixed-length format into a new or
existing InterBase table. This allows you to populate an InterBase table with data from
an external source. Many applications allow you to create an external file with fixed-
length records.

• SELECT from the external file as if it were a standard InterBase table.

• Export data from an existing InterBase table to an external file. You can format the data
from the InterBase table into a fixed-length file that another application can use.

ImportantFor security reasons, it is extremely important that you not place files with
sensitive content in the same directory with external tables.

Restrictions
The following restrictions apply to using the EXTERNAL FILE option:

• The default location for external files is <InterBase_home>/ext. InterBase can always
find external files that you place here. If you want to place them elsewhere, you must
specify the location in the ibconfig configuration file using the
EXTERNAL_FILE_DIRECTORY entry.

Migration note: If you are migrating from InterBase 6.x or older to InterBase 7.x or
newer, and your database includes external table files, you must either move these files
to <InterBase_home>/ext or note their locations in ibconfig using the
EXTERNAL_FILE_DIRECTORY entry

• You must create the external file before you try to access the external table inside of the
database.

• Each record in the external file must be of fixed length. You cannot put BLOB or array
data into an external file.

• When you create the table that will be used to import the external data, you must define
a column to contain the end-of-line (EOL) or new-line character. The size of this
column must be exactly large enough to contain a particular system’s EOL symbol
(usually one or two bytes). For most versions of UNIX, it is 1 byte. For Microsoft
Windows, it is 2 bytes.

• While it is possible to read in numeric data directly from an external table, it is much
easier to read it in as character data, and convert using the CAST() function.

• Data to be treated as VARCHAR in InterBase must be stored in an external file in the
following format:

<2-byte unsigned short><string of character bytes>

where the two-byte unsigned short indicates the number of bytes in the actual string, and
the string immediately follows. Because it is not readily portable, using VARCHAR data
in an external file is not recommended.
6-14 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t a b l e s
• You can perform only INSERT and SELECT operations on an external table. You cannot
perform UPDATEs or DELETEs on it; if you try to do so, InterBase returns an error
message.

• Inserting into and selecting from an external table are not under standard transaction
control because the external file is outside of the database. Therefore, changes are
immediate and permanent—you cannot roll back your changes. If you want your table
to be under transaction control, create another internal InterBase table, and insert the
data from the external table into the internal one.

• If you use DROP DATABASE to delete the database, you must also remove the external
file—it will not be automatically deleted as a result of DROP DATABASE.

Importing external files
The following steps describe how to import an external file into an InterBase table:

1 Create an InterBase table that allows you to view the external data. Declare all columns
as CHAR. The text file containing the data must be on the server. In the following
example, the external file exists on a UNIX system, so the EOL character is one byte. If
the example file was on a Windows platform, you would need two characters for
NEW_LINE.

CREATE TABLE EXT_TBL EXTERNAL FILE 'file.txt'
(FNAME CHAR(10),
LNAME CHAR(20),
HDATE CHAR(8),
NEWLINE CHAR(1));

COMMIT;

2 Create another InterBase table that will eventually be your working table. If you expect
to export data from the internal table back to an external file at a later time, be sure to
create a column to hold the newline. Otherwise, you do not need to leave room for the
newline character(s). In the following example, a column for the newline is provided:

CREATE TABLE PEOPLE
(FIRST_NAME CHAR(10),
LAST_NAME CHAR(20),
HIRE_DATE CHAR(8),
NEW_LINE CHAR(1));

COMMIT;

3 Create and populate the external file. You can create the file with a text editor, or you
can create an appropriate file with an application such as Paradox for Windows or
dBASE for Windows. If you create the file with a text editor, make each record the same
length, pad the unused characters with blanks, and insert the EOL character(s) at the end
of each record.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-15

C r e a t i n g t a b l e s
The number of characters in the EOL is platform-specific. You need to know how many
characters are contained in your platform’s EOL (typically one or two) in order to
correctly format the columns of the tables and the corresponding records in the external
file. In the following example, the record length is 36 characters. “b” represents a blank
space, and “n” represents the EOL:

When exporting data to or from an external file, the file must already exist before you
begin the operation. Also, you must specify a directory path whenever you reference the
external file.

4 At this point, when you do a SELECT statement from table EXT_TBL, you will see the
records from the external file:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

FNAME LNAME HDATE
======== ================= ===========
Robert Brickman 12-JUN-1992
Sam Jones 13-DEC-1993

5 Insert the data into the destination table.

INSERT INTO PEOPLE SELECT FNAME, LNAME, CAST(HDATE AS DATE),
NEWLINE FROM EXT_TBL;

Now if you SELECT from PEOPLE, the data from your external table will be there.

SELECT FIRST_NAME, LAST_NAME, HIRE_DATE FROM PEOPLE;

FIRST_NAME LAST_NAME HIRE_DATE
========== =================== ===========
Robert Brickman 12-JUN-1992
Sam Jones 13-DEC-1993

InterBase allows you to store the date as an integer by converting from a CHAR(8) to
DATE using the CAST() function.

Exporting InterBase tables to an external file
If you add, update, or delete a record from an internal table, the changes will not be
reflected in the external file. So in the previous example, if you delete the “Sam Jones”
record from the PEOPLE table, and do a subsequent SELECT from EXT_TBL, you would still
see the “Sam Jones” record.

Note When exporting data to or from an external file, the file must already exist before you begin
the operation. Also, you must specify a directory path whenever you reference the external
file.

123456789012345678901234567890123
456
fname.....lname.............hdate..n

RobertbbbbBrickmanbbbbbbbbbb6/12/
92n
6-16 D a t a D e f i n i t i o n G u i d e

A l t e r i n g t a b l e s
This section explains how to export InterBase data to an external file. Using the example
developed in the previous section, follow these steps:

1 Open the external file in a text editor and remove everything from the file. If you then
do a SELECT on EXT_TBL, it should be empty.

2 Use an INSERT statement to copy the InterBase records from PEOPLE into the external
file, file.txt. Be sure to specify the file directory.

INSERT INTO EXT_TBL SELECT FIRST_NAME, LAST_NAME, HIRE_DATE,
NEW_LINE FROM PEOPLE WHERE FIRST_NAME LIKE 'Rob%';

3 Now if you do a SELECT from the external table, EXT_TBL, only the records you inserted
should be there. In this example, only a single record should be displayed:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;
FNAME LNAME HDATE
======== ================= ===========
Robert Brickman 12-JUN-1992

Important Make sure that all records that you intend to export from the internal table to the external
file have the correct EOL character(s) in the newline column.

Altering tables
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE allows you to:

• Add a new column to a table.

• Drop a column from a table.

• Drop integrity constraints from a table or column.

• Modify the column name, data type, and position.

You can perform any number of the above operations with a single ALTER TABLE
statement. A table can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.

Note Any one table (and its triggers) can be altered at most 255 times before you must back up
and restore the database.

Before using ALTER TABLE

Before modifying or dropping columns in a table, you need to do three things:

1 Make sure you have the proper database privileges.

2 Save the existing data.

3 Drop any constraints on the column.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-17

A l t e r i n g t a b l e s
Saving existing data
Before modifying an existing column definition using ALTER TABLE, you must preserve
existing data, or it will be lost.

Preserving data in a column and modifying the definition for a column is a five-step
process:

1 Add a temporary column to the table whose definition mirrors the current column to be
changed (the “old” column).

2 Copy the data from the old column to the temporary column.

3 Modify the old column.

4 Copy the data from the temporary column to the old column.

5 Drop the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold
a data type of CHAR(3), and suppose that the size of the column needs to be increased by
one.

An example
The following example describes each step and provides sample code:

1 First, create a temporary column to hold the data in OFFICE_NO during the modification
process:

ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

2 Move existing data from OFFICE_NO to TEMP_NO to preserve it:

UPDATE EMPLOYEE
SET TEMP_NO = OFFICE_NO;

3 Modify OFFICE_NO, specifying the data type and new size:

ALTER TABLE ALTER OFFICE_NO TYPE CHAR(4);

4 Move the data from TEMP_NO to OFFICE_NO:

UPDATE EMPLOYEE
SET OFFICE_NO = TEMP_NO;

5 Finally, drop the TEMP_NO column:

ALTER TABLE DROP TEMP_NO;
Note This is the safest, most conservative method for altering a column, following the rule that

you should always save existing data before modifying metadata. But for experienced
InterBase users, there is a faster, one-step process. You can alter the column without first
copying the data, for example:

ALTER TABLE EMPLOYEE ALTER COLUMN OFFICE_NO TYPE CHAR(4)

which achieves the same end as the five-step process example.
6-18 D a t a D e f i n i t i o n G u i d e

A l t e r i n g t a b l e s
Dropping columns
Before attempting to drop or modify a column, you should be aware of the different ways
that ALTER TABLE can fail:

• The person attempting to alter data does not have the required privileges.

• Current data in a table violates a PRIMARY KEY or UNIQUE constraint definition added
to the table; there is duplicate data in columns that you are trying to define as PRIMARY
KEY or UNIQUE.

• The column to be dropped is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint.

• The column is used in a CHECK constraint. When altering a column based on a domain,
you can supply an additional CHECK constraint for the column. Changes to tables that
contain CHECK constraints with sub-queries can cause constraint violations.

• The column is used in another view, trigger, or in the value expression of a computed
column.

Important You must drop the constraint or computed column before dropping the table column. You
cannot drop PRIMARY KEY and UNIQUE constraints if they are referenced by FOREIGN KEY
constraints. In this case, drop the FOREIGN KEY constraint before dropping the PRIMARY
KEY or UNIQUE key it references. Finally, you can drop the column.

Important When you alter or drop a column, all data stored in it is lost.

Using ALTER TABLE

ALTER TABLE allows you to make the following changes to an existing table:

• Add new column definitions. To create a column using an existing name, you must drop
existing column definitions before adding new ones.

• Add new table constraints. To create a constraint using an existing name, you must drop
existing constraints with that name before adding a new one.

• Drop existing column definitions without adding new ones.

• Drop existing table constraints without adding new ones.

• Modify column names, data types, and position

For a detailed specification of ALTER TABLE syntax, see the Language Reference.

Adding a new column to a table
The syntax for adding a column with ALTER TABLE is:

ALTER TABLE table ADD <col_def>

<col_def> = col {<datatype> | [COMPUTED [BY] (<expr>) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL] [<col_constraint>]
[COLLATE collation]
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-19

A l t e r i n g t a b l e s
<col_constraint> = [CONSTRAINT constraint] <constraint_def>
[<col_constraint>]

<constraint_def> =
PRIMARY KEY
| UNIQUE
| CHECK (<search_condition>)
| REFERENCES other_table [(other_col [, other_col …])]

[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table
using the EMPNO domain:

ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

You can add multiple columns to a table at the same time. Separate column definitions with
commas. For example, the following statement adds two columns, EMP_NO, and
FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed column, a column that
derives it values from calculations based on two other columns already defined for the
EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);

You can also define integrity constraints for columns that you add to the table. For
example, the next statement adds two columns, CAPITAL and LARGEST_CITY, to the
COUNTRY table, and defines a UNIQUE constraint on CAPITAL:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25) UNIQUE,
ADD LARGEST_CITY VARCHAR(25) NOT NULL;

Adding new table constraints
You can use ALTER TABLE to add a new table-level constraint. The syntax is:

ALTER TABLE name ADD [CONSTRAINT constraint] <tconstraint_opt>;

where tconstraint_opt is a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint.
For example:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT DEPT_NO UNIQUE(PHONE_EXT);

Dropping an existing column from a table
You can use ALTER TABLE to delete a column definition and its data from a table. A
column can be dropped only by the owner of the table. If another user is accessing a table
when you attempt to drop a column, the other user’s transaction will continue to have
access to the table until that transaction completes. InterBase postpones the drop until the
table is no longer in use.
6-20 D a t a D e f i n i t i o n G u i d e

A l t e r i n g t a b l e s
The syntax for dropping a column with ALTER TABLE is:

ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE
table:

ALTER TABLE EMPLOYEE DROP EMP_NO;

Multiple columns can be dropped with a single ALTER TABLE statement.

ALTER TABLE EMPLOYEE
DROP EMP_NO,
DROP FULL_NAME;

Important You cannot delete a column that is part of a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. In the previous example, EMP_NO is the PRIMARY KEY for the EMPLOYEE table,
so you cannot drop this column unless you first drop the PRIMARY KEY constraint.

Dropping existing constraints from a column
You must drop constraints from a column in the correct sequence. See the following
CREATE TABLE example. Because there is a foreign key in the PROJECT table that
references the primary key (EMP_NO) of the EMPLOYEE table, you must first drop the
foreign key reference before you can drop the PRIMARY KEY constraint in the EMPLOYEE
table.

CREATE TABLE PROJECT
(PROJ_ID PROJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,
PROJ_DESC BLOB(800,1),
TEAM_LEADER EMPNO,
PRODUCT PRODTYPE,
PRIMARY KEY (PROJ_ID),
CONSTRAINT TEAM_CONSTRT FOREIGN KEY (TEAM_LEADER)

REFERENCES
EMPLOYEE (EMP_NO));

The proper sequence is:

ALTER TABLE PROJECT
DROP CONSTRAINT TEAM_CONSTRT;

ALTER TABLE EMPLOYEE
DROP CONSTRAINT EMP_NO_CONSTRT;

ALTER TABLE EMPLOYEE
DROP EMP_NO;

Note Constraint names are in the system table, RDB$RELATION_CONSTRAINTS.

In addition, you cannot delete a column if it is referenced by another column’s CHECK
constraint. To drop the column, first drop the CHECK constraint, then drop the column.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-21

A l t e r i n g t a b l e s
Modifying columns in a table
The syntax for modifying a column with ALTER TABLE is:

ALTER TABLE table ALTER [COLUMN]simple_column_name alter_rel_field
alter_rel_field = new_col_name | new_col_type | new_col_pos

new_col_name = TO simple_column_name
new_col_type = TYPE datatype_or_domain
new_col_pos = POSITION integer

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement moves a column, EMP_NO, from the third position to
the second position in the EMPLOYEE table:

ALTER TABLE EMPLOYEE ALTER EMP_NO POSITION 2;

You could also change the name of the EMP_NO column to EMP_NUM as in the following
example:

ALTER TABLE EMPLOYEE ALTER EMP_NO TO EMP_NUM;

The next example shows how to change the data type of the EMP_NUM column to
CHAR(20):

ALTER TABLE EMPLOYEE ALTER EMP_NUM TYPE CHAR(20);

Conversions from non-character to character data are allowed with the following
restrictions:

• Blob and array types are not convertible.

• Field types (character or numeric) cannot be shortened.

• The new field definition must be able to hold the existing data (for example, the new
field has too few CHARs or the data type conversion is not supported) or an error is
returned.

Note Conversions from character data to non-character data are not allowed.

Important Any changes to the field definitions may require the indexes to be rebuilt.

The table below graphs all valid conversions; if the conversion is valid (converting from
the item on the side column to the item in the top row) it is marked with an X.
6-22 D a t a D e f i n i t i o n G u i d e

A l t e r i n g t a b l e s
Summary of ALTER TABLE arguments
When you use ALTER TABLE to add column definitions and constraints, you can specify all
of the same arguments that you use in CREATE TABLE; all column definitions, constraints,
and data type arguments are the same, with the exception of the operation argument. The
following operations are available for ALTER TABLE.

• Add a new column definition with ADD col_def.

• Add a new table constraint with ADD table_constraint.

• Drop an existing column with DROP col.

• Drop an existing constraint with DROP CONSTRAINT constraint.

• Modify column names, data types, and positions

Table 6.5 Valid data type conversions using ALTER COLUMN and ALTER DOMAIN

Convert:
Blo
b

Boole
an

Cha
r

Dat
e

De
c.

Dbl
e

Fl
o

Int
.

Nu
m.

Tstm
p

Tim
e

Smli
nt

Var
.

Blob

Boolean X X X

Char X X X

Date X X X

Decimal X X X X

Double X X X X

Float X X X X

Integer X X X X X X

Numeric X X X

Timestamp X X X

Time X X X

Smallint X X X X X X X X

Varchar X X X
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-23

D r o p p i n g t a b l e s
Dropping tables
Use DROP TABLE to delete an entire table from the database.

Note If you want to drop columns from a table, use ALTER TABLE.

Dropping a table
Use DROP TABLE to remove a table’s data, metadata, and indexes from a database. It also
drops any triggers that are based on the table. A table can be dropped by its creator, the
SYSDBA user, or any user with operating system root privileges.

You cannot drop a table that is referenced in a computed column, a view, integrity
constraint, or stored procedure. You cannot drop a table that is being used by an active
transaction until the table is no longer in use.

DROP TABLE fails and returns an error if:

• The person who attempts to drop the table is not the owner of the table.

• The table is in use when the drop is attempted. The drop is postponed until the table is
no longer in use.

• The table has a UNIQUE or PRIMARY KEY defined for it, and the PRIMARY KEY is
referenced by a FOREIGN KEY in another table. First drop the FOREIGN KEY constraints
in the other table, then drop the table.

• The table is used in a view, trigger, stored procedure, or computed column. Remove the
other elements before dropping the table.

• The table is referenced in another table’s CHECK constraint.

Note DROP TABLE does not delete external tables; it removes the table definition from the
database. You must explicitly delete the external file.

DROP TABLE syntax
DROP TABLE name;

The following statement drops the table, COUNTRY:

DROP TABLE COUNTRY;
6-24 D a t a D e f i n i t i o n G u i d e

S Q L g l o b a l t e m p o r a r y t a b l e s
SQL global temporary tables
Use SQL global temporary tables to allow an application to pass intermediate result sets
from one section of an application to another section of the same application.

Creating a SQL global temporary table
A SQL global temporary table is declared to a database schema via the normal CREATE
TABLE statement with the following syntax:

CREATE GLOBAL TEMPORARY table (<col_def> [, <col_def> | <tconstraint> ...])
[ON COMMIT {PRESERVE | DELETE} ROWS];

The first argument that you supply CREATE GLOBAL TEMORARY is the temporary
table name, which is required and must be unique among all table and procedure names in
the database. You must also supply at least one column definition.

The ON COMMIT clause describes whether the rows of the temporary table are deleted on
each transaction commit or are left in place. If the ON COMMIT is not specified than the
default behavior is to DELETE ROWS on transaction commit.

An SQL global temporary table is dropped from a database schema using the normal
DROP TABLE statement.

Altering a SQL global temporary table
A temporary table can be altered in the same way as a permanent base table although there
is no official support to toggle the behavior of the ON COMMIT clause. The specification
offers an ALTER TABLE syntax to toggle that behavior.

ALTER TABLE table ON COMMIT {PRESERVE | DELETE} ROWS {RESTRICT
CASCADE}

RESTRICT will report an error if there are dependencies by other temporary tables on the
current table scope. CASCADE will automatically propagate this table scope change to
other temporary tables to maintain compliance. The default action is RESTRICT.

For example, assume that TT1 is a temporary table with ON COMMIT PRESERVE and
has a foreign reference to temporary table TT2 which is also ON COMMIT PRESERVE. If
an attempt is made to modify TT2 to ON COMMIT DELETE, an error is raised because an
ON COMMIT PRESERVE table is not allowed by the SQL standard to have a referential
constraint on an ON COMMIT DELETE table. RESTRICT returns this error while
CASCADE would also alter TT1 to have ON COMMIT DELETE. Thus, CASCADE
implements transitive closure when ON COMMIT behavior is modified.

Note This specification of ALTER TABLE extension does not allow a table to be toggled between
temporary and persistent.
C h a p t e r 6 W o r k i n g w i t h T a b l e s 6-25

S Q L g l o b a l t e m p o r a r y t a b l e s
Requirements and constraints
A transaction which has been specified as READ ONLY is allowed to update temporary
tables.

Granting privileges on a temporary table to an entity must specify all privileges.

There are some semantic restrictions between how permanent tables and temporary tables
are allowed to interact. For the most part, general constraints and referential integrity
constraints require that for a given table on which those constraints are defined, the tables
those constraints reference must have the same table scope as that of the source table.
Permanent tables can only have referential and check constraints to other permanent tables,
and temporary tables can only have constraints against other temporary tables.

Another example is the check constraint with a subquery component; the table on which
the check constraint is defined must match in table scope the table referenced in the
subquery.

Domains are not allowed to reference temporary tables in check constraints.

gbak backs up a temporary tables’ metadata only, not its data. isql adds an ON COMMIT
descriptive line in the SHOW TABLE command. isql extract adds GLOBAL
TEMPORARY and ON COMMIT clauses when extracting temporary tables. GRANT
privileges are always extracted as ALL PRIVILEGES.
6-26 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 7Working with Indexes
This chapter explains the following:

• Index basics

• When and how to create indexes

• How to improve index performance

Index basics
An index is a mechanism that is used to speed the retrieval of records in response to certain
search conditions, and to enforce uniqueness constraints on columns. Just as you search an
index in a book for a list of page numbers to quickly find the pages that you want to read, a
database index serves as a logical pointer to the physical location (address) of a row in a
table. An index stores each value of the indexed column or columns along with pointers to
all of the disk blocks that contain rows with that column value.

When executing a query, the InterBase engine first checks to see if any indexes exist for the
named tables. It then determines whether it is more efficient to scan the entire table, or to
use an existing index to process the query. If the engine decides to use an index, it searches
the index to find the key values requested, and follows the pointers to locate the rows in the
table containing the values.

Data retrieval is fast because the values in the index are ordered, and the index is relatively
small. This allows the system to quickly locate the key value. Once the key value is found,
the system follows the pointer to the physical location of the associated data. Using an
index typically requires fewer page fetches than a sequential read of every row in the table.

An index can be defined on a single column or on multiple columns of a table. The engine
will use an index to look up a subset of columns, as long as that subset of columns forms a
prefix of a multi-column index definition.
C h a p t e r 7 W o r k i n g w i t h I n d e x e s 7-1

W h e n t o i n d e x
When to index
An index on a column can mean the difference between an immediate response to a query
and a long wait, as the length of time it takes to search the whole table is directly
proportional to the number of rows in the table. So why not index every column? The main
drawbacks are that indexes consume additional disk space, and inserting, deleting, and
updating data takes longer on indexed columns than on non-indexed columns. The reason
is that the index must be updated each time the data in the indexed column changes, and
each time a row is added to or deleted from the table.

Nevertheless, the overhead of indexes is usually outweighed by the boost in performance
for data retrieval queries. You should create an index on a column when:

• Search conditions frequently reference the column.

• Join conditions frequently reference the column.

• ORDER BY statements frequently use the column to sort data.

You do not need to create an index for:

• Columns that are seldom referenced in search conditions.

• Frequently updated non-key columns.

• Columns that have a small number of possible values.

Creating indexes
Indexes are either created by the user with the CREATE INDEX statement, or they are
created automatically by the system as part of the CREATE TABLE statement. InterBase
allows users to create as many as 64 indexes on a given table. To create indexes you must
have authority to connect to the database.

Note To see all indexes defined for the current database, use the isql command SHOW INDEX. To
see all indexes defined for a specific table, use the command, SHOW INDEX tablename. To
view information about a specific index, use SHOW INDEX indexname.

InterBase automatically generates system-level indexes on a column or set of columns
when tables are defined using PRIMARY KEY, FOREIGN KEY, and UNIQUE constraints.
Indexes on PRIMARY KEY and FOREIGN KEY constraints preserve referential integrity.

Using CREATE INDEX
The CREATE INDEX statement creates an index on one or more columns of a table. A
single-column index searches only one column in response to a query, while a multi-
column index searches one or more columns. Options specify:

• The sort order for the index.

• Whether duplicate values are allowed in the indexed column.
7-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g i n d e x e s
Use CREATE INDEX to improve speed of data access. For faster response to queries that
require sorted values, use the index order that matches the query’s ORDER BY clause. Use
an index for columns that appear in a WHERE clause to speed searching.

To improve index performance, use SET STATISTICS to recompute index selectivity, or
rebuild the index by making it inactive, then active with sequential calls to ALTER INDEX.
For more information about improving performance, see “SET STATISTICS:
recomputing index selectivity” on page 7-6.

The syntax for CREATE INDEX is:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
INDEX index ON table (col [, col ...]);

Preventing duplicate entries
No two rows can be alike when a UNIQUE index is specified for a column or set of
columns. The system checks for duplicate values when the index is created, and each time
a row is inserted or updated. InterBase automatically creates a UNIQUE index on a
PRIMARY KEY column, forcing the values in that column to be unique identifiers for the
row. Unique indexes only make sense when uniqueness is a characteristic of the data itself.
For example, you would not define a unique index on a LAST_NAME column because there
is a high probability for duplication. Conversely, a unique index is a good idea on a column
containing a social security number.

To define an index that disallows duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique ascending index (PRODTYPEX)
on the PRODUCT and PROJ_NAME columns of the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

Tip InterBase does not allow you to create a unique index on a column that already contains
duplicate values. Before defining a UNIQUE index, use a SELECT statement to ensure there
are no duplicate keys in the table. For example:

SELECT PRODUCT, PROJ_NAME FROM PROJECT
GROUP BY PRODUCT, PROJ_NAME
HAVING COUNT(*) > 1;

Specifying index sort order
Specify a direction (low to high or high to low) by using the ASCENDING or DESCENDING
keyword. By default, InterBase creates indexes in ascending order. To make a descending
index on a column or group of columns, use the DESCENDING keyword to define the index.
The following statement creates a descending index (DESC_X) on the CHANGE_DATE
column of the SALARY_HISTORY table:

CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY
(CHANGE_DATE);

Note To retrieve indexed data from this table in descending order, use ORDER BY CHANGE_DATE
DESCENDING in the SELECT statement.
C h a p t e r 7 W o r k i n g w i t h I n d e x e s 7-3

C r e a t i n g i n d e x e s
If you intend to use both ascending and descending sort orders on a particular column,
define both an ascending and a descending index for the same column. The following
example illustrates this:

CREATE ASCENDING INDEX ASCEND_X ON SALARY_HISTORY
(CHANGE_DATE);

CREATE DESCENDING INDEX DESC_X ON SALARY_HISTORY
(CHANGE_DATE);

When to use a multi-column index
The main reason to use a multi-column index is to speed up queries that often access the
same set of columns. You do not have to create the query with the exact column list that is
defined in the index. InterBase will use a subset of the components of a multi-column
index to optimize a query if the:

• Subset of columns used in the ORDER BY clause begins with the first column in the
multi-column index. Unless the query uses all prior columns in the list, InterBase cannot
use that index to optimize the search. For example, if the index column list is A1, A2,
and A3, a query using A1 and A2 would be optimized using the index, but a query using
A2 and A3 would not.

• Order in which the query accesses the columns in an ORDER BY clause matches the
order of the column list defined in the index. (The query would not be optimized if its
column list were A2, A1.)

Tip If you expect to issue frequent queries against a table where the queries use the OR
operator, it is better to create a single-column index for each condition. Since multi-column
indices are sorted hierarchically, a query that is looking for any one of two or more
conditions would, of course, have to search the whole table, losing the advantage of an
index.

Examples using multi-column indexes
The first example creates a multi-column index, NAMEX, on the EMPLOYEE table:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

The following query will be optimized against the index because the ORDER BY clause
references all of the indexed columns in the correct order:

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > 40000
ORDER BY LAST_NAME, FIRST_NAME;

The next query will also process the following query with an index search (using
LAST_NAME from NAMEX) because although the ORDER BY clause only references one of
the indexed columns (LAST_NAME), it does so in the correct order.

SELECT LAST_NAME, SALARY FROM EMPLOYEE
WHERE SALARY > 40000
7-4 D a t a D e f i n i t i o n G u i d e

I m p r o v i n g i n d e x p e r f o r m a n c e
ORDER BY LAST_NAME;

Conversely, the following query will not be optimized against the index because the
ORDER BY clause uses FIRST_NAME, which is not the first indexed column in the NAMEX
column list.

SELECT LASTNAME, SALARY FROM EMP
WHERE SALARY > 40000
ORDER BY FIRST_NAME;

The same rules that apply to the ORDER BY clause also apply to queries containing a
WHERE clause. The next example creates a multi-column index for the PROJECT table:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The following query will be optimized against the PRODTYPEX index because the WHERE
clause references the first indexed column (PRODUCT) of the index:

SELECT * FROM PROJECT
WHERE PRODUCT ='software';

Conversely, the next query will not be optimized against the index because PROJ_NAME is
not the first indexed column in the column list of the PRODTYPEX index:

SELECT * FROM PROJECT
WHERE PROJ_NAME ='InterBase 4.0';

Improving index performance
Indexes can become unbalanced after many changes to the database. When this happens,
performance can be improved using one of the following methods:

• Rebuild the index with ALTER INDEX.

• Recompute index selectivity with SET STATISTICS.

• Delete and recreate the index with DROP INDEX and CREATE INDEX.

• Back up and restore the database with gbak.

ALTER INDEX: deactivating an index
The ALTER INDEX statement deactivates and reactivates an index. Deactivating and
reactivating an index is useful when changes in the distribution of indexed data cause the
index to become unbalanced.

To rebuild the index, first use ALTER INDEX INACTIVE to deactivate the index, then set
ALTER INDEX ACTIVE to reactivate it again. This method recreates and balances the index.

Note You can also rebuild an index by backing up and restoring the database with the gbak utility.
gbak stores only the definition of the index, not the data structure, so when you restore the
database, gbak rebuilds the indexes.
C h a p t e r 7 W o r k i n g w i t h I n d e x e s 7-5

I m p r o v i n g i n d e x p e r f o r m a n c e
Tip Before inserting a large number of rows, deactivate a table’s indexes during the insert, then
reactivate the index to rebuild it. Otherwise, InterBase incrementally updates the index
each time a single row is inserted.

The syntax for ALTER INDEX is:

ALTER INDEX name {ACTIVE | INACTIVE};

The following statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;

ALTER INDEX BUDGETX ACTIVE;

Note The following restrictions apply to altering an index:

• In order to alter an index, you must be the creator of the index, a SYSDBA user, or a
user with operating system root privileges.

• You cannot alter an index if it is in use in an active database. An index is in use if it is
currently being used by a compiled request to process a query. All requests using an
index must be released to make it available.

• You cannot alter an index that has been defined with a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint. If you want to modify the constraints, you must use ALTER
TABLE. For more information about ALTER TABLE, see the Language Reference.

• You cannot use ALTER INDEX to add or drop index columns or keys. Use DROP INDEX
to delete the index and then redefine it with CREATE INDEX.

SET STATISTICS: recomputing index selectivity
For tables where the number of duplicate values in indexed columns radically increases or
decreases, periodically recomputing index selectivity can improve performance. SET
STATISTICS recomputes the selectivity of an index.

Index selectivity is a calculation that is made by the InterBase optimizer when a table is
accessed, and is based on the number of distinct rows in a table. It is cached in memory,
where the optimizer can access it to calculate the optimal retrieval plan for a given query.

The syntax for SET STATISTICS is:

SET STATISTICS INDEX name;

The following statement recomputes the selectivity for an index:

SET STATISTICS INDEX MINSALX;

Note The following restrictions apply to the SET STATISTICS statement:

• In order to use SET STATISTICS, you must be the creator of the index, a SYSDBA user,
or a user with operating system root privileges.

• SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.
7-6 D a t a D e f i n i t i o n G u i d e

I m p r o v i n g i n d e x p e r f o r m a n c e
Dropping a user-defined index
DROP INDEX removes a user-defined index from the database. System-defined indexes,
such as those created on columns defined with UNIQUE, PRIMARY KEY, and FOREIGN KEY
constraints cannot be dropped.

To alter an index, first use the DROP INDEX statement to delete the index, then use the
CREATE INDEX statement to recreate the index (using the same name) with the desired
characteristics.

The syntax for DROP INDEX is:

DROP INDEX name;

The following statement deletes an index:

DROP INDEX MINSALX;

Note The following restrictions apply to dropping an index:

• To drop an index, you must be the creator of the index, a SYSDBA user, or a user with
operating system root privileges.

• An index in use cannot be dropped until it is no longer in use. If you try to alter or drop
an index while transactions are being processed, the results depend on the type of
transaction in operation. In a WAIT transaction, the ALTER INDEX or DROP INDEX
operation waits until the index is not in use. In a NOWAIT transaction, InterBase returns
an error.

• If an index was automatically created by the system on a column having a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint, you cannot drop the index. To drop an index
on a column defined with those constraints, drop the constraint, the constrained column,
or the table. To modify the constraints, use ALTER TABLE. For more information about
ALTER TABLE, see the Language Reference.
C h a p t e r 7 W o r k i n g w i t h I n d e x e s 7-7

I m p r o v i n g i n d e x p e r f o r m a n c e
7-8 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 8Working with Views
This chapter describes:

• What views are and the reasons for using them

• How to create and drop views

• How to modify data through a view

Introduction
Database users typically need to access a particular subset of the data that is stored in the
database. Further, the data requirements within an individual user or group are often quite
consistent. Views provide a way to create a customized version of the underlying tables
that display only the clusters of data that a given user or group of users is interested in.

Once a view is defined, you can display and operate on it as if it were an ordinary table. A
view can be derived from one or more tables, or from another view. Views look just like
ordinary database tables, but they are not physically stored in the database. The database
stores only the view definition, and uses this definition to filter the data when a query
referencing the view occurs.

Important It is important to understand that creating a view does not generate a copy of the data stored
in another table; when you change the data through a view, you are changing the data in the
actual underlying tables. Conversely, when the data in the base tables is changed directly,
the views that were derived from the base tables are automatically updated to reflect the
changes. Think of a view as a movable “window” or frame through which you can see the
actual data. The data definition is the “frame.” For restrictions on operations using views,
see “Types of views: read-only and update-able” on page 8-5.
C h a p t e r 8 W o r k i n g w i t h V i e w s 8-1

A d v a n t a g e s o f v i e w s
A view can be created from:

• A vertical subset of columns from a single table For example, the table, JOB, in the
employee.ib database has 8 columns: JOB_CODE, JOB_GRADE, JOB_COUNTRY,
JOB_TITLE, MIN_SALARY, MAX_SALARY, JOB_REQUIREMENT, and LANGUAGE_REQ.
The following view displays a list of salary ranges (subset of columns) for all jobs (all
rows) in the JOB table:

CREATE VIEW JOB_SALARY_RANGES AS
SELECT JOB_CODE, MIN_SALARY, MAX_SALARY FROM JOB;

• A horizontal subset of rows from a single table The next view displays all of the
columns in the JOB table, but only the subset of rows where the MAX_SALARY is less
than $15,000:

CREATE VIEW LOW_PAY AS
SELECT * FROM JOB
WHERE MAX_SALARY < 15000;

• A combined vertical and horizontal subset of columns and rows from a single
table The next view displays only the JOB_CODE and JOB_TITLE columns and only
those jobs where MAX_SALARY is less than $15,000:

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE FROM JOB
WHERE MAX_SALARY < 15000;

• A subset of rows and columns from multiple tables (joins) The next example shows
a view created from both the JOB and EMPLOYEE tables. The EMPLOYEE table contains
11 columns: EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, HIRE_DATE, DEPT_NO,
JOB_CODE, JOB_GRADE, JOB_COUNTRY, SALARY, FULL_NAME. It displays two columns
from the JOB table, and two columns from the EMPLOYEE table, and returns only the
rows where SALARY is less than $15,000:

CREATE VIEW ENTRY_LEVEL_WORKERS AS
SELECT JOB_CODE, JOB_TITLE, FIRST_NAME, LAST_NAME
FROM JOB, EMPLOYEE
WHERE JOB.JOB_CODE = EMPLOYEE.JOB_CODE AND SALARY < 15000;

Advantages of views
The main advantages of views are:

• Simplified access to the data. Views enable you to encapsulate a subset of data from one
or more tables to use as a foundation for future queries without requiring you to repeat
the same set of SQL statements to retrieve the same subset of data.

• Customized access to the data. Views provide a way to tailor the database to suit a
variety of users with dissimilar skills and interests. You can focus on the information
that specifically concerns you without having to process extraneous data.
8-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g v i e w s
• Data independence. Views protect users from the effects of changes to the underlying
database structure. For example, if the database administrator decides to split one table
into two, a view can be created that is a join of the two new tables, thus shielding the
users from the change.

• Data security. Views provide security by restricting access to sensitive or irrelevant
portions of the database. For example, you might be able to look up job information, but
not be able to see associated salary information.

Creating views
The CREATE VIEW statement creates a virtual table based on one or more underlying tables
in the database. You can perform select, project, join, and union operations on views just as
if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability to
GRANT privileges to other users, triggers, and stored procedures. A user can be granted
privileges to a view without having access to its base tables.

The syntax for CREATE VIEW is:

CREATE VIEW name [(view_col [, view_col …])]
AS <select> [WITH CHECK OPTION];

Note You cannot define a view that is based on the result set of a stored procedure.

Specifying view column names
• view_col names one or more columns for the view. Column names are optional unless

the view includes columns based on expressions. When specified, view column names
correspond in order and number to the columns listed in the SELECT statement, so you
must specify view column names for every column selected, or do not specify names at
all.

• Column names must be unique among all column names in the view. If column names
are not specified, the view takes the column names from the underlying table by default.

• If the view definition includes an expression, view_col names are required. A view_col
definition can contain one or more columns based on an expression.

Note isql does not support view definitions containing UNION clauses. You must write an
embedded application to create this type of view.

Using the SELECT statement
The SELECT statement specifies the selection criteria for the rows to be included in the
view. SELECT does the following:
C h a p t e r 8 W o r k i n g w i t h V i e w s 8-3

C r e a t i n g v i e w s
• Lists the columns to be included from the base table. When SELECT * is used rather than
a column list, the view contains all columns from the base table, and displays them in
the order in which they appear in the base table. The following example creates a view,
MY_VIEW, that contains all of the columns in the EMPLOYEE table:

CREATE VIEW MY_VIEW AS
SELECT * FROM EMPLOYEE;

• Identifies the source tables in the FROM clause. In the MY_VIEW example, EMPLOYEE is
the source table.

• Specifies, if needed, row selection conditions in a WHERE clause. In the next example,
only the employees that work in the USA are included in the view:

CREATE VIEW USA_EMPLOYEES AS
SELECT * FROM EMPLOYEE

WHERE JOB_COUNTRY = 'USA';

• If WITH CHECK OPTION is specified, it prevents INSERT or UPDATE operations on an
otherwise update-able view, if the operation violates the search condition specified in
the WHERE clause. For more information about using this option, see “Using WITH
CHECK OPTION” on page 8-6. For an explanation of views that can be updated, see
“Types of views: read-only and update-able” on page 8-5.

Important The SELECT statement used to create a view cannot include an ORDER BY clause.

Using expressions to define columns
An expression can be any SQL statement that performs a comparison or computation, and
returns a single value. Examples of expressions are concatenating character strings,
performing computations on numeric data, doing comparisons using comparison operators
(<, >, <=, and so on) or Boolean operators (AND, OR, NOT). The expression must return a
single value, and cannot be an array or return an array. Any columns used in the value
expression must exist before the expression can be defined.

For example, suppose you want to create a view that displays the salary ranges for all jobs
that pay at least $60,000. The view, GOOD_JOB, based on the JOB table, selects the
pertinent jobs and their salary ranges:

CREATE VIEW GOOD_JOB (JOB_TITLE, STRT_SALARY, TOP_SALARY) AS
SELECT JOB_TITLE, MIN_SALARY, MAX_SALARY FROM JOB

WHERE MIN_SALARY > 60000;

Suppose you want to create a view that assigns a hypothetical 10% salary increase to all
employees in the company. The next example creates a view that displays all of the
employees and their new salaries:

CREATE VIEW 10%_RAISE (EMPLOYEE, NEW_SALARY) AS
SELECT EMP_NO, SALARY *1.1 FROM EMPLOYEE;

Note Remember, unless the creator of the view assigns INSERT or UPDATE privileges, the users of
the view cannot affect the actual data in the underlying table.
8-4 D a t a D e f i n i t i o n G u i d e

C r e a t i n g v i e w s
Types of views: read-only and update-able
When you update a view, the changes are passed through to the underlying tables from
which the view was created only if certain conditions are met. If a view meets these
conditions, it is update-able. If it does not meet these conditions, it is read-only, meaning
that writes to the view are not passed through to the underlying tables.

Note The terms update-able and read-only refer to how you access the data in the underlying
tables, not to whether the view definition can be modified. To modify the view definition,
you must drop the view and then recreate it.

A view is update-able if all of the following conditions are met:

• It is a subset of a single table or another update-able view.

• All base table columns excluded from the view definition allow NULL values.

• The view’s SELECT statement does not contain sub-queries, a DISTINCT predicate, a
HAVING clause, aggregate functions, joined tables, user-defined functions, or stored
procedures.

If the view definition does not meet all of these conditions, it is considered read-only.

Note Read-only views can be updated by using a combination of user-defined referential
constraints, triggers, and unique indexes. For information on how to update read-only views
using triggers, see Chapter 10, “Working with Triggers.”

View privileges
The creator of the view must have the following privileges:

• To create a read-only view, the creator needs SELECT privileges for any underlying
tables.

• To create an update-able view, the creator needs ALL privileges to the underlying tables.

For more information on SQL privileges, see Chapter 12, “Planning Security.”

Examples of views
The following statement creates an update-able view:

CREATE VIEW EMP_MNGRS (FIRST, LAST, SALARY) AS
SELECT FIRST_NAME, LAST_NAME, SALARY

FROM EMPLOYEE
WHERE JOB_CODE = 'Mngr';

The next statement uses a nested query to create a view, so the view is read-only:

CREATE VIEW ALL_MNGRS AS
SELECT FIRST_NAME, LAST_NAME, JOB_COUNTRY FROM EMPLOYEE

WHERE JOB_COUNTRY IN
(SELECT JOB_COUNTRY FROM JOB
WHERE JOB_TITLE = 'manager');

The next statement creates a view that joins two tables, and so it is also read-only:
C h a p t e r 8 W o r k i n g w i t h V i e w s 8-5

C r e a t i n g v i e w s
CREATE VIEW PHONE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION,

PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO.

Inserting data through a view
Rows can be inserted and updated through a view if the following conditions are met:

• The view is update-able

• A user or stored procedure has INSERT privilege for the view

• The view is created using WITH CHECK OPTION

Tip You can simulate updating a read-only view by writing triggers that perform the
appropriate writes to the underlying tables. For an example of this, see “Updating views
with triggers” on page 10-14.

Using WITH CHECK OPTION
WITH CHECK OPTION specifies rules for modifying data through views. This option can be
included only if the views are update-able. Views that are created using WITH CHECK
OPTION enable InterBase to verify that a row inserted or updated through a view can be
seen through the view before allowing the operation to succeed. Values can only be
inserted through a view for those columns named in the view. InterBase stores NULL values
for un-referenced columns.

WITH CHECK OPTION prevents you from inserting or updating values that do not satisfy the
search condition specified in the WHERE clause of the SELECT portion of the CREATE VIEW
statement.

Examples
Suppose you want to create a view that allows access to information about all departments
with budgets between $10,000 and $500,000. The view, SUB_DEPT, is defined as follows:

CREATE VIEW SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO,
LOW_BUDGET) AS

SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET
FROM DEPARTMENT WHERE BUDGET BETWEEN 10000 AND 500000
WITH CHECK OPTION;

The SUB_DEPT view references a single table, DEPARTMENT. If you are the creator of the
view or have INSERT privileges, you can insert new data into the DEPARTMENT, DEPT_NO,
HEAD_DEPT, and BUDGET columns of the base table, DEPARTMENT. WITH CHECK OPTION
assures that all values entered through the view fall within the range prescribed for each
column in the WHERE clause of the SUB_DEPT view.

The following statement inserts a new row for the Publications Department through the
SUB_DEPT view:
8-6 D a t a D e f i n i t i o n G u i d e

D r o p p i n g v i e w s
INSERT INTO SUB_DEPT (DEPT_NAME, DEPT_NO, SUB_DEPT_NO,
LOW_BUDGET)

VALUES ('Publications', '7735', '670', 250000);

InterBase inserts NULL values for all other columns in the DEPARTMENT base table that are
not available directly through the view.

Dropping views
The DROP VIEW statement enables a view’s creator to remove a view definition from the
database. It does not affect the base tables associated with the view. You can drop a view
only if:

• You created the view.

• The view is not used in another view, a stored procedure, or CHECK constraint
definition. You must delete the associated database objects before dropping the view.

The syntax for DROP VIEW is:

DROP VIEW name;

The following statement removes a view definition:

DROP VIEW SUB_DEPT;

Note You cannot alter a view directly. To change a view, drop it and use the CREATE VIEW
statement to create a view with the same name and the features you want.
C h a p t e r 8 W o r k i n g w i t h V i e w s 8-7

D r o p p i n g v i e w s
8-8 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 9Working with
Stored Procedures

This chapter describes the following:

• How to create, alter, and drop procedures

• The InterBase procedure and trigger language

• How to use stored procedures

• How to create, alter, drop, and raise exceptions

• How to handle errors

Overview of stored procedures
A stored procedure is a self-contained program written in InterBase procedure and trigger
language, and stored as part of a the database metadata.

Once you have created a stored procedure, you can invoke it directly from an application,
or substitute the procedure for a table or view in a SELECT statement. Stored procedures
can receive input parameters from and return values to applications.

InterBase procedure and trigger language includes SQL data manipulation statements and
some powerful extensions, including IF … THEN … ELSE, WHILE … DO, FOR SELECT … DO,
exceptions, and error handling.

The advantages of using stored procedures include:

• Modular design

Applications that access the same database can share stored procedures, eliminating
duplicate code and reducing the size of the applications
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-1

W o r k i n g w i t h p r o c e d u r e s
• Streamlined maintenance

When a procedure is updated, the changes are automatically reflected in all applications
that use it without the need to recompile and re-link them; applications are compiled and
optimized only once for each client

• Improved performance

Stored procedures are executed by the server, not the client, which reduces network
traffic, and improves performance—especially for remote client access

Working with procedures
With isql, you can create, alter, and drop procedures and exceptions. Each of these
operations is explained in the corresponding sections in this chapter.

There are two ways to create, alter, and drop procedures with isql:

• Interactively

• With an input file containing data definition statements

It is usually preferable to use data definition files, because they are easier to modify and
provide separate documentation of the procedure. For simple changes to existing
procedures or exceptions, the interactive interface can be convenient.

The user who creates a procedure is the owner of the procedure, and can grant the privilege
to execute the procedure to other users, triggers, and stored
procedures.

Using a data definition file
To create or alter a procedure through a data definition file, follow these steps:

1 Use a text editor to write the data definition file.

2 Save the file.

3 Process the file with isql. Use this command:

isql -input filename database_name

where filename is the name of the data definition file and database_name is the name of
the database to use. Alternatively, from within isql, you can process the file using the
command:

SQL> input filename;

If you do not specify the database on the command line or interactively, the data definition
file must include a statement to create or open a database.
9-2 D a t a D e f i n i t i o n G u i d e

W o r k i n g w i t h p r o c e d u r e s
The data definition file can include:

• Statements to create, alter, or drop procedures. The file can also include statements to
create, alter, or drop exceptions. Exceptions must be created before they can be
referenced in procedures.

• Any other isql statements.

Calling stored procedures
Applications can call stored procedures from SQL and DSQL. You can also use stored
procedures in isql. For more information on calling stored procedures from applications,
see the Embedded SQL Guide.

There are two types of stored procedures:

• SELECT procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values (output
parameters), or an error results.

• Executable procedures that an application can call directly with the EXECUTE
PROCEDURE statement. An executable procedure can optionally return values to the
calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the
same syntax. The difference is in how the procedure is written and how it is intended to be
used. Select procedures can return more than one row, so that to the calling program they
appear as a table or view. Executable procedures are routines invoked by the calling
program, which can optionally return values.

In fact, a single procedure conceivably can be used as a select procedure or as an
executable procedure, but in general a procedure is written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

Privileges for stored procedures
To use a stored procedure, a user must be the creator of the procedure or must be given
EXECUTE privilege for it. An extension to the GRANT statement assigns the EXECUTE
privilege, and an extension to the REVOKE statement eliminates the privilege.

Stored procedures themselves sometimes need access to tables or views for which a user
does not—or should not—have privileges. For more information about granting privileges
to users and procedures, see Chapter 12, “Planning Security.”
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-3

C r e a t i n g p r o c e d u r e s
Creating procedures
You can define a stored procedure with the CREATE PROCEDURE statement in isql. You
cannot create stored procedures in embedded SQL. A stored procedure is composed of a
header and a body.

The header contains:

• The name of the stored procedure, which must be unique among procedure, view, and
table names in the database.

• An optional list of input parameters and their data types that a procedure receives from
the calling program.

• If the procedure returns values to the calling program, RETURNS followed by a list of
output parameters and their data types.

The procedure body contains:

• An optional list of local variables and their data types.

• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. A block can itself include other blocks, so that there can be many levels of
nesting.

CREATE PROCEDURE syntax
CREATE PROCEDURE name

[(param datatype [, param datatype …])]
[RETURNS (param datatype [, param datatype …])]
AS
<procedure_body>;

<procedure_body> = [<variable_declaration_list>]
<block>

<variable_declaration_list> =
DECLARE VARIABLE var datatype;
[DECLARE VARIABLE var datatype; …]

<block> =
BEGIN

<compound_statement>
[<compound_statement> …]

END

<compound_statement> = {<block> | statement;}
9-4 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
Procedure and trigger language
The InterBase procedure and trigger language is a complete programming language for
stored procedures and triggers. It includes:

• SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
Cursors are allowed.

• SQL operators and expressions, including UDFs linked with the database server and
generators.

• Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in different ways and for different
purposes, they both use the procedure and trigger language. Both triggers and stored
procedures can use any statements in the procedure and trigger language, with some
exceptions:

• Context variables are unique to triggers.

Table 9.1 Arguments of the CREATE PROCEDURE statement

Argument Description

name Name of the procedure; must be unique among procedure, table, and
view names in the database

param datatype Input parameters that the calling program uses to pass values to the
procedure
• param: Name of the input parameter, unique for variables in the

procedure
• datatype: An InterBase datatype

RETURNS
param datatype

Output parameters that the procedure uses to return values to the calling
program
• param: Name of the output parameter, unique for variables within the

procedure
• datatype: An InterBase datatype
• The procedure returns the values of output parameters when it reaches

a SUSPEND statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body

DECLARE VARIABLE
var datatype

Declares local variables used only in the procedure
• Each declaration must be preceded by DECLARE VARIABLE and

followed by a semicolon (;).
• var: Name of the local variable, unique for variables in the procedure

statement • Any single statement in InterBase procedure and trigger language
• Each statement except BEGIN and END must be followed by a

semicolon (;).
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-5

C r e a t i n g p r o c e d u r e s
• Input and output parameters, and the SUSPEND and EXIT statements, which return
values and are unique to stored procedures.

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre. The following statement types are not supported in triggers or
stored procedures:

• Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL
FUNCTION, and DECLARE FILTER

• Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

• Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

• CONNECT/DISCONNECT, and sending SQL statements to another database

• GRANT/REVOKE

• SET GENERATOR
• EVENT INIT/WAIT

• BEGIN/END DECLARE SECTION
• BASED ON
• WHENEVER
• DECLARE CURSOR
• OPEN
• FETCH
The following table summarizes the language extensions for stored procedures.
Table 9.2 Procedure and trigger language extensions

Statement Description

BEGIN … END Defines a block of statements that executes as one; the
BEGIN keyword starts the block, the END keyword
terminates it. Neither should be followed by a semicolon.

variable = expression Assignment statement which assigns the value of
expression to variable, a local variable, input parameter, or
output parameter

/* comment_text */ Programmer’s comment, where comment_text can be any
number of lines of text

EXCEPTION
exception_name

Raises the named exception
Exception: A user-defined error that can be handled with
WHEN

EXECUTE PROCEDURE proc_name
[var [, var …]]

[RETURNING_VALUES var
[, var …]]

Executes stored procedure, proc_name, with the input
arguments listed following the procedure name, returning
values in the output arguments listed following
RETURNING_VALUES
Enables nested procedures and recursion
Input and output parameters must be variables defined within
the procedure.
9-6 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
Syntax errors in stored procedures
InterBase generates errors during parsing if there is incorrect syntax in a CREATE
PROCEDURE statement. Error messages look similar to this:

Statement failed, SQLCODE = -104
Dynamic SQL Error
-SQL error code = -104
-Token unknown - line 4, char 9
-tmp

EXIT Jumps to the final END statement in the procedure

FOR select_statement
DO compound_statement

Repeats the statement or block following DO for every
qualifying row retrieved by select_statement
select_statement: a normal SELECT statement, except that the
INTO clause is required and must come last

compound_statement Either a single statement in procedure and trigger language
or a block of statements bracketed by BEGIN and END

IF (condition)
THEN compound_statement
[ELSE compound_statement]

Tests condition and if it is TRUE, performs the statement or
block following THEN. Otherwise, performs the statement or
block following ELSE, if present.
condition: a Boolean expression (TRUE, FALSE, or
UNKNOWN), generally two expressions as operands of a
comparison operator.

POST_EVENT event_name Posts the event, event_name.

SUSPEND In a SELECT procedure:
Suspends execution of procedure until next FETCH is issued
by the calling application
Returns output values, if any, to the calling application.
Not recommended for executable procedures.

WHILE (condition)
DO compound_statement

While condition is TRUE, keep performing
compound_statement. First condition is tested, and if it is
TRUE, then compound_statement is performed. This
sequence is repeated until condition is no longer TRUE.

WHEN
{error [, error …] | ANY}
DO compound_statement

Error-handling statement. When one of the specified errors
occurs, performs compound_statement. WHEN statements, if
present, must come at the end of a block, just before END.
error: EXCEPTION exception_name, SQLCODE errcode or
GDSCODE number.
ANY: Handles any errors.

Table 9.2 Procedure and trigger language extensions (continued)

Statement Description
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-7

C r e a t i n g p r o c e d u r e s
The line numbers are counted from the beginning of the CREATE PROCEDURE statement,
not from the beginning of the data definition file. Characters are counted from the left, and
the unknown token indicated is either the source of the error, or immediately to the right of
the source of the error. When in doubt, examine the entire line to determine the source of
the syntax error.

The procedure header
Everything before AS in the CREATE PROCEDURE statement forms the procedure header.
The header contains:

• The name of the stored procedure, which must be unique among procedure and table
names in the database.

• An optional list of input parameters and their data types. The procedure receives the
values of the input parameters from the calling program.

• Optionally, the RETURNS keyword followed by a list of output parameters and their data
types. The procedure returns the values of the output parameters to the calling program.

Declaring input parameters
Use input parameters to pass values from an application to a procedure. Any input
parameters are given in a comma-delimited list enclosed in parentheses immediately after
the procedure name, as follows:

CREATE PROCEDURE name
(var datatype [, var datatype …])
. . .

Each input parameter declaration has two parts: a name and a datatype. The name of the
parameter must be unique within the procedure, and the data type can be any standard SQL
data type except arrays of data types. The name of an input parameter need not match the
name of any host parameter in the calling program.

Note No more than 1,400 input parameters can be passed to a stored procedure.

Declaring output parameters
Use output parameters to return values from a procedure to an application. The RETURNS
clause in the procedure header specifies a list of output parameters. The syntax of the
RETURNS clause is:

. . .
[RETURNS (var datatype [, var datatype …])]
AS

. . .

Each output parameter declaration has two parts: a name and a data type. The name of the
parameter must be unique within the procedure, and the data type can be any standard SQL
data type except arrays.
9-8 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
The procedure body
Everything following the AS keyword in the CREATE PROCEDURE statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.

A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there can be
many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure and
trigger language.

Features of InterBase procedure and trigger language include:

• Assignment statements, to set values of local variables and input/output parameters.

• SELECT statements, to retrieve column values. SELECT statements must have an INTO
clause as the last clause.

• Control-flow statements, such as FOR SELECT … DO, IF … THEN, and WHILE … DO, to
perform conditional or looping tasks.

• EXECUTE PROCEDURE statements, to invoke other procedures. Recursion is allowed.

• Comments to annotate procedure code.

• Exception statements, to return error messages to applications, and WHEN statements to
handle specific error conditions.

• SUSPEND and EXIT statements, that return control—and return values of output
parameters—to the calling application.

BEGIN … END statements
Each block of statements in the procedure body starts with a BEGIN statement and ends
with an END statement. BEGIN and END are not followed by a semicolon.

Using variables
There are three types of variables that can be used in the body of a procedure:

• Input parameters, used to pass values from an application to a stored procedure.

• Output parameters, used to pass values from a stored procedure back to the calling
application.

• Local variables, used to hold values used only within a procedure.

Any of these types of variables can be used in the body of a stored procedure where an
expression can appear. They can be assigned a literal value, or assigned a value derived
from queries or expression evaluations.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-9

C r e a t i n g p r o c e d u r e s
Note In SQL statements, precede variables with a colon (:) to signify that they are variables rather
than column names. In procedure and trigger language extension statements, you need not
precede variables with a colon.

Local variables
Local variables are declared and used within a stored procedure. They have no effect
outside the procedure.

Local variables must be declared at the beginning of a procedure body before they can be
used. Declare a local variable as follows:

DECLARE VARIABLE var datatype;

where var is the name of the local variable, unique within the procedure, and datatype is
the datatype, which can be any SQL datatype except BLOB or an array. Each local variable
requires a separate DECLARE VARIABLE statement, followed by a semicolon (;).

The following header declares the local variable, ANY_SALES:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS

DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN

. . .

Input parameters
Input parameters are used to pass values from an application to a procedure. They are
declared in a comma-delimited list in parentheses following the procedure name. Once
declared, they can be used in the procedure body anywhere an expression can appear.

Input parameters are passed by value from the calling program to a stored procedure. This
means that if the procedure changes the value of an input parameter, the change has effect
only within the procedure. When control returns to the calling program, the input
parameter still has its original value.

The following procedure header declares two input parameters, EMP_NO and
PROJ_ID:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID
CHAR(5))

AS
. . .

For more information on declaring input parameters in stored procedures, see “Declaring
input parameters” on page 9-8.

Output parameters
Output parameters are used to return values from a procedure to the calling application.
Declare them in a comma-delimited list in parentheses following the RETURNS keyword in
the procedure header. Once declared, they can be used in the procedure body anywhere an
expression can appear. For example, the following procedure header declares five output
parameters, HEAD_DEPT, DEPARTMENT, MNGR_NAME, TITLE, and EMP_CNT:
9-10 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),

MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

If you declare output parameters in the procedure header, the procedure must assign them
values to return to the calling application. Values can be derived from any valid expression
in the procedure.

For more information on declaring output parameters in stored procedures, see “Declaring
output parameters” on page 9-8.

A procedure returns output parameter values to the calling application with a SUSPEND
statement. For more information about SUSPEND, see “Using SUSPEND, EXIT, and END
with procedures” on page 9-15.

In a SELECT statement that retrieves values from a procedure, the column names must
match the names and data types of the procedure’s output parameters. In an EXECUTE
PROCEDURE statement, the output parameters need not match the names of the procedure’s
output parameters, but the data types must match.

Using assignment statements
A procedure can assign values to variables with the syntax:

variable = expression;

where expression is any valid combination of variables, operators, and expressions, and
can include user-defined functions (UDFs) and generators.

A colon need not precede the variable name in an assignment statement. For example, the
following statement assigns a value of zero to the local variable, ANY_SALES:

any_sales = 0;

Variables should be assigned values of the datatype that they are declared to be. Numeric
variables should be assigned numeric values, and character variables assigned character
values. InterBase provides automatic type conversion. For example, a character variable
can be assigned a numeric value, and the numeric value is automatically converted to a
string. For more information on type conversion, see the Embedded SQL Guide.

Using SELECT statements
In a stored procedure, use the SELECT statement with an INTO clause to retrieve a single
row value from the database and assign it to a host variable. The SELECT statement must
return at most one row from the database, like a standard singleton SELECT. The INTO
clause is required and must be the last clause in the statement.

For example, the following statement is a standard singleton SELECT statement in an
application:

EXEC SQL
SELECT SUM(BUDGET), AVG(BUDGET)

INTO :tot_budget, :avg_budget
FROM DEPARTMENT
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-11

C r e a t i n g p r o c e d u r e s
WHERE HEAD_DEPT = :head_dept;

To use this SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget;

For a complete discussion of SELECT statement syntax, see the Language Reference.

Using FOR SELECT … DO statements
To retrieve multiple rows in a procedure, use the FOR SELECT … DO statement. The syntax
of FOR SELECT is:

FOR
<select_expr>

DO
<compound_statement>;

FOR SELECT differs from a standard SELECT as follows:

• It is a loop statement that retrieves the row specified in the select_expr and performs the
statement or block following DO for each row retrieved.

• The INTO clause in the select_expr is required and must come last. This syntax allows
FOR … SELECT to use the SQL UNION clause, if needed.

For example, the following statement from a procedure selects department numbers into
the local variable, RDNO, which is then used as an input parameter to the DEPT_BUDGET
procedure:

FOR SELECT DEPT_NO
FROM DEPARTMENT

WHERE HEAD_DEPT = :DNO
INTO :RDNO

DO
BEGIN

EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNS :SUMB;
TOT = TOT + SUMB;

END
… ;

Using WHILE … DO statements
WHILE … DO is a looping statement that repeats a statement or block of statements as long
as a condition is true. The condition is tested at the start of each loop. WHILE … DO uses the
following syntax:

WHILE (<condition>) DO
<compound_statement>

<compound_statement> = {<block> | statement;}
9-12 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
The compound_statement is executed as long as condition remains TRUE.
A block is one or more compound statements enclosed by BEGIN and END.

For example, the following procedure uses a WHILE … DO loop to compute the sum of all
integers from one up to the input parameter, I:

CREATE PROCEDURE SUM_INT (I INTEGER) RETURNS (S INTEGER)
AS
BEGIN

s = 0;
WHILE (i > 0) DO
BEGIN

s = s + i;
i = i - 1;

END
END ;

If this procedure is called from isql with the command:

EXECUTE PROCEDURE SUM_INT 4;

then the results are:

S
==========
10

Using IF … THEN … ELSE statements
The IF … THEN … ELSE statement selects alternative courses of action by testing a specified
condition. The syntax of IF … THEN … ELSE is as follows:

IF (<condition>)
THEN <compound_statement>
[ELSE <compound_statement>]

<compound_statement> = {<block> | statement;}

The condition clause is an expression that must evaluate to TRUE to execute the statement
or block following THEN. The optional ELSE clause specifies an alternative statement or
block to be executed if condition is FALSE.

The following lines of code illustrate the use of IF … THEN, assuming the variables LINE2,
FIRST, and LAST have been previously declared:

. . .
IF (FIRST IS NOT NULL)

THEN LINE2 = FIRST || ' ' || LAST;
ELSE LINE2 = LAST;

. . .

Using event alerters
To use an event alerter in a stored procedure, use the following syntax:
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-13

C r e a t i n g p r o c e d u r e s
POST_EVENT <event_name>;

The parameter, event_name, can be either a quoted literal or string variable.

Note Variable names do not need to be—and must not be—preceded by a colon in stored
procedures except in SELECT, INSERT, UPDATE, and DELETE clauses where they would be
interpreted as column names without the colon.

When the procedure is executed, this statement notifies the event manager, which alerts
applications waiting for the named event. For example, the following statement posts an
event named “new_order”:

POST_EVENT 'new_order';

Alternatively, a variable can be used for the event name:

POST_EVENT event_name;

So, the statement can post different events, depending on the value of the string variable,
event_name.

For more information on events and event alerters, see the Embedded SQL Guide.

Adding comments
Stored procedure code should be commented to aid debugging and application
development. Comments are especially important in stored procedures since they are
global to the database and can be used by many different application developers.

Comments in stored procedure definitions are exactly like comments in standard C code,
and use the following syntax:

/* comment_text */

comment_text can be any number of lines of text. A comment can appear on the same line
as code. For example:

x = 42; /* Initialize value of x. */

Creating nested and recursive procedures
A stored procedure can itself execute a stored procedure. Each time a stored procedure
calls another procedure, the call is said to be nested because it occurs in the context of a
previous and still active call to the first procedure. A stored procedure called by another
stored procedure is known as a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that
involve repetitive steps. Each invocation of a procedure is referred to as an instance, since
each procedure call is a separate entity that performs as if called from an application,
reserving memory and stack space as required to perform its tasks.

Note Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent
infinite loops that can occur when a recursive procedure provides no absolute terminating
condition. Nested procedure calls can be restricted to fewer than 1,000 levels by memory
and stack limitations of the server.
9-14 D a t a D e f i n i t i o n G u i d e

C r e a t i n g p r o c e d u r e s
The following example illustrates a recursive procedure, FACTORIAL, which calculates
factorials. The procedure calls itself recursively to calculate the factorial of NUM, the input
parameter.

CREATE PROCEDURE FACTORIAL (NUM INT)
RETURNS (N_FACTORIAL DOUBLE PRECISION)

AS
DECLARE VARIABLE NUM_LESS_ONE INT;
BEGIN

IF (NUM = 1) THEN
BEGIN /**** BASE CASE: 1 FACTORIAL IS 1 ****/

N_FACTORIAL = 1;
SUSPEND;

END
ELSE

BEGIN /**** RECURSION: NUM FACTORIAL = NUM * (NUM-1) FACTORIAL
****/

NUM_LESS_ONE = NUM - 1;
EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE

RETURNING_VALUES N_FACTORIAL;
N_FACTORIAL = N_FACTORIAL * NUM;
SUSPEND;

END
END ;

The following C code demonstrates how a host-language program would call FACTORIAL:

. . .
printf('\nCalculate factorial for what value? ');
scanf('%d', &pnum);
EXEC SQL

EXECUTE PROCEDURE FACTORIAL :pnum RETURNING_VALUES :pfact;
printf('%d factorial is %d.\n', pnum, pfact);
. . .

Recursion nesting restrictions would not allow this procedure to calculate
factorials for numbers greater than 1,001. Arithmetic overflow, however, occurs for much
smaller numbers.

Using SUSPEND, EXIT, and END with procedures
The SUSPEND statement suspends execution of a select procedure, passes control back to
the program, and resumes execution from the next statement when the next FETCH is
executed. SUSPEND also returns values in the output parameters of a stored procedure.

SUSPEND should not be used in executable procedures, since the statements that follow it
will never execute. Use EXIT instead to indicate to the reader explicitly that the statement
terminates the procedure.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-15

C r e a t i n g p r o c e d u r e s
In a select procedure, the SUSPEND statement returns current values of output parameters to
the calling program and continues execution. If an output parameter has not been assigned
a value, its value is unpredictable, which can lead to errors. A procedure should ensure that
all output parameters are assigned values before a SUSPEND.

In both select and executable procedures, EXIT jumps program control to the final END
statement in the procedure.

What happens when a procedure reaches the final END statement depends on the type of
procedure:

• In a select procedure, the final END statement returns control to the application and sets
SQLCODE to 100, which indicates there are no more rows to retrieve.

• In an executable procedure, the final END statement returns control and values of output
parameters, if any, to the calling application.

The behavior of these statements is summarized in the following table:

Consider the following procedure:

CREATE PROCEDURE P RETURNS (R INTEGER)
AS
BEGIN

R = 0;
WHILE (R < 5) DO
BEGIN

R = R + 1;
SUSPEND;
IF (R = 3) THEN

EXIT;
END

END ;

If this procedure is used as a select procedure, for example:

SELECT * FROM P;

then it returns values 1, 2, and 3 to the calling application, since the SUSPEND statement
returns the current value of R to the calling application. The procedure terminates when it
encounters EXIT.

If the procedure is used as an executable procedure, for example:

Table 9.3 SUSPEND, EXIT, and END

Procedure type SUSPEND EXIT END

Select procedure • Suspends execution of
procedure until next FETCH

• Returns values

Jumps to final END • Returns control to application
• Sets SQLCODE to 100

Executable procedure • Jumps to final END
• Not recommended

Jumps to final END • Returns values
• Returns control to application
9-16 D a t a D e f i n i t i o n G u i d e

A l t e r i n g a n d d r o p p i n g s t o r e d p r o c e d u r e s
EXECUTE PROCEDURE P;

then it returns 1, since the SUSPEND statement terminates the procedure and returns the
current value of R to the calling application. This is not recommended, but is included here
for comparison.

Note If a select procedure has executable statements following the last SUSPEND in the procedure,
all of those statements are executed, even though no more rows are returned to the calling
program. The procedure terminates with the final END statement.

Error behavior
When a procedure encounters an error—either a SQLCODE error, GDSCODE error, or user-
defined exception—all statements since the last SUSPEND are undone.

Since select procedures can have multiple SUSPENDs, possibly inside a loop statement,
only the actions since the last SUSPEND are undone. Since executable procedures should
not use SUSPEND, when an error occurs the entire executable procedure is undone (if EXIT
is used, as recommended).

Altering and dropping stored procedures
This section describes techniques and issues for changing and deleting procedures.

Tip To see a list of database procedures and their dependencies, use the isql command:

SHOW PROCEDURES;

Altering stored procedures
To change a stored procedure, use ALTER PROCEDURE. This statement changes the
definition of an existing stored procedure while preserving its dependencies according to
which metadata objects reference the stored procedure, and which objects the stored
procedure references.

Changes made to a procedure are transparent to all client applications that use the
procedure; you do not have to rebuild the applications. However, see “Altering and
dropping procedures in use” on page 9-19 for issues of managing versions of stored
procedures.

Only SYSDBA and the owner of a procedure can alter it.

Important Be careful about changing the type, number, and order of input and output parameters to a
procedure, since existing code might assume that the procedure has its original format.

When you alter a procedure, the new procedure definition replaces the old one. To alter a
procedure, follow these steps:

1 Copy the original data definition file used to create the procedure. Alternatively, use isql
-extract to extract a procedure from the database to a file.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-17

A l t e r i n g a n d d r o p p i n g s t o r e d p r o c e d u r e s
2 Edit the file, changing CREATE to ALTER, and changing the procedure definition as
desired. Retain whatever is still useful.

ALTER PROCEDURE syntax
The syntax for ALTER PROCEDURE is similar to CREATE PROCEDURE as shown in the
following syntax:

ALTER PROCEDURE name
[(var datatype [, var datatype …])]
[RETURNS (var datatype [, var datatype …])]

AS
procedure_body;

The procedure name must be the name of an existing procedure. The arguments of the
ALTER PROCEDURE statement are the same as those for CREATE PROCEDURE (see
“Arguments of the CREATE PROCEDURE statement” on page 9-5).

Dropping procedures
The DROP PROCEDURE statement deletes an existing stored procedure from the database.
DROP PROCEDURE can be used interactively with isql or in a data definition file.

The following restrictions apply to dropping procedures:

• Only SYSDBA and the owner of a procedure can drop it.

• You can’t drop a procedure used by other procedures, triggers, or views; alter the other
metadata object so that it does not reference the procedure, then drop the procedure.

• You can’t drop a procedure that is recursive or in a cyclical dependency with another
procedure; you must alter the procedure to remove the cyclical dependency, then drop
the procedure.

• You can’t drop a procedure that is currently in use by an active transaction; commit the
transaction, then drop the procedure.

• You can’t drop a procedure with embedded SQL; use dynamic SQL.

If you attempt to drop a procedure and receive an error, make sure you have entered the
procedure name correctly.

Drop procedure syntax
The syntax for dropping a procedure is:

DROP PROCEDURE name;

The procedure name must be the name of an existing procedure. The following statement
deletes the ACCOUNTS_BY_CLASS procedure:

DROP PROCEDURE ACCOUNTS_BY_CLASS;
9-18 D a t a D e f i n i t i o n G u i d e

A l t e r i n g a n d d r o p p i n g s t o r e d p r o c e d u r e s
Altering and dropping procedures in use
You must make special considerations when making changes to stored procedures that are
currently in use by other requests. A procedure is in use when it is currently executing, or if
it has been compiled internally to the metadata cache by a request.

Changes to procedures are not visible to client applications until they disconnect and
reconnect to the database; triggers and procedures that invoke altered procedures don’t
have access to the new version until there is a point in which all clients are disconnected.

To simplify the task of altering or dropping stored procedures, it is highly recommended to
perform this task during a maintenance period when no client applications are connected to
the database. By doing this, all client applications see the same version of a stored
procedure before and after you make an alteration.

Tip You can minimize the maintenance period by performing the procedure alteration while the
database is in use, and then briefly closing all client applications. It is safe to alter
procedures while the database is in use.

Internals of the technology
Below is a detailed description of the internal maintenance of stored procedure versions, to
help explain the behavior of the technology.

When any request invokes a stored procedure, the current definition for that stored
procedure is copied at that moment to a metadata cache. This copy persists for the lifetime
of the request that invoked the stored procedure.

A request is one of the following:

• A client application that executes the stored procedure directly

• A trigger that executes the stored procedure; this includes system triggers that are part
of referential integrity or check constraints

• Another stored procedure that executes the stored procedure

Altering or dropping a stored procedure takes effect immediately; new requests that invoke
the altered stored procedure see the latest version. However, outstanding requests continue
to see the version of the stored procedure that they first saw, even if a newer version has
been created after the request’s first invocation of the stored procedure. There is no method
to force these outstanding requests to update their metadata cache.

A trigger or stored procedure request persists in the metadata cache while there are one or
more clients connected to the database, regardless of whether the client makes use of the
trigger or stored procedure. These requests never update as long as any client is connected
to the database. These requests are emptied from the metadata cache only when the last
client disconnects from the database.

Important The only way to guarantee that all copies of a stored procedure are purged from the
metadata cache is for all connections to the database to terminate. Only then are all
metadata objects emptied from the metadata cache. Subsequent connections and triggers
spawned by them are new requests, and they see the newest version of the stored
procedure.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-19

U s i n g s t o r e d p r o c e d u r e s
Using stored procedures
Stored procedures can be used in applications in a variety of ways. Select procedures are
used in place of a table or view in a SELECT statement. Executable procedures are used
with an EXECUTE PROCEDURE statement.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax.
The difference is in how the procedure is written and how it is intended to be used. Select
procedures always return one or more rows, so that to the calling program they appear as a
table or view. Executable procedures are simply routines invoked by the calling program
and only optionally return values.

In fact, a single procedure can be used as a select procedure or an executable procedure, but
this is not recommended. A procedure should be written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

During application development, create and test stored procedures in isql. Once a stored
procedure has been created, tested, and refined, it can be used in applications. For more
information on using stored procedures in applications, see the Embedded SQL Guide.

Using executable procedures in isql
An executable procedure is invoked with EXECUTE PROCEDURE. It can return at most one
row. To execute a stored procedure in isql, use the following syntax:

EXECUTE PROCEDURE name [(] [param [, param …]] [)];

The procedure name must be specified, and each param is an input parameter value (a
constant). All input parameters required by the procedure must be supplied.

Important In isql, do not supply output parameters or use RETURNING_VALUES in the EXECUTE
PROCEDURE statement, even if the procedure returns values. isql automatically displays
output parameters.

To execute the procedure, DEPT_BUDGET, from isql, use:

EXECUTE PROCEDURE DEPT_BUDGET 110;

isql displays this output:

TOT
====================

1700000.00

Using select procedures in isql
A select procedure is used in place of a table or view in a SELECT statement and can return
a single row or multiple rows.

The advantages of select procedures over tables or views are:
9-20 D a t a D e f i n i t i o n G u i d e

U s i n g s t o r e d p r o c e d u r e s
• They can take input parameters that can affect the output.

• They can contain logic not available in normal queries or views.

• They can return rows from multiple tables using UNION.

The syntax of SELECT from a procedure is:

SELECT <col_list> from name ([param [, param …]])
WHERE <search_condition>
ORDER BY <order_list>;

The procedure name must be specified, and in isql each param is a constant passed to the
corresponding input parameter. All input parameters required by the procedure must be
supplied. The col_list is a comma-delimited list of output parameters returned by the
procedure, or * to select all rows.

The WHERE clause specifies a search_condition that selects a subset of rows to return. The
ORDER BY clause specifies how to order the rows returned. For more information on
SELECT, see the Language Reference.

Note The following code defines the procedure, GET_EMP_PROJ, which returns EMP_PROJ, the
project numbers assigned to an employee, when it is passed the employee number, EMP_NO,
as the input parameter.

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (EMP_PROJ SMALLINT) AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :EMP_PROJ

DO
SUSPEND;

END ;

The following statement selects from GET_EMP_PROJ in isql:

SELECT * FROM GET_EMP_PROJ(24);

The output is:

PROJ_ID
=======
DGPII
GUIDE

The following select procedure, ORG_CHART, displays an organizational chart:

CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),

MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)
AS

DECLARE VARIABLE MNGR_NO INTEGER;
DECLARE VARIABLE DNO CHAR(3);
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-21

U s i n g s t o r e d p r o c e d u r e s
BEGIN
FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO,

D.DEPT_NO
FROM DEPARTMENT D
LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO
ORDER BY D.DEPT_NO
INTO :HEAD_DEPT, :DEPARTMENT, :MNGR_NO, :DNO

DO
BEGIN

IF (:MNGR_NO IS NULL) THEN
BEGIN

MNGR_NAME = '--TBH--';
TITLE = '';

END
ELSE

SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE
WHERE EMP_NO = :MNGR_NO
INTO :MNGR_NAME, :TITLE;

SELECT COUNT(EMP_NO)
FROM EMPLOYEE
WHERE DEPT_NO = :DNO
INTO :EMP_CNT;

SUSPEND;
END

END ;

ORG_CHART is invoked from isql as follows:

SELECT * FROM ORG_CHART;

For each department, the procedure displays the department name, the department’s “head
department” (managing department), the department manager’s name and title, and the
number of employees in the department.

HEAD_DEPT
================

DEPARTMENT
===============

MNGR_NAME
=============

TITLE
=====

EMP_C
NT
======

Corporate Headquarters Bender, Oliver H. CEO 2

Corporate Headquarters Sales and Marketing MacDonald, Mary S. VP 2

Sales and Marketing Pacific Rim Headquarters Baldwin, Janet Sales 2

Pacific Rim Headquarters Field Office: Japan Yamamoto, Takashi SRep 2

Pacific Rim Headquarters Field Office: Singapore —TBH— 0
9-22 D a t a D e f i n i t i o n G u i d e

U s i n g s t o r e d p r o c e d u r e s
ORG_CHART must be used as a select procedure to display the full organization. If called
with EXECUTE PROCEDURE, then the first time it encounters the SUSPEND statement, the
procedure terminates, returning the information for Corporate Headquarters only.

SELECT can specify columns to retrieve from a procedure. For example, if ORG_CHART is
invoked as follows:

SELECT DEPARTMENT FROM ORG_CHART;

then only the second column, DEPARTMENT, is displayed.

Using WHERE and ORDER BY clauses
A SELECT from a stored procedure can contain WHERE and ORDER BY clauses, just as in a
SELECT from a table or view.

The WHERE clause limits the results returned by the procedure to rows matching the search
condition. For example, the following statement returns only those rows where the
HEAD_DEPT is Sales and Marketing:

 SELECT * FROM ORG_CHART WHERE HEAD_DEPT = 'Sales and Marketing';

The stored procedure then returns only the matching rows, for example:

The ORDER BY clause can be used to order the results returned by the procedure. For
example, the following statement orders the results by EMP_CNT, the number of
employees in each department, in ascending order (the default):

SELECT * FROM ORG_CHART ORDER BY EMP_CNT;

Selecting aggregates from procedures
In addition to selecting values from a procedure, you can use aggregate functions. For
example, to use ORG_CHART to display a count of the number of departments, use the
following statement:

SELECT COUNT(DEPARTMENT) FROM ORG_CHART;

The results are:

 COUNT
============
 24

HEAD_DEPT
===============
=

DEPARTMENT
===============

MNGR_NAME
============
=

TITLE
=====

EMP_C
NT
======
=

Sales and Marketing Pacific Rim Headquarters Baldwin, Janet Sales 2

Sales and Marketing European Headquarters Reeves, Roger Sales 3

Sales and Marketing Field Office: East Cost Weston, K. J. SRep 2
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-23

U s i n g s t o r e d p r o c e d u r e s
Similarly, to use ORG_CHART to display the maximum and average number of employees
in each department, use the following statement:

SELECT MAX(EMP_CNT), AVG(EMP_CNT) FROM ORG_CHART;

The results are:

If a procedure encounters an error or exception, the aggregate functions do not return the
correct values, since the procedure terminates before all rows are processed.

Viewing arrays with stored procedures
If a table contains columns defined as arrays, you cannot view the data in the column with
a simple SELECT statement, since only the array ID is stored in the table. Arrays can be
used to display array values, as long as the dimensions and datatype of the array column
are known in advance.

For example, in the employee database, the JOB table has a column named
LANGUAGE_REQ containing the languages required for the position. The column is defined
as an array of five VARCHAR(15).

In isql, if you perform a simple SELECT statement, such as:

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, LANGUAGE_REQ FROM
JOB;

part of the results look like this:

To view the contents of the LANGUAGE_REQ column, use a stored procedure, such as the
following:

CREATE PROCEDURE VIEW_LANGS
RETURNS (code VARCHAR(5), grade SMALLINT, cty VARCHAR(15),

lang VARCHAR(15))

MAX
=======

AVG
=======

5 2

JOB_CODE
========

JOB_GRADE
===========

JOB_COUNTRY
============

LANGUAGE_REQ
==============

. . .

Sales 3 USA <null>

Sales 3 England 20:af

SRep 4 USA 20:b0

SRep 4 England 20:b2

SRep 4 Canada 20:b4
9-24 D a t a D e f i n i t i o n G u i d e

U s i n g s t o r e d p r o c e d u r e s
AS
DECLARE VARIABLE i INTEGER;
BEGIN

FOR SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY
FROM JOB
WHERE LANGUAGE_REQ IS NOT NULL
INTO :code, :grade, :cty

DO
BEGIN

i = 1;
WHILE (i <= 5) DO
BEGIN

SELECT LANGUAGE_REQ[:i] FROM JOB
WHERE ((JOB_CODE = :code) AND (JOB_GRADE = :grade)

AND (JOB_COUNTRY = :cty)) INTO :lang;
i = i + 1;

SUSPEND;
END

END
END ;

This procedure, VIEW_LANGS, uses a FOR … SELECT loop to retrieve each row from JOB
for which LANGUAGE_REQ is not NULL. Then a WHILE loop retrieves each element of the
LANGUAGE_REQ array and returns the value to the calling application (in this case, isql).

For example, if this procedure is invoked with:

SELECT * FROM VIEW_LANGS;

the output is:

CODE GRADE CTY LANG
===== ===== ============ =========
Eng 3 Japan Japanese
Eng 3 Japan Mandarin
Eng 3 Japan English
Eng 3 Japan
Eng 3 Japan
Eng 4 England English
Eng 4 England German
Eng 4 England French
. . .

This procedure can easily be modified to return only the language requirements for a
particular job, when passed JOB_CODE, JOB_GRADE, and JOB_COUNTRY as input
parameters.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-25

E x c e p t i o n s
Exceptions
An exception is a named error message that can be raised from a stored procedure.
Exceptions are created with CREATE EXCEPTION, modified with ALTER EXCEPTION, and
dropped with DROP EXCEPTION. A stored procedure raises an exception with EXCEPTION
name.

When raised, an exception returns an error message to the calling program and terminates
execution of the procedure that raised it, unless the exception is handled by a WHEN
statement.

Important Like procedures, exceptions are created and stored in a database, where they can be used
by any procedure that needs them. Exceptions must be created and committed before they
can be raised.

For more information on raising and handling exceptions, see “Raising an exception in
a stored procedure” on page 9-27.

Creating exceptions
To create an exception, use the following CREATE EXCEPTION syntax:

CREATE EXCEPTION name '<message>';

For example, the following statement creates an exception named
REASSIGN_SALES:

CREATE EXCEPTION REASSIGN_SALES 'Reassign the sales records
before deleting this employee.';

Altering exceptions
To change the message returned by an exception, use the following syntax:

ALTER EXCEPTION name '<message>';

Only the creator of an exception can alter it. For example, the following statement changes
the text of the exception created in the previous section:

ALTER EXCEPTION REASSIGN_SALES 'Can’t delete employee--Reassign
Sales';

You can alter an exception even though a database object depends on it. If the exception is
raised by a trigger, you cannot drop the exception unless you first drop the trigger or stored
procedure. Use ALTER EXCEPTION instead.

Dropping exceptions
To delete an exception, use the following syntax:

DROP EXCEPTION name;
9-26 D a t a D e f i n i t i o n G u i d e

H a n d l i n g e r r o r s
For example, the following statement drops the exception, REASSIGN_SALES:

DROP EXCEPTION REASSIGN_SALES;

The following restrictions apply to dropping exceptions:

• Only the creator of an exception can drop it.

• Exceptions used in existing procedures and triggers cannot be dropped.

• Exceptions currently in use cannot be dropped.

Tip In isql, SHOW PROCEDURES displays a list of dependencies, the procedures, exceptions,
and tables which the stored procedure uses. SHOW PROCEDURE name displays the body
and header information for the named procedure. SHOW TRIGGERS table displays the
triggers defined for table. SHOW TRIGGER name displays the body and header information
for the named trigger.

Raising an exception in a stored procedure
To raise an exception in a stored procedure, use the following syntax:

EXCEPTION name;

where name is the name of an exception that already exists in the database.

When an exception is raised, it does the following:

• Terminates the procedure in which it was raised and undoes any actions performed
(directly or indirectly) by the procedure.

• Returns an error message to the calling application. In isql, the error message is
displayed on the screen.

Note If an exception is handled with a WHEN statement, it behaves differently. For more
information on exception handling, see “Handling exceptions” on page 9-28.

The following statements raise the exception, REASSIGN_SALES:

IF (any_sales > 0) THEN
EXCEPTION REASSIGN_SALES;

Handling errors
Procedures can handle three kinds of errors with a WHEN … DO statement:

• Exceptions raised by EXCEPTION statements in the current procedure, in a nested
procedure, or in a trigger fired as a result of actions by such a procedure.

• SQL errors reported in SQLCODE.

• InterBase errors reported in GDSCODE.

The WHEN ANY statement handles any of the three types of errors.
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-27

H a n d l i n g e r r o r s
For more information about InterBase error codes and SQLCODE values, see the Language
Reference.

The syntax of the WHEN … DO statement is:

WHEN {<error> [, <error> …] | ANY}
DO <compound_statement>

<error> =
{EXCEPTION exception_name | SQLCODE number | GDSCODE errcode}

Important If used, WHEN must be the last statement in a BEGIN … END block. It should come after
SUSPEND, if present.

Handling exceptions
Instead of terminating when an exception occurs, a procedure can respond to and perhaps
correct the error condition by handling the exception. When an exception is raised, it does
the following:

• Seeks a WHEN statement that handles the exception. If one is not found, it terminates
execution of the BEGIN … END block containing the exception and undoes any actions
performed in the block.

• Backs out one level to the surrounding BEGIN … END block and seeks a WHEN statement
that handles the exception, and continues backing out levels until one is found. If no
WHEN statement is found, the procedure is terminated and all its actions are undone.

• Performs the ensuing statement or block of statements specified by the WHEN statement
that handles the exception.

• Returns program control to the block in the procedure following the WHEN statement.

Note An exception that is handled does not return an error message.

Handling SQL errors
Procedures can also handle error numbers returned in SQLCODE. After each SQL statement
executes, SQLCODE contains a status code indicating the success or failure of the statement.
SQLCODE can also contain a warning status, such as when there are no more rows to
retrieve in a FOR SELECT loop.

For example, if a procedure attempts to insert a duplicate value into a column defined as a
PRIMARY KEY, InterBase returns SQLCODE -803. This error can be handled in a procedure
with the following statement:

WHEN SQLCODE -803
DO

BEGIN
. . .
9-28 D a t a D e f i n i t i o n G u i d e

H a n d l i n g e r r o r s
The following procedure includes a WHEN statement to handle SQLCODE -803 (attempt to
insert a duplicate value in a UNIQUE key column). If the first column in TABLE1 is a
UNIQUE key, and the value of parameter A is the same as one already in the table, then
SQLCODE -803 is generated, and the WHEN statement sets an error message returned by the
procedure.

CREATE PROCEDURE NUMBERPROC (A INTEGER, B INTEGER)
RETURNS (E CHAR(60)) AS

BEGIN
BEGIN

INSERT INTO TABLE1 VALUES (:A, :B);
WHEN SQLCODE -803 DO
E = 'Error Attempting to Insert in TABLE1 - Duplicate Value.';

END;
END;!

For more information about SQLCODE, see the Language Reference.

Handling InterBase errors
Procedures can also handle InterBase errors. For example, suppose a statement in a
procedure attempts to update a row already updated by another transaction, but not yet
committed. In this case, the procedure might receive an InterBase error LOCK_CONFLICT.
If the procedure retries its update, the other transaction might have rolled back its changes
and released its locks. By using a WHEN GDSCODE statement, the procedure can handle
lock conflict errors and retry its operation.

To handle InterBase error codes, use the following syntax:

WHEN GDSCODE errcode DO <compound_statement>;

For more information about InterBase error codes, see the Language Reference.

Examples of error behavior and handling
When a procedure encounters an error—either a SQLCODE error, GDSCODE error, or user-
defined exception—the statements since the last SUSPEND are undone.

SUSPEND should not be used in executable procedures. EXIT should be used to terminate
the procedure. If this recommendation is followed, then when an executable procedure
encounters an error, the entire procedure is undone. Since select procedures can have
multiple SUSPENDs, possibly inside a loop statement, only the actions since the last
SUSPEND are undone.

For example, here is a simple executable procedure that attempts to insert the same values
twice into the PROJECT table.

CREATE PROCEDURE NEW_PROJECT
(id CHAR(5), name VARCHAR(20), product VARCHAR(12))
RETURNS (result VARCHAR(80))

AS
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-29

H a n d l i n g e r r o r s
BEGIN
INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);
result = 'Values inserted OK.';

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);
result = 'Values Inserted Again.';
EXIT;

WHEN SQLCODE -803 DO
BEGIN

result = 'Could Not Insert Into Table - Duplicate Value';
EXIT;

END
END ;

This procedure can be invoked with a statement such as:

EXECUTE PROCEDURE NEW_PROJECT 'XXX', 'Project X', 'N/A';

The second INSERT generates an error (SQLCODE -803, “invalid insert—no two rows can
have duplicate values.”). The procedure returns the string, “Could Not Insert Into Table -
Duplicate Value,” as specified in the WHEN clause, and the entire procedure is undone.

The next example is written as a select procedure, and invoked with the SELECT statement
that follows it:

. . .
INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

VALUES (:id, :name, :product);
result = 'Values inserted OK.';
SUSPEND;

INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)
VALUES (:id, :name, :product);
result = 'Values Inserted Again.';
SUSPEND;
WHEN SQLCODE -803 DO
BEGIN

result = 'Could Not Insert Into Table - Duplicate Value';
EXIT;

END

SELECT * FROM SIMPLE('XXX', 'Project X', 'N/A');

The first INSERT is performed, and SUSPEND returns the result string, “Values Inserted
OK.” The second INSERT generates the error because there have been no statements
performed since the last SUSPEND, and no statements are undone. The WHEN statement
returns the string, “Could Not Insert Into Table - Duplicate Value”, in addition to the
previous result string.

The select procedure successfully performs the insert, while the executable procedure does
not.
9-30 D a t a D e f i n i t i o n G u i d e

H a n d l i n g e r r o r s
The next example is a more complex stored procedure that demonstrates SQLCODE error
handling and exception handling. It is based on the previous example of a select procedure,
and does the following:

• Accepts a project ID, name, and product type, and ensures that the ID is in all capitals,
and the product type is acceptable.

• Inserts the new project data into the PROJECT table, and returns a string confirming the
operation, or an error message saying the project is a duplicate.

• Uses a FOR … SELECT loop with a correlated subquery to get the first three employees
not assigned to any project and assign them to the new project using the ADD_EMP_PROJ
procedure.

• If the CEO’s employee number is selected, raises the exception, CEO, which is handled
with a WHEN statement that assigns the CEO’s administrative assistant (employee
number 28) instead to the new project.

Note that the exception, CEO, is handled within the FOR … SELECT loop, so that only the
block containing the exception is undone, and the loop and procedure continue after the
exception is raised.

CREATE EXCEPTION CEO 'Can’t Assign CEO to Project.';
CREATE PROCEDURE NEW_PROJECT

(id CHAR(5), name VARCHAR(20), product VARCHAR(12))
RETURNS (result VARCHAR(30), num smallint)

AS
DECLARE VARIABLE emp_wo_proj smallint;
DECLARE VARIABLE i smallint;

BEGIN
id = UPPER(id); /* Project id must be in uppercase. */
INSERT INTO PROJECT (PROJ_ID, PROJ_NAME, PRODUCT)

 VALUES (:id, :name, :product);
 result = 'New Project Inserted OK.';
 SUSPEND;
/* Add Employees to the new project */
 i = 0;
 result = 'Project Got Employee Number:';
 FOR SELECT EMP_NO FROM EMPLOYEE
 WHERE EMP_NO NOT IN (SELECT EMP_NO FROM EMPLOYEE_PROJECT)
 INTO :emp_wo_proj
 DO
 BEGIN
 IF (i < 3) THEN
 BEGIN
 IF (emp_wo_proj = 5) THEN
 EXCEPTION CEO;
 EXECUTE PROCEDURE ADD_EMP_PROJ :emp_wo_proj, :id;
 num = emp_wo_proj;
 SUSPEND;
 END
C h a p t e r 9 W o r k i n g w i t h S t o r e d P r o c e d u r e s 9-31

H a n d l i n g e r r o r s
 ELSE
 EXIT;
 i = i + 1;

WHEN EXCEPTION CEO DO
 BEGIN
 EXECUTE PROCEDURE ADD_EMP_PROJ 28, :id;
 num = 28;
 SUSPEND;
 END

END
/* Error Handling */
WHEN SQLCODE -625 DO
BEGIN

IF ((:product <> 'software') OR (:product <> 'hardware') OR
(:product <> 'other') OR (:product <> 'N/A')) THEN
result = 'Enter product: software, hardware, other, or N/A';

END
WHEN SQLCODE -803 DO

result = 'Could not insert into table - Duplicate Value';
END ;

This procedure can be called with a statement such as:

SELECT * FROM NEW_PROJECT('XYZ', 'Alpha project', 'software');

With results such as the following:

RESULT NUM
=========================== ======
New Project Inserted OK. <null>
Project Got Employee Number: 28
Project Got Employee Number: 29
Project Got Employee Number: 36
9-32 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 10Working with Triggers
This chapter covers the following topics:

• What triggers are, and the advantages of using them

• How to create, modify, and drop triggers

• How to use triggers

• How to raise exceptions in triggers

About triggers
A trigger is a self-contained routine associated with a table or view that automatically
performs an action when a row in the table or view is inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT,
UPDATE, or DELETE a row in a table, any triggers associated with that table and operation
are automatically executed, or fired.

Triggers can make use of exceptions, named messages called for error handling. When an
exception is raised by a trigger, it returns an error message, terminates the trigger, and
undoes any changes made by the trigger, unless the exception is handled with a WHEN
statement in the trigger.

The advantages of using triggers are:

• Automatic enforcement of data restrictions, to make sure users enter only valid
values into columns.

• Reduced application maintenance, since changes to a trigger are automatically
reflected in all applications that use the associated table without the need to recompile
and re-link.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-1

C r e a t i n g t r i g g e r s
• Automatic logging of changes to tables. An application can keep a running log of
changes with a trigger that fires whenever a table is modified.

• Automatic notification of changes to the database with event alerters in triggers.

Working with triggers
With isql, you can create, alter, and drop triggers and exceptions. Each of these operations
is explained in this chapter. There are two ways to create, alter, and drop triggers with isql:

• Interactively

• With an input file containing data definition statements

It is preferable to use data definition files, because it is easier to modify these files and
provide a record of the changes made to the database. For simple changes to existing
triggers or exceptions, the interactive interface can be convenient.

Using a data definition file
To create or alter a trigger through a data definition file, follow these steps:

1 Use a text editor to write the data definition file.

2 Save the file.

3 Process the file with isql. Use the command:

isql -input filename database_name

where filename is the name of the data definition file and database_name is the name of
the database used. Alternatively, from within isql, you can interactively process the file
using the command:

SQL> input filename;

Note If you do not specify the database on the command line or interactively, the data definition
file must include a statement to create or open a database.

The data definition file may include:

• Statements to create, alter, or drop triggers. The file can also include statements to
create, alter, or drop procedures and exceptions. Exceptions must be created and
committed before they can be referenced in procedures and triggers.

• Any other isql statements.

Creating triggers
A trigger is defined with the CREATE TRIGGER statement, which is composed of a header
and a body. The trigger header contains:

• A trigger name, unique within the database.
10-2 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t r i g g e r s
• A table name, identifying the table with which to associate the trigger.

• Statements that determine when the trigger fires.

The trigger body contains:

• An optional list of local variables and their data types.

• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. These statements are performed when the trigger fires. A block can itself
include other blocks, so that there may be many levels of nesting.

CREATE TRIGGER syntax
The syntax of CREATE TRIGGER is:

CREATE TRIGGER name FOR {table | view}
[ACTIVE | INACTIVE]
{BEFORE | AFTER} {DELETE | INSERT | UPDATE}
[POSITION number]
AS <trigger_body>

<trigger_body> = [<variable_declaration_list>] <block>

<variable_declaration_list> =DECLARE VARIABLE variable datatype;
[DECLARE VARIABLE variable datatype; …]

<block> =
BEGIN

<compound_statement> [<compound_statement> …]
END

<compound_statement> = <block> | statement;
Table 10.1 Arguments of the CREATE TRIGGER statement

Argument Description

name Name of the trigger. The name must be unique in the
database.

table Name of the table or view that causes the trigger to fire when
the specified operation occurs on the table or view.

ACTIVE|INACTIVE Optional. Specifies trigger action at transaction end:
ACTIVE: (Default). Trigger takes effect.
INACTIVE: Trigger does not take effect.

BEFORE|AFTER Required. Specifies whether the trigger fires:
BEFORE: Before associated operation.
AFTER: After associated operation.
Associated operations are DELETE, INSERT, or UPDATE.

DELETE|INSERT | UPDATE Specifies the table operation that causes the trigger to fire.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-3

C r e a t i n g t r i g g e r s
InterBase procedure and trigger language
InterBase procedure and trigger language is a complete programming language for stored
procedures and triggers. It includes:

• SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.

• SQL operators and expressions, including UDFs that are linked with the database server
and generators.

• Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in entirely different ways and for
different purposes, they both use procedure and trigger language. Both triggers and stored
procedures may use any statements in procedure and trigger language, with some
exceptions:

• Context variables are unique to triggers.

• Input and output parameters, and the SUSPEND and EXIT statements which return values
are unique to stored procedures.

The stored procedure and trigger language does not include many of the statement types
available in DSQL or gpre. The following statement types are not supported in triggers or
stored procedures:

POSITION number Specifies firing order for triggers before the same action or
after the same action. number must be an integer between 0
and 32,767, inclusive. Lower-number triggers fire first.
Default: 0 = first trigger to fire.
Triggers for a table need not be consecutive. Triggers on the
same action with the same position number will fire in
alphabetic order by name.

DECLARE VARIABLE var
datatype

Declares local variables used only in the trigger. Each
declaration must be preceded by DECLARE VARIABLE and
followed by a semicolon (;).
var: Local variable name, unique in the trigger.
datatype: The datatype of the local variable.

statement Any single statement in InterBase procedure and trigger
language. Each statement except BEGIN and END must be
followed by a semicolon (;).

terminator Terminator defined by the SET TERM statement which
signifies the end of the trigger body; deprecated in InterBase
7.0. [No longer needed]

Table 10.1 Arguments of the CREATE TRIGGER statement (continued)

Argument Description
10-4 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t r i g g e r s
• Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL
FUNCTION, and DECLARE FILTER

• Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

• Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

• CONNECT/DISCONNECT, and sending SQL statements to another database

• GRANT/REVOKE
• SET GENERATOR
• EVENT INIT/WAIT
• BEGIN/END DECLARE SECTION
• BASED ON
• WHENEVER
• DECLARE CURSOR
• OPEN
• FETCH
The following table summarizes the language extensions for triggers:
Table 10.2 Procedure and trigger language extensions

Statement Description

BEGIN … END Defines a block of statements that executes as one. The
BEGIN keyword starts the block; the END keyword
terminates it. Neither should be followed by a
semicolon.

variable = expression Assignment statement which assigns the value of
expression to local variable, variable.

/* comment_text */ Programmer’s comment, where comment_text can be
any number of lines of text.

EXCEPTION exception_name Raises the named exception. An exception is a user-
defined error, which returns an error message to the
calling application unless handled by a WHEN
statement.

EXECUTE PROCEDURE proc_name
[var [, var …]]

[RETURNING_VALUES
var [, var …]]

Executes stored procedure, proc_name, with the listed
input arguments, returning values in the listed output
arguments. Input and output arguments must be local
variables.

FOR select_statement
DO compound_statement

Repeats the statement or block following DO for every
qualifying row retrieved by select_statement.
select_statement: a normal SELECT statement, except
the INTO clause is required and must come last.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-5

C r e a t i n g t r i g g e r s
Syntax errors in triggers
InterBase may generate errors during parsing if there is incorrect syntax in the CREATE
TRIGGER statement. Error messages look similar to this:

Statement failed, SQLCODE = -104
Dynamic SQL Error
-SQL error code = -104
-Token unknown - line 4, char 9
-tmp

The line numbers are counted from the beginning of the CREATE TRIGGER statement, not
from the beginning of the data definition file. Characters are counted from the left, and the
unknown token indicated will either be the source of the error or immediately to the right
of the source of the error. When in doubt, examine the entire line to determine the source of
the syntax error.

compound_statement Either a single statement in procedure and trigger
language or a block of statements bracketed by BEGIN
and END.

IF (condition)
THEN compound_statement
[ELSE compound_statement]

Tests condition, and if it is TRUE, performs the
statement or block following THEN, otherwise performs
the statement or block following ELSE, if present.
condition: a Boolean expression (TRUE, FALSE, or
UNKNOWN), generally two expressions as operands of
a comparison operator.

NEW.column New context variable that indicates a new column value
in an INSERT or UPDATE operation.

OLD.column Old context variable that indicates a column value
before an UPDATE or DELETE operation.

POST_EVENT event_name Posts the event, event_name.

WHILE (condition)
DO compound_statement

While condition is TRUE, keep performing
compound_statement. First condition is tested, and if it
is TRUE, then compound_statement is performed. This
sequence is repeated until condition is no longer TRUE.

WHEN
{error [, error …]|ANY}
DO compound_statement

Error-handling statement. When one of the specified
errors occurs, performs compound_statement. WHEN
statements, if present, must come at the end of a block,
just before END.
error: EXCEPTION exception_name, SQLCODE errcode
or GDSCODE number.
ANY: handles any errors.

Table 10.2 Procedure and trigger language extensions (continued)

Statement Description
10-6 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t r i g g e r s
The trigger header
Everything before the AS clause in the CREATE TRIGGER statement forms the trigger
header. The header must specify the name of the trigger and the name of the associated
table or view. The table or view must exist before it can be referenced in CREATE TRIGGER.

The trigger name must be unique among triggers in the database. Using the name of an
existing trigger or a system-supplied constraint name results in an error.

The remaining clauses in the trigger header determine when and how the trigger fires:

• The trigger status, ACTIVE or INACTIVE, determines whether a trigger is activated when
the specified operation occurs. ACTIVE is the default, meaning the trigger fires when the
operation occurs. Setting status to INACTIVE with ALTER TRIGGER is useful when
developing and testing applications and triggers.

• The trigger time indicator, BEFORE or AFTER, determines when the trigger fires relative
to the specified operation. BEFORE specifies that trigger actions are performed before
the operation. AFTER specifies that trigger actions are performed after the operation.

• The trigger statement indicator specifies the SQL operation that causes the trigger to
fire: INSERT, UPDATE, or DELETE. Exactly one indicator must be specified. To use the
same trigger for more than one operation, duplicate the trigger with another name and
specify a different operation.

• The optional sequence indicator, POSITION number, specifies the order in which the
trigger fires in relation to other triggers on the same table and event. number can be any
integer between zero and 32,767. The default is zero. Lower-numbered triggers fire
first. Multiple triggers can have the same position number; they will fire in random
order.

The following example demonstrates how the POSITION clause determines trigger firing
order. Here are four headers of triggers for the ACCOUNTS table:

CREATE TRIGGER A FOR ACCOUNTS BEFORE UPDATE POSITION 5 AS …
CREATE TRIGGER B FOR ACCOUNTS BEFORE UPDATE POSITION 0 AS …
CREATE TRIGGER C FOR ACCOUNTS AFTER UPDATE POSITION 5 AS …
CREATE TRIGGER D FOR ACCOUNTS AFTER UPDATE POSITION 3 AS …

When this update takes place:

UPDATE ACCOUNTS SET C = 'canceled' WHERE C2 = 5;

The following sequence of events happens: trigger B fires, A fires, the update occurs,
trigger D fires, then C fires.

The trigger body
Everything following the AS keyword in the CREATE TRIGGER statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-7

C r e a t i n g t r i g g e r s
A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there may be
many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure and
trigger language.

Statements unique to InterBase procedure and trigger language include:

• Assignment statements, to set values of local variables.

• Control-flow statements, such as IF … THEN, WHILE … DO, and FOR SELECT … DO, to
perform conditional or looping tasks.

• EXECUTE PROCEDURE statements to invoke stored procedures.

• Exception statements, to return error messages, and WHEN statements, to handle
specific error conditions.

• NEW and OLD context variables, to temporarily hold previous (old) column values and
to insert or update (new) values.

• Generators, to generate unique numeric values for use in expressions. Generators can be
used in procedures and applications as well as triggers, but they are particularly useful
in triggers for inserting unique column values. In read-only databases, generators can
return their current value but cannot increment.

Note All of these statements (except context variables) can be used in both triggers and stored
procedures. For a full description of these statements, see Chapter 9, “Working with
Stored Procedures.”

NEW and OLD context variables
Triggers can use two context variables, OLD, and NEW. The OLD context variable refers to
the current or previous values in a row being updated or deleted. OLD is not used for
inserts. NEW refers to a new set of INSERT or UPDATE values for a row. NEW is not used for
deletes. Context variables are often used to compare the values of a column before and
after it is modified.

The syntax for context variables is as follows:

NEW.column
OLD.column

where column is any column in the affected row. Context variables can be used anywhere a
regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INSERT
and tries to assign a value to NEW.column will have no effect. The actual column values are
not altered until after the action, so triggers that reference values from their target tables
will not see a newly inserted or updated value unless they fire after UPDATE or INSERT.
10-8 D a t a D e f i n i t i o n G u i d e

C r e a t i n g t r i g g e r s
For example, the following trigger fires after the EMPLOYEE table is updated, and
compares an employee’s old and new salary. If there is a change in salary, the trigger
inserts an entry in the SALARY_HISTORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN

IF (old.salary <> new.salary) THEN
INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,

UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (old.emp_no, 'now', USER, old.salary,

(new.salary - old.salary) * 100 / old.salary);
END ;

Note Context variables are never preceded by a colon, even in SQL statements.

Using generators
In a read-write database, a generator is a database object that automatically increments
each time the special function, GEN_ID(), is called.

Important Generators cannot be used in read-only databases.

GEN_ID() can be used in a statement anywhere that a variable can be used. Generators are
typically used to ensure that a number inserted into a column is unique, or in sequential
order. Generators can be used in procedures and applications as well as in triggers, but they
are particularly useful in triggers for inserting unique column values.

Use the CREATE GENERATOR statement the create a generator and SET GENERATOR to
initialize it. If not otherwise initialized, a generator starts with a value of one. For more
information about creating and initializing a generator, see CREATE GENERATOR and SET
GENERATOR in the Language Reference.

A generator must be created with CREATE GENERATOR before it can be called by GEN_ID().
The syntax for using GEN_ID() in a SQL statement is:

GEN_ID(genname, step)

genname must be the name of an existing generator, and step is the amount by which the
current value of the generator is incremented. step can be an integer or an expression that
evaluates to an integer.

The following trigger uses GEN_ID() to increment a new customer number before values
are inserted into the CUSTOMER table:

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS
BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END ;

Note This trigger must be defined to fire before the insert, since it assigns values to
NEW.CUST_NO.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-9

A l t e r i n g t r i g g e r s
Altering triggers
To update a trigger definition, use ALTER TRIGGER. A trigger can be altered only by its
creator.

ALTER TRIGGER can change:

• Only trigger header information, including the trigger activation status, when it
performs its actions, the event that fires the trigger, and the order in which the trigger
fires compared to other triggers.

• Only trigger body information, the trigger statements that follow the AS clause.

• Both trigger header and trigger body information. In this case, the new trigger definition
replaces the old trigger definition.

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE
to change the table definition. For more information on the ALTER TABLE statement, see
Chapter 6, “Working with Tables.”

Note Direct metadata operations, such as altering triggers, increase the metadata version. At most
255 such operations can be performed before you must back up and restore the database.

The ALTER TRIGGER syntax is as follows:

ALTER TRIGGER name
[ACTIVE | INACTIVE]
[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION number]
AS <trigger_body>;

The syntax of ALTER TRIGGER is the same as CREATE TRIGGER, except:

• The CREATE keyword is replaced by ALTER.

• FOR table is omitted. ALTER TRIGGER cannot be used to change the table with which the
trigger is associated.

• The statement need only include parameters that are to be altered in the existing trigger,
with certain exceptions listed in the following sections.

Altering a trigger header
When used to change only a trigger header, ALTER TRIGGER requires at least one altered
setting after the trigger name. Any setting omitted from ALTER TRIGGER remains
unchanged.

The following statement makes the trigger, SAVE_SALARY_CHANGE, inactive:

ALTER TRIGGER SAVE_SALARY_CHANGE INACTIVE;

If the time indicator (BEFORE or AFTER) is altered, then the operation (UPDATE, INSERT, or
DELETE) must also be specified. For example, the following statement reactivates the
trigger, VERIFY_FUNDS, and specifies that it fire before an UPDATE instead of after:
10-10 D a t a D e f i n i t i o n G u i d e

D r o p p i n g t r i g g e r s
ALTER TRIGGER SAVE_SALARY_CHANGE
ACTIVE
BEFORE UPDATE;

Altering a trigger body
When a trigger body is altered, the new body definition replaces the old definition. When
used to change only a trigger body, ALTER TRIGGER need contain any header information
other than the trigger’s name.

To make changes to a trigger body:

1 Copy the original data definition file used to create the trigger. Alternatively, use isql -
extract to extract a trigger from the database to a file.

2 Edit the file, changing CREATE to ALTER, and delete all trigger header information after
the trigger name and before the AS keyword.

3 Change the trigger definition as desired. Retain whatever is still useful. The trigger body
must remain syntactically and semantically complete.

For example, the following ALTER statement modifies the previously introduced trigger,
SET_CUST_NO, to insert a row into the (assumed to be previously defined) table,
NEW_CUSTOMERS, for each new customer.

ALTER TRIGGER SET_CUST_NO
BEFORE INSERT AS
BEGIN

new.cust_no = GEN_ID(CUST_NO_GEN, 1);
INSERT INTO NEW_CUSTOMERS(new.cust_no, TODAY)

END ;

Dropping triggers
During database design and application development, a trigger may no longer be useful. To
permanently remove a trigger, use DROP TRIGGER.

The following restrictions apply to dropping triggers:

• Only the creator of a trigger can drop it.

• Triggers currently in use cannot be dropped.

To temporarily remove a trigger, use ALTER TRIGGER and specify INACTIVE in the header.

The DROP TRIGGER syntax is as follows:

DROP TRIGGER name;

The trigger name must be the name of an existing trigger. The following example drops the
trigger, SET_CUST_NO:

DROP TRIGGER SET_CUST_NO;
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-11

U s i n g t r i g g e r s
You cannot drop a trigger if it is in use by a CHECK constraint (a system-defined trigger).
Use ALTER TABLE to remove or modify the CHECK clause that defines the trigger.

Note Direct metadata operations, such as dropping triggers, increase the metadata version. At
most 255 such operations can be performed before you must back up and restore the
database.

Using triggers
Triggers are a powerful feature with a variety of uses. Among the ways that triggers can be
used are:

• To make correlated updates. For example, to keep a log file of changes to a database or
table.

• To enforce data restrictions, so that only valid data is entered in tables.

• Automatic transformation of data. For example, to automatically convert text input to
uppercase.

• To notify applications of changes in the database using event alerters.

• To perform cascading referential integrity updates.

Triggers are stored as part of a database, like stored procedures and exceptions. Once
defined to be ACTIVE, they remain active until deactivated with ALTER TRIGGER or
removed from the database with DROP TRIGGER.

A trigger is never explicitly called. Rather, an active trigger automatically fires when the
specified action occurs on the specified table.

Important If a trigger performs an action that causes it to fire again—or fires another trigger that
performs an action that causes it to fire—an infinite loop results. For this reason, it is
important to ensure that a trigger’s actions never cause the trigger to fire, even indirectly.
For example, an endless loop will occur if a trigger fires on INSERT to a table and then
performs an INSERT into the same table.

Triggers and transactions
Triggers operate within the context of the transaction in the program where they are fired.
Triggers are considered part of the calling program’s current unit of work.

If triggers are fired in a transaction, and the transaction is rolled back, then any actions
performed by the triggers are also rolled back.
10-12 D a t a D e f i n i t i o n G u i d e

U s i n g t r i g g e r s
Triggers and security
Triggers can be granted privileges on tables, just as users or procedures can be granted
privileges. Use the GRANT statement, but instead of using TO username, use TO TRIGGER
trigger_name. Triggers’ privileges can be revoked similarly using REVOKE. For more
information about GRANT and REVOKE, see Chapter 12, “Planning Security.”

When a user performs an action that fires a trigger, the trigger will have privileges to
perform its actions if:

• The trigger has privileges for the action.

• The user has privileges for the action.

So, for example, if a user performs an UPDATE of table A, which fires a trigger, and the
trigger performs an INSERT on table B, the INSERT will occur if the user has INSERT
privileges on the table or the trigger has insert privileges on the table.

If there are insufficient privileges for a trigger to perform its actions, InterBase will set the
appropriate SQLCODE error number. The trigger can handle this error with a WHEN clause.
If it does not handle the error, an error message will be returned to the application, and the
actions of the trigger and the statement which fired it will be undone.

Triggers as event alerters
Triggers can be used to post events when a specific change to the database occurs. For
example, the following trigger, POST_NEW_ORDER, posts an event named “NEW_ORDER”
whenever a new record is inserted in the SALES table:

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS
BEGIN

POST_EVENT 'NEW_ORDER';
END ;

In general, a trigger can use a variable for the event name:

POST_EVENT :EVENT_NAME;

The parameter EVENT_NAME is declared as a string variable, the statement could post
different events, depending on the value of the string variable, EVENT_NAME. Then, for
example, an application can wait for the event to occur, if the event has been declared with
EVENT INIT and then instructed to wait for it with EVENT WAIT:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('NEW_ORDER');

EXEC SQL
EVENT WAIT ORDER_WAIT;

For more information on event alerters, see the Embedded SQL Guide.
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-13

U s i n g t r i g g e r s
Updating views with triggers
Views that are based on joins—including reflexive joins—and on aggregates cannot be
updated directly. You can, however, write triggers that will perform the correct writes to the
base tables when a DELETE, UPDATE, or INSERT is performed on the view. This InterBase
feature turns non-update-able views into update-able views.

If you define BEFORE triggers for a view that the InterBase engine considers to be directly
update-able, on an UPDATE, DELETE, or INSERT operation the BEFORE trigger will fire;
also, the default action attempted by the UPDATE/DELETE/INSERT statement will be
executed, generating two actions and hence unexpected results.

Note Not all views can be made update-able by defining triggers for them. For example, this read-
only view attempts to count records from the client; but regardless of the triggers you define
for it, all operations except SELECT always fail:

CREATE VIEW AS SELECT 1 FROM MyTable;

Tip You can specify non-default behavior for update-able views, as well. InterBase does not
perform write-throughs on any view that has one or more triggers defined on it. This means
that you can have complete control of what happens to any base table when users modify a
view based on it.

For more information about updating and read-only views, see “Types of views: read-
only and update-able” on page 8-5.

Example The following example creates two tables, creates a view that is a join of the two tables,
and then creates three triggers—one each for DELETE, UPDATE, and INSERT—that will pass
all updates on the view through to the underlying base tables.

CREATE TABLE Table1 (
ColA INTEGER NOT NULL,
ColB VARCHAR(20),
CONSTRAINT pk_table PRIMARY KEY(ColA)

);

CREATE TABLE Table2 (
ColA INTEGER NOT NULL,
ColC VARCHAR(20),
CONSTRAINT fk_table2 FOREIGN KEY REFERENCES Table1(ColA)

);

CREATE VIEW TableView AS
SELECT Table1.ColA, Table1.ColB, Table2.ColC

FROM Table1, Table2
WHERE Table1.ColA = Table2.ColA;

CREATE TRIGGER TableView_Delete FOR TableView BEFORE DELETE AS
BEGIN

DELETE FROM Table1
WHERE ColA = OLD.ColA;
10-14 D a t a D e f i n i t i o n G u i d e

E x c e p t i o n s
DELETE FROM Table2
WHERE ColA = OLD.ColA;

END;

CREATE TRIGGER TableView_Update FOR TableView BEFORE UPDATE AS
BEGIN

UPDATE Table1
SET ColB = NEW.ColB
WHERE ColA = OLD.ColA;

UPDATE Table2
SET ColC = NEW.ColC
WHERE ColA = OLD.ColA;

END;

CREATE TRIGGER TableView_Insert FOR TableView BEFORE INSERT AS
BEGIN

INSERT INTO Table1 values (NEW.ColA,NEW.ColB);
INSERT INTO Table2 values (NEW.ColA,NEW.ColC);

END;

Exceptions
An exception is a named error message that can be raised from a trigger or a stored
procedure. Exceptions are created with CREATE EXCEPTION, modified with ALTER
EXCEPTION, and removed from the database with DROP EXCEPTION. For more information
about these statements, see Chapter 9, “Working with Stored Procedures.”

When raised in a trigger, an exception returns an error message to the calling program and
terminates the trigger, unless the exception is handled by a WHEN statement in the trigger.
For more information on error handling with WHEN, see Chapter 9, “Working with
Stored Procedures.”

For example, a trigger that fires when the EMPLOYEE table is updated might compare the
employee’s old salary and new salary, and raise an exception if the salary increase exceeds
50%. The exception could return an message such as:

New salary exceeds old by more than 50%. Cannot update record.

Important Like procedures and triggers, exceptions are created and stored in a database, where they
can be used by any procedure or trigger in the database. Exceptions must be created and
committed before they can be used in triggers.

Raising an exception in a trigger
To raise an existing exception in a trigger, use the following syntax:

EXCEPTION name;
C h a p t e r 1 0 W o r k i n g w i t h T r i g g e r s 10-15

E x c e p t i o n s
where name is the name of an exception that already exists in the database. Raising an
exception:

• Terminates the trigger, undoing any changes caused (directly or indirectly) by the
trigger.

• Returns the exception message to the application which performed the action that fired
the trigger. If an isql command fired the trigger, the error message is displayed on the
screen.

Note If an exception is handled with a WHEN statement, it will behave differently. For more
information on exception handling, see Chapter 9, “Working with Stored Procedures.”

For example, suppose an exception is created as follows:

CREATE EXCEPTION RAISE_TOO_HIGH 'New salary exceeds old by
more than 50%. Cannot update record.';

The trigger, SAVE_SALARY_CHANGE, might raise the exception as follows:

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
DECLARE VARIABLE PCNT_RAISE;
BEGIN

PCNT_RAISE = (NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY;
IF (OLD.SALARY <> NEW.SALARY)
THEN

IF (PCNT_RAISE > 50)
THEN EXCEPTION RAISE_TOO_HIGH;

ELSE
BEGIN

INSERT INTO SALARY_HISTORY (EMP_NO, CHANGE_DATE,
UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,
PCNT_RAISE);

END
END ;

Error handling in triggers
Errors and exceptions that occur in triggers may be handled using the WHEN statement. If
an exception is handled with WHEN, the exception does not return a message to the
application and does not necessarily terminate the trigger.

Error handling in triggers works the same as for stored procedures: the actions performed
in the blocks up to the error-handling (WHEN) statement are undone and the statements
specified by the WHEN statement are performed.

For more information on error handling with WHEN, see Chapter 9, “Working with
Stored Procedures.”
10-16 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 11Working with Generators
This chapter covers the following topics:

• What a generator is

• How to create, modify, and drop generators

• Using generators

About generators
A generator is a mechanism that creates a unique, sequential number that is automatically
inserted into a column in a read-write database when SQL data manipulation operations
such as INSERT or UPDATE occur. Generators are typically used to produce unique values
that can be inserted into a column that is used as a PRIMARY KEY. For example, a
programmer writing an application to log and track invoices may want to ensure that each
invoice number entered into the database is unique. The programmer can use a generator to
create the invoice numbers automatically, rather than writing specific application code to
accomplish this task.

Any number of generators can be defined for a database, as long as each generator has a
unique name. A generator is global to the database where it is declared. Any transaction
that activates the generator can use or update the current sequence number. InterBase will
not assign duplicate generator values across transactions.

Creating generators
To create a unique number generator in the database, use the CREATE GENERATOR
statement. CREATE GENERATOR declares a generator to the database and sets its starting
value to zero (the default). If you want to set the starting value for the generator to a
number other than zero, use SET GENERATOR to specify the new value.
C h a p t e r 1 1 W o r k i n g w i t h G e n e r a t o r s 11-1

S e t t i n g o r r e s e t t i n g g e n e r a t o r v a l u e s
The syntax for CREATE GENERATOR is:

CREATE GENERATOR name;

The following statement creates the generator, EMPNO_GEN:

CREATE GENERATOR EMPNO_GEN;

Note Once defined, a generator cannot be deleted.

Setting or resetting generator values
SET GENERATOR sets a starting value for a newly created generator, or resets the value of
an existing generator. The new value for the generator, int, can be an integer from –263 to
263– 1. When the GEN_ID() function is called, that value is int plus the increment specified
in the GEN_ID() step parameter.

The syntax for SET GENERATOR is:

SET GENERATOR NAME TO int;

The following statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

Important Don’t reset a generator unless you are certain that duplicate numbers will not occur. For
example, a generators are often used to assign a number to a column that has PRIMARY
KEY or UNIQUE integrity constraints. If you reset such a generator so that it generates
duplicates of existing column values, all subsequent insertions and updates fail with a
“Duplicate key” error message.

Using generators
Once a generator has been created using the CREATE GENERATOR statement, it exists
within the database but no numbers have actually been generated. To invoke the number
generator, you must call the InterBase GEN_ID() function. GEN_ID() takes two arguments:
the name of the generator to call, which must already be defined for the database, and a
step value, indicating the amount by which the current value should be incremented (or
decremented, if the value is negative). GEN_ID() can be called from within a trigger, a
stored procedure, or an application whenever an INSERT, UPDATE, or DELETE operation
occurs. Applications can also use GEN_ID() with SELECT statements to obtain a generator
value for inclusion as part of an INSERT statement.

The syntax for GEN_ID() is:

GEN_ID(genname, step);

To generate a number, follow these steps:

1 Create the generator.
11-2 D a t a D e f i n i t i o n G u i d e

D r o p p i n g g e n e r a t o r s
2 Within a trigger, stored procedure, or application, reference the generator with a call to
GEN_ID().

3 The generator returns a value when a trigger fires, or when a stored procedure or
application executes. It is up to the trigger, stored procedure, or application to use the
value. For example, a trigger can insert the value into a column.

To stop inserting a generated number in a database column, delete or modify the trigger,
stored procedure, or application so that it no longer invokes GEN_ID().

Important Generators return a 64-bit value. You should define the column that holds the generated
value as an ISC_INT64 variable with a DECIMAL or NUMERIC data type.

Example The following statement uses GEN_ID() to call the generator G to increment a purchase
order number in the SALES table by one:

INSERT INTO SALES (PO_NUMBER) VALUES (GEN_ID(G,1));

For more information on using generators in triggers, see Chapter 10, “Working with
Triggers.” For more information on using generators in stored procedures, see Chapter 9,
“Working with Stored Procedures.”

Dropping generators
To drop a generator from a database, use the following syntax:

DROP GENERATOR generator_name

The DROP GENERATOR command checks for any existing dependencies on the
generator (as in triggers or UDFs) and fails if such dependencies exist. The statement fails
if generator_name is not the name of a generator defined on the database. An application
that tries to call a deleted generator returns runtime errors.

Note In previous versions of InterBase that lacked the DROP GENERATOR command, users
issued a SQL statement to delete the generator from the appropriate system table. This
approach is strongly discouraged now that the DROP GENERATOR command is available,
since modifying system tables always carries with it the possibility of rendering the entire
database unusable as a result of even a slight error or miscalculation.
C h a p t e r 1 1 W o r k i n g w i t h G e n e r a t o r s 11-3

D r o p p i n g g e n e r a t o r s
11-4 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 12Planning Security
This chapter discusses the following topics:

• SQL access privileges

• Granting access to a table

• Granting privileges to execute stored procedures

• Granting access to views

• Revoking access to tables and views

• Using views to restrict data access

• Additional security measures

Note For information about the InterBase encryption feature, which enables encryption at the
database and column levels, and about the privileges needed to grant and revoke encrypt and
decrypt permissions, see Chapter 13, “Encrypting Your Data.”

Overview of SQL access privileges
SQL security is controlled at the table level with access privileges, a list of operations that
a user is allowed to perform on a given table or view. The GRANT statement assigns access
privileges for a table or view to specified users, to a role, or to objects such as stored
procedures or triggers. GRANT can also enable users or stored procedures to execute stored
procedures through the EXECUTE privilege and can grant roles to users. Use REVOKE to
remove privileges assigned through GRANT.

GRANT can be used in the following ways:

• Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to users,
triggers, stored procedures, or views (optionally WITH GRANT OPTION)
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-1

O v e r v i e w o f S Q L a c c e s s p r i v i l e g e s
• Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to users, triggers,
stored procedures, or views (optionally WITH GRANT OPTION)

• Grant SELECT, INSERT, UPDATE, DELETE, DECRYPT, and REFERENCES privileges for a table
to a role

• Grant SELECT, INSERT, UPDATE, DECRYPT, and DELETE privileges for a view to a role

• Grant ENCRYPT ON ENCRYPTION permission to a user

• Grant a role to users (optionally WITH ADMIN OPTION)

• Grant EXECUTE permission on a stored procedure to users, triggers, stored procedures, or
views (optionally WITH GRANT OPTION)

Default security and access
All tables and stored procedures are secured against unauthorized access when they are
created. Initially, only a table’s creator, its owner, has access to a table, and only its owner
can use GRANT to assign privileges to other users or to procedures. Only a procedure’s
creator, its owner, can execute or call the procedure, and only its owner can assign EXECUTE
privilege to other users or to other procedures.

InterBase also supports a SYSDBA user who has access to all database objects;
furthermore, on platforms that support the concept of a superuser, or user with root or
locksmith privileges, such a user also has access to all database objects.

Privileges available
The following table lists the SQL access privileges that can be granted and revoked:
Table 12.1 SQL access privileges

Privilege Access

ALL Select, insert, update, delete data, and reference a primary key from a foreign key

SELECT Read data

INSERT Write new data

UPDATE Modify existing data

DELETE Delete data

ENCRYPT ON
ENCRYPTION

Enables the database owner or individual table owner to use a specific
encryption key to encrypt a database or column. Only the SYSDSO
(Data Security Owner) can grant encrypt permission. For information
about the InterBase encryption feature, which enables encryption at the
database and column levels, and about the privileges needed to grant and
revoke encrypt and decrypt permissions, see Chapter 13, “Encrypting
Your Data.”
12-2 D a t a D e f i n i t i o n G u i d e

O v e r v i e w o f S Q L a c c e s s p r i v i l e g e s
The ALL keyword provides a mechanism for assigning SELECT, DELETE, INSERT, UPDATE,
and REFERENCES privileges using a single keyword. ALL does not grant a role or the
EXECUTE privilege. SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges can also be
granted or revoked singly or in combination.

Note Statements that grant or revoke either the EXECUTE privilege or a role cannot grant or revoke
other privileges.

SQL ROLES
InterBase implements features for assigning SQL privileges to groups of users, fully
supporting SQL group-level security with the GRANT, REVOKE, and DROP ROLE
statements. It partially supports GRANT ROLE and REVOKE ROLE.

Note These features replace the Security Classes feature in versions prior to InterBase 5. In the
past, group privileges could be granted only through the InterBase-proprietary GDML
language. In Version 5, new SQL features were added to assist in migrating InterBase users
from GDML to SQL.

Using roles
Implementing roles is a four-step process.

1 Create a role using the CREATE ROLE statement.

2 Assign privileges to the role using GRANT privilege TO rolename.

3 Grant the role to users using GRANT rolename TO user.

4 Users specify the role when attaching to a database.

These steps are described in detail in this chapter. In addition, the CONNECT, CREATE ROLE,
GRANT, and REVOKE statements are described in the Language Reference.

DECRYPT After encrypting a column, the database owner or the individual table
owner can grant decrypt permission to users who need to access the
values in an encrypted column. For information about the InterBase
encryption feature, which enables encryption at the database and column
levels, and about the privileges needed to grant and revoke encrypt and
decrypt permissions, see Chapter 13, “Encrypting Your Data.”

REFERENCES Reference a primary key with a foreign key

EXECUTE Execute or call a stored procedure

role All privileges assigned to the role

Table 12.1 SQL access privileges

Privilege Access
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-3

G r a n t i n g p r i v i l e g e s
Granting privileges
You can grant access privileges on an entire table or view or to only certain columns of the
table or view. This section discusses the basic operation of granting privileges.

• Granting multiple privileges at one time, or granting privileges to groups of users is
discussed in “Multiple privileges and multiple grantees” on page 12-6.

• “Using roles to grant privileges” on page 12-8 discusses both how to grant
privileges to roles and how to grant roles to users.

• You can grant access privileges to views, but there are limitations. See “Granting
access to views” on page 12-11.

• The power to grant GRANT authority is discussed in “Granting users the right to
grant privileges” on page 12-9.

• Granting EXECUTE privileges on stored procedures is discussed in “Granting privileges
to execute stored procedures” on page 12-11.

Granting privileges to a whole table
Use GRANT to give a user or object privileges to a table, view, or role. At a minimum, GRANT
requires the following parameters:

• An access privilege

• The table to which access is granted

• The name of a user to whom the privilege is granted

The access privileges can be one or more of SELECT, INSERT, UPDATE, DELETE, REFERENCE.
The privilege granted can also be a role to which one or more privileges have been
assigned.

The user name is typically a user is the InterBase security database, (admin.ib by default),
but on UNIX systems can also be a user who is in /etc/password on both the server and
client machines. In addition, you can grant privileges to a stored procedure, trigger, or role.

The syntax for granting privileges to a table is:

GRANT <privileges> ON [TABLE] {tablename | viewname}
TO {<object>| <userlist> [WITH GRANT OPTION]| GROUP UNIX_group}

| EXECUTE ON PROCEDURE procname TO {<object> | <userlist>}
| <role_granted> TO {PUBLIC | <role_grantee_list>}[WITH ADMIN OPTION];

<privileges> = ALL [PRIVILEGES] | <privilege_list>

<privilege_list> = {
SELECT

| DELETE
| INSERT
| UPDATE [(col[, col …])]
| REFERENCES [(col[, col …])]

}[, <privilege_list> …]
12-4 D a t a D e f i n i t i o n G u i d e

G r a n t i n g p r i v i l e g e s
<object> = {
PROCEDURE procname

| TRIGGER trigname
| VIEW viewname
| PUBLIC

}[, <object> …]

<userlist> = {
[USER] username

| rolename
| UNIX_user

}[, <userlist> …]

<role_granted> = rolename[, rolename …]

<role_grantee_list> = [USER] username[, [USER] username …]

Notice that this syntax includes the provisions for restricting UPDATE or REFERENCES to
certain columns, discussed on the next section, “Granting access to columns in a
table”

The following statement grants SELECT privilege for the DEPARTMENTS table to a user, EMIL:
GRANT SELECT ON DEPARTMENTS TO EMIL;

The next example grants REFERENCES privileges on DEPARTMENTS to EMIL, permitting EMIL
to create a foreign key that references the primary key of the DEPARTMENTS table, even
though he doesn’t own that table:
GRANT REFERENCES ON DEPARTMENTS(DEPT_NO) TO EMIL;

Tip Views offer a way to further restrict access to tables, by restricting either the columns or the
rows that are visible to the user. See Chapter 8, “Working with Views” for more
information.

Granting access to columns in a table
In addition to assigning access rights for an entire table, GRANT can assign UPDATE or
REFERENCES privileges for certain columns of a table or view. To specify the columns, place
the comma-separated list of columns in parentheses following the privileges to be granted
in the GRANT statement.

The following statement assigns UPDATE access to all users for the CONTACT and PHONE
columns in the CUSTOMERS table:
GRANT UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLIC;

You can add to the rights already assigned to users at the table level, but you cannot
subtract from them. To restrict user access to a table, use the REVOKE statement.

Granting privileges to a stored procedure or trigger
A stored procedure, view, or trigger sometimes needs privileges to access a table or view
that has a different owner. To grant privileges to a stored procedure, put the PROCEDURE
keyword before the procedure name. Similarly, to grant privileges to a trigger or view, put
the TRIGGER or VIEW keyword before the object name.
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-5

M u l t i p l e p r i v i l e g e s a n d m u l t i p l e g r a n t e e s
Important When a trigger, stored procedure or view needs to access a table or view, it is sufficient for
either the accessing object or the user who is executing it to have the necessary
permissions.

The following statement grants the INSERT privilege for the ACCOUNTS table to the
procedure, MONEY_TRANSFER:
GRANT INSERT ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Tip As a security measure, privileges to tables can be granted to a procedure instead of to
individual users. If a user has EXECUTE privilege on a procedure that accesses a table, then
the user does not need privileges to the table.

Multiple privileges and multiple grantees
This section discusses ways to grant several privileges at one time, and ways to grant one
or more privileges to multiple users or objects.

Granting multiple privileges
To give a user several privileges on a table, separate the granted privileges with commas in
the GRANT statement. For example, the following statement assigns INSERT and UPDATE
privileges for the DEPARTMENTS table to a user, LI:
GRANT INSERT, UPDATE ON DEPARTMENTS TO LI;

To grant a set of privileges to a procedure, place the PROCEDURE keyword before the
procedure name. Similarly, to grant privileges to a trigger or view, precede the object name
with the TRIGGER or VIEW keyword.

The following statement assigns INSERT and UPDATE privileges for the ACCOUNTS table to
the MONEY_TRANSFER procedure:
GRANT INSERT, UPDATE ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

The GRANT statement can assign any combination of SELECT, DELETE, INSERT, UPDATE, and
REFERENCES privileges. EXECUTE privileges must be assigned in a separate statement.

Note REFERENCES privileges cannot be assigned for views.

Granting all privileges
The ALL privilege combines the SELECT, DELETE, INSERT, UPDATE, and REFERENCES
privileges for a table in a single expression. It is a shorthand way to assign that group of
privileges to a user or procedure. For example, the following statement grants all access
privileges for the DEPARTMENTS table to a user, SUSAN:
GRANT ALL ON DEPARTMENTS TO SUSAN;

SUSAN can now perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES operations on
the DEPARTMENTS table.
12-6 D a t a D e f i n i t i o n G u i d e

M u l t i p l e p r i v i l e g e s a n d m u l t i p l e g r a n t e e s
Procedures can be assigned ALL privileges. When a procedure is assigned privileges, the
PROCEDURE keyword must precede its name. For example, the following statement grants
all privileges for the ACCOUNTS table to the procedure, MONEY_TRANSFER:
GRANT ALL ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Granting privileges to multiple users
There are a number of techniques available for granting privileges to multiple users. You
can grant the privileges to a list of users, to a UNIX group, or to all users (PUBLIC). In
addition, you can assign privileges to a role, which you then assign to a user list, a UNIX
group, or to PUBLIC.

Granting privileges to a list of users
To assign the same access privileges to a number of users at the same time, provide a
comma-separated list of users in place of the single user name. For example, the following
statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to users FRANCIS,
BEATRICE, and HELGA:
GRANT INSERT, UPDATE ON DEPARTMENTS TO FRANCIS, BEATRICE, HELGA;

Granting privileges to a UNIX group
OS-level account names are implicit in InterBase security on UNIX. A client running as a
UNIX user adopts that user identity in the database, even if the account is not defined in the
InterBase security database. Now OS-level groups share this behavior, and database
administrators can assign SQL privileges to UNIX groups through SQL GRANT/REVOKE
statements. This allows any OS-level account that is a member of the group to inherit the
privileges that have been given to the group. For example:
GRANT UPDATE ON table1 TO GROUP group_name;

where group_name is a UNIX-level group defined in /etc/group.

Note Integration of UNIX groups with database security is not a SQL standard feature.

Granting privileges to all users
To assign the same access privileges for a table to all users, use the PUBLIC keyword rather
than listing users individually in the GRANT statement.

The following statement grants SELECT, INSERT, and UPDATE privileges on the DEPARTMENTS
table to all users:
GRANT SELECT, INSERT, UPDATE ON DEPARTMENTS TO PUBLIC;

Important PUBLIC grants privileges only to users, not to stored procedures, triggers, roles, or views.
Privileges granted to users with PUBLIC can only be revoked from PUBLIC.
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-7

U s i n g r o l e s t o g r a n t p r i v i l e g e s
Granting privileges to a list of procedures
To assign privileges to a several procedures at once, provide a comma-separated list of
procedures following the word PROCEDURE in the GRANT statement.

The following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
the procedures, ACCT_MAINT, and MONEY_TRANSFER:
GRANT INSERT, UPDATE ON DEPARTMENTS TO PROCEDURE ACCT_MAINT,

MONEY_TRANSFER;

Using roles to grant privileges
In InterBase, you can assign privileges through the use of ROLEs. Acquiring privileges
through a role is a four-step process.

1 Create a role using the CREATE ROLE statement.
CREATE ROLE rolename;

2 Assign one or more privileges to that role using GRANT.
GRANT privilegelist ON tablename TO rolename;

3 Use the GRANT statement once again to grant the role to one or more users.
GRANT rolename TO userlist;

The role can be granted WITH ADMIN OPTION, which allows users to grant the role to
others, just as the WITH GRANT OPTION allows users to grant privileges to others.

4 At connection time, specify the role whose privileges you want to acquire for that
connection.
CONNECT 'database' USER 'username' PASSWORD 'password' ROLE 'rolename';

Use REVOKE to remove privileges that have been granted to a role or to remove roles that
have been granted to users.

See the Language Reference for more information on CONNECT, CREATE ROLE, GRANT, and
REVOKE.

Granting privileges to a role
Once a role has been defined, you can grant privileges to that role, just as you would to a
user.

The syntax is as follows:
GRANT <privileges> ON [TABLE] {tablename | viewname}

TO rolename;

<privileges> = ALL [PRIVILEGES] | <privilege_list>

<privilege_list> = {
SELECT
| DELETE
| INSERT
| UPDATE [(col [, col …])]
12-8 D a t a D e f i n i t i o n G u i d e

G r a n t i n g u s e r s t h e r i g h t t o g r a n t p r i v i l e g e s
| REFERENCES [(col [, col …])]
} [, <privilege_list> …]

See the following section “Granting a role to users” for an example of creating a role,
granting privileges to it, and then granting the role to users.

Granting a role to users
When a role has been defined and has been granted privileges, you can grant that role to
one or more users, who then acquire the privileges that have been assigned to the role.

To permit users to grant the role to others, add WITH ADMIN OPTION to the GRANT statement
when you grant the role to the users.

The syntax is as follows:
GRANT {rolename [, rolename …]} TO {PUBLIC

| {[USER] username [, [USER] username …]} }[WITH ADMIN OPTION];

The following example creates the DOITALL role, grants ALL privileges on DEPARTMENTS to
this role, and grants the DOITALL role to RENEE, who then has SELECT, DELETE, INSERT,
UPDATE, and REFERENCES privileges on DEPARTMENTS.
CREATE ROLE DOITALL;
GRANT ALL ON DEPARTMENTS TO DOITALL;
GRANT DOITALL TO RENEE;

Granting users the right to grant privileges
Initially, only the owner of a table or view can grant access privileges on the object to other
users. The WITH GRANT OPTION clause transfers the right to grant privileges to other users.

To assign grant authority to another user, add the WITH GRANT OPTION clause to the end of a
GRANT statement.

The following statement assigns SELECT access to user EMIL and allows EMIL to grant
SELECT access to other users:
GRANT SELECT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Note You cannot assign the WITH GRANT OPTION to a stored procedure.

WITH GRANT OPTION clauses are cumulative, even if issued by different users. For example,
EMIL can be given grant authority for SELECT by one user, and grant authority for INSERT by
another user. For more information about cumulative privileges, see “Grant authority
implications” on page 12-10.

Grant authority restrictions
There are only three conditions under which a user can grant access privileges (SELECT,
DELETE, INSERT, UPDATE, and REFERENCES) for tables to other users or objects:

• Users can grant privileges to any table or view that they own.
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-9

G r a n t i n g u s e r s t h e r i g h t t o g r a n t p r i v i l e g e s
• Users can grant any privileges on another user’s table or view when they have been
assigned those privileges WITH GRANT OPTION.

• Users can grant privileges that they have acquired by being granted a role WITH ADMIN
OPTION.

For example, in an earlier GRANT statement, EMIL was granted SELECT access to the
DEPARTMENTS table WITH GRANT OPTION. EMIL can grant SELECT privilege to other users.
Suppose EMIL is now given INSERT access as well, but without the WITH GRANT OPTION:
GRANT INSERT ON DEPARTMENTS TO EMIL;

EMIL can SELECT from and INSERT to the DEPARTMENTS table. He can grant SELECT
privileges to other users, but cannot assign INSERT privileges.

To change a user’s existing privileges to include grant authority, issue a second GRANT
statement that includes the WITH GRANT OPTION clause. For example, to allow EMIL to grant
INSERT privileges on DEPARTMENTS to others, reissue the GRANT statement and include the
WITH GRANT OPTION clause:
GRANT INSERT ON DEPARTMENTS TO EMIL WITH GRANT OPTION;

Grant authority implications
Consider every extension of grant authority with care. Once other users are permitted grant
authority on a table, they can grant those same privileges, as well as grant authority for
them, to other users.

As the number of users with privileges and grant authority for a table increases, the
likelihood that different users can grant the same privileges and grant authority to any
single user also increases.

SQL permits duplicate privilege and authority assignment under the assumption that it is
intentional. Duplicate privilege and authority assignments to a single user have
implications for subsequent revocation of that user’s privileges and authority. For more
information about revoking privileges, see “Revoking user access” on page 12-13.

For example, suppose two users to whom the appropriate privileges and grant authority
have been extended, GALENA and SUDHANSHU, both issue the following statement:
GRANT INSERT ON DEPARTMENTS TO SPINOZA WITH GRANT OPTION;

Later, GALENA revokes the privilege and grant authority for SPINOZA:
REVOKE INSERT ON DEPARTMENTS FROM SPINOZA;

GALENA now believes that SPINOZA no longer has INSERT privilege and grant authority for
the DEPARTMENTS table. The immediate net effect of the statement is negligible because
SPINOZA retains the INSERT privilege and grant authority assigned by SUDHANSHU.

When full control of access privileges on a table is desired, grant authority should not be
assigned indiscriminately. In cases where privileges must be universally revoked for a user
who might have received rights from several users, there are two options:

• Each user who assigned rights must issue an appropriate REVOKE statement.
12-10 D a t a D e f i n i t i o n G u i d e

G r a n t i n g p r i v i l e g e s t o e x e c u t e s t o r e d p r o c e d u r e s
• The table’s owner must issue a REVOKE statement for all users of the table, then issue
GRANT statements to reestablish access privileges for the users who should not lose their
rights.

For more information about the REVOKE statement, see “Revoking user access” on
page 12-13.

Granting privileges to execute stored procedures
To use a stored procedure, users or other stored procedures must have
EXECUTE privilege for it, using the following GRANT syntax:
GRANT EXECUTE ON PROCEDURE procname TO {<object> | <userlist>}

<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}
[, <object> …]

<userlist> = {
[USER] username
| rolename
| UNIX_user

} [, <userlist> …][WITH GRANT OPTION]

You must give EXECUTE privileges on a stored procedure to any procedure or trigger that
calls that stored procedure if the caller’s owner is not the same as the owner of the called
procedure.

Note If you grant privileges to PUBLIC, you cannot specify additional users or objects as grantees
in the same statement.

The following statement grants EXECUTE privilege for the FUND_BALANCE procedure to two
users, NKOMO, and SUSAN, and to two procedures, ACCT_MAINT, and MONEY_TRANSFER:
GRANT EXECUTE ON PROCEDURE FUND_BALANCE TO NKOMO, SUSAN, PROCEDURE

ACCT_MAINT, MONEY_TRANSFER;

Granting access to views
To a user, a view looks—and often acts—just like a table. However, there are significant
differences: the contents of a view are not stored anywhere in the database. All that is
stored is the query on the underlying base tables. Because of this, any UPDATE, DELETE,
INSERT to a view is actually a write to the table on which the view is based.

Any view that is based on a join or an aggregate is considered to be a read-only view, since
it is not directly update-able. Views that are based on a single table which have no
aggregates or reflexive joins are often update-able. See “Types of views: read-only and
update-able” on page 8-5 for more information about this topic.
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-11

G r a n t i n g a c c e s s t o v i e w s
Important It is meaningful to grant INSERT, UPDATE, and DELETE privileges for a view only if the view
is update-able. Although you can grant the privileges to a read-only view without receiving
an error message, any actual write operation fails because the view is read-only. SELECT
privileges can be granted on a view just as they are on a table, since reading data from a
view does not change anything.

You cannot assign REFERENCES privileges to views.

Tip If you are creating a view for which you plan to grant INSERT and UPDATE privileges, use
the WITH CHECK OPTION constraint so that users can update only base table rows that are
accessible through the view.

Update-able views
You can assign SELECT, UPDATE, INSERT, and DELETE privileges to update-able views, just
as you can to tables. UPDATES, INSERTS, and DELETES to a view are made to the view’s base
tables. You cannot assign REFERENCES privileges to a view.

The syntax for granting privileges to a view is:
GRANT <privileges> ON viewname

TO {<object> | <userlist> | GROUP UNIX_group};

<privileges> = ALL [PRIVILEGES] | <privilege_list>

<privilege_list> = {
SELECT
| DELETE
| INSERT
| UPDATE [(col [, col …])]
}
[, <privilege_list> …]

<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}
[, <object> …]

<userlist> = {
[USER] username
| rolename
| UNIX_user
}
[, <userlist> …]
[WITH GRANT OPTION]

When a view is based on a single table, data changes are made directly to the view’s
underlying base table.

For UPDATE, changes to the view affect only the base table columns selected through the
view. Values in other columns are invisible to the view and its users and are never changed.
Views created using the WITH CHECK OPTION integrity constraint can be updated only if the
UPDATE statement fulfills the constraint’s requirements.
12-12 D a t a D e f i n i t i o n G u i d e

R e v o k i n g u s e r a c c e s s
For DELETE, removing a row from the view, and therefore from the base table removes all
columns of the row, even those not visible to the view. If SQL integrity constraints or
triggers exist for any column in the underlying table and the deletion of the row violates
any of those constraints or trigger conditions, the DELETE statement fails.

For INSERT, adding a row to the view necessarily adds a row with all columns to the base
table, including those not visible to the view. Inserting a row into a view succeeds only
when:

• Data being inserted into the columns visible to the view meet all existing integrity
constraints and trigger conditions for those columns.

• All other columns of the base table are allowed to contain NULL values.

For more information about working with views, see Chapter 8, “Working with Views.”

Read-only views
When a view definition contains a join of any kind or an aggregate, it is no longer a legally
update-able view, and InterBase cannot directly update the underlying tables.

Note You can use triggers to simulate updating a read-only view. Be aware, however, that any
triggers you write are subject to all the integrity constraints on the base tables. To see an
example of how to use triggers to “update” a read-only view, see “Updating views with
triggers” on page 10-14.

For more information about integrity constraints and triggers, see Chapter 10, “Working
with Triggers.”

Revoking user access
Use the REVOKE statement to remove privileges that were assigned with the GRANT
statement.

At a minimum, REVOKE requires parameters that specify the following:

• One access privilege to remove

• The table or view to which the privilege revocation applies

• The name of the grantee for which the privilege is revoked.

In its full form, REVOKE removes all the privileges that GRANT can assign.
REVOKE <privileges> ON [TABLE] {tablename | viewname}

FROM {<object> | <userlist> | GROUP UNIX_group};

<privileges> = ALL [PRIVILEGES] | <privilege_list>

<privilege_list> = {
SELECT
| DELETE
| INSERT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]

} [, <privilege_list> …]
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-13

R e v o k i n g u s e r a c c e s s
<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC

} [, <object> …]

<userlist> = [USER] username [, [USER] username …]

The following statement removes the SELECT privilege for the user, SUSAN, on the
DEPARTMENTS table:
REVOKE SELECT ON DEPARTMENTS FROM SUSAN;

The following statement removes the UPDATE privilege for the procedure, MONEY_TRANSFER,
on the ACCOUNTS table:
REVOKE UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSER;

The next statement removes EXECUTE privilege for the procedure, ACCT_MAINT, on the
MONEY_TRANSFER procedure:
REVOKE EXECUTE ON PROCEDURE MONEY_TRANSER FROM PROCEDURE ACCT_MAINT;

For the complete syntax of REVOKE, see the Language Reference.

Revocation restrictions
The following restrictions and rules of scope apply to the REVOKE statement:

• Privileges can be revoked only by the user who granted them.

• Other privileges assigned by other users are not affected.

• Revoking a privilege for a user, A, to whom grant authority was given, automatically
revokes that privilege for all users to whom it was subsequently assigned by user A.

• Privileges granted to PUBLIC can only be revoked for PUBLIC.

Revoking multiple privileges
To remove some, but not all, of the access privileges assigned to a user or procedure, list
the privileges to remove, separating them with commas. For example, the following
statement removes the INSERT and UPDATE privileges for the DEPARTMENTS table from a
user, LI:
REVOKE INSERT, UPDATE ON DEPARTMENTS FROM LI;

The next statement removes INSERT and DELETE privileges for the ACCOUNTS table from a
stored procedure, MONEY_TRANSFER:
REVOKE INSERT, DELETE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER;

Any combination of previously assigned SELECT, DELETE, INSERT, and UPDATE privileges
can be revoked.
12-14 D a t a D e f i n i t i o n G u i d e

R e v o k i n g u s e r a c c e s s
Revoking all privileges
The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE privileges for a table
in a single expression. It is a shorthand way to remove all SQL table access privileges from
a user or procedure. For example, the following statement revokes all access privileges for
the DEPARTMENTS table for a user, SUSAN:
REVOKE ALL ON DEPARTMENTS FROM SUSAN;

Even if a user does not have all access privileges for a table, ALL can still be used. Using
ALL in this manner is helpful when a current user’s access rights are unknown.

Note ALL does not revoke EXECUTE privilege.

Revoking privileges for a list of users
Use a comma-separated list of users to REVOKE access privileges for a number of users at
the same time.

The following statement revokes INSERT and UPDATE privileges on the DEPARTMENTS table
for users FRANCIS, BEATRICE, and HELGA:
REVOKE INSERT, UPDATE ON DEPARTMENTS FROM FRANCIS, BEATRICE, HELGA;

Revoking privileges for a role
If you have granted privileges to a role or granted a role to users, you can use REVOKE to
remove the privileges or the role.

To remove privileges from a role:
REVOKE privileges ON table FROM rolenamelist;

To revoke a role from users:
REVOKE role_granted FROM {PUBLIC | role_grantee_list};

The following statement revokes UPDATE privileges from the DOITALL role:
REVOKE UPDATE ON DEPARTMENTS FROM DOITALL;

Now, users who were granted the DOITALL role no longer have UPDATE privileges on
DEPARTMENTS, although they retain the other privileges—SELECT, INSERT, DELETE, and
REFERENCES—that they acquired with this role.

Important If you drop a role using the DROP ROLE statement, all privileges that were conferred by that
role are revoked.

Revoking a role from users
Use REVOKE to remove a role that you assigned to users.

The following statement revokes the DOITALL role from RENEE.
REVOKE DOITALL FROM RENEE;
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-15

R e v o k i n g u s e r a c c e s s
RENEE no longer has any of the access privileges that she acquired as a result of
membership in the DOITALL role. However, if any others users have granted the same
privileges to her, she still has them.

Revoking EXECUTE privileges
Use REVOKE to remove EXECUTE privileges on a stored procedure. The syntax for revoking
EXECUTE privileges is as follows:
REVOKE EXECUTE ON PROCEDURE procname FROM {<object> | <userlist>}

<object> = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}
[, <object> …]

<userlist> = [USER] username [, [USER] username …]

The following statement removes EXECUTE privilege for user EMIL on the MONEY_TRANSFER
procedure:
REVOKE EXECUTE ON PROCEDURE MONEY_TRANSFER FROM EMIL;

Revoking privileges from objects
REVOKE can remove the access privileges for one or more procedures, triggers, or views.
Precede each type of object by the correct keyword (PROCEDURE, TRIGGER, or VIEW) and
separate lists of one object type with commas.

The following statement revokes INSERT and UPDATE privileges for the ACCOUNTS table
from the MONEY_TRANSFER and ACCT_MAINT procedures and from the SHOW_USER trigger.
REVOKE INSERT, UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,

ACCT_MAINT TRIGGER SHOW_USER;

Revoking privileges for all users
To revoke privileges granted to all users as PUBLIC, use REVOKE with PUBLIC. For example,
the following statement revokes SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table for all users:
REVOKE SELECT, INSERT, UPDATE ON DEPARTMENTS FROM PUBLIC;

When this statement is executed, only the table’s owner retains full access privileges to
DEPARTMENTS.

Important PUBLIC does not revoke privileges for stored procedures. PUBLIC cannot be used to strip
privileges from users who were granted them as individual users.

Revoking grant authority
To revoke a user’s grant authority for a given privilege, use the following REVOKE syntax:
12-16 D a t a D e f i n i t i o n G u i d e

U s i n g v i e w s t o r e s t r i c t d a t a a c c e s s
REVOKE GRANT OPTION FOR privilege [, privilege …] ON table
FROM user;

For example, the following statement revokes SELECT grant authority on the DEPARTMENTS
table from a user, EMIL:
REVOKE GRANT OPTION FOR SELECT ON DEPARTMENTS FROM EMIL;

Using views to restrict data access
In addition to using GRANT and REVOKE to control access to database tables, you can use
views to restrict data access. A view is usually created as a subset of columns and rows
from one or more underlying tables. Because it is only a subset of its underlying tables, a
view already provides a measure of access security.

For example, suppose an EMPLOYEES table contains the columns, LAST_NAME, FIRST_NAME,
JOB, SALARY, DEPT, and PHONE. This table contains much information that is useful to all
employees. It also contains employee information that should remain confidential to
almost everyone: SALARY. Rather than allow all employees access to the EMPLOYEES table, a
view can be created which allows access to other columns in the EMPLOYEES table, but
which excludes SALARY:
CREATE VIEW EMPDATA AS

SELECT LAST_NAME, FIRST_NAME, DEPARTMENT, JOB, PHONE
FROM EMPLOYEES;

Access to the EMPLOYEES table can now be restricted, while SELECT access to the view,
EMPDATA, can be granted to everyone.

Note Be careful when creating a view from base tables that contain sensitive information.
Depending on the data included in a view, it may be possible for users to recreate or infer
the missing data.
C h a p t e r 1 2 P l a n n i n g S e c u r i t y 12-17

U s i n g v i e w s t o r e s t r i c t d a t a a c c e s s
12-18 D a t a D e f i n i t i o n G u i d e

C h a p t e r

Chapter 13Encrypting Your Data
This chapter provides information and instruction on the following topics:

• Overview of InterBase encryption

• An overview of encryption tasks

• A description of encryption users

• Encrypt and decrypt permissions

• Using isql to enable and perform encryption

• Using IBConsole to enable and perform encryption

• Encrypting backup files

The InterBase encryption feature is available in InterBase editions 9.0 and after.

About InterBase encryption
Encryption is the process of applying an invertible algorithm to a block of data (plaintext)
so that the encrypted data (ciphertext) bears no resemblance to the plaintext. Typically, an
encryption key is applied to the plaintext to produce the ciphertext. The same encryption
key is used to convert (decrypt) the ciphertext back to plaintext. The purpose of encryption
is to protect data from being deciphered by unauthorized viewers or users.

InterBase enables you to encrypt information at one or both of the following levels:

• Database-level encryption:

When you specify database-level encryption, InterBase encrypts all the database pages
that contain user information. Non-user database pages are not encrypted. Non-user
pages include the header page, log page, inventory pages, pointer pages, transaction
inventory pages, index root pages, and generator pages.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-1

A b o u t I n t e r B a s e e n c r y p t i o n
You cannot specify which pages in a database to encrypt. Instead, you issue the encrypt
database command from the database to which you are connected, and InterBase
encrypts all the user-related pages in that database.

• Column-level encryption:

Column-level encryption is both more flexible and more specific. To encrypt a column,
you specify the table that contains the column, followed by the name of the column. You
can encrypt all of the columns in a table, or only individual columns you specify. For
example, you can encrypt a payroll column in an Employee table so that both payroll
and HR employees can access it. Then you might encrypt SSN information in the same
table so that only payroll employees can access it. Users who need to access data in
encrypted columns can be given decrypt privileges for that column.

Generally speaking, encrypting all of a database’s user pages takes much greater overhead
than selectively encrypting individual columns. In addition, database performance can be
adversely affected when a large number of concurrent queries access the same encrypted
columns.

Encrypting database backup files
To maintain the security and confidentiality of encrypted databases, you must also encrypt
database backup files. The GBAK utility provides three additional switches to facilitate
encrypt and decrypt operations on database backups. For instructions on how to encrypt
and decrypt backup files, see “Encrypting backup files” on page 13-18.

Encrypting network communication
Data passed to a remote InterBase client from a database server is unencrypted during the
transmission process. For information on how to encrypt information that is passed over a
network, see the InterBase Operations Guide.

About industry encryption standards
InterBase encryption supports the use of the following industry encryption standards:

• Data Encryption Standard (DES) is a 25-year-old industry standard. DES is a weak
encryption standard but does not require a license to use.

• Advanced Encryption Standard (AES) was adopted as a federal standard in 2002.
AES enables a larger number of bits with which to scramble encrypted data than DES
does. Because AES offers much stronger encryption protection, the United States
regulates its export. To address U.S. export regulations, users must obtain an InterBase
license to use AES with InterBase.

You specify the standard you want to use with InterBase when you create an encryption
key. Instructions on how to create the encryption key are provided later in this chapter.
13-2 O p e r a t i o n s G u i d e

A b o u t I n t e r B a s e e n c r y p t i o n
Who can create encryption?
Encryption tasks, which are summarized in Table 13.1, are primarily performed by the
following users: a SYSDSO, the database owner, and any individual table owners who
are given permission to encrypt specific columns in a table. InterBase requires the creation
of the System Database Security Owner (SYSDSO) user to implement specific
encryption tasks. SYSDSO is a reserved user name, similar to SYSDBA.

The database owner is typically the person who creates the database. The database owner
may or may not also be the database’s administrator.

The SYSDSO role controls three significant steps in the encryption process:

• Creates a System Encryption Password (SEP).

• Creates the encryption keys.

• Grants the database owner access to the encryption keys, which s/he then uses to
encrypt the database and/or its columns.

However, the SYSDSO cannot encrypt databases or columns, nor can s/he grant or revoke
access to encrypted data. Only a database owner and/or an individual table owner can
actually encrypt a database or columns in a database; the SYSDSO simply creates the
tools (the encryption keys) that are needed to perform the encryption. Requiring that
multiple users set up and implement encryption, rather than just one, adds an additional
layer of database security.

In addition, only the user who encrypts a column or database can grant decrypt privileges
to those who need to view or modify the encrypted data. For more information about
granting decrypt permission, see “Granting decrypt permission” on page 13-11.

Generally speaking, only the user who grants the permission can revoke the permission.
For more information, see “Revoking encrypt and decrypt permissions” on
page 13-12.

Note Decrypt permission is only required for column-level encryption. It is not required for
database-level encryption.

Creating the SYSDSO user
The database owner uses the following syntax to create the SYSDSO user:

CREATE USER SYSDSO SET PASSWORD 'PASSWORD';

You must keep the SYSDSO user for as long as you use the encryption keys created by that
same SYSDSO.

If the SET PASSWORD clause is not specified, the default SYSDSO password will be the
password of the person who creates the account. This makes it easier for the account
creator to temporarily acquire SYSDSO privileges to create and test encryptions during
development without having to login to do so. When the SYSDSO password is
subsequently changed, the account creator loses this privilege. Presumably, this handoff
would occur at deployment time, when transferring these duties to a security authority.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-3

A b o u t I n t e r B a s e e n c r y p t i o n
An overview of encryption tasks
The following list identifies the tasks that need to be performed to encrypt a database and/
or its columns, and to give users the appropriate access rights. The steps are typically
performed by a SYSDSO and a database owner unless additional individuals are given
encrypt privileges to specific columns. For more information about how the SYSDSO and
database owner use the InterBase encryption feature, see “Who can create encryption?”
on page 13-3.

To implement encryption using InterBase, perform the tasks listed in Table 13.1. The
following sections provide detailed instructions on how to perform steps 3-7.

Requirements and support
InterBase encryption is supported on all InterBase platforms. Before using it, you must
install or do the following:

• Embedded User Authentication (EUA) must be enabled to grant specified users
decrypt privileges to access data in encrypted columns. For instructions on how to enable
EUA using isql, see the InterBase Operations Guide. For instructions on how to enable EUA
using IBConsole, see “Using IBConsole to set up and perform encryption” on
page 13-13 of this chapter.

Table 13.1 Encryption implementation tasks

Step # Task Performed by

1 Ensure that Embedded User Authentication (EUA) is enabled
on the database you plan to encrypt. For instructions on how
to enable EUA using isql, see the InterBase Operations
Guide. For instructions on how to enable EUA using
IBConsole, see “Using IBConsole to set up and
perform encryption” on page 13-13 of this chapter.

Database owner

2 Create a System Database Security Owner (SYSDSO)
account using the command on page 13-3.

Database owner

3 Create a System Encryption Password (SEP). SYSDSO

4 Create an encryption key for the database and/or the
columns you want the database or table owner to
encrypt.

SYSDSO

5 Grant the database owner privileges to use the
encryption keys to perform encryption.

SYSDSO

6 Encrypt the database and/or columns. Database owner or
individual table owner

7 Grant or revoke decrypt privileges to other users. Database owner or
individual table owner
13-4 O p e r a t i o n s G u i d e

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
• Due to government regulation of strong encryption, you must obtain a license from
InterBase to use AES with InterBase.You do not need a special license to use DES
with InterBase.

• This feature requires ODS 13 and is not available on older ODS databases. Therefore,
a backup and restore to ODS 13 is required for pre-existing databases to use InterBase
encryption. For information about performing backups and restores, see the InterBase
Operations Guide.

Note InterBase uses OpenSSL 0.9.8g or a derivation of that version to support InterBase
encryption. InterBase installs OpenSSL 0.9.8g with the InterBase server. OpenSSL 0.9.8g
contains libraries for the most widely known encryption and message digest algorithms in
use today. InterBase uses these libraries as the basis for supporting database and column-
level encryption functionality.

Using isql to enable and implement encryption
This section explains how to enable and implement encryption using isql. For instructions
on to use IBConsole to perform the same encryption tasks, see “Using IBConsole to set
up and perform encryption” on page 13-13.

Setting the System Encryption Password (SEP)
InterBase uses a System Encryption Password (SEP) to protect the encryption keys that are
used to encrypt the database and/or database columns. If you are managing multiple
databases that use InterBase encryption, it is recommended that you create a different SEP
for each database.

Altering the database to create the SEP
The SYSDSO uses the ALTER DATABASE command to create the SEP.

To create a SEP, use the following syntax:
alter database set system encryption password <255-character string>

The string can be up to 255 characters long and can include spaces. The system encryption
password is encrypted with a key derived from machine specific information and stored in
the database. This effectively node locks the database to the machine but allows the
database to be attached without a user having to pass the system encryption password in
plaintext. Thus, subsequent connections on the same machine need not provide the SEP.

However, if the database file is copied and installed on a different machine, the node-lock
feature disallows direct loading of the database without the user providing the SEP. After
moving a database with a node-locked SEP to another machine, you must login as
SYSDSO with the current SEP set via the SEP environment variable or DPB. The
SYSDSO can then perform ALTER DATABASE SET SYSTEM ENCRYPTION PASSWORD to create
a new SEP.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-5

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
Just “setting” the SEP to connect to the database does not redefine or re-node-lock the SEP.
Users can continue to provide the SEP externally though you may want to alter the sep
command to re-node-lock it to the new machine.

Using the external option when creating a SEP
Though an unauthorized person would not have decrypt permission for any encrypted
columns, he or she might be able to bit edit the database file to artificially grant decrypt
permission. The password attribute of an encryption key can mitigate this risk because the
user needs the passwords as well as decrypt permission. For database-level encryption, the
data would be visible immediately because only the SEP is needed to see it.

Adding the external setting to a SEP statement can make it more difficult for unauthorized
users to access an encrypted database on a mobile device such as a laptop computer, or on
an a poorly secured desktop computer.

alter database set system encryption password <255-character string>
[external]

The external form of setting the SEP requires the first database attach to pass the
isc_dbp_system_encrypt_password parameter with the value of the password, or to set
the environment variable isc_system_encrypt_password. Subsequent database
attachments are not required to pass the SEP as the database server already has it in
memory. The external form should only be used on remote connections when Over-the-
Wire encryption has been configured for the network. For more information about
InterBase’s Over-the-Wire encryption, see the InterBase Operations Guide.

For security reasons, programs should not hardcode the SEP with
isc_dbp_system_encrypt_password but query the user, then generate this database
attachment parameter dynamically. The ISC_SYSTEM_ENCRYPT_PASSWORD environment
variable should never be hardcoded in scripts and if entered at the console should be unset
as soon as possible.

Removing the System Encryption Password (SEP)
The SYSDSO can remove the SEP when the database is no longer encrypted, and when
there are no remaining column-level encryptions stored in the RDB$ENCRYPTIONS
table.

To remove a SEP, use the following syntax:
alter database set no system encryption password

Creating encryption keys
The SYSDSO uses the CREATE ENCRYPTION command to create encryption keys. An
encryption key is used to encrypt a database’s pages and/or the database’s columns. The
database owner uses an encryption key to perform encryption on a specific database or
column. InterBase stores encryption keys in the RDB$ENCRYPTIONS system table.

The following statement provides an example of a simple CREATE ENCRYPTION statement:
CREATE ENCRYPTION payroll_key for AES
13-6 O p e r a t i o n s G u i d e

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
where CREATE ENCRYPTION is the command, and “payroll_key” is the name of the key
created. Thus, the basic syntax for creating an encryption key is:

CREATE ENCRYPTION key-name for AES | for DES

To create an encryption key using all of the available isql statement options, use the
following syntax:

create encryption key-name [as default] [for {AES | DES}] [with length
number-of-bits [bits]]
[password {'user-password' | system encryption password}]
[init_vector {NULL | random}] [pad {NULL | random}]
[description ‘some user description’]

For example:
CREATE ENCRYPTION revenue_key FOR AES WITH LENGTH 192 BITS INIT_VECTOR
RANDOM

See Table 13.2 for a description of each encryption key option.

Table 13.2 Encryption Key Options

Option Description

Key name Identifies the encryption key by a unique name.

Default This key is used as the database default when no explicit key is
named for database or column encryption.

AES Advanced Encryption Standard algorithm. This encryption
scheme is considered strong and requires an InterBase license.

DES Data Encryption Standard algorithm. This is a weak encryption
scheme that requires no special license.

Length Specifies key length. If using DES, 56 bits is the default. If using
AES, you can specify 128, 192, or 256 bits. For AES, 128 is the
default.

Password Available only for column encryption keys. Associating a
custom password with an encryption key provides an
additional layer of protection. For more information about
associating a custom password with an encryption key, see
“Setting a user-defined password for an encryption
key” on page 13-8.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-7

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
Note A random initialization vector or random padding prevents an encrypted column from being
used in an index, and raises an error if a create index DDL statement tries to do so. The
NULL defaults for both of these options favor index-enabled access optimization over a
more stringent level of protection afforded by the random counterparts.

Setting a user-defined password for an encryption key
As noted in Table 13.2, you can assign each column encryption key a custom password,
which adds an additional level of protection for your data. When you associate a password
with a column encryption key, you must give it to the database owner or the table owner so
that s/he can use the key to encrypt the column. You must also give it to any end users who
need to change or view the values in the encrypted column.

If an encryption key was defined with a user-defined password, then users must set the
password during a database session before accessing columns that have been encrypted
with the key:

set password 'user-password' for {encryption | column} encryption-or-
table.column-name

Assuming the same user also has decrypt and access permissions on the column, he or she
can now access all columns encrypted by that key.

Dropping an encryption key
An encryption key can be dropped (deleted) from the database. Only the SYSDSO can
execute this command. The command will fail if the encryption key is still being used to
encrypt the database or any table columns when “restrict” is specified, which is the default
drop behavior. If “cascade” is specified, then all columns using that encryption are
decrypted and the encryption is dropped.

To drop an encryption key, use the following syntax:
drop encryption key-name [restrict | cascade]

Init-vector Random enables Cipher Block Chaining (CBC) encryption
technique so that equal values have different ciphertext. If NULL
is specified, then Electronic Cookbook (ECB) is used. NULL is
the default value.

Pad Random padding can cause equal values to have different
ciphertext. NULL specifies that random padding should not
occur. NULL is the default value.

Description A user-level comment that describes the purpose of the
encryption.

Table 13.2 Encryption Key Options

Option Description
13-8 O p e r a t i o n s G u i d e

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
Granting encryption permission to the database
owner
In order for the database owner to use an encryption key to encrypt a database or column,
the SYSDSO must first grant encrypt permission to the database or table owner to use the
key. Only the SYSDSO can grant encrypt permission.

To grant permission to encrypt, use the following syntax:
GRANT ENCRYPT ON ENCRYPTION key-name to user-name;

For example, if a SYSDBA is the database owner:
GRANT ENCRYPT ON ENCRYPTION expenses_key to SYSDBA;

gives the SYSDBA permission to use the payroll-key to encrypt a database or a column.

Important Only the user who encrypts a column or database can grant decrypt privileges to those who
need to view the encrypted data. Only the database owner can grant decrypt privileges.

Encrypting data
As indicated at the beginning of this chapter, InterBase can be used to encrypt data at the
database-level, and to encrypt specific columns in a database. Generally speaking,
encrypting at the column-level offers the greatest data protection. When you encrypt at the
database- or column-level, it is also recommended that you encrypt the database’s backup
files. For instructions on how to do so, see “Encrypting backup files” on page 13-18.

About the encryption commands
InterBase provides two encryption commands: one to encrypt a database, and the other to
encrypt database columns.

To encrypt a database, use the following syntax:
alter database encrypt [[with] key-name]

For example, the statement:
alter database encrypt with fin_key

uses the fin_key to encrypt all the database pages in the current database (i.e. in the
database to which you are connected).

To encrypt a column in an existing table, use the following syntax:
alter table table-name (alter column column-name encrypt [[with] key-
name]

For example, the following statement:
alter table SALES alter column total_value encrypt with expenses_key

uses the expenses_key to encrypt data in the total_value column.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-9

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
To encrypt a column when creating a table, use the following syntax:
create table table-name (column-name data-type encrypt [[with] key-name]

Setting a decrypt default value for a column
When encrypting a column, the database or table owner can specify a decrypt default value
that displays when a user who does not have decrypt privileges for that column tries to
access the column’s data. If a decrypt default value is not specified, the user will get an
error message. A decrypt default value also allows existing reports and applications to run
without raising permission exceptions when columns are encrypted.

To specify a decrypt default value, use the following syntax:
create table table-name (column-name data-type encrypt [[with] key_name]
[decrypt default value], …)

A decrypt default can be changed or dropped from a column. Note that a decrypt default is
not automatically dropped when a column is decrypted.

alter table table-name alter [column] column-name [no] decrypt default
value

Encrypting blob columns
Blob columns can be encrypted like any other column data type. However, due to their
large size, blob encryption can be time-consuming. Typically, a large blob is created before
its creator knows which column it will belong to. If the final column destination is
encrypted, then the unencrypted blob will need to be re-read and encrypted with the
column’s encryption key.

To avoid blob re-encryption overhead, two blob parameter items have been added, and can
be passed to isc_blob_create2() to indicate the column to which the blob will be
assigned. The items, isc_bpb_target_relation_name and isc_bpb_target_field_name,
denote the column to which the blob will be assigned by the developer. These items are
passed via the blob parameter block in the same way that blob filter and character set blob
parameter items are sent. The blob parameter byte string includes the following:

• The blob parameter;

• One “length” byte; and

• “Length” bytes for the target name.

isc_blob_gen_bpb() and isc_blob_gen_bpb2() can generate these new blob parameter
items if the target blob descriptor argument has both blob_desc_relation_name and
blob_desc_field_name string members.

If a blob ID is assigned between two columns with different encryptions, the blob assigned
to the destination column is automatically translated between the two encryptions. This
means that the source blob is decrypted internally to plaintext and the destination blob is
encrypted with the new ciphertext.
13-10 O p e r a t i o n s G u i d e

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
The workaround described here also pertains to special cases in which one of the blobs is
not encrypted. If an encrypted blob ID is assigned to a blob column with no encryption, the
assignment is allowed but a warning error is returned.

Decrypting data
Only the database owner can perform database-level decryption. Decrypting a database
causes all pages to be decrypted and rewritten in plaintext.

To decrypt a database, use the following syntax:
alter database decrypt

An isc_database_info()call can be made to determine if database-level encryption is
enabled, by passing an isc_info_db_encrypted info item. A value of 1 is returned if the
database is encrypted and a value of 0 if not. GSTAT indicates the database is encrypted in
the Variable header data section of the header page display and isql does likewise with the
Show Database command.

Decrypting columns
A column can be re-encrypted with another key or decrypted. The table needs exclusive
access before this operation can proceed. All rows in the table are re-encrypted and the
former column data, including blobs, are zeroed from the database so that it is no longer
visible. If more than a single column in a table is altered for a change in encryption, you
should disable auto-commit of DDL statements. This allows the multiple columns to be re-
encrypted in a single pass over the table, which can save time on very large tables.

To decrypt a column, use the following syntax:
alter table table-name alter [column] column-name decrypt

Granting decrypt permission
After encrypting a column, the database owner or the individual table owner, grants
decrypt permission to users who need to access the values in an encrypted column.
Generally speaking, these are end-users who already have, or who need to have, select,
insert, update, and/or delete privileges on the same data. You can grant decrypt permission
to individual users and to groups of users by role, view, trigger, and stored procedure.

To grant decrypt privileges to an individual user, use the following syntax:
grant decrypt[(column-name, …)] on table-name to user-name

Note If the database owner or the individual table owner has explicitly granted execute and select
privileges to users on stored procedures and views, respectively, a chain of ownership
implicitly grants decrypt privilege on any referenced encrypted columns in those schema
elements owned by that schema owner.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-11

U s i n g i s q l t o e n a b l e a n d i m p l e m e n t e n c r y p t i o n
Permissions for roles and views
When a number of users need to access the same encrypted columns, you can save time
and effort by assigning the users to the same role, and granting decrypt permission to the
role rather than to each individual user.

For example, suppose you have a table called “Employee” which contains columns that are
used by people in the same department. You could create a role called “HR_Role,” assign
individual HR employees to the role, and then grant decrypt privileges to the role. The code
sample that follows shows you how to create users, assign them to a role, then provide
decrypt privileges to the role:

CREATE USER J_Smith PASSWORD 'Smith'
CREATE USER J_Doe PASSWORD 'Doe'
CREATE USER B_Jones PASSWORD 'Jones'
CREATE ROLE HR_Role
GRANT HR_Role to J_Smith, J_Doe, B_Jones
GRANT DECRYPT on Column_A to HR_Role
GRANT DECRYPT on Column_B to HR_Role

After issuing these commands, all the members in the HR_role can use their role affiliation
to decrypt columns A and B.

Similarly, you can give users access to a view that has decrypt access to encrypted
columns. First you create the view:

CREATE VIEW Payroll_View as SELECT
Column_C, Column_D, Column_E, Column_I FROM Payroll

Payroll_View now contains data from columns C, D, E, and I. Next, you can grant decrypt
access to encrypted columns on Payroll to view Payroll_View:

GRANT DECRYPT (Column_C, Column_D, Column_E, Column I) ON Payroll TO VIEW
Payroll_View

Next, you can grant access to Payroll_View to individual users:
GRANT SELECT ON Payroll_View TO D_Gibson

or to all the users assigned to a role (after creating the role), as shown below:
GRANT SELECT ON Payroll_View TO Payroll_Role

Revoking encrypt and decrypt permissions
There are two revoke commands associated with the InterBase encryption feature:

• Revoke ENCRYPT ON ENCRYPTION is used to revoke encryption permission. Only the
SYSDSO can revoke encryption permission.

• Revoke DECRYPT can be used by the database or table owner to revoke decrypt
permission from a user, role or view.

To revoke encryption permission, the SYSDSO uses the following syntax:
13-12 O p e r a t i o n s G u i d e

U s i n g I B C o n s o l e t o s e t u p a n d p e r f o r m e n c r y p t i o n
revoke ENCRYPT ON ENCRYPTION key-name from user-name;

To revoke decrypt permission, the database or table owner uses the following syntax:
revoke decrypt[(column-name, …)] on table-name from {user-name | role-
name | public}

Using IBConsole to set up and perform encryption
This section explains how to enable EUA and perform encryption using IBConsole. Before
enabling and performing encryption, please read “About InterBase encryption” on
page 13-1.

For more information about using IBConsole, see the InterBase Operations Guide.

Enabling EUA and performing encryption when
creating a new database
To enable EUA and perform encryption when creating a new database, do the following:

1 Login to IBConsole as a SYSDBA or as a database owner.

2 In the left pane of IBConsole, right-click on Databases and select Create Database
from the context menu.

3 On Create Database, use the browse button in the Files field to specify a name and
location for the database file.

4 Change the value in the Embedded User Authentication field to Yes. This makes the
Use Encryption field visible.

5 In the Use Encryption field, change the value to Yes, as shown in Figure 13.1.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-13

U s i n g I B C o n s o l e t o s e t u p a n d p e r f o r m e n c r y p t i o n
Figure 13.1Enabling EUA and encryption

6 Type in an Alias, and click OK to create the database. This both enables EUA and
performs database-level encryption. Notice that the Encrypt Database appears action
at the bottom of the right pane of IBConsole.

For more information about Embedded User Authentication, see the InterBase
Operations Guide.

Enabling EUA and performing encryption on an
existing database

Note The encryption feature requires ODS 13 and is not available on older ODS databases.
Therefore, a backup and restore to ODS 13 is required for pre-existing databases to use
InterBase encryption. For information about performing backups and restores, see the
InterBase Operations Guide.

To enable EUA and perform encryption on an existing database, take the following steps

1 In the left pane, right-click on the database name and select Properties from the context
menu.

2 On the Properties dialog, click on the General tab.

3 On the General tab, in the Embedded User Authentication field, change the value to
Enabled. The EUA Active field appears. You do not have to change the value in this
field.
13-14 O p e r a t i o n s G u i d e

U s i n g I B C o n s o l e t o s e t u p a n d p e r f o r m e n c r y p t i o n
4 Click OK to enable EUA. This action also enables encryption: notice that the Encrypt
Database action appears at the bottom of the right pane of IBConsole.

For more information about Embedded User Authentication, see the InterBase
Operations Guide.

Performing database-level encryption using
IBConsole
After creating a SYSDSO user, you can use the Database Encryption Wizard to perform
database-level encryption. The Encryption Wizard helps the SYSDSO to create a System
Encryption Password and a encryption key.

To encrypt a database, take the following steps:

1 Login to IBConsole as the SYSDSO.

2 In the left pane, right-click on the database name, and select Encrypt Database from
the context menu. This generates the Encryption Wizard, shown in Figure 13.2.

Figure 13.2Encryption wizard, initial page

3 After reading the page, click Next.

4 On Encryption Wizard, Step 1, shown in Figure 13.3, type the SYSDSO Password.
Then click Next.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-15

U s i n g I B C o n s o l e t o s e t u p a n d p e r f o r m e n c r y p t i o n
Figure 13.3Step 1: Enter the SYSDSO password

5 On Encryption Wizard, Step 2, shown in Figure 13.4, create and confirm a System
Encryption Password. Then click Next.

Figure 13.4Step 2: Create the SEP

6 On Encryption Wizard, Step 3, shown in Figure 13.5, type a name for the Encryption
Key in the Encryption Name field. Change the fields in the Options section as desired.
For a description of each option, see Table 13.2 earlier in this chapter.

For more information about
External, see “Using the
external option when creating a
SEP” on page 13-6.
13-16 O p e r a t i o n s G u i d e

U s i n g I B C o n s o l e t o s e t u p a n d p e r f o r m e n c r y p t i o n
Figure 13.5Step 3: Create an encryption key

7 Click OK to complete the database-level encryption process. You’ll now see a dialog
confirming that the database is encrypted.

Decrypting the database
To decrypt the database using IBConsole:

In the left pane, right click on the database name, then select Decrypt Database. This
decrypts the database.

Database-level decryption causes all pages to be decrypted and rewritten in plaintext.

Performing column-level encryption using
IBConsole
After enabling EUA, login as SYSDSO and take the following steps in IBConsole:

1 Right-click on the database that contains the columns you want to encrypt, and choose
Set SEP.

2 On Set System Encryption Password, enter and confirm a password, then choose OK.

3 Select the Encryptions node, then right-click in the right pane and select Create.

4 On Encryption Editor, complete the fields as desired and choose OK.

5 Disconnect from the database as SYSDSO, and reconnect as SYSDBA.

6 Select the Tables node, right-click the table that contains the columns you want to
encrypt, and select Properties.

7 Click on the “lightning bolt” icon.

8 In the Table Editor, select the name of the column to encrypt, and choose Edit Field.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-17

E n c r y p t i n g b a c k u p f i l e s
9 On Field Property Editor, select the Col_Level_Key, and click OK.

10Choose OK again on the Table Editor. The column you selected is encrypted using the
encryption level you specified.

Encrypting backup files
Because backup files are often sent off-site for disaster recovery or long-term archival
purposes, it is important that encrypted databases have their backup files encrypted as well.

A database encrypted at the database or column level must be backed up as encrypted.
There is no override or “backdoor” to back up an encrypted database in unencrypted form.
To allow a regular, unencrypted database backup, the user would have to manually make a
file copy of the database and alter the database copy to decrypt all pages and columns and
drop all encryptions.The GBAK utility provides three additional switches to facilitate
encrypt and decrypt operations on database backups.

The GBAK utility uses the -encrypt and -decrypt switches to provide the information
required to encrypt and decrypt a database backup. The -sep switch is used to pass the
system encryption password of the database that is being backed up and restored. If the -
sep switch is not provided, InterBase automatically provides the value associated with the
ISC_SYSTEM_ENCRYPT_PASSWORD environment variable (when the variable has been
defined).

Important You must encrypt the backup files using the same encryption level (i.e. weak or strong) you
used to encrypt the database or its columns. When using strong encryption to backup or
restore a database, you must use the -se service manager switch. This enables the server
to validate the strong encryption license and reproduce the backup encryption files at a
licensed site. You do not need to use the -se service manager switch when you use weak
encryption to protect the backup files.

Avoiding embedded spaces in GBAK encrypt/
decrypt and sep statements
When using the the -sep (for creating the System Encryption Password), -encrypt, -
decrypt arguments, it is recommended that you avoid using delimited identifiers and
password arguments with embedded spaces in the argument, if possible.

The -sep, -encrypt, -decrypt arguments require quotations if they contain embedded
spaces. If quotations are required, the quotation nesting level depends on whether GBAK is
invoked with the -service switch. If the -service switch is not given then one level of
quotation is satisfactory. If the -service switch is given then two levels of quotation are
required.
13-18 O p e r a t i o n s G u i d e

E n c r y p t i n g b a c k u p f i l e s
Encrypting a database backup file
The -encrypt switch requires the name of the encryption defined in the database that is
being backed up.

The following example shows how to use the -encrypt and -sep switches to encrypt a
sample database backup file:

gbak –b employee.ib employee.ibak –sep "'sep password'" –encrypt backup_key

Decrypting a database backup file during a restore
The -decrypt switch is used during the database restore process to provide the password of
the encryption that was used to originally backup the database.

The following example shows how to use the -decrypt and -sep switches to decrypt a
sample database file during a database restore:

gbak –r employee.ibak employee.ib –sep "'sep password'" –decrypt
backup_password

For more information about using the GBAK -b and -r options to perform database backups
and restores, see the InterBase Operations Guide.

Additional guidelines for encrypting and decrypting
database backup files
When preparing to encrypt or decrypt database backup files, keep the following
information in mind:

• The encryption chosen for a database backup must be custom password-protected and at
least as strong, in terms of encryption key size, as the strongest encryption defined in the
database.

• An encrypted database backup file will be almost the same size as an unencrypted
database backup. However, the time to encrypt and decrypt a backup file may be longer
than a backup which is not encrypted.

• GBAK retrieves all encrypted column data in plaintext form, so Over-the-Wire (OTW)
encryption should be used if backing up and restoring over the network. Alternatively,
the -se service manager switch can be used to backup and restore on the server to avoid
network transmission. For more information about OTW, see the InterBase Operations
Guide.

• It is the user’s responsibility to remember the encryption password and system
encryption password necessary to decrypt a set of database backup files as there is no
means for InterBase to do so automatically.
C h a p t e r 1 3 E n c r y p t i n g Y o u r D a t a 13-19

E n c r y p t i n g b a c k u p f i l e s
13-20 O p e r a t i o n s G u i d e

C h a p t e r

Chapter 14Character Sets and
Collation Orders

This chapter discusses the following topics:

• Available character sets and their corresponding collation orders

• Character set storage requirements

• Specifying default character set for an entire database

• Specifying an alternative character set for a particular column in a table

• Specifying a client application character set that the server should use when translating
data between itself and the client

• Specifying the collation order for a column

• Specifying the collation order for a value in a comparison operation

• Specifying the collation order in an ORDER BY clause

• Specifying the collation order in a GROUP BY clause

About character sets and collation orders
CHAR, VARCHAR, and text BLOB columns in InterBase can use many different character
sets. A character set defines the symbols that can be entered as text in a column, and its
also defines the maximum number of bytes of storage necessary to represent each symbol.
In some character sets, such as ISO8859_1, each symbol requires only a single byte of
storage. In others, such as UNICODE_FSS, each symbol requires from 1 to 3 bytes of
storage.
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-1

C h a r a c t e r s e t s t o r a g e r e q u i r e m e n t s
Each character set also has an implicit collation order that specifies how its symbols are
sorted and ordered. Some character sets also support alternative collation orders. In all
cases, choice of character set limits choice of collation orders. InterBase supports four
different types of collation order: Windows, dBASE, Paradox, and ISO. The ISO collation
sequence is recommended in preference to the other three.

Character set storage requirements
It is important to know the storage requirements of a particular character set because
InterBase restricts the maximum amount of storage in each field of a CHAR column to
32,767 bytes. VARCHAR columns are restricted to 32,765 bytes.

For character sets that require only a single byte of storage per character, the maximum
number of characters that can be stored in a single field corresponds to the number of
bytes. For character sets that require multiple bytes per character, determine the maximum
number of symbols that can be safely stored in a field by dividing 32,767 or 32,765 by the
number of bytes required for each character.

For example, for a CHAR column defined to use the UNICODE_FSS character set, the
maximum number of characters that can be specified is 10,922 (32,767/3).

CHAR (10922) CHARACTER SET UNICODE_FSS;

InterBase character sets
The following table lists each character set that can be used in InterBase. For each
character set, the minimum and maximum number of bytes used to store each symbol is
listed, and all collation orders supported for that character set are also listed. The first
collation order for a given character set is that set’s implicit collation, the one that is used if
no COLLATE clause specifies an alternative order. The implicit collation order cannot be
specified in the COLLATE clause.

Collation names of the form WINxxxx are defined by Microsoft, those of the form DB_xxx
are dBASE, and those that start with PDOX or PXW are Paradox. Collation names of the
form AA-BB are ISO collations: AA is the language, BB is the country.
14-2 D a t a D e f i n i t i o n G u i d e

I n t e r B a s e c h a r a c t e r s e t s
Table 14.1 Character sets and collation orders

Character set

Charact
er
set ID

Maximum
character
size

Minimum
character
size Collation orders

ASCII 2 1 byte 1 byte ASCII

BIG_5 56 2 bytes 1 byte BIG_5

CYRL 50 1 byte 1 byte CYRL
DB_RUS
PDOX_CYRL

DOS437 10 1 byte 1 byte DOS437
DB_DEU437
DB_ESP437
DB_FIN437
DB_FRA437
DB_ITA437
DB_NLD437
DB_SVE437
DB_UK437
DB_US437
PDOX_ASCII
PDOX_INTL
PDOX_SWEDFIN

DOS850 11 1 byte 1 byte DOS850
DB_DEU850
DB_ESP850
DB_FRA850
DB_FRC850
DB_ITA850
DB_NLD850
DB_PTB850
DB_SVE850
DB_UK850
DB_US850

DOS852 45 1 byte 1 byte DOS852
DB_CSY
DB_PLK
DB_SLO
PDOX_CSY
PDOX_HUN
PDOX_PLK
PDOX_SLO

DOS857 46 1 byte 1 byte DOS857
DB_TRK

DOS860 13 1 byte 1 byte DOS860
DB_PTG860
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-3

I n t e r B a s e c h a r a c t e r s e t s
DOS861 47 1 byte 1 byte DOS861
PDOX_ISL

DOS863 14 1 byte 1 byte DOS863
DB_FRC863

DOS865 12 1 byte 1 byte DOS865
DB_DAN865
DB_NOR865
PDOX_NORDAN4

EUCJ_0208 6 2 bytes 1 byte EUJC_0208

GB_2312 57 2 bytes 1 byte GB_2312

ISO8859_1 21 1 byte 1 byte ISO8859_1
CC_PTBRLAT1
DA_DA
DE_DE
DU_NL
EN_UK
EN_US
ES_ES
FI_FI
FR_CA
FR_FR
IS_IS
IT_IT
NO_NO
PT_PT
SV_SV

ISO8859_2 22 1 byte 1 byte ISO8859_2
CS_CZ
PL_PL

Table 14.1 Character sets and collation orders (continued)

Character set

Charact
er
set ID

Maximum
character
size

Minimum
character
size Collation orders
14-4 D a t a D e f i n i t i o n G u i d e

I n t e r B a s e c h a r a c t e r s e t s
ISO8859_15 39 1 byte 1 byte ISO8859_15
CC_PTBRLAT15
DA_DA9
DE_DE9
DU_NL9
EN_UK9
EN_US9
ES_ES9
FI_FI9
FR_CA9
FR_FR9
IS_IS9
IT_IT9
NO_NO9
PT_PT9
SV_SV9

KOI8R 58 1 byte 1 byte KOI8R
RU_RU

KSC_5601 44 2 bytes 1 byte KSC_5601
KSC_DICTIONARY

NEXT 19 1 byte 1 byte NEXT
NXT_DEU
NXT_FRA
NXT_ITA
NXT_US

NONE 0 1 byte 1 byte NONE

OCTETS 1 1 byte 1 byte OCTETS

SJIS_0208 5 2 bytes 1 byte SJIS_0208

UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS

UNICODE_BE
UCS2BE

8 2 bytes 2 bytes N/A at this time

UNICODE_LE
UCS2LE

64 2 byte 2 bytes N/A

UTF_8 59 1 byte 4 bytes N/A at this time.

Table 14.1 Character sets and collation orders (continued)

Character set

Charact
er
set ID

Maximum
character
size

Minimum
character
size Collation orders
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-5

C h a r a c t e r s e t s f o r D O S
Character sets for DOS
The following character sets correspond to MS-DOS code pages, and should be used to
specify character sets for InterBase databases that are accessed by Paradox for DOS and
dBASE for DOS:

WIN1250 51 1 byte 1 byte WIN1250
PXW_CSY
PXW_HUNDC
PXW_PLK
PXW_SLO

WIN1251 52 1 byte 1 byte WIN1251
PXW_CYRL

WIN1252 53 1 byte 1 byte WIN1252
CC_PRBRWIN
PXW_INTL
PXW_INTL850
PXW_NORDAN4
PXW_SPAN
PXW_SWEDFIN

WIN1253 54 1 byte 1 byte WIN1253
PXW_GREEK

WIN1254 55 1 byte 1 byte WIN1254
PXW_TURK

Table 14.1 Character sets and collation orders (continued)

Character set

Charact
er
set ID

Maximum
character
size

Minimum
character
size Collation orders

Table 14.2 Character sets corresponding to DOS code pages

Character set DOS code page

DOS437 437

DOS850 850

DOS852 852

DOS857 857

DOS860 860
14-6 D a t a D e f i n i t i o n G u i d e

C h a r a c t e r s e t s f o r D O S
The names of collation orders for these character sets that are specific to Paradox begin
“PDOX”. For example, the DOS865 character set for DOS code page 865 supports a
Paradox collation order for Norwegian and Danish called “PDOX_NORDAN4”.

The names of collation orders for these character sets that are specific to dBASE begin
“DB”. For example, the DOS437 character set for DOS code page 437 supports a dBASE
collation order for Spanish called “DB_ESP437”.

For more information about DOS code pages, and Paradox and dBASE collation orders,
see the appropriate Paradox and dBASE documentation and driver books.

Character sets for Microsoft Windows
There are five character sets that support Windows client applications, such as Paradox for
Windows. These character sets are: WIN1250, WIN1251, WIN1252, WIN1253, and
WIN1254.

The names of collation orders for these character sets that are specific to Paradox for
Windows begin “PXW”. For example, the WIN1250 character set supports a Paradox for
Windows collation order for Norwegian and Danish called “PXW_NORDAN4”.

For more information about Windows character sets and Paradox for Windows collation
orders, see the appropriate Paradox for Windows documentation and driver books.

UNICODE_BE and UNICODE_LE Character Sets
InterBase now supports 16-bit UNICODE_BE and UNICODE_LE as server character sets.
These character sets cannot be used as client character sets. If your client needs full
UNICODE character support, please use UTF8 instead of UNICODE_LE and
UNICODE_BE for the client character set (a.k.a LC_CSET). A client can use the UTF8 (or
other native) client character set to connect with a UNICODE database.

A database schema is declared to use the new character set in the CREATE DATABASE
statement, as follows:

CREATE DATABASE <filespec> <...> DEFAULT CHARACTER SET UNICODE;

Note that InterBase uses “big endian” ordering by default.

The attributes for the UNICODE_BE and UNICODE_LE character sets are shown in Table
13.1.

DOS861 861

DOS863 863

DOS865 865

Table 14.2 Character sets corresponding to DOS code pages

Character set DOS code page
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-7

S p e c i f y i n g d e f a u l t s
Note InterBase 2008 does not support UNICODE collations in this release. The default collation
is binary sort order for UNICODE.

Support for the UTF-8 Character Set
The UTF-8 character set is an alternative coded representation form for all of the characters
of the ISO/IEC 10646 standard. To use the UTF-8 character set, you would declare a
database schema to use the character set, in the CREATE DATABASE SQL statement, as
shown below:

CREATE DATABASE <filespec> <...> DEFAULT CHARACTER SET UTF8;

Additionally, you may use the alias UTF_8.

The attributes for the UTF-8 character set are shown in Table 13.1.

Additional character sets and collations
Support for additional character sets and collation orders is constantly being added to
InterBase. To see if additional character sets and collations are available for a newly
created database, connect to the database with isql, then use the following set of queries to
generate a list of available character sets and collations:

SELECT RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID
FROM RDB$CHARACTER_SETS
ORDER BY RDB$CHARACTER_SET_NAME;

SELECT RDB$COLLATION_NAME, RDB$CHARACTER_SET_ID
FROM RDB$COLLATIONS
ORDER BY RDB$COLLATION_NAME;

Specifying defaults
This section describes the mechanics of specifying character sets for databases, table
columns, and client connections. In addition, it describes how to specify collation orders
for columns, comparisons, ORDER BY clauses, and GROUP BY clauses.

Specifying a default character set for a database
A database’s default character set designation specifies the character set the server uses to
tag CHAR, VARCHAR, and text BLOB columns in the database when no other character set
information is provided. When data is stored in such columns without additional character
set information, the server uses the tag to determine how to store and transliterate that data.
A default character set should always be specified for a database when it is created with
CREATE DATABASE.
14-8 D a t a D e f i n i t i o n G u i d e

S p e c i f y i n g d e f a u l t s
To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE
DATABASE. For example, the following statement creates a database that uses the
ISO8859_1 character set:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;

Important If you do not specify a character set, the character set defaults to NONE. Using character set
NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column
defined with NONE, but you cannot later move that data into another column that has been
defined with a different character set. In this case, no transliteration is performed between
the source and destination character sets, and errors may occur during assignment.

For the complete syntax of CREATE DATABASE, see Language Reference.

Specifying a character set for a column in a table
Character sets for individual columns in a table can be specified as part of the column’s
CHAR or VARCHAR data type definition. When a character set is defined at the column
level, it overrides the default character set declared for the database. For example, the
following isql statements create a database with a default character set of ISO8859_1, then
create a table where two column definitions include a different character set specification:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;

CREATE TABLE RUS_NAME(
LNAME VARCHAR(30) NOT NULL CHARACTER SET CYRL,
FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,);

For the complete syntax of CREATE TABLE, see Language Reference.

Specifying a character set for a client connection
When a client application, such as isql, connects to a database, it may have its own
character set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client application
specifies its character set requirement using the SET NAMES statement before it connects to
the database.

SET NAMES specifies the character set the server should use when translating data from the
database to the client application. Similarly, when the client sends data to the database, the
server translates the data from the client’s character set to the database’s default character
set (or the character set for an individual column if it differs from the database’s default
character set).

For example, the following isql command specifies that isql is using the DOS437 character
set. The next command connects to the europe database created above, in “Specifying a
Character Set for a Column in a Table”:

SET NAMES DOS437;

CONNECT 'europe.ib' USER 'JAMES' PASSWORD 'U4EEAH';
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-9

S p e c i f y i n g c o l l a t i o n o r d e r s
For the complete syntax of SET NAMES, see Language Reference. For the complete syntax
of CONNECT, see the Language Reference.

Specifying collation orders
This section describes how to use the COLLATE clause to specify collation order in
columns, comparison operations, ORDER BY clauses, and GROUP BY clauses.

Specifying collation order for a column
Use the COLLATE clause with either CREATE TABLE or ALTER TABLE to specify the
collation order for a CHAR or VARCHAR column. The COLLATE clause is especially useful
for character sets such as ISO8859_1 or DOS437 that support many different collation
orders.

For example, the following isql ALTER TABLE statement adds a new column to a table, and
specifies both a character set and a collation order:

ALTER TABLE 'FR_CA_EMP'
ADD ADDRESS VARCHAR(40) CHARACTER SET ISO8859_1

NOT NULL
COLLATE FR_CA;

For the complete syntax of ALTER TABLE, see Language Reference.

Specifying collation order in a comparison operation
When CHAR or VARCHAR values are compared in a WHERE clause, it is necessary to
specify a collation order for the comparisons if the values being compared use different
collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE
clause after the value. For example, in the following WHERE clause fragment from an
embedded application, the value to the left of the comparison operator is forced to be
compared using a specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For the complete syntax of the WHERE clause, see Language Reference.

Specifying collation order in an ORDER BY clause
When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary
to specify a collation order for the ordering, especially if columns used for ordering use
different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause, include
a COLLATE clause after the column name. For example, in the following ORDER BY clause,
the collation order for two columns is specified:
14-10 D a t a D e f i n i t i o n G u i d e

S p e c i f y i n g c o l l a t i o n o r d e r s
. . .
ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see the Language Reference.

Specifying collation order in a GROUP BY clause
When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary
to specify a collation order for the grouping, especially if columns used for grouping use
different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause, include
a COLLATE clause after the column name. For example, in the following GROUP BY clause,
the collation order for two columns is specified:

. . .
GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see Language Reference.
C h a p t e r 1 4 C h a r a c t e r S e t s a n d C o l l a t i o n O r d e r s 14-11

S p e c i f y i n g c o l l a t i o n o r d e r s
14-12 D a t a D e f i n i t i o n G u i d e

Index

A
access privileges See security
actions See events
activating triggers See firing triggers
adding

See also inserting
columns 6-19 to 6-20
integrity constraints 6-20
secondary files 3-3, 3-7

Advanced Encryption Standard (AES)
about 13-2

AES
about 13-2

aggregate functions 9-23
alerter (events) 9-13, 10-13
ALTER DATABASE 3-7
ALTER DOMAIN 5-5 to 5-6
ALTER EXCEPTION 9-26
ALTER INDEX 7-5 to 7-6
ALTER PROCEDURE 9-17
ALTER TABLE 1-2, 6-17 to 6-23

arguments 6-23
ALTER TRIGGER 10-10 to 10-11

syntax 10-10
altering

metadata 1-2
stored procedures 9-2, 9-17
triggers 10-2, 10-10 to 10-11
views 8-5

applications
See also DSQL applications
calling stored procedures 9-3, 9-20
character sets 14-8 to 14-10
collation orders 14-10 to 14-11
preprocessing See gpre
testing 10-7

arithmetic functions See aggregate functions
array elements 4-22
array slices 4-22
arrays 4-2, 4-22 to 4-24

See also error status array
defining 4-22
multi-dimensional 4-23
stored procedures and 9-8, 9-24 to 9-25
subscripts 4-23 to 4-24

ASCENDING keyword 7-3
assigning values to variables 9-11, 9-16
assignment statements 9-11
AUTO mode 3-11 to 3-12

B
backup files

encrypting 13-18
BEGIN keyword 9-9
BLOB columns 4-17
Blob data, storing 4-17
BLOB datatype 4-17 to 4-19, 14-1

defining 4-17 to 4-20
stored procedures and 9-8

BLOB filters 4-20
BLOB segments 4-17 to 4-18
BLOB subtypes 4-19
block (statements) 9-9, 10-8
buffers, database cache 2-16

C
cache buffers 2-16
calling stored procedures 9-3, 9-20
cascading integrity constraints 2-10, 2-11, 6-3, 6-9, 6-13
casting datatypes 6-4
changes, logging 10-2
CHAR datatype 4-12, 14-1

description 4-2
CHAR VARYING keyword 4-3
CHARACTER datatype 4-12, 4-14
CHARACTER keyword 4-2
CHARACTER SET 4-13 to 4-14, 6-4
character sets 14-1 to 14-11

additional 14-8
default 14-8
domains 5-5
retrieving 14-8
specifying 3-3, 14-8 to 14-10
table of 14-2

character string datatypes 4-12 to 4-16
CHARACTER VARYING datatype 4-12
CHARACTER VARYING keyword 4-3
CHECK constraints 2-10

defining 6-12 to 6-13
domains 5-4 to 5-5
triggers and 10-12

circular references 6-10 to 6-11
code

blocks 9-9, 10-8
comments in 9-14

code pages (MS-DOS) 14-6
COLLATE clause 5-5, 6-4 to 6-5
collation orders 4-14, 14-2

retrieving 14-8
specifying 14-10 to 14-11
I-1

column names
length 6-2
modifying 6-22
specifying 6-2
views 8-3

column-level encryption
about 13-2
commands used 13-9
decrypting columns 13-11
of blob columns 13-10

columns
adding 6-19 to 6-20
attributes 6-2 to 6-3
BLOB 4-17
circular references 6-10 to 6-11
computed 6-5 to 6-6
datatypes 6-3
default values 6-6
defining 2-9, 5-1, 6-2 to 6-13
domain-based 6-5
dropping 6-19, 6-20 to 6-21
encrypting 13-2
inheritable characteristics 5-1
local 5-1, 5-2, 5-3
NULL status 2-10
NULL values 6-7
sorting 6-4
specifying character sets 14-9
specifying datatypes 6-3 to 6-4

comments 9-14
comparing values 10-8
composite keys 2-14
computed columns 6-5 to 6-6
conditional shadows 3-12
conditions, testing 9-12, 9-13
constraints

adding 6-20
declaring 6-11 to 6-12
defining 2-10 to 2-12, 6-7 to 6-13
dropping 6-21
triggers and 10-12

context variables 10-8
See also triggers

converting datatypes 4-24
CREATE DATABASE 1-2, 3-1, 3-2 to 3-6
CREATE DOMAIN 5-1 to 5-5, 6-5
CREATE ENCRYPTION command

about 13-6
using 13-6

CREATE EXCEPTION 9-26
CREATE GENERATOR 10-9, 11-1 to 11-2
CREATE INDEX 7-2 to 7-5
CREATE PROCEDURE 9-4 to 9-17

RETURNS clause 9-8

syntax 9-4 to 9-5
CREATE SHADOW 3-1, 3-10 to 3-13
CREATE TABLE 1-2, 6-2 to 6-13

EXTERNAL FILE option 6-13 to 6-17
CREATE TRIGGER 10-2 to 10-9

POSITION clause 10-7
syntax 10-3

CREATE VIEW 8-3 to 8-7
creating metadata 1-2

D
data

dropping 6-24
exporting 6-16 to 6-17
importing 6-15 to 6-16
protecting See security
retrieving 9-11, 9-20

multiple rows 9-3, 9-12
saving 6-18
sorting 14-2
storing 14-1
updating 10-8

data definition 1-1
data definition files 1-4, 3-2

stored procedures and 9-2 to 9-3
triggers and 10-2

Data Encryption Standard (DES)
about 13-2

data entry, automating 10-1
data manipulation statements 1-1

stored procedures and 9-5
triggers and 10-4

data model 2-2, 2-6
database cache buffers 2-16
database objects 2-2
Database Security Owner (SYSDSO)

about 13-3
creating 13-3

database-level encryption
about 13-1
command used 13-9
decrypting 13-11

databases
designing 2-1 to 2-17
dropping 3-8
encrypting 13-1
file naming conventions 3-2
multifile 3-4 to 3-5
naming 3-2
normalization 2-1, 2-12 to 2-15
page size

changing 3-3, 3-5
default 3-5
I-2 D a t a D e f i n i t i o n G u i d e

overriding 3-5
read-only 3-6
shadowing 3-8 to 3-13
single-file 3-3
structure 1-1, 2-2

datatypes 4-1 to 4-25
casting 6-4
converting 4-24
domains 5-2 to 5-3
DSQL applications 4-8
floating point 4-10
precision 4-8
specifying 4-3 to 4-4
specifying for columns 6-3 to 6-4
stored procedures and 9-8, 9-11
XSQLVAR field 4-8

DATE datatype 4-11, 4-24
description 4-2

debugging stored procedures 9-14
DECIMAL datatype 4-3, 4-5 to 4-8, 4-9
declaring

input parameters 9-8, 9-10
integrity constraints 6-11 to 6-12
local variables 9-10
output parameters 9-8, 9-10
tables 6-1

decrypting
a database, how-to 13-11
columns, how-to 13-11

default character set 14-8
default column values 6-6
defining

arrays 4-22
columns 2-9, 5-1, 6-2 to 6-13
integrity constraints 2-10 to 2-12, 6-7 to 6-13

DELETE
and context variables 10-6
and generators 11-2
in procedure and trigger language 10-4
triggers and 10-1

deleting See dropping
delimited identifiers 2-17
DES

about 13-2
DESCENDING keyword 7-3
designing

databases 2-1 to 2-17
tables 2-6

domain-based columns 6-5
domains 2-9, 5-1 to 5-7

altering 5-5 to 5-6
attributes 5-2
creating 5-1 to 5-5
datatypes 5-2 to 5-3

dropping 5-6
NULL values 5-3
overriding defaults 5-3
specifying defaults 5-3

DOUBLE PRECISION datatype 4-3, 4-10 to 4-11
DROP DATABASE 3-1, 3-8
DROP DOMAIN 5-6
DROP ENCRYPTION command

about 13-8
DROP EXCEPTION 9-26
DROP INDEX 7-7
DROP PROCEDURE 9-18
DROP SHADOW 3-1, 3-13
DROP TABLE 1-2, 6-24
DROP TRIGGER 10-11 to 10-12
dropping

columns 6-19, 6-20 to 6-21
constraints 6-21
data 6-24
databases 3-8
domains 5-6
indexes 7-6, 7-7
metadata 1-2
shadows 3-13
tables 6-24
views 8-7

DSQL
stored procedures and 9-3

DSQL applications
datatypes 4-8

duplicating triggers 10-7
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
Embedded User Authentication (EUA)

enabling for encryption 13-4
enabling EUA for encryption 13-4
ENCRYPT ON ENCRYPTION command

about 13-9
encrypting columns

about 13-2
encrypting databases

about 13-1
encryption

about 13-1
commands used 13-9
creating encryption keys 13-6

options CREATE ENCRYPTION command
options 13-7

database owner, about 13-3
dropping encryption keys 13-8
embedded user authentication (EUA) 13-4
I n d e x I-3

encrypting backup files 13-18
granting decrypt permissions 13-11
of blob columns 13-10
overview of tasks 13-4
requirements 13-4
revoking permissions 13-12
setting the System Encryption Password (SEP) 13-5
SYSDSO, about 13-3
table owner

about 13-3
tasks 13-4
users 13-3
using IBConsole to setup and perform

encryption 13-13
using isql to enable and perform encryption 13-5

encryption keys
about 13-6
creating 13-6
dropping 13-8
granting permission to use 13-9

END 9-15 to 9-17
END keyword 9-9
entities 2-2, 2-4, 2-6

attributes 2-4
error codes 9-29
error messages 9-26, 10-15

stored procedures 9-7
triggers 10-6

error-handling routines
SQL 9-28
stored procedures 9-27 to 9-32
triggers 10-15 to 10-16

errors 9-29
stored procedures 9-7, 9-16, 9-17, 9-29
syntax 9-7, 10-6
triggers 10-6, 10-7, 10-13, 10-16
user-defined See exceptions

events 9-13
See also triggers
posting 10-13

exact numerics 4-5
EXCEPTION 9-27
exceptions 9-26 to 9-27, 10-1

behavior 10-15
dropping 9-26
handling 9-28
in triggers 10-15
raising 10-15
triggers and 10-15

executable procedures 9-3, 9-20
terminating 9-15

EXECUTE PROCEDURE 9-11, 9-20
EXIT 9-15 to 9-17
exporting data 6-16 to 6-17

expression-based columns See computed columns
EXTERNAL FILE option 6-13 to 6-17

restrictions 6-14 to 6-15
external files 6-13

See also external tables
EXTERNAL_FILE_DIRECTORY 6-14
location 6-14
removing 6-24

external tables 6-13 to 6-17
exporting 6-16
importing 6-15
location 6-14
permitted operations 6-15
record length 6-14
uses 6-14
VARCHAR format 6-15

EXTERNAL_FILE_DIRECTORY 6-14
extracting metadata 3-1, 3-14

F
factorials 9-15
files

See also specific files
data definition 1-4, 3-2
exporting 6-16 to 6-17
external 6-13
importing 6-15 to 6-16
naming 3-2
naming conventions 3-2
primary 3-3
secondary 3-3, 3-4 to 3-5, 3-7

firing triggers 10-3, 10-7, 10-12
security 10-13

fixed-decimal datatypes 4-5 to 4-8
FLOAT datatype 4-3, 4-10 to 4-11
floating-point datatypes 4-10 to 4-11
FOR SELECT . . . DO 9-12
FOREIGN KEY constraints 2-10 to 2-12, 6-8 to 6-9,

7-2
functions

user-defined See UDFs

G
gbak 7-5
GEN_ID() 10-9, 11-2 to 11-3
generators 10-9, 11-2 to ??

defined 11-1
initializing 10-9
resetting, caution 11-2

gpre
BLOB data 4-18

GRANT 12-1 to 12-13
decrypt 13-11
I-4 D a t a D e f i n i t i o n G u i d e

encrypt permissions 13-9
multiple privileges 12-6 to 12-7
multiple users 12-7
privileges to roles 12-2
REFERENCES 12-1
roles to user 12-2
specific columns 12-5
TO TRIGGER clause 10-13
WITH GRANT OPTION 12-9 to 12-11

grant authority
See also security
revoking 12-16

granting decrypt permission 13-11

H
headers

procedures 9-4, 9-8, 9-11
triggers 10-2, 10-7

changing 10-10
host-language variables 9-11

I
I/O See input, output
IBConsole

using to encrypt/decrypt a database 13-13
IF . . . THEN . . . ELSE 9-13
importing data 6-15 to 6-16
in stored procedures 9-7
incorrect values 9-24
incremental values 10-9
index tree 3-2
indexes

See also CREATE INDEX
activating/deactivating 7-5
altering 7-5 to 7-7
choosing 2-16
creating 7-2 to 7-5
defined 7-1 to 7-2
dropping 7-6, 7-7
improving performance 7-5 to 7-7
multi-column 7-1, 7-2, 7-4 to 7-5
page size and 2-16
preventing duplicate entries 7-3
rebalancing 7-5
rebuilding 7-5
recomputing selectivity 7-6
single-column 7-2
sort order 7-2, 7-3
system-defined 7-2, 7-7
unique 7-3
user-defined 7-2

initializing generators 10-9
input parameters 9-8, 9-10

See also stored procedures
INSERT

Blob segment length 4-18
default value 2-9
triggers and 10-1, 10-8

inserting
unique column values 10-9

INTEGER datatype 4-3, 4-4, 4-9
integer datatypes 4-4 to 4-5
integrity constraints

adding 6-20
cascading 2-10, 2-11, 6-3, 6-9, 6-13
declaring 6-11 to 6-12
defining 2-10 to 2-12, 6-7 to 6-13
dropping 6-21
on columns 6-3
triggers and 10-12

Interactive SQL See isql
InterBase encryption

about 13-1
international character sets 14-1 to 14-11

default 14-8
specifying 14-8 to 14-10

isc_decode_date() 4-12
isc_encode_date() 4-12
isql 1-2, 1-4, 3-2

stored procedures and 9-2, 9-20 to 9-24
triggers and 10-2

J
joins

views and 8-2

K
key constraints See FOREIGN KEY constraints;

PRIMARY KEY constraints
keys

composite 2-14
removing dependencies 2-14

L
local columns 5-1, 5-2, 5-3
local variables 9-9, 9-10

assigning values 9-11
lock conflict errors 9-29
logging changes 10-2
loops See repetitive statements

M
MANUAL mode 3-11 to 3-12
metadata 1-1
I n d e x I-5

altering 1-2
creating 1-2
dropping 1-2
extracting 3-1, 3-14
name length 6-2

modifying See altering;updating
MS-DOS code pages 14-6
multi-column indexes 7-1, 7-4 to 7-5

defined 7-2
multifile databases 3-4 to 3-5
multifile shadows 3-11
multiple triggers 10-7

N
naming

database files 3-2
metadata name length 6-2
objects 2-17
stored procedures 9-4
triggers 10-7
variables 9-14

NATIONAL CHAR datatype 4-12, 4-14 to 4-15
NATIONAL CHAR VARYING datatype 4-12
NATIONAL CHARACTER datatype 4-12
NATIONAL CHARACTER VARYING datatype 4-12
NCHAR datatype 4-12, 4-15 to 4-16
NCHAR VARYING datatype 4-12
nested stored procedures 9-14 to 9-15
NEW context variables 10-8
NONE keyword 3-6, 4-13 to 4-14
normalization 2-1, 2-12 to 2-15
NOT NULL 5-3
NULL status 2-10
NULL values

columns 6-7
domains 5-3

numbers
incrementing 10-9

NUMERIC datatype 4-3, 4-5 to 4-8, 4-9
numeric datatypes 4-4 to 4-11
numeric values See values

O
objects 2-2

naming 2-17
relationships 2-10

OLD context variables 10-8
ON DELETE 2-11, 6-9
ON UPDATE 2-11, 6-9
optimizing

queries 7-4
ORDER BY clause 7-4
output 9-20

output parameters 9-8, 9-10, 9-16
See also stored procedures
viewing 9-20

owner
stored procedures 9-2

P
page size

indexes 2-16
shadowing 3-11

Paradox for Windows 14-7
parameters

input 9-8, 9-10
output 9-8, 9-10, 9-16

viewing 9-20
partial key dependencies, removing 2-14
passwords

See also security
specifying 3-3, 3-5

permissions
to decrypt 13-11

precision of datatypes 4-8
preprocessor See gpre
primary files 3-3
PRIMARY KEY constraints 2-7, 2-10 to 2-12, 6-7 to

6-8, 7-2
privileges See security
procedures See stored procedures
protecting data See security
PUBLIC keyword 12-7

Q
queries

See also SQL
optimizing 7-4

R
raising exceptions 9-27, 10-15
RDB$RELATION_CONSTRAINTS system table 6-11
read-only databases 3-6
read-only views 8-5 to 8-6
recursive stored procedures 9-14 to 9-15
REFERENCES privilege 6-10, 12-5
referential integrity See integrity constraints
relational model 2-10
repeating groups, eliminating 2-12 to 2-13
repetitive statements 9-12
retrieving data 9-11, 9-20

multiple rows 9-3, 9-12
return values, stored procedures 9-8, 9-10

incorrect 9-24
REVOKE 12-13 to 12-17
I-6 D a t a D e f i n i t i o n G u i d e

decrypt permissions 13-12
encrypt permissions 13-12
grant authority 12-16
multiple privileges 12-14 to 12-16
multiple users 12-15
restrictions 12-14
stored procedures 12-16

revoking decrypt permission 13-12
revoking encrypt permission 13-12
roles 12-8, 12-15

granting 12-3, 12-4
granting privileges to 12-8
granting to users 12-9
revoking 12-15

ROP ENCRYPTION command
using 13-8

routines 10-16
rows, retrieving 9-3, 9-11, 9-20

S
secondary files 3-4 to 3-5

adding 3-3, 3-7
security 2-17, 12-1 to 12-17

access privileges 12-1 to 12-3
granting 12-1 to 12-13
revoking 12-13 to 12-17
roles 12-8
triggers 10-13
UNIX groups 12-7
views 8-5, 12-17

REFERENCES privilege 12-5
stored procedures 9-3, 12-8, 12-11
triggers 12-5

SELECT 9-21
FOR SELECT vs. 9-12
ORDER BY clause 9-23
views 8-3
WHERE clause 9-23

select procedures
creating 9-20 to 9-24
suspending 9-16
terminating 9-16

SELECT statements
stored procedures and 9-11

sequence indicator (triggers) 10-7
sequential values 10-9
SET GENERATOR 10-9, 11-2
SET NAMES 14-9
SET STATISTICS 7-6

restrictions 7-6
SET TERM 9-7
shadowing 3-8 to 3-13

advantages 3-8 to 3-9

automatic 3-12
limitations 3-9
page size 3-11

shadows
conditional 3-12
creating 3-10 to 3-13
defined 3-8
dropping 3-13
increasing size 3-13
modes

AUTO 3-11 to 3-12
MANUAL 3-11 to 3-12

multifile 3-11
single-file 3-10

SHOW DATABASE 3-10, 3-11
SHOW INDEX 7-2
SHOW PROCEDURES 9-17
SHOW TRIGGERS 9-27
single-column indexes 7-2
single-file databases 3-3
single-file shadows 3-10
SMALLINT datatype 4-3, 4-4, 4-9
sorting

character sets and 14-2
collation order and 2-8
columns 4-13, 6-4
indexes 7-3
query results 4-5

specifying
character sets 3-3, 4-13 to 4-14, 14-9
collation orders 14-10 to 14-11
datatypes 4-3 to 4-4
domain defaults 5-3
index sort order 7-3
passwords 3-3, 3-5
user names 3-3, 3-5

SQL
stored procedures and 9-3, 9-4, 9-5

dropping 9-18
specifying variables 9-10

triggers and 10-4, 10-9
SQL clients

specifying character sets 14-9
SQL dialect 4-8, 4-9, 4-24
SQLCODE variable

error-handling routines 9-28
statements

assignment 9-11
blocks 9-9, 10-8
repetitive 9-12
stored procedures 9-5
triggers 10-4

status array See error status array
status, triggers 10-7
I n d e x I-7

stored procedures 9-20 to 9-25
altering 9-2, 9-17
arrays and 9-8, 9-24 to 9-25
calling 9-3, 9-20
creating 9-2, 9-3, 9-4 to 9-17
data definition files and 9-2 to 9-3
dependencies

viewing 9-17
documenting 9-2, 9-14
dropping 9-18
error handling 9-27 to 9-32

exceptions 9-26 to 9-27, 9-28
events 9-13
exiting 9-15
headers 9-4, 9-8

output parameters 9-11
isql and 9-2
naming 9-4
nested 9-14, 9-15
overview 9-1 to 9-2
powerful SQL extensions 9-5
privileges 9-3
procedure body 9-4, 9-9 to 9-17

input parameters 9-8, 9-10
local variables 9-9, 9-11
output parameters 9-8, 9-10, 9-16

viewing 9-20
recursive 9-14, 9-15
retrieving data 9-3, 9-11, 9-12, 9-20
return values 9-8, 9-10

incorrect 9-24
security 12-8, 12-11
suspending execution 9-15
syntax errors 9-7
testing conditions 9-12, 9-13
types, described 9-3

storing
Blob IDs 4-17
data 14-1

structures, database 1-1, 2-2
subscripts (arrays) 4-23 to 4-24
SUSPEND 9-15 to 9-17
syntax

assignment statements 9-11
context variables 10-8
generators 10-9
stored procedures 9-4 to 9-5

syntax errors
stored procedures 9-7
triggers 10-6

SYSDSO
about 13-3
creating 13-3
grant permission to use keys to encrypt 13-9

System Encryption Password (SEP)
about 13-5
removing 13-6
setting 13-5

system tables 1-2
system-defined indexes 7-2, 7-7
system-defined triggers 10-12

T
tables 6-1 to 6-24

altering 6-17 to 6-23
caution 6-19

circular references 6-10 to 6-11
creating 6-2 to 6-13
declaring 6-1
defined 2-6
designing 2-6
dropping 6-24
external 6-13 to 6-17

testing
applications 10-7
triggers 10-7

text 14-1
TIME datatype 4-3
time indicator (triggers) 10-7, 10-10
TIMESTAMP datatype 4-3, 4-24
tokens, unknown 9-8, 10-6
transactions

triggers and 10-12
transitively-dependent columns, removing 2-14 to 2-15
triggers 10-1 to 10-16

access privileges 10-13
altering 10-2, 10-10 to 10-11
creating 10-2 to 10-9
data definition files and 10-2
dropping 10-11 to 10-12
duplicating 10-7
error handling 10-16
exceptions 10-15
exceptions, raising 10-15
firing 10-3, 10-7, 10-12, 10-13
headers 10-2, 10-7, 10-10
inserting unique values 10-9
isql and 10-2
multiple 10-7
naming 10-7
posting events 10-13
raising exceptions 9-26, 10-15
referencing values 10-8
status 10-7
syntax errors 10-6
system-defined 10-12
testing 10-7
I-8 D a t a D e f i n i t i o n G u i d e

transactions and 10-12
trigger body 10-3, 10-7 to 10-9, 10-11

context variables 10-8

U
UNIQUE constraints 2-7, 2-10, 6-7 to 6-8, 7-2
unique indexes 7-3
UNIX groups, granting access to 12-7
unknown tokens 9-8, 10-6
updatable views 8-5 to 8-6
UPDATE

triggers and 10-1, 10-8
updating

See also altering
data 10-8
views 8-1, 8-6 to 8-7

user names, specifying 3-3, 3-5
user-defined errors See exceptions
user-defined functions See UDFs

V
VALUE keyword 5-4
values

See also NULL values
assigning to variables 9-11, 9-16
comparing 10-8
incremental 10-9
referencing 10-8
returned from procedures 9-8, 9-10, 9-24

incorrect 9-24
VARCHAR datatype 4-3, 4-12, 4-15 to 4-16, 14-1
variables

context 10-8

host-language 9-11
local 9-10, 9-11
names 9-14
stored procedures 9-9, 9-10

viewing
stored procedures 9-17

views 8-1 to 8-7
access privileges 8-5, 12-17
advantages 8-2 to 8-3
altering 8-5
column names 8-3
creating 8-3 to 8-7
defining columns 8-4
dropping 8-7
read-only 8-5 to 8-6
restricting data access 8-3
storing 8-1
updatable 8-5 to 8-6
updating 8-1, 8-6 to 8-7
with joins 8-2

virtual tables 8-3

W
WHEN 9-28, 9-29, 10-16
WHEN . . . DO 9-27
WHEN GDSCODE 9-29
WHILE . . . DO 9-12
Windows applications 14-7
Windows clients 14-9

X
XSQLVAR field 4-8
I n d e x I-9

I-10 D a t a D e f i n i t i o n G u i d e

	InterBase 2009
	Tables
	Figures
	Using the Data Definition Guide
	What is data definition?
	Who should use this guide
	Topics covered in this guide
	Using isql
	Using a data definition file

	Designing Databases
	Overview of design issues
	Database versus data model
	Design goals

	Design framework
	Analyzing requirements
	Collecting and analyzing data
	Identifying entities and attributes
	Designing tables
	Determining unique attributes
	Developing a set of rules
	Specifying a data type
	Choosing international character sets
	Specifying domains
	Setting default values and NULL status
	Defining integrity constraints
	Defining CHECK constraints

	Establishing relationships between objects
	Enforcing referential integrity
	Normalizing the database
	Eliminating repeating groups
	Removing partially-dependent columns
	Removing transitively-dependent columns
	When to break the rules

	Choosing indexes
	Increasing cache size
	Creating a multifile, distributed database

	Planning security
	Naming Objects

	Creating Databases
	What you should know
	Creating a database
	File naming conventions
	Using a data definition file
	Using CREATE DATABASE
	Creating a single-file database
	Creating a multifile database
	Using LENGTH to specify a secondary file
	Specifying the starting page number of a secondary file
	Specifying user name and password
	Specifying database page size
	Specifying the default character set
	When there is no default character set

	Read-only databases

	Altering a database
	Dropping a database
	Creating a database shadow
	Advantages of shadowing
	Limitations of shadowing
	Before creating a shadow
	Using CREATE SHADOW
	Creating a single-file shadow
	Shadow location
	Creating a multifile shadow
	Auto mode and manual mode
	Conditional shadows

	Dropping a shadow
	Expanding the size of a shadow
	Using isql to extract data definitions
	Extracting an InterBase 4.0 database
	Extracting a 3.x database

	Specifying Data types
	About InterBase data types
	Where to specify data types
	Defining numeric data types
	Integer data types
	Fixed-decimal data types
	NUMERIC data type
	DECIMAL data type
	How fixed-decimal data types are stored
	Specifying NUMERIC and DECIMAL with scale and precision
	Numeric input and exponents
	Specifying data types using embedded applications
	Considering migration for NUMERIC and DECIMAL data types
	Migrating databases with NUMERIC and DECIMAL data types
	Using exact numeric data types in arithmetic

	Floating-point data types

	Date and time data types
	Converting to the DATE, TIME, and TIMESTAMP data types
	How InterBase stores date values

	Character data types
	Specifying a character set
	Characters vs. bytes
	Using CHARACTER SET NONE
	About collation order

	Fixed-length character data
	CHAR(n) or CHARACTER(n)
	NCHAR(n) or NATIONAL CHAR(n)

	Variable-length character data
	VARCHAR(n)
	NCHAR VARYING(n)

	The BOOLEAN data type
	Defining BLOB data types
	BLOB columns
	BLOB segment length
	Defining segment length
	Segment syntax

	BLOB subtypes
	BLOB filters
	Using BLOBs with VARCHAR data
	About text BLOB syntax

	Defining arrays
	Multi-dimensional arrays
	Specifying subscript ranges for array dimensions

	Converting data types
	Implicit type conversions
	Explicit type conversions

	Working with Domains
	Creating domains
	Specifying the domain data type
	Specifying domain defaults
	Specifying NOT NULL
	Specifying domain CHECK constraints
	Using the VALUE keyword
	Specifying domain collation order

	Altering domains
	Dropping a domain

	Working with Tables
	Before creating a table
	Creating tables
	Defining columns
	Required attributes
	Optional attributes
	Specifying the data type
	Casting data types
	Defining a character set
	The COLLATE clause
	Defining domain-based columns
	Defining expression-based columns
	Specifying column default values
	Specifying NOT NULL

	Defining integrity constraints
	PRIMARY KEY and UNIQUE constraints
	Using the FOREIGN KEY to enforce referential integrity
	Referencing tables owned by others
	Circular references
	How to declare constraints

	Defining a CHECK constraint
	Using the EXTERNAL FILE option
	Restrictions
	Importing external files
	Exporting InterBase tables to an external file

	Altering tables
	Before using ALTER TABLE
	Saving existing data
	Dropping columns

	Using ALTER TABLE
	Adding a new column to a table
	Adding new table constraints
	Dropping an existing column from a table
	Dropping existing constraints from a column
	Modifying columns in a table
	Summary of ALTER TABLE arguments

	Dropping tables
	Dropping a table
	DROP TABLE syntax

	SQL global temporary tables
	Creating a SQL global temporary table
	Altering a SQL global temporary table
	Requirements and constraints

	Working with Indexes
	Index basics
	When to index
	Creating indexes
	Using CREATE INDEX
	Preventing duplicate entries
	Specifying index sort order

	When to use a multi-column index
	Examples using multi-column indexes

	Improving index performance
	ALTER INDEX: deactivating an index
	SET STATISTICS: recomputing index selectivity
	Dropping a user-defined index

	Working with Views
	Introduction
	Advantages of views
	Creating views
	Specifying view column names
	Using the SELECT statement
	Using expressions to define columns
	Types of views: read-only and update-able
	View privileges
	Examples of views

	Inserting data through a view
	Using WITH CHECK OPTION
	Examples

	Dropping views

	Working with Stored Procedures
	Overview of stored procedures
	Working with procedures
	Using a data definition file
	Calling stored procedures
	Privileges for stored procedures

	Creating procedures
	CREATE PROCEDURE syntax
	Procedure and trigger language
	Syntax errors in stored procedures

	The procedure header
	Declaring input parameters
	Declaring output parameters

	The procedure body
	BEGIN … END statements
	Using variables
	Using assignment statements
	Using SELECT statements
	Using FOR SELECT … DO statements
	Using WHILE … DO statements
	Using IF … THEN … ELSE statements
	Using event alerters
	Adding comments
	Creating nested and recursive procedures
	Using SUSPEND, EXIT, and END with procedures

	Altering and dropping stored procedures
	Altering stored procedures
	ALTER PROCEDURE syntax
	Dropping procedures
	Drop procedure syntax
	Altering and dropping procedures in use

	Using stored procedures
	Using executable procedures in isql
	Using select procedures in isql
	Using WHERE and ORDER BY clauses
	Selecting aggregates from procedures

	Viewing arrays with stored procedures

	Exceptions
	Creating exceptions
	Altering exceptions
	Dropping exceptions
	Raising an exception in a stored procedure

	Handling errors
	Handling exceptions
	Handling SQL errors
	Handling InterBase errors
	Examples of error behavior and handling

	Working with Triggers
	About triggers
	Working with triggers
	Using a data definition file

	Creating triggers
	CREATE TRIGGER syntax
	InterBase procedure and trigger language
	Syntax errors in triggers

	The trigger header
	The trigger body
	NEW and OLD context variables
	Using generators

	Altering triggers
	Altering a trigger header
	Altering a trigger body

	Dropping triggers
	Using triggers
	Triggers and transactions
	Triggers and security
	Triggers as event alerters
	Updating views with triggers

	Exceptions
	Raising an exception in a trigger
	Error handling in triggers

	Working with Generators
	About generators
	Creating generators
	Setting or resetting generator values
	Using generators
	Dropping generators

	Planning Security
	Overview of SQL access privileges
	Default security and access
	Privileges available
	SQL ROLES

	Granting privileges
	Granting privileges to a whole table
	Granting access to columns in a table
	Granting privileges to a stored procedure or trigger

	Multiple privileges and multiple grantees
	Granting multiple privileges
	Granting all privileges
	Granting privileges to multiple users
	Granting privileges to a list of users
	Granting privileges to a UNIX group
	Granting privileges to all users

	Granting privileges to a list of procedures

	Using roles to grant privileges
	Granting privileges to a role
	Granting a role to users

	Granting users the right to grant privileges
	Grant authority restrictions
	Grant authority implications

	Granting privileges to execute stored procedures
	Granting access to views
	Update-able views
	Read-only views

	Revoking user access
	Revocation restrictions
	Revoking multiple privileges
	Revoking all privileges
	Revoking privileges for a list of users
	Revoking privileges for a role
	Revoking a role from users
	Revoking EXECUTE privileges
	Revoking privileges from objects
	Revoking privileges for all users
	Revoking grant authority

	Using views to restrict data access

	Encrypting Your Data
	About InterBase encryption
	About industry encryption standards
	Who can create encryption?
	Creating the SYSDSO user

	An overview of encryption tasks
	Requirements and support

	Using isql to enable and implement encryption
	Setting the System Encryption Password (SEP)
	Altering the database to create the SEP
	Removing the System Encryption Password (SEP)

	Creating encryption keys
	Setting a user-defined password for an encryption key
	Dropping an encryption key

	Granting encryption permission to the database owner
	Encrypting data
	About the encryption commands
	Setting a decrypt default value for a column
	Encrypting blob columns

	Decrypting data
	Granting decrypt permission
	Permissions for roles and views

	Revoking encrypt and decrypt permissions

	Using IBConsole to set up and perform encryption
	Enabling EUA and performing encryption when creating a new database
	Enabling EUA and performing encryption on an existing database
	Performing database-level encryption using IBConsole
	Decrypting the database

	Performing column-level encryption using IBConsole

	Encrypting backup files
	Avoiding embedded spaces in GBAK encrypt/ decrypt and sep statements
	Encrypting a database backup file
	Decrypting a database backup file during a restore
	Additional guidelines for encrypting and decrypting database backup files

	Character Sets and Collation Orders
	About character sets and collation orders
	Character set storage requirements
	InterBase character sets
	Character sets for DOS
	Character sets for Microsoft Windows
	UNICODE_BE and UNICODE_LE Character Sets
	Additional character sets and collations

	Specifying defaults
	Specifying a default character set for a database
	Specifying a character set for a column in a table
	Specifying a character set for a client connection

	Specifying collation orders
	Specifying collation order for a column
	Specifying collation order in a comparison operation
	Specifying collation order in an ORDER BY clause
	Specifying collation order in a GROUP BY clause

	Index

