
Operations Guide

VERS ION 7 . 5

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

InterBase®

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 2003 Borland Software Corporation. All rights reserved. All Borland brand and product names are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries. Other product names are
trademarks or registered trademarks of their respective holders.

Part no: INT0070WW21000 7E1R0503

0203040506 9 8 7 6 5 4 3 2 1

iii

Tables . ix

Figures . xi

Chapter 1
Introduction
Who should use this guide 1-1
Topics covered in this guide 1-1
InterBase PDF documentation 1-2

About enhanced Acrobat Reader 1-2
Using Full-Text Search 1-3
Installing Acrobat 1-4

System requirements and server sizing 1-4
Primary InterBase features 1-5

SQL support 1-7
Multiuser database access 1-7
Transaction management 1-7
Multigenerational architecture 1-8
Optimistic row-level locking 1-8
Database administration. 1-8

Managing server security 1-9
Backing up and restoring databases . . . 1-9
Maintaining a database 1-9
Viewing statistics 1-10

About InterBase SuperServer architecture . . . 1-10
Overview of command-line tools 1-10

isql . 1-10
gbak . 1-11
gfix . 1-11
gsec. . 1-11
gstat . 1-12
iblockpr (gds_lock_print) 1-12
ibmgr .1-12

Chapter 2
IBConsole: The InterBase Interface
Starting IBConsole 2-2

IBConsole menus 2-2
Context menus 2-3
IBConsole toolbar 2-4

Tree pane . 2-5
Work pane. 2-6
Standard text display window 2-7
Switching between IBConsole windows. . . 2-7
Managing custom tools in IBConsole 2-8

Chapter 3
Server Configuration
Configuring server properties 3-1

The General tab 3-2
The Alias tab 3-3

Multi-Instance . 3-3
Windows server setup 3-4
Accessing remote databases 3-4

Client side settings. 3-4
Remote servers 3-5

Accessing local databases 3-5
Automatic rerouting of databases 3-6

Server Side setup. 3-6
Client side settings. 3-7

Startup parameters 3-8
SMP support. . 3-8

Expanded processor control: CPU_AFFINITY . 3-9
ibconfig parameter: MAX_THREADS 3-9

Hyperthreading support on Intel processors . 3-10
Using InterBase Manager to start and stop

InterBase . 3-10
Starting and stopping the InterBase Server on

UNIX . 3-11
Using ibmgr to start and stop the server . . 3-11
Starting the server 3-12
Stopping the server 3-12
Starting the server automatically 3-13

The attachment governor 3-16
Using environment variables 3-16

ISC_USER and ISC_PASSWORD 3-16
The INTERBASE environment variables . . . 3-17
The TMP environment variable 3-17
UNIX and Linux host equivalence 3-17

Managing temporary files 3-18
Configuring history files 3-18
Configuring sort files 3-18

Configuring parameters in ibconfig 3-19
Viewing the server log file 3-23

Chapter 4
Network Configuration
Network protocols 4-1
Connecting to servers and databases 4-2

Registering a server 4-2
Logging in to a server 4-3
Logging out from a server 4-4

Contents

iv

Unregistering a server 4-5
Registering a database 4-5
Connecting to a database 4-7

Connect 4-7
Connect as 4-7

Disconnecting a database 4-8
Unregistering a database 4-9
Connection-specific examples. 4-9

Connection troubleshooting 4-10
Connection refused errors 4-10

Is there low-level network access between the
client and server? 4-10

Can the client resolve the server’s hostname?
4-10

Is the server behind a firewall? 4-10
Are the client and server on different

subnets? 4-11
Can you connect to a database locally?. . 4-11
Can you connect to a database loopback?4-11
Is the server listening on the InterBase port?

4-11
Is the services file configured on client and

server? 4-12
Connection rejected errors. 4-12

Did you get the correct path to the database?
4-12

Is UNIX host equivalence established? . . 4-12
Is the database on a networked file system? .

4-12
Are the user and password valid? 4-12
Does the server have permissions on the

database file? 4-13
Does the server have permissions to create

files in the InterBase install directory? . 4-13
Disabling automatic Internet dialup 4-13

Reorder network adapter bindings 4-13
Disabling autodial in the registry 4-13
Preventing RAS from dialing out for local

network activity 4-14
Other errors 4-14

Unknown Win32 error 10061 4-14
Unable to complete network request to host.

4-14
Communication diagnostics 4-15

DB Connection tab 4-16
To run a DB Connection test 4-16
Sample output (local connection) 4-17

TCP/IP tab 4-17
NetBEUI tab. 4-18

Chapter 5
Database Security
Security model 5-1

The SYSDBA user. 5-2
Other users . 5-2
Users on UNIX. 5-2

The InterBase security database 5-3
Embedded database user authentication 5-4
System table security 5-5

Older databases 5-5
Scripts for changing database security 5-5
Migration issues 5-6

SQL privileges. 5-6
Groups of users 5-6

SQL roles . 5-7
UNIX groups. 5-8

Other security measures 5-8
Restriction on using InterBase tools 5-8
Protecting your databases 5-8

User administration with IBConsole 5-9
Displaying the User Information dialog . . . 5-9
Adding a user 5-10
Modifying user configurations. 5-11
Deleting a user 5-11

User administration with the InterBase API . . 5-12
Using gsec to manage security 5-12

Running gsec remotely 5-13
. . 5-13
Running gsec with Embedded Database User

Authentication 5-13
Using gsec commands 5-13

Displaying the security database. 5-14
Adding entries to the security database . 5-14
Modifying the security database 5-16
Deleting entries from the security database. .

5-16
Using gsec from a Windows command prompt .

5-16
Using gsec to manage Database Alias 5-16
gsec error messages 5-17

Chapter 6
Database Configuration
and Maintenance

Database files . 6-1
Database file size 6-2
Dynamic file sizing 6-2
External files 6-2

v

Temporary files 6-3
File naming conventions. 6-3

Primary file specifications 6-3
Secondary file specifications. 6-4

Multifile databases 6-4
Adding database files 6-4
Altering database file sizes 6-4
Maximum number of files 6-5
Application considerations 6-5
Reorganizing file allocation 6-5

Networked file systems 6-5
On-disk structure (ODS) 6-6
Read-write and read-only databases. 6-6

Read-write databases 6-6
Read-only databases 6-7

Properties of read-only databases. 6-7
Making a database read-only 6-7
Read-only with older InterBase versions. 6-8

Creating databases. 6-8
Database options 6-9

Page size 6-9
Default character set 6-9
SQL dialect 6-9

Dropping databases 6-10
Backup file properties 6-10
Removing database backup files 6-11
Shadowing . 6-12

Tasks for shadowing 6-12
Advantages of shadowing. 6-12
Limitations of shadowing 6-13
Creating a shadow 6-13

Creating a single-file shadow 6-14
Creating a multifile shadow 6-14
Auto mode and manual mode 6-15
Conditional shadows 6-16

Activating a shadow 6-17
Dropping a shadow 6-17
Adding a shadow file 6-17

Setting database properties 6-18
Alias tab 6-18
General tab 6-19

Sweep interval and automated housekeeping .6-20
Overview of sweeping6-20

Garbage collection 6-20
Automatic housekeeping 6-21
Configuring sweeping 6-21

Setting the sweep interval 6-21
Disabling automatic sweeping 6-22
Performing an immediate database sweep .6-22

Configuring the database cache 6-23
Default cache size per database 6-23
Default cache size per ISQL connection. . . 6-24
Setting cache size in applications 6-24
Default cache size per server 6-24
Verifying cache size 6-24

Forced writes vs. buffered writes 6-25
Validation and repair 6-25

Validating a database 6-26
Validating a database using gfix 6-26
Validating a database using IBConsole . 6-26

Repairing a corrupt database 6-28
Shutting down and restarting databases 6-29

Shutting down a database 6-30
Shutdown timeout options 6-30
Shutdown options 6-30

Restarting a database 6-32
Limbo transactions 6-32

Recovering transactions 6-33
Transaction tab 6-33
Details tab 6-34

Viewing the administration log 6-35
gfix command-line tool. 6-36
gfix error messages 6-39

Chapter 7
Licensing
Software activation certificates 7-1
License registration tools. 7-1

Using IBConsole 7-2
Viewing existing licenses 7-2
Adding a certificate ID/key 7-2
Deleting a certificate ID/key 7-3

Command-line registration utility. 7-3
Available certificates 7-5
A note on simultaneous connections 7-5
The InterBase license file 7-6

Options in the ib_license.dat file. 7-6
Licensing multiple instances of InterBase 7-7

Chapter 8
Database Backup and Restore
Benefits of backup and restore. 8-1

Database ownership. 8-2
Backing up a database using IBConsole 8-2

Backup options 8-4
Format . 8-5
Metadata Only 8-5
Garbage collection 8-5

vi

Transactions in limbo. 8-6
Checksums 8-6
Convert to Tables 8-7
Verbose Output 8-7

Transferring databases to servers running
different operating systems 8-7

Restoring a database using IBConsole. 8-8
Restore options 8-10

Page Size 8-10
Overwrite 8-11
Commit After Each Table 8-11
Create Shadow Files 8-11
Deactivate Indexes 8-11
Validity Conditions8-12
Use All Space 8-12
Verbose Output 8-13

gbak command-line tool 8-13
Database backup 8-13
Backing up a database with gbak. 8-15
Restoring a database with gbak. 8-16
Using gbak with InterBase Service Manager 8-18
The user name and password 8-19
Some backup and restore examples 8-20

Database backup examples 8-20
Database restore examples. 8-21

gbak error messages8-21

Chapter 9
Database Statistics and
Connection Monitoring

Monitoring with system temporary tables . . . 9-1
Querying system temporary tables. 9-2

Refreshing the temporary tables 9-2
Listing the temporary tables. 9-3
Security 9-3
Examples. 9-3

Updating system temporary tables. 9-4
Making global changes. 9-4

Viewing statistics using IBConsole. 9-5
Database statistics options. 9-6

All Options 9-6
Data Pages 9-6
Database Log 9-7
Header Pages 9-8
Index Pages 9-10
System Relations 9-11

Monitoring client connections with IBConsole . 9-11
The gstat command-line tool 9-12
Viewing lock statistics 9-15

Retrieving statistics with api_database_info() . . 9-17

Chapter 10
Interactive Query
The IBConsole ISQL window 10-1

SQL input area. 10-2
SQL output area 10-2
Status bar . 10-3
ISQL menus 10-3

File menu 10-3
Edit menu. 10-3
Query menu 10-4
Database menu. 10-5
Transactions menu. 10-5
Windows menu 10-6

ISQL toolbar 10-7
Managing ISQL temporary files 10-8
Executing SQL statements 10-8

Executing SQL interactively 10-9
Preparing SQL statements 10-9

Valid SQL statements 10-9
Executing a SQL script file 10-10

Committing and rolling back transactions 10-10
Saving ISQL input and output 10-10

Saving SQL input 10-10
Saving SQL output. 10-11

Changing ISQL settings 10-11
Options tab. 10-12
Advanced tab 10-14

Inspecting database objects 10-15
Viewing object properties 10-15
Viewing metadata 10-16

Extracting metadata 10-17
Extracting metadata 10-19

Command-line isql tool 10-20
Invoking isql 10-20

Command-line options 10-21
Using warnings 10-22
Examples 10-23
Exiting isql 10-23
Connecting to a database 10-23

Setting isql client dialect 10-24
Transaction behavior in isql 10-25
Extracting metadata 10-25
isql commands. 10-26

SHOW commands 10-27
SET commands 10-27
Other isql commands 10-27
Exiting isql 10-27

vii

Error handling 10-27
isql command reference 10-28

BLOBDUMP 10-29
EDIT . 10-29
EXIT . 10-30
HELP. . 10-31
INPUT . 10-31
OUTPUT 10-32
QUIT . 10-33
SET . 10-33
SET AUTODDL. 10-35
SET BLOBDISPLAY 10-36
SET COUNT 10-38
SET ECHO 10-38
SET LIST. 10-39
SET NAMES 10-40
SET PLAN. 10-41
SET STATS. 10-42
SET TIME 10-43
SHELL . 10-44
SHOW CHECK 10-44
SHOW DATABASE 10-45
SHOW DOMAINS 10-46
SHOW EXCEPTIONS 10-46
SHOW FILTERS 10-47
SHOW FUNCTIONS. 10-48
SHOW GENERATORS. 10-48
SHOW GRANT. 10-49
SHOW INDEX 10-49
SHOW PROCEDURES. 10-50
SHOW ROLES 10-52
SHOW SYSTEM 10-52
SHOW TABLES. 10-53
SHOW TRIGGERS 10-53
SHOW VERSION. 10-54
SHOW VIEWS 10-55

Using SQL scripts 10-55
Creating an isql script 10-55
Running a SQL script 10-56

To run a SQL script using IBConsole . . 10-56
To run a SQL script using the command-line

isql tool 10-56
Committing work in a SQL script 10-57
Adding comments in an isql script 10-57

Chapter 11
Database and Server Performance
Introduction . 11-1
Hardware configuration 11-2

Choosing a processor speed 11-2
Sizing memory. 11-2
Using high-performance I/O subsystems . 11-3
Distributing I/O 11-4

Using RAID. 11-4
Using multiple disks for database files . 11-4
Using multiple disk controllers 11-5
Making drives specialized 11-5

Using high-bandwidth network systems . . 11-5
Using high-performance bus. 11-6
Useful links 11-7

Operating system configuration. 11-7
Disabling screen savers 11-8
Console logins 11-8
Sizing a temporary directory. 11-9
Use a dedicated server 11-9
Optimizing Windows for network applications .

11-9
Understanding Windows server pitfalls . .11-10

Network configuration11-10
Choosing a network protocol 11-10

NetBEUI 11-11
TCP/IP 11-11

Configuring hostname lookups 11-11
Database properties. 11-12

Choosing a database page size. 11-12
Setting the database page fill ratio. 11-13
Sizing database cache buffers 11-14
Buffering database writes 11-15

Database design principles 11-15
Defining indexes. 11-16

What is an index? 11-16
What queries use an index?. 11-16
What queries don’t use indexes?11-17
Directional indexes 11-17

Normalizing databases11-17
Choosing Blob segment size 11-17

Database tuning tasks 11-18
Tuning indexes. 11-18

Rebuilding indexes 11-18
Recalculating index selectivity11-18

Performing regular backups11-18
Increasing backup performance 11-18
Increasing restore performance 11-19

Facilitating garbage collection11-19
Application design techniques 11-19

Using transaction isolation modes. 11-19
Using correlated subqueries 11-20
Preparing parameterized queries 11-21

viii

Designing query optimization plans 11-22
Deferring index updates. 11-22

Application development tools. 11-22
InterBase Express™ (IBX) 11-23
IB Objects 11-23
Borland Database Engine 11-23

BDE driver flags 11-23
SQL passthru mode. 11-24
SQL query mode 11-24

Visual components 11-24
Understanding fetch-all operations. . . 11-24
TQuery 11-25
TTable 11-26

Appendix A
Migrating to InterBase 6 and later
Migration process A-1

Server and database migration A-2
Client migration A-2

Migration Issues A-2
InterBase SQL dialects A-2
Clients and databases A-3
Keywords used as identifiers A-3
Understanding SQL dialects A-3

Dialect 1 clients and databases A-3
Dialect 2 clients A-4
Dialect 3 clients and databases A-4

Setting SQL dialects A-5
Setting the isql client dialect. A-5
Setting the gpre dialect A-6
Setting the database dialect A-6

Features and dialects A-7
Features available in all dialects A-7

IBConsole, InterBase’s graphical interfaceA-7
Read-only databases A-7
Altering column definitions A-7
Altering domain definitions A-7
The EXTRACT() function A-7
SQL warnings A-7
The Services API, Install API, and

Licensing API A-8
New gbak functionality A-8
InterBase Express™ (IBX) A-8

Features available only in dialect 3 databases . .
A-8

Delimited identifiers. A-8
INT64 data storage. A-8
DATE and TIME datatypes. A-8

New InterBase keywords A-9
Delimited identifiers A-9

How double quotes have changed. . . . A-10
DATE, TIME, and TIMESTAMP datatypes . . A-10

Converting TIMESTAMP columns to DATE or
TIME . A-12

Casting date/time datatypes A-12
Adding and subtracting datetime datatypes .

A-14
Using date/time datatypes with aggregate

functions A-16
Default clauses A-16
Extracting date and time information . . A-16

DECIMAL and NUMERIC datatypes A-18
Compiled objects A-19
Generators A-20
Miscellaneous issues A-20

Migrating servers and databases A-20
“In-place” server migration A-21
Migrating to a new server A-22
About InterBase 6, dialect 1 databases . . . A-23

Migrating databases to dialect 3. A-24
Overview . A-24
Method one: in-place migration A-25

Column defaults and column constraints . . .
A-27

Unnamed table constraints A-28
About NUMERIC and DECIMAL datatypes . .

A-28
Method two: migrating to a new database . A-30
Migrating older databases A-31

Migrating clients A-31
IBReplicator migration issues A-33
Migrating data from other DBMS products . . A-33

Appendix B
InterBase Limits
Various InterBase limits B-2

Index . I-1

ix

1.1 InterBase features 1-5
2.1 IBConsole context menu for a server icon 2-3
2.2 IBConsole context menu for a connected

database icon 2-4
2.3 IBConsole standard toolbar 2-4
2.4 Server/database tree commands 2-6
3.1 DB_ROUTE table 3-7
3.2 DB_ROUTE table 3-7
3.3 . 3-11
3.4 Contents of ibconfig 3-20
4.1 Matrix of connection supported protocols 4-1
4.2 Using Communication Diagnostics to

diagnose connection problems 4-18
5.1 Format of the InterBase security database 5-4
5.2 Summary of gsec commands 5-13
5.3 gsec options 5-15
5.4 gsec security error messages. 5-17
6.1 Auto vs. manual shadows6-16
6.2 General options 6-20
6.3 Validation options 6-28
6.4 gfix options 6-36
6.5 gfix database maintenance error messages .

6-39
7.1 iblicense commands and their options. . 7-4
7.2 iblicense options 7-4
7.3 Certificate keys available for InterBase. . 7-5
7.4 InterBase components 7-6
7.5 InterBase license options 7-7
8.1 gbak arguments 8-14
8.2 gbak backup options 8-14
8.3 Restoring a database with gbak: options .8-16
8.4 gbak restore options 8-17
8.5 host_service syntax for calling the Service

Manager with gbak8-19
8.6 gbak backup and restore error messages.8-21

9.1 InterBase temporary system tables 9-2
9.2 Data page information 9-7
9.3 Header page information 9-8
9.4 Index pages information 9-10
9.5 gstat options 9-13
9.6 iblockpr/gds_lock_print options 9-16
9.7 Database I/O statistics information items . .

9-17
10.1 Toolbar buttons for executing SQL

statements 10-7
10.2 Options tab of the SQL Options dialog 10-12
10.3 Advanced tab of the SQL Options dialog . . .

10-14
10.4 Object inspector toolbar buttons 10-16
10.5 Metadata information items 10-17
10.6 Metadata extraction constraints 10-18
10.7 Order of metadata extraction 10-19
10.8 isql command-line options 10-21
10.9 isql extracting metadata arguments . . 10-25
10.10 SQLCODE and message summary . . 10-28
10.11 isql commands 10-28
10.12 SET statements 10-34
11.1 Matrix of BDE driver flags values 11-23
A.1 isql dialect precedence A-5
A.2 Results of casting to date/time datatypes. . .

A-13
A.3 Results of casting to date/time datatypes. . .

A-14
A.4 Adding and subtracting date/time datatypes

A-15
A.5 Extracting date and time information . . A-17
A.6 Handling quotation marks inside of strings .

A-25
A.7 Migrating clients: summary A-32
B.1 InterBase specifications B-2

Tables

x

xi

2.1 IBConsole window 2-2
2.2 IBConsole Toolbar 2-4
2.3 IBConsole Tree pane 2-5
2.4 Active Windows dialog 2-7
2.5 Tools dialog. 2-8
2.6 Tool Properties dialog 2-8
3.1 Server Log dialog 3-24
4.1 Register Server and Connect dialog 4-2
4.2 Server Login dialog 4-4
4.3 Register Database and Connect dialog . . 4-6
4.4 Communications dialog: DB Connection .4-16
4.5 Communications dialog: TCP/IP 4-17
4.6 Communications dialog: NetBEUI. 4-19
5.1 User information dialog. 5-10
6.1 Create Database dialog 6-8
6.2 Backup alias properties 6-11
6.3 Database Properties: Alias tab 6-18
6.4 Database Properties: General tab 6-19
6.5 Database Validation dialog 6-27
6.6 Validation report dialog. 6-28
6.7 Database shutdown dialog6-30
6.8 Transaction Recovery: limbo transactions.6-34

6.9 Transaction recovery: Details 6-35
6.10 Administration Log dialog 6-35
7.1 The Add Certificate dialog 7-2
8.1 Database backup dialog 8-3
8.2 Database backup options 8-5
8.3 Database backup verbose output 8-7
8.4 Database Restore dialog 8-8
8.5 Database restore options 8-10
8.6 Database restore verbose output 8-13
9.1 Database Statistics options. 9-5
9.2 Database Statistics dialog 9-6
9.3 Database connections dialog 9-12
10.1 The interactive SQL editor in IBConsole . 10-2
10.2 Options tab of the SQL Options dialog. 10-12
10.3 Advanced tab of the SQL Options dialog10-14
10.4 Object inspector 10-15
11.1 Comparing external transfer rate of disk I/O

interfaces. 11-3
11.2 Comparing bandwidth of network interfaces .

11-6
11.3 Comparing throughput of bus technologies . .

11-7

Figures

xii

C h a p t e r 1 I n t r o d u c t i o n 1-1

C h a p t e r

Chapter 1Introduction

The InterBase Operations Guide is a task-oriented reference of procedures to install,
configure, and maintain an InterBase database server or Local InterBase
workstation.

This chapter describes who should read this book, and provides a brief overview
of the capabilities and tools available in the InterBase product line.

Who should use this guide
The InterBase Operations Guide is for database administrators or system
administrators who are responsible for operating and maintaining InterBase
database servers. The material is also useful for application developers who wish
to understand more about InterBase technology. The guide assumes knowledge of:

• Server operating systems for Windows, Linux, and UNIX

• Networks and network protocols

• Application programming

Topics covered in this guide
• Introduction to InterBase features

• Using IBConsole

• Server configuration, startup and shutdown

• Network configuration and troubleshooting guidelines

1-2 O p e r a t i o n s G u i d e

I n t e r B a s e P D F d o c u m e n t a t i o n

• Security configuration for InterBase servers, databases, and data; reference for
the security configuration tools

• Database configuration and maintenance options; reference for the maintenance
tools

• Licensing: license registration tools, available certificates, the contents of the
InterBase license file

• Backing up and restoring databases; reference for the backup tools

• Tracking database statistics and connection monitoring

• Interactive query profiling; reference for the interactive query tools

• Performance troubleshooting and tuning guidelines.

• Data replication and using IBReplicator

• Two appendices covering migration and the limits of a number of InterBase
characteristics

InterBase PDF documentation
InterBase includes the complete documentation set in PDF format. They are
accessible from the Start menu on Windows machines and are found in the Doc
directory on all platforms. If they were not included with the original InterBase
installation, you can install them at a later time by running the InterBase install
and choosing Custom install, which lets you select the document set. You can also
access them from the CD-ROM or copy them from the CD-ROM.

The books are available for purchase in printed form from http://shop.borland.com. If
you have a point release of InterBase, the printed books may not include all the
latest changes that are in the PDF version.

About enhanced Acrobat Reader
The InterBase PDF document set has been indexed for use with Acrobat’s Full Text
Search, which allows you to search across the entire document set. To take
advantage of this feature, you need the enhanced version of Acrobat Reader,
rather than the “plain” version. The enhanced Acrobat Reader has a Search button
on the toolbar in addition to the usual Find button. This Search button searches
across multiple documents and is available only in the enhanced version of
Acrobat Reader. The Find button that is available in the “plain” version of Acrobat
Reader searches only a single document at a time.

If you do not already have the enhanced version of Acrobat Reader 5, the English-
language version installer is available in the Documentation/Adobe directory on the
InterBase CD-ROM or download file and in the <interbase_home>/Doc/Adobe
directory after the InterBase installation.

http://shop.borland.com

C h a p t e r 1 I n t r o d u c t i o n 1-3

I n t e r B a s e P D F d o c u m e n t a t i o n

The enhanced Acrobat Reader is also available for free in many languages from
http://www.adobe.com/products/acrobat/readstep2.html. In Step 1, choose your desired
language and platform. In step 2, be sure to check the “Include the following
options…” box.

Using Full-Text Search
To use full-text searching in the enhanced Acrobat Reader, follow these steps:

1 Click the Search button on the toolbar or choose Edit | Search | Query to
display the Search dialog.

2 Fill in whichever criteria are useful and meaningful to you. Acrobat Reader
returns a list of books that contain the phrase, ranked by probable relevance.

3 Choose the book you want to start looking in to display the first instance.

4 Use the Previous Highlight and Next Highlight buttons to step forward
and back through instances of your search target. From the keyboard, you can
step through instances with w-[and w-]. Reader moves from one book to the

1-4 O p e r a t i o n s G u i d e

S y s t e m r e q u i r e m e n t s a n d s e r v e r s i z i n g

next. To go to a different book at will, click the button to display the
“found” list. Tip: if the If Previous Highlight and Next Highlight seem to
highlight the wrong words, use Find instead: display the Find dialog box and
enter the word or phrase you’re searching for. This finds instances in only the
current book, but you can select other books from the Search Results list.

Expanding the Reader toolbar buttons
By default, the enhanced Reader displays the Search button with an arrow that lets
you access the Search Results, Previous Highlight, and Next Highlight. If you plan
to use Full Text Search, you probably want to display all the buttons on the toolbar.
Here’s how:

Installing Acrobat
Once you have installed the documentation, you will find the install files for
Acrobat Reader With Search will be in the <interbase_home>/Doc directory. They are
also present on your InterBase CD-ROM or download files. Choose the install file
that is appropriate for your platform and follow the prompts. Uninstall any
existing version of Acrobat Reader before installing Enhanced Acrobat Reader.

System requirements and server sizing
InterBase server runs on a variety of platforms, including Microsoft Windows
server platforms, Linux, and several UNIX operating systems.

Find Search

Click this down arrow
to display this menu.

Click this item to display
all four “Search”
buttons on the toolbar.

After you choose Expand This Button, you
have the following buttons on your toolbar:

Find Search Show
Search
Result
list

Find
Previous

Find
Next

C h a p t e r 1 I n t r o d u c t i o n 1-5

P r i m a r y I n t e r B a s e f e a t u r e s

The InterBase server software makes efficient use of system resources on the
server node. The server process uses little more than 1.9MB of memory. Typically,
each client connection to the server adds approximately 115KB of memory. This
varies based on the nature of the client applications and the database design, so
the figure is only a baseline for comparison.

The minimal software installation requires disk space ranging from 9MB to 12MB,
depending on platform. During operation, InterBase’s sorting routine requires
additional disk space as scratch space. The amount of space depends on the
volume and type of data the server is requested to sort.

The InterBase client also runs on any of these operating systems. In addition,
InterBase provides the InterClient Java client interface using the JDBC standard for
database connectivity. Client applications written in Java can run on any client
platform that supports Java, even if InterBase does not explicitly list it among its
supported platforms. Examples include the Macintosh and Internet appliances
with embedded Java capabilities.

Terminology: Windows server platforms Throughout this document set, there are
references to “Windows server platforms” and “Windows non-server platforms.”
Windows server platforms are Windows NT, 2000, and XP Pro. Windows non-
server platforms are Windows 98SE, ME, and XP Home.

Primary InterBase features
InterBase offers all the benefits of a full-featured RDBMS. The following table lists
some of the key InterBase features:

Table 1.1 InterBase features

Feature Description

Network protocol support • All platforms of InterBase support TCP/IP
• InterBase servers and clients for Windows support

NetBEUI/named pipes

SQL-92 entry-level
conformance

ANSI standard SQL, available through an Interactive SQL tool
and Borland desktop applications

Simultaneous access to
multiple databases

One application can access many databases at the same time

multigenerational
architecture

Server maintains older versions of records (as needed) so that
transactions can see a consistent view of data

Optimistic row-level
locking

Server locks only the individual records that a client updates,
instead of locking an entire database page

Query optimization Server optimizes queries automatically, or you can manually
specify a query plan

1-6 O p e r a t i o n s G u i d e

P r i m a r y I n t e r B a s e f e a t u r e s

Blob datatype and
Blob filters

Dynamically sizeable datatypes that can contain unformatted
data such as graphics and text

Declarative referential
integrity

Automatic enforcement of cross-table relationships (between
FOREIGN and PRIMARY KEYs)

Stored procedures Programmatic elements in the database for advanced queries
and data manipulation actions

Triggers Self-contained program modules that are activated when data
in a specific table is inserted, updated, or deleted

Event alerters Messages passed from the database to an application; enables
applications to receive asynchronous notification of database
changes

Updatable views Views can reflect data changes as they occur

User-defined functions
(UDFs)

Program modules that run on the server

Outer joins Relational construct between two tables that enables complex
operations

Explicit transaction
management

Full control of transaction start, commit, and rollback,
including named transactions

Concurrent multiple
application access to data

One client reading a table does not block others from it

multidimensional arrays Column datatypes arranged in an indexed list of elements

Automatic two-phase
commit

Multi-database transactions check that changes to all
databases happen before committing (InterBase Server only)

InterBase API Functions that enable applications to construct SQL/DSQL
statements directly to the InterBase engine and receive results
back

gpre Preprocessor for converting embedded SQL/DSQL
statements and variables into a format that can be read by a
host-language compiler; included with the InterBase server
license

IBConsole Windows tool for data definition, query, database backup,
restoration, maintenance, and security

 isql Command-line version of the InterBase interactive SQL tool;
can be used instead of IBConsole for interactive queries.

Command-line database
administrator utilities

Command-line version of the InterBase database
administration tools; can be used instead of IBConsole

Table 1.1 InterBase features (continued)

Feature Description

C h a p t e r 1 I n t r o d u c t i o n 1-7

P r i m a r y I n t e r B a s e f e a t u r e s

SQL support
InterBase conforms to entry-level SQL-92 requirements. It supports declarative
referential integrity with cascading operations, updatable views, and outer joins.
InterBase Server provides libraries that support development of embedded SQL
and DSQL client applications. On all InterBase platforms, client applications can
be written to the InterBase API, a library of functions with which to send requests
for database operations to the server.

InterBase also supports extended SQL features, some of which anticipate SQL99
extensions to the SQL standard. These include stored procedures, triggers, SQL
roles, and segmented Blob support.

For information on SQL, see the Language Reference.

Multiuser database access
InterBase enables many client applications to access a single database
simultaneously. A client applications can also access the multiple databases
simultaneously. SQL triggers can notify client applications when specific database
events occur, such as insertions or deletions.

You can write user-defined functions (UDFs) and store them in an InterBase
database, where they are accessible to all client applications accessing the
database.

Transaction management
Client applications can start multiple simultaneous transactions. InterBase
provides full and explicit transaction control for starting, committing, and rolling
back transactions. The statements and functions that control starting a transaction
also control transaction behavior.

Header files Files included at the beginning of application programs that
define InterBase datatypes and function calls

Example make files Files that demonstrate how to invoke the makefiles to compile
and link InterBase applications

Example programs C programs, ready to compile and link, which you can use to
query standard InterBase example databases on the server

Message file interbase.msg, containing messages presented to the user

Table 1.1 InterBase features (continued)

Feature Description

1-8 O p e r a t i o n s G u i d e

P r i m a r y I n t e r B a s e f e a t u r e s

InterBase transactions can be isolated from changes made by other concurrent
transactions. For the life of these transactions, the database appears to be
unchanged except for the changes made by the transaction. Records deleted by
another transaction exist, newly stored records do not appear to exist, and
updated records remain in the original state.

For information on transaction management, see the Embedded SQL Guide.

Multigenerational architecture
InterBase provides expedient handling of time-critical transactions through
support of data concurrency and consistency in mixed use—query and update—
environments. InterBase uses a multigenerational architecture, which creates and
stores multiple versions of each data record. By creating a new version of a record,
InterBase allows all clients to read a version of any record at any time, even if
another user is changing that record. InterBase also uses transactions to isolate
groups of database changes from other changes.

Optimistic row-level locking
Optimistic locks are applied only when a client actually updates data, instead of at
the beginning of a transaction. InterBase uses optimistic locking technology to
provide greater throughput of database operations for clients.

InterBase implements true row-level locks, to restrict changes only to the records
of the database that a client changes; this is distinct from page-level locks, which
restrict any arbitrary data that is stored physically nearby in the database. Row-
level locks permit multiple clients to update data that is in the same table without
coming into conflict. This results in greater throughput and less serialization of
database operations.

InterBase also provides options for pessimistic table-level locking. See the
Embedded SQL Guide for details.

Database administration
InterBase provides both GUI and command-line tools for managing databases and
servers. You can perform database administration on databases residing on Local
InterBase or InterBase Server with IBConsole, a Windows application running on a
client PC. You can also use command-line database administration utilities on the
server.

IBConsole and command-line tools enable the database administrator to:

• Manage server security

• Back up and restore a database

• Perform database maintenance

C h a p t e r 1 I n t r o d u c t i o n 1-9

P r i m a r y I n t e r B a s e f e a t u r e s

• View database and lock manager statistics

You can find more information on server security later in this chapter, and later
chapters describe individual tasks you can accomplish with IBConsole and the
command-line tools.

Managing server security
InterBase maintains a list of user names and passwords in a security database. The
security database allows clients to connect to an InterBase database on a server if a
user name and password supplied by the client match a valid user name and
password combination in the InterBase security database (admin.ib by default), on
the server.

You can add and delete user names and modify a user’s parameters, such as
password and user ID.

For information about managing server security, see Chapter 5, “Database
Security.”

Backing up and restoring databases
You can backup and restore a database using IBConsole or command-line gbak. A
backup can run concurrently with other processes accessing the database because
it does not require exclusive access to the database.

Database backup and restoration can also be used for:

• Erasing obsolete versions of database records

• Changing the database page size

• Changing the database from single-file to multifile

• Transferring a database from one operating system to another

• Backing up only a database’s metadata to recreate an empty database

For information about database backup and recovery, see Chapter 8, “Database
Backup and Restore.”

Maintaining a database
You can prepare a database for shutdown and perform database maintenance
using either IBConsole or the command-line utilities. If a database incurs minor
problems, such as an operating system write error, these tools enable you to sweep
a database without taking the database off-line.

Some of the tasks that are part of database maintenance are:

• Sweeping a database

• Shutting down the database to provide exclusive access to it

• Validating table fragments

1-10 O p e r a t i o n s G u i d e

A b o u t I n t e r B a s e S u p e r S e r v e r a r c h i t e c t u r e

• Preparing a corrupt database for backup

• Resolving transactions “in limbo” from a two-phase commit

• Validating and repairing the database structure

For information about database maintenance, see Chapter 6, “Database
Configuration and Maintenance.”

Viewing statistics
You can monitor the status of a database by viewing statistics from the database
header page, and an analysis of tables and indexes. For more information, see
Chapter 9, “Database Statistics and Connection Monitoring.”

About InterBase SuperServer architecture
InterBase uses SuperServer architecture: a multi-client, multi-threaded
implementation of the InterBase server process. SuperServer replaces the Classic
implementation used for previous versions of InterBase. SuperServer serves many
clients at the same time, using threads instead of separate server processes for each
client. Multiple threads share access to a single server process.

Overview of command-line tools
For each task that you can perform in IBConsole, there is a command-line tool that
you can run in a command window or console to perform the same task.

The UNIX versions of InterBase include all of the following command-line tools.
The graphical Windows tools do not run on a UNIX workstation, though you can
run most of the tools on Windows to connect to and operate on InterBase
databases that reside on UNIX servers.

An advantage of noninteractive, command-line tools is that you can use them in
batch files or scripts to perform common database operations. You can automate
execution of scripts through your operating system’s scheduling facility (cron on
UNIX, AT on Windows). It is more difficult to automate execution of graphical
tools.

isql
The isql tool is a shell-type interactive program that enables you to quickly and
easily enter SQL statements to execute with respect to a database. This tool uses
InterBase’s Dynamic SQL mechanism to submit a statement to the server, prepare
it, execute it, and retrieve any data from statements with output (for example, from
a SELECT or EXECUTE PROCEDURE). isql manages transactions, displays metadata
information, and can produce and execute scripts containing SQL statements.

C h a p t e r 1 I n t r o d u c t i o n 1-11

O v e r v i e w o f c o m m a n d - l i n e t o o l s

See Chapter 10, “Interactive Query” for full documentation and reference on isql
and using isql from IBConsole.

gbak
The gbak tool provides options for backing up and restoring databases. gbak now
backs up to multiple files and restores from multiple files, making it unnecessary
to use the older gsplit command. Only SYSDBA and the owner of a database can
back up a database. Any InterBase user defined on the server can restore a
database, although the user must be SYSDBA or the database owner in order to
restore it over an existing database.

Note When you back up and restore databases from IBConsole on Windows platforms,
you are accessing this same tool through the IBConsole interface.

See Chapter 8, “Database Backup and Restore” for full documentation and
reference on using gbak.

gfix
gfix configures several properties of a database, including:

• Database active/shutdown status

• Default cache allocation for clients

• Sweep interval and manual sweep

• Synchronous or asynchronous writes

• Detection of some types of database corruption

• Recovery of unresolved distributed transactions

You can also access all the functionality of gfix through the IBConsole graphical
interface. Only SYSDBA and the owner of a database can run gfix against that
database.

See Chapter 6, “Database Configuration and Maintenance” for descriptions of
these properties, and a reference of the gfix tool.

gsec
You can configure authorized users to access InterBase servers and databases with
gsec. You can also perform the same manipulations on the security database with
IBConsole.

See Chapter 5, “Database Security” for full details and reference.

1-12 O p e r a t i o n s G u i d e

O v e r v i e w o f c o m m a n d - l i n e t o o l s

gstat
gstat displays some database statistics related to transaction inventory, data
distribution within a database, and index efficiency. You can also view these
statistics from IBConsole. You must be SYSDBA or the owner of a database to view
its statistics.

See Chapter 9, “Database Statistics and Connection Monitoring” for more
information on retrieving and interpreting database statistics.

iblockpr (gds_lock_print)
You can view statistics from the InterBase server lock manager to monitor lock
request throughput and identify the cause of deadlocks in the rare case that there
is a problem with the InterBase lock manager. The utility is called gds_lock_print
on the UNIX platforms, and iblockpr on the Windows platforms.

See Chapter 9, “Database Statistics and Connection Monitoring” for more
information on retrieving and interpreting lock statistics.

ibmgr
On UNIX servers, use the ibmgr utility to start and stop the InterBase server
process. See the section “Using ibmgr to start and stop the server” on page 3-11 for
details on using this utility.

C h a p t e r 2 I B C o n s o l e : T h e I n t e r B a s e I n t e r f a c e 2-1

C h a p t e r

Chapter 2IBConsole: The InterBase Interface
InterBase provides an intuitive graphical user interface, called IBConsole, with
which you can perform every task necessary to configure and maintain an
InterBase server, to create and administer databases on the server, and to execute
interactive SQL (ISQL). IBConsole enables you to:

• Manage server security

• Back up and restore a database

• View database and server statistics

• Perform database maintenance, including:

• Validating the integrity of a database

• Sweeping a database

• Recovering transactions that are “in limbo”

IBConsole runs on Windows, but can manage databases on any server on the local
network.

2-2 O p e r a t i o n s G u i d e

S t a r t i n g I B C o n s o l e

Starting IBConsole
To start IBConsole, choose IBConsole from the Start|Programs|InterBase menu.
The IBConsole window opens:

Figure 2.1 IBConsole window

Elements in the IBConsole dialog:
• Menu bar Commands for performing database administration tasks.

• Tool bar Shortcut buttons for menu commands.

• Tree pane Displays a hierarchy of registered servers and databases.

• Work pane Displays specific information or allows you to perform activities,
depending on what item is currently selected in the Tree pane.

• Status bar Shows the current server, user login, and selected database.

IBConsole menus
The IBConsole menus are the basic way to perform tasks with IBConsole. There
are seven pull-down menus.

• Console menu enables you to exit from IBConsole.

• View menu enables you to indicate whether or not IBConsole displays system and
temporary tables and dependencies and to change the display and appearance
of items listed in the Work pane.

Status bar

Menu bar
Tool bar

Tree pane Work pane

C h a p t e r 2 I B C o n s o l e : T h e I n t e r B a s e I n t e r f a c e 2-3

S t a r t i n g I B C o n s o l e

• Server menu enables you to register and un-register a server, log in to and log out
of a server, diagnose a server connection, manage user security, add and remove
certificates, view the server log file, and view server properties. For more
information, see “Connecting to servers and databases” on page 4-2.

• Database menu enables you to register and un-register a database, create and drop
a database, connect to and disconnect from a database, view database metadata,
view a list of users connected to the database, view and set database properties,
perform database maintenance, validation, and transaction recovery. For more
information, see “Connecting to servers and databases” on page 4-2

• Tools menu enables you to add custom tools to the Tools menu and start the
interactive SQL window. The interactive SQL window has its own set of menus,
which are discussed in Chapter 10, “Interactive Query”.

• Windows menu enables you to view a list of active IBConsole windows and to
manage them. See “Switching between IBConsole windows” on page 2-7 for
more information.

• Help menu enables you to access both IBConsole on-line help and InterBase on-
line help.

Context menus
IBConsole also enables you to perform certain tasks with context sensitive popup
menus called context menus. Tables 2.1 and 2.2 are examples of context menus.

When you right-click a server icon, a context menu is displayed listing actions that
can be performed on the selected server.

Table 2.1 IBConsole context menu for a server icon

Popup command Description

Register Register the current server.

Un-register Un-register the current server.

Login Login to the selected server.

Logout Logout from the current server.

Add Certificate Add certificate ID/keys for the current server.

User Security Authorize users on the current server.

View Logfile Display the server log for the current server.

Diagnose Connection Display database and network protocol communication
diagnostics.

Properties View and update server information for the current server.

2-4 O p e r a t i o n s G u i d e

S t a r t i n g I B C o n s o l e

When you right-click a connected database icon, a context menu is displayed
listing actions that can be performed on the database:

IBConsole toolbar
A toolbar is a row of buttons that are shortcuts for menu commands. The
following table describes each toolbar button in detail.

Figure 2.2 IBConsole Toolbar

Table 2.2 IBConsole context menu for a connected database icon

Popup command Description

Disconnect Disconnect from the current database.

Maintenance Perform maintenance tasks including: view database
statistics, shutdown, database restart, sweep, and
transaction recovery.

Backup/Restore Back up or restore a database to a device or file.

View Metadata View the metadata for the selected database.

Connected Users Displays a list of users connected to the database.

Properties View database information, adjust the database sweep
interval, set the SQL dialect and access mode, and enable
forced writes.

Table 2.3 IBConsole standard toolbar

Button Description

Register server: opens the register server dialog, enabling you to register and
login to a local or remote server. See “Registering a server” on page 4-2 for
more information.

Un-register server: enables you to unregister a local or remote server. This
automatically disconnects a database on the server and logout from the
server. See “Unregistering a server” on page 4-5 for more information.

C h a p t e r 2 I B C o n s o l e : T h e I n t e r B a s e I n t e r f a c e 2-5

S t a r t i n g I B C o n s o l e

Tree pane
When you open the IBConsole window, you must register and log in to a local or
remote server and then register and connect to the server’s databases to display
the Tree pane. See “Connecting to servers and databases” on page 4-2 to learn how to
register and connect servers and databases.

Figure 2.3 IBConsole Tree pane

Navigating the server/database hierarchy is achieved by expanding and retracting
nodes (or branches) that have subdetails or attributes. This is accomplished by a
number of methods, outlined in Table 2.4.

Database connect: Connects to the highlighted database using the user name
and password for the current server connection. See “Connecting to a
database” on page 4-7 for more information.

Database disconnect: enables you to disconnect a database on the current
server. See “Disconnecting a database” on page 4-8 for more information.

Launch SQL: opens the interactive SQL window, which is discussed in detail
in Chapter 10, “Interactive Query”.

Table 2.3 IBConsole standard toolbar (continued)

Button Description

Current Server

Current Database

Expand current
database to see
hierarchy of tables,
views, procedures,
functions, and other
database attributes.

2-6 O p e r a t i o n s G u i d e

S t a r t i n g I B C o n s o l e

To expand or retract the server/database tree in the Tree pane:

In an expanded tree, click a database name to highlight it. The highlighted
database is the one on which IBConsole operates, referred to as the current database.
The current server is the server on which the current database resides.

The hierarchy displayed in the Tree pane of Figure 2.3 is an example of a fully
expanded tree.

• Expanding the InterBase Servers branch displays a list of registered servers.

• Expanding a connected server branch displays a list of server attributes,
including Databases, Backup, Users, Certificates, and the Server Log.

• Clicking on the Database branch displays a list of registered databases on the
current server.

• Clicking on Server Log displays the “View Logfile” action in the Work pane.

• Expanding a connected database branch displays a list of database attributes,
including Domains, Tables, Views, Stored Procedures, External Functions,
Generators, Exceptions, Blob Filters, and Roles.

• Expanding Backup shows a list of backup aliases.

Work pane
Depending on what item has been selected in the Tree pane, the Work pane gives
specific information or enables you to execute certain tasks.

To display a list of backup aliases for the current server, click the Backup icon.

To display a list of InterBase certificate keys and IDs for the current server, click the
Certificates icon.

To display a list of users defined on the server, click the Users icon.

To display information about a database attribute, click the database attribute icon.

Table 2.4 Server/database tree commands

Tasks Commands

Display a server’s databases • Left-click the plus (+) to the left of the server icon
• Double-click the server icon
• Press the plus (+) key
• Press the right arrow key

Retract a server’s databases • Left-click the minus (–) to the left of the server icon
• Double-click the server icon
• Press the minus (–) key
• Press the left arrow key

C h a p t e r 2 I B C o n s o l e : T h e I n t e r B a s e I n t e r f a c e 2-7

S t a r t i n g I B C o n s o l e

To display information about a database object in a viewer, click the Work Pane icon for the
object (for example, a table name).

See “Viewing metadata” on page 10-16 for more information.

Standard text display window
The standard text display window is used to monitor database backup and
restoration, to display database statistics and to view server and administration
logs.

The standard text display window contains a menu bar, a toolbar with icons for
often-used menu commands, and a scrolling text display area. Figure 8.3,
“Database backup verbose output,” on page 8-7 is an example of the standard text
display window.

Elements in a standard text display window:
• Menu bar The File menu enables you to save the contents of the window and Exit

from the window. The Edit menu enables you to copy selected text in the
window to the clipboard, select all text in the window, cut and paste text, and
find a specified word or phrase within the displayed text.

• Toolbar Save and Copy toolbar buttons enable you to save the contents of the
text display window as well as copy selected text to the clipboard.

• Status bar Shows the cursor location, given by line and column, within the text
display window.

Switching between IBConsole windows
Use the Active Windows dialog to switch between IBConsole windows, or to close
specific windows. To access the Active Windows dialog, click on the Windows
menu. The dialog appears:

Figure 2.4 Active Windows dialog

• To switch to a different IBConsole window, select it and click the Switch To
button.

2-8 O p e r a t i o n s G u i d e

S t a r t i n g I B C o n s o l e

• To close a window, select it and click the Close window button.

Managing custom tools in IBConsole
Use the Tools dialog to add, edit, and delete custom tools for the IBConsole
interface. To access the Tools dialog, select Tools|Configure Tools from the
IBConsole menu. The Tools dialog is displayed:

Figure 2.5 Tools dialog

• To delete a tool, select it and click Delete.

• To modify a tool, select it and click Edit. Change the relevant fields in the Tool
Properties dialog.

• To add a tool, click Add. The Tool Properties dialog appears.

Figure 2.6 Tool Properties dialog

To add a custom tool:
• Enter the name of your utility in the Title field. This is the name that will be

displayed on the Tools menu. Use an ampersand (&) to specify an accelerator
key for the menu item. Conflicting accelerator keys are automatically resolved.
If you do not specify an accelerator key, one will be chosen automatically.

• Enter the path and the executable to be launched in the Program field.

• Enter the working directory for your utility in the Working Dir field. If no
working directory is specified, then it defaults to the current directory.

C h a p t e r 2 I B C o n s o l e : T h e I n t e r B a s e I n t e r f a c e 2-9

S t a r t i n g I B C o n s o l e

• Enter any other parameters needed to run your utility in the Parameters field.

2-10 O p e r a t i o n s G u i d e

S t a r t i n g I B C o n s o l e

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-1

C h a p t e r

Chapter 3Server Configuration
This chapter describes the operation and configuration of the InterBase server
process, including the following topics:

• Configuring server properties
• Using InterBase Manager to start and stop InterBase
• Starting and stopping the InterBase Server on UNIX
• Example initialization script installation on Linux
• Using environment variables
• Managing temporary files
• Configuring parameters in ibconfig
• Viewing the server log file

Configuring server properties
You can use InterBase Manager to change database cache size of client map size.
The InterBase Guardian Server Properties dialog enables you to display and
configure these server settings. To access InterBase Guardian, right-click the
InterBase Guardian icon in the System Tray. You can access the Server Properties
dialog by any of the following methods:

• Select a server (or any branch under the server hierarchy) in the Tree pane and
choose Server|Server Properties.

• Select a server in the Tree pane and click Server Properties in the Work pane.

• Right-click a server in the Tree pane and choose Server Properties from the
context menu.

The Server Properties dialog contains two tabs, Alias and General.

3-2 O p e r a t i o n s G u i d e

C o n f i g u r i n g s e r v e r p r o p e r t i e s

The General tab
The General tab of the Server Properties dialog is where you can view such server
settings as the version, capabilities, number of databases, and number of
attachments. You cannot edit the information displayed on this tab.

The server properties displayed are:

• Version: displays the version number for the InterBase Server.

• Capabilities: displays support capabilities for the InterBase Server.

• Attached databases: displays the path and filename for each attached database

• Number of databases: displays the total number of databases in the InterBase
Server.

• Number of attachments: displays the total number attachments to the InterBase
Server.

You cannot update the information displayed on the General tab; however, you
can click Refresh at any time to retrieve the current server property information. If
you need to view or configure server settings, click the IB Settings tab.

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-3

M u l t i - I n s t a n c e

The Alias tab
On the Alias tab, you can inspect the host name and network protocol for the
server. You can inspect and change the Alias name and description.

• Alias Name: the name of the server as it appears in the Tree pane. This setting is
editable.

• Host Name: the name of the host server. This is determined at the time you create
the server connection and cannot be changed in this dialog.

• Network Protocol: the protocol that the server is using to communicate. This is
determined at the time you create the server connection and cannot be changed
in this dialog.

• Description: any additional information you wish to add about the server. This
field is optional and editable.

Multi-Instance
InterBase 7.5 now allows multiple instances of InterBase servers to run
simultaneously. In the past multiple instances of the InterBase server could not be
run on the same machine. Previously when an application that utilized one
version of InterBase, another application that utilized another version of InterBase
could not be run. Now with InterBase 7.5 Borland has added the ability to run

3-4 O p e r a t i o n s G u i d e

M u l t i - I n s t a n c e

multiple instances of InterBase on the same machine. With InterBase 7.5 one
previous version (major release) of InterBase, i.e. InterBase 6.x will be able to be
run simultaneously.

Windows server setup

Start the server as an application with the following switches on a Windows
machine.

ibserver -a -p service_name -i interbase_env_variable

The service_name is the entry contained in the services file pointing to the port
number which the InterBase server should bind to. Below is an example of a part
of the file from the <system directory>\drivers\etc\services file.

gds_db 3050/tcp #default InterBase port number
ib_var_a 3051/tcp #VAR A's interbase port number

The INTERBASE environment variable or the -i switch is used for local
connections. These values determines which InterBase server a client on the same
machine will connect to. The INTERBASE environment variable for a client and
server's -i switch must match to have a successful connection. So if InterBase
server is started with the setting:

ibserver -a -p ib_var_a -i C:\Program Files\InterBase7.5

Then InterBase server will accept remote connections on the TCP/IP port number
3051 as the service ib_var_a is set to port 3051. The local connections will be
accepted from client on the same machine who have their InterBase environment
variable set to C:\Program Files\InterBase7.5.

In this case, the older version of InterBase server can still run using the default
setting. This pre-7.5 InterBase server will accept remote connections on TCP/IP
port number 3050. The local connections will be accepted when the client use a
pre-7.5 InterBase client library.

We recommend using the -i switch to set the local InterBase variable for the server.
The order in which interbase server looks for the INTERBASE environment
variable is as follow; Command line argument '-i', INTERBASE environment
variable setting, InterBase Registry key setting, Server's current directory.

Accessing remote databases

Client side settings
In order to connect to a specific InterBase server on a machine you need to identify
the server you want to connect to.

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-5

M u l t i - I n s t a n c e

Remote servers
In order to access the database database_name.ib located in the directory
database_dir. On a remote machine remote_host accepting connections on a port
number specified by a service_name on the client machine. The database name
specified in isql, the client API or any InterBase driver should be
remote_host/service_name:/database_dir/database_name.ib

Assume that a remote client application wants to access windows server running
on a machine called remote_host running 2 servers with the example
configuration specified above. The client machine will need to have the same
service name set as the server, so the services file will need to have these entries

gds_db 3050/tcp #default InterBase port number
ib_var_a 3051/tcp #VAR A's InterBase port number

In order to access the InterBase 7.5 server running on the 3051 port number use the
following database connection string (through isql or through the API)
remote_host/ib_var_a:c:\database_dir\ib75test.ib.

For older clients specify the service name which is bound to the port number on
which the older server is listening e.g.
remote_host/gds_db:c:\database_dir\ib71test.ib

Accessing local databases

Note Windows platform only.

In order to access a database on a local InterBase server InterBase depends on the
INTERBASE Environment variable to identify the server to be connected to. A pre-
7.5 InterBase server running will be connected to if no server with the InterBase
environment variable setting is running.

In order to access an older server make sure that your application uses the older
gds32.dll. To access a older server using a 7.5 InterBase client library make sure
your InterBase environment variable is set to a empty string "".

Applications can also pass in the information regarding the InterBase server they
want to attach to as part of the InterBase database parameter block (isc_dpb
parameter). Setting the isc_dpb_client_interbase_var followed by the length and
the location of the InterBase server will allow the user to specify the InterBase
server to be used. The following code demonstrates how a client should set the
dpb parameter to attach to a InterBase server running with the InterBase
environment variable set to "c:/interbase"

#include <ibase.h>
…
char dpb_buffer[256], dpb;
short dpb_length;
char *ib_server = "c:/interbase";
char *str = "employee.ib";
isc_db_handle db1;

3-6 O p e r a t i o n s G u i d e

M u l t i - I n s t a n c e

ISC_STATUS status_vactor[20];
/* construct the dpb, specifing the IB server to attach to */
dpb = dpb_buffer;
*dpb++ = isc_dbp_version;
*dpb++ = isc_dpb_client_interbase_var;
*dpb++ = strlen(ib_server);
strcpy (dpb, ib_server);
/* set other dpb parameters */
…
/* set the dpb_length as usual */
dpb_length = dpb - dpb_buffer;
/* finally call isc_attach or create with the dpb parameters */
isc_attach_database(status_vector, strlen(str), str, &db1, dpb_length,
dpb_buffer);

Automatic rerouting of databases

Once multiple instance of InterBase servers are running on a machine
simultaneously, this feature will allow setups where some database connections
can be re-routed to a different InterBase server. The user will have to manually
start the different instance of InterBase as an application or service.

Server Side setup
In order to setup simultaneous InterBase servers on a machine follow the
instructions specified above. Once these machines are set up, and running, follow
the instructions below to setup and use the DB_ROUTE database table in the
ADMIN.IB.

The structure of the DB_ROUTE table is as follows:

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-7

M u l t i - I n s t a n c e

The service name that is entered in the set DB_ROUTE table must exist in the
services file:

gds_db 3050/tcp #default InterBase port number
ib_var_a 3051/tcp #VAR A’s InterBase port number

Client side settings
No client side settings are required. In order to access the database
database_name.ib located in the directory database_dir. On a remote machine
remote_host accepting connections on a default port number. The database name
specified in the client API or any InterBase driver would be
remote_host:/database_dir/database_name.ib.

In order to setup the database server AGNI so that it can re-route in coming
connections, for the database c:/smistry/employee.ib to an older server running
on port number specified by the service ib_var_a. The ADMIN.IB database on
server AGNI will need the following row of information in DB_ROUTE table.

Table 3.1 DB_ROUTE table

Column Name Datatype Length Description

DB_NAME VARCHAR 1024 Complete name of the database to
be rerouted, including the path of
the database on the server.
e.g. c:/database_dir/employee.ib

SERVICE_NAME VARCHAR 30 Service name to look up in the
services file for the port number to
be re-routed to. The look up takes
place at the server side, the client is
only aware of the port number and
not the service name.
e.g. ib_var_a

ACTIVATE_ROUTE BOOLEAN Set to true if this re-routing is
active, flase it this re-routing is
disabled.

Table 3.2 DB_ROUTE table

DB_ROUTE Column Name Value

DB_NAME c:/database_dir/employee.ib

SERVICE_NAME ib_var_a

ACTIVATE_ROUTE TRUE

3-8 O p e r a t i o n s G u i d e

S M P s u p p o r t

Since the DB_ROUTE is a regular InterBase table in the ADMIN.IB database you
can use regular SQL to enter, modify or remove database re-routing from
information.

Startup parameters
To accommodate multiple instances of InterBase running on the same machine the
InterBase Guardian and Server now have label names as part of their Service
names.

• InterBase 7.5 %Service Name% Guardian, i.e. InterBase 7.5 server1 Guardian

• InterBase 7.5 (%Service Name%) Server, i.e. InterBase 7.5 server1 Server

The InterBase Server and Guardian have two new command line arguments:

-i %INTERBASE_INSTALL_DIR% -p %SERVICE NAME%

(Command line arguments are called start parameters as far as starting the
applications are concerned)

If you write to the Microsoft auto run registry key entry you will need to do the
same to the \Software\Microsoft\Windows\CurrentVersion\Run registry key
setting too.

Currently the registry key is InterBaseGuardian

Change this to InterBaseGuardian%SERVICE NAME%

The value of this registry key is currently
%INTERBASE_INSTALL_DIR%/bin/ibguard -a

Change this to %INTERBASE_INSTALL_DIR%/bin/ibguard -a -i
%INTERBASE_INSTALL_DIR% -p %SERVICE NAME%

SMP support
InterBase provides symmetric multiprocessor (SMP) support for both clients and
servers. Older versions of InterBase ran on SMP systems safely by allowing only a
single processor at a time to execute within the InterBase components. Current
versions of InterBase exploit SMP hardware by running InterBase threads on all
processors simultaneously for increased throughput and performance.

Important When you purchase a single server license, you acquire the right to use a single
processor. You must purchase one additional license for each additional processor
that you wish to use.

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-9

S M P s u p p o r t

On Windows platforms, the CPU_AFFINITY setting in the ibconfig configuration file
specifies which processors of a multiprocessor system InterBase should use. The
default setting, in effect when CPU_AFFINITY is commented out, is to use as many
processors as licensing permits. See “Expanded processor control:
CPU_AFFINITY” below for how to specify a subset of processors to use.

Expanded processor control: CPU_AFFINITY

On Windows multiprocessor platforms, you can specify which processors
InterBase should use by adding the CPU_AFFINITY parameter to the ibconfig file.
This setting is useful whenever the number of licensed processors is less than the
number of actual processors present.

Important Note that when you purchase a single server license, you acquire the right to use a
single processor. You must purchase one additional license for each additional
processor that you wish to use.

The CPU_AFFINITY parameter populates a bit vector in which each bit represents a
processor on the system on which the threads are allowed to run. The maximum
number of processors depends on the operating system. To specify which
processors should be used, give CPU_AFFINITY a decimal value that corresponds to
the binary value that results from setting a bit for each desired machine. For
example, to use processors 2 and 3, set CPU_AFFINITY to 6:

CPU_AFFINITY6

ibconfig parameter: MAX_THREADS

Setting the MAX_THREADS parameter in ibconfig controls the maximum number of
threads that can be active at one time within the InterBase engine. The default
setting is 100:

MAX_THREADS100

This configuration parameter controls the number of active threads in the engine.
The ideal setting for this number depends partly on the nature of the work being
performed by your clients. If you have many clients performing very similar tasks,
you may want to lower the MAX_THREADS setting to reduce contention. On the
other hand, if simultaneous activity is highly diverse, setting this to a higher value
may increase throughput.

To use these processors CPU_AFFINITY value Array setting

1 1 0 0 1

2 2 0 1 0

1 and 2 3 0 1 1

3 4 1 0 0

2 and 3 6 1 1 0

1, 2, and 3 7 1 1 1

3-10 O p e r a t i o n s G u i d e

H y p e r t h r e a d i n g s u p p o r t o n I n t e l p r o c e s s o r s

Note that this setting does not affect the maximum possible threads that can be
created by the InterBase server but only the number that can be active in the
engine at one time.

Hyperthreading support on Intel processors
InterBase can support hyperthreading on Intel processors that support logical
processors using Intel’s hyperthreading technology. To enable this support in the
InterBase server, you must make a setting in the InterBase configuration file,
ibconfig. If you are running the InterBase server on a machine with hyperthreaded
processors, edit the ENABLE_HYPERTHREADING parameter in the configuration file.
By default, this parameter is set to zero. Set the value to 1 to allow the InterBase
server to use hyperthreaded processors.

Using InterBase Manager to start and stop InterBase
The InterBase Server and InterBase Guardian must be started before you enable
database connections. On Windows platforms, you can use the InterBase Manager
to start and stop the InterBase Server and Guardian. In previous versions of
InterBase the InterBase Manager is a Windows Control Panel applet. Now the
InterBase Manager is an application installed for each instance of the InterBase
Server installed. To start the InterBase Manager, choose Start|Programs|
<InterBase install directory>. You can use InterBase Manager to do the following:

• Choose the server startup mode: whether to start the InterBase server manually,
or have it start automatically at system boot time

• Change the path to the server: if you click the Change option, you can browse
and select a different directory

• Change how InterBase Server operates. By default, InterBase runs automatically
as a service on Windows server platforms, though it is possible (but not
recommended) to run it as an application. On Windows non-server platforms,
InterBase runs only as an application.

Note To start InterBase Server as an application from a command prompt or in a batch
file, invoke InterBase Guardian with the following options:

ibguard -a -p service_name -i interbase_env_variable

Options Commands are:

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-11

S t a r t i n g a n d s t o p p i n g t h e I n t e r B a s e S e r v e r o n U N I X

InterBase Guardian starts the server, and places an icon in the System Tray.

• Start InterBase Server and InterBase Guardian, via a Start/Stop button. Click
Start in the InterBase Manager Status area to start InterBase Server (and
InterBase Guardian). The server status changes, and an InterBase Guardian icon
appears in the system tray. Once you have started the InterBase Server, you can
exit InterBase Manager, and both InterBase Server and InterBase Guardian will
continue to run. The InterBase Guardian icon remains in the System Tray until
you stop the server.

• Stop InterBase Server and InterBase Guardian, via a Start/Stop button. Click
Stop in the InterBase Manager Status area to stop InterBase Server (and
InterBase Guardian). Or, right-click the InterBase Guardian icon in the System
Tray and choose Shutdown.

Starting and stopping the InterBase Server on UNIX
The following sections describe how to start and stop the InterBase server on
UNIX.

Using ibmgr to start and stop the server
The InterBase Server process ibserver runs as a daemon on UNIX systems. Use
ibmgr to start and stop the server process. To use ibmgr, you must be logged on to
the server machine.

Syntax ibmgr -command [-option [parameter] ...]

or

ibmgr u
IBMGR> command [-option [parameter]]

Description On UNIX, the InterBase server process runs as a daemon. A daemon runs even
when no user is logged in to the console or a terminal on the UNIX system.

Table 3.3

Command/option Description

-a Start as application

-i Environment variable; identifies the Server location for
clients that want to connect locally to the Server

-p Port number; where the service_name is the entry in the
services file pointing to the port number where InterBase
Server listens for connection requests from clients

3-12 O p e r a t i o n s G u i d e

S t a r t i n g a n d s t o p p i n g t h e I n t e r B a s e S e r v e r o n U N I X

ibmgr is a utility for managing the InterBase server process on UNIX systems. You
must be logged on to the machine on which the server is running to use ibmgr.

Note The ibmgr32.exe file that is present in older Windows installations is an older client-
side utility whose functions are entirely different than ibmgr on UNIX. The name
is coincidental.

Options

Starting the server
To start the InterBase server, log in as the “root” or “interbase” user. (“interbas” is
a synonym for “interbase,” to accommodate operating systems that do not
support nine-character account names.) For example, start InterBase with the
following command:

ibmgr -start -p service_name

Note Once you have started ibserver using one login, such as “root,” be aware that all
objects created belong to that login. They are not accessible to you if you later start
ibserver as one of the other two (“interbas” or “interbase”). It is highly
recommended to run the InterBase Server as “interbase.” If the -p option is not
specified, the default of gds_db is used.

InterBase Classic uses the inetd process to handle incoming requests. There is no
need to explicitly start the server; inetd forks off a process to handle incoming
requests. Usually, inetd is set up to start automatically.

Stopping the server
Note For safety, make sure all databases have been disconnected before you stop the

server.

The command switches -user and -password can be used as option switches for
commands like -start or -shut. For example, you can shut down a server in any of
the following ways:

start [-once|-forever] Starts server; the -forever switch causes the
server to restart if it crashes; default is -forever

shut Rolls back current transactions, terminates
client connections, and shuts down server
immediately

show Shows host, port and user

user user_name Supplies SYSDBA

password password Supplies SYSDBA password

help Prints help text

quit Quits prompt mode

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-13

S t a r t i n g a n d s t o p p i n g t h e I n t e r B a s e S e r v e r o n U N I X

ibmgr -shut -password password

or

ibmgr u
IBMGR> shut -password password

or

imbgr u
IBMGR> password password
IBMGR> shut

Note The -shut option rolls back all current transactions and shuts down the server
immediately. If you need to allow clients a grace period to complete work and
detach gracefully, use shutdown methods for individual databases. See “Shutting
down and restarting databases” on page 6-29.

Starting the server automatically
To configure a UNIX server to start the InterBase Server automatically at server
host boot-time, you must install a script that the rc initialization scripts can run.
Refer to /etc/init.d/README for more details on how UNIX runs scripts at boot-
time.

Example initialization script
#!/bin/sh
ibserver.sh script - Start/stop the InterBase daemon

Set these environment variables if and only if they are not set.
: ${INTERBASE:=/usr/interbase}
WARNING: in a real-world installation, you should not put the
SYSDBA password in a publicly-readable file. To protect it:
chmod 700 ibserver.sh; chown root ibserver.sh
export INTERBASE

ibserver_start() {
This example assumes the InterBase server is
being started as UNIX user ’interbase’.
echo '$INTERBASE/bin/ibmgr -start -forever' | su interbase

}

ibserver_stop() {
No need to su.
$INTERBASE/bin/ibmgr -shut -user SYSDBA -password password

}

case $1 in
’start’) ibserver_start ;;
’start_msg’) echo 'InterBase Server starting...\c' ;;

3-14 O p e r a t i o n s G u i d e

S t a r t i n g a n d s t o p p i n g t h e I n t e r B a s e S e r v e r o n U N I X

’stop’) ibserver_stop ;;
’stop_msg’) echo 'InterBase Server stopping...\c' ;;

*) echo 'Usage: $0 { start | stop }' ; exit 1 ;;
esac

exit 0

Example initialization script installation on Solaris
1 Log in as root.

$ su

2 Enter the example script above into the initialization script directory.
vi /etc/init.d/ibserver.sh

3 Enter text
4 Link the initialization script into the rc directories for the appropriate run levels

for starting and stopping the InterBase server.
ln /etc/init.d/ibserver.sh /etc/rc0.d/K30ibserver
ln /etc/init.d/ibserver.sh /etc/rc2.d/S85ibserver

Example initialization script installation on Linux
1 Log in as root.

$ su

2 Enter the Linux example script (given below) into the initialization script
directory.
cp ibserver.sh /etc/rc.d/init.d/ibserver.sh
chmod 700 /etc/rc.d/init.d/ibserver.sh

3 Link the initialization script into the rc directories for the appropriate run levels
for starting the InterBase server.
ln -s /etc/rc.d/init.d/ibserver.sh /etc/rc.d/rc0.d/S85ibserver

4 Link the initialization script into the rc directories for the appropriate run levels
for stopping the InterBase server.
ln -s /etc/rc.d/init.d/ibserver.sh /etc/rc.d/rc0.d/K30ibserver

5 Make sure you have host equivalence:
touch /etc/gds_hosts.equiv
echo “+” >> /etc/gds_hosts.equiv

6 Make sure you don’t have an inetd entry for InterBase Classic:
echo -e “/gds_db/s/^/#/\nwq” | ed /etc/inetd.conf
killall -HUP inetd

Example Linux initialization script
#!/bin/sh
ibserver.sh script - Start/stop the InterBase daemon
Set these environment variables if and only if they are not set.
: ${INTERBASE:=/usr/interbase}
WARNING: in a real-world installation, you should not put the
SYSDBA password in a publicly-readable file. To protect it:

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-15

S t a r t i n g a n d s t o p p i n g t h e I n t e r B a s e S e r v e r o n U N I X

chmod 700 ibserver.sh; chown root ibserver.sh
export INTERBASE

ibserver_start() {
This example assumes the InterBase server is
being started as user “interbase”.
su - interbase -c “$INTERBASE/bin/ibmgr -start -forever”
RETVAL=$?
[$RETVAL -eq 0] && touch /var/lock/subsys/ibserver

}

ibserver_stop() {
No need to su.
$INTERBASE/bin/ibmgr -shut -user SYSDBA -password password
RETVAL=$?
[$RETVAL -eq 0] && rm -f /var/lock/subsys/ibserver

}

if [! -d “$INTERBASE”] ; then
echo “$0: cannot find InterBase installed at $INTERBASE” >&2
exit 1

fi
if [! -x “$INTERBASE/bin/ibmgr”] ; then

echo “$0: cannot find the InterBase SuperServer manager as
$INTERBASE/bin/ibmgr” >&2

if [! -x “$INTERBASE/bin/gds_inet_server”] ; then
echo “$0: this is InterBase Classic; use inetd instead of

ibserver daemon” >&2
fi
exit1

fi

case $1 in
’start’)

ibserver_start ;
echo “InterBase started” ;;

’start_msg’)
echo 'InterBase Server starting...\c' ;;

’stop’)
ibserver_stop ;
echo “InterBase stopped” ;;

’stop_msg’)
echo 'InterBase Server stopping...\c' ;;

’restart’)
ibserver_stop ; ibserver_start
echo “InterBase restarted” ;;

’restart_msg’)

3-16 O p e r a t i o n s G u i d e

T h e a t t a c h m e n t g o v e r n o r

echo 'InterBase Server restarting...\c' ;;

*) echo “Usage: $0 { start | stop | restart }” ; exit 1 ;;
esac

exit 0

The attachment governor
The InterBase server has an attachment governor that regulates the number of
attachments to the server. Multiply the value of the USERS field in the license file by
four to determine the total number of permitted concurrent attachments.

All successful attempts to create or connect to a database increment the number of
current attachments. Both local and remote connections count toward the
connection limit. Connections are permitted by the governor until the maximum
number of concurrent attachments is reached. All successful attempts to drop or
disconnect from a database decrement the number of current attachments.

Once the maximum number of attachments is reached, the server returns the error
constant isc_max_att_exceeded (defined in ibase.h), which corresponds to the
message:

Maximum user count exceeded. Contact your database administrator.

Using environment variables
This section describes the environment variables that InterBase recognizes. When
defining environment variables, keep these rules in mind:

• Environment variables must be in the scope of the ibserver process.

• On Windows, define environment variables as system variables in the Windows
Control Panel|System dialog.

• On UNIX, the easiest way to define environment variables is to add their
definitions to the system-wide default shell profile.

ISC_USER and ISC_PASSWORD

If you do not provide a user name and password when you connect to a database
or when you run utilities such as gbak, gstat, and gfix, InterBase looks to see if the
ISC_USER and ISC_PASSWORD environment variables are set; if they are, InterBase
uses that user and password as the InterBase user.

Although setting these environment variables is convenient, do not do so if
security is at all an issue.

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-17

U s i n g e n v i r o n m e n t v a r i a b l e s

The INTERBASE environment variables

INTERBASE
The INTERBASE variable is used both during installation and during runtime.
During installation, it defines the path where the InterBase product is installed. If
this path is different from /usr/interbase, all users must have the correct path set at
runtime. During runtime, use the INTERBASE variable to set the InterBase install
directory. The INTERBASE environment variable is used on Windows for local
connections, the INTERBASE environment variable is used by the client to identify
the local instance of InterBase Server to attach to.

INTERBASE_TMP
The INTERBASE_TMP variable can be used to set the location of InterBase’s sort files
on the server. There are other options for defining the location of these files. See
“Configuring sort files” on page 3-18.

INTERBASE_LOCK and INTERBASE_MSG
INTERBASE_LOCK sets the location of the InterBase lock file and INTERBASE_MSG
sets the location of the InterBase message file. These two variables are independent
of each other and can be set to different locations.

IB_PROTOCOL
The IB_PROTOCOL is used to specify which port you want the InterBase Server to
use during runtime. It is also used by the InterBase Manager to identify which
InterBase Server to manage. It is used by the InterBase clients to identify the
instance of InterBase server to connect to.

Important The environment variables must be in the scope of the ibserver process. On
Windows platforms, define the variables as system variables in the Control Panel|
System|Environment dialog. On UNIX, the easiest way to do this is to add the
variable definition to the system-wide default shell profile.

The TMP environment variable
The TMP environment variable defines where InterBase stores temporary files, if
the INTERBASE_TMP variable is not defined.

UNIX and Linux host equivalence
On UNIX and Linux machines, you must provide a host equivalence for localhost,
since even local connections go through TCP/IP. To do this, place a line in the
etc/hosts file:

127.0.0.1 localhost

If your local machine has additional names, include them in the line:

127.0.0.1 localhost mymacnine_hame

3-18 O p e r a t i o n s G u i d e

M a n a g i n g t e m p o r a r y f i l e s

Managing temporary files
InterBase creates two types of temporary files: sort files and history list files.

The InterBase server creates sort files when the size of the internal sort buffer isn’t
big enough to perform the sort. Each request (for example, CONNECT or CREATE
DATABASE) gets and shares the same list of temporary file directories. Each request
creates its own temporary files (each has its own I/O file handle). Sort files are
released when sort is finished or the request is released. If space runs out in a
particular directory, InterBase creates a new temporary file in the next directory
from the directory list. If there are no more entries in the directory list, it prints an
error message and stops processing the current request.

The InterBase isql client creates the history list files to keep track of the input
commands. Each instance creates its own temporary files, which can increase in
size until they run out of disk space. Temporary file management is not
synchronized between clients. When a client quits, it releases its temporary files.

Configuring history files
To set the location for history files, define the TMP environment variable on your
client machine. This is the only way to define the location of history files. If you do
not set the location for the history files by defining the TMP environment variable,
an InterBase client uses whatever temporary directory it finds defined for the local
system. If no temporary directory is defined, it uses /tmp on a UNIX system or
C:\temp on a Windows system.

Configuring sort files
You should make sure to have plenty of free space available for temporary sorting
operations. The maximum amount of temporary space InterBase needs might be
larger than the database itself in some cases.

Temporary sort files are always located on the server where the database is hosted;
you should specify temporary directories on disk drives that are physically local to
the server (not on mapped drives or network mounted file systems).

There are two ways to specify directories for sort files:

• You can add an entry to the $INTERBASE/ibconfig file to enable directory and
space definition for sort files. The syntax is:

TMP_DIRECTORY size “pathname”

Important The pathname must be in double quotes, or the config file will fail.

This defines the maximum size in bytes of each sort directory. You can list
several directories, each on its own line with its own size specification and can
specify a directory more than once with different size configurations. InterBase
exhausts the space in each specification before proceeding to the next one.

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-19

C o n f i g u r i n g p a r a m e t e r s i n i b c o n f i g

For example, if you specify dir1 with a size of 5,000,000 bytes, then specify dir2
with 10,000,000 bytes, followed by dir1 with 2,000,000 bytes, InterBase uses dir1
until it reaches the 5,000,000 limit, then uses dir2 until it has filled the 10,000,000
bytes allocated there, and then returns to dir1 where it has another 2,000,000
bytes available. Below are the ibconfig entries that describe this configuration:

TMP_DIRECTORY 5000000 “C:\dir1”
TMP_DIRECTORY 10000000 “D:\dir2”
TMP_DIRECTORY 2000000 “C:\dir1”

• You can use the INTERBASE_TMP and TMP environment variables to define the
location.

If you specify temporary directories in ibconfig, the server uses those values for the
sort files and ignores the server environment variable values. If you don’t specify
configuration of temporary directories in ibconfig, then the server picks a location
for a sort file based on the following algorithm:

1 Use the directory defined in INTERBASE_TMP environment variable

2 If INTERBASE_TMP isn’t defined, use directory defined in TMP environment
variable

3 If TMP isn’t defined, default to the /tmp directory (UNIX) or C:\temp (Windows)

Configuring parameters in ibconfig
You specify configuration parameters for InterBase Server by entering their names
and values in the configuration file, ibconfig. Entries are in the form:

parameter <whitespace> value

• parameter is a string that contains no whitespace and names a property of the
server being configured.

• value is a number or string that is the configuration of the specified property.

Each line in ibconfig is limited to 80 characters, including the parameter name and
any whitespace.

If you specify a value of zero or less for a parameter, the server ignores the setting
and uses the default value for that parameter. However, there is no upper limit
applied to these parameters.

The server reports the values for each of these parameters in the interbase.log file on
startup.

When a parameter is commented out in the ibconfig file, the server uses the default
value.

3-20 O p e r a t i o n s G u i d e

C o n f i g u r i n g p a r a m e t e r s i n i b c o n f i g

The following is a summary of allowable entries in ibconfig:

Table 3.4 Contents of ibconfig

Parameter Description

ADMIN_DB • Name of the InterBase security database
• Needed only if the security database is not named

admin.ib
• Must always be in the InterBase home directory

ANY_EVENT_MEM_SIZE • Bytes of shared memory allocated for event
manager

• Default is 32768

ANY_LOCK_MEM_SIZE • Bytes of shared memory allocated for lock
manager

• Default is 98304

ANY_LOCK_SEM_COUNT • Number of semaphores for interprocess
communication (Classic architecture only)

• Default is 32

ANY_LOCK_SIGNAL • UNIX signal to use for interprocess
communication (Classic architecture only)

• Default is 16

CPU_AFFINITY • [Windows only] In an SMP system, sets which
processors can be used

• Default is all processors (entry is commented out)

CONNECTION_TIMEOUT • Seconds to wait before concluding an attempt to
connect has failed

• Default is 180

DATABASE_CACHE_PAGES • Server-wide default for the number of database
pages to allocate in memory per database

• Can be overridden by clients
• See “Configuring the database cache” on

page 6-23 for more information
• Defaults: 2048

DEADLOCK_TIMEOUT • Seconds before an ungranted lock causes a scan to
check for deadlocks

• Default is 10

DUMMY_PACKET_INTERVAL • Seconds to wait on a silent client connection before
the server sends dummy packets to request
acknowledgment

• Default is 60

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-21

C o n f i g u r i n g p a r a m e t e r s i n i b c o n f i g

ENABLE_HYPERTHREADING • Specifies whether hyperthreading should be
enabled on Intel processors that support logical
processors

• Valid values are: 1 (enable) and 0 (disable)
• Default is 0

EXTERNAL_FILE_DIRECTORY • If your external database files are not in
<interbase_home>/ext, specify their location here.

• For security reasons, do not put other files in this
directory.

EXTERNAL_FUNCTION_DIRECTORY • If your UDF library is not in
<interbase_home>/UDF, specify its location here.

• For security reasons, do not put other files in this
directory.

LOCK_ACQUIRE_SPINS • Number of spins during a busy wait on the lock
table mutex

• Relevant only on SMP machines
• Default is 0

LOCK_HASH_SLOTS • Tune lock hash list; more hash slots means shorter
hash chains

• Not necessary except under very high load
• Prime number values are recommended
• Default is 101

MAX_THREADS • Controls the maximum number of threads that
can be active at one time within the InterBase
engine

• Default is 100w

SERVER_CLIENT_MAPPING • Size in bytes of one client’s portion of the memory
mapped file used for interprocess communication

• Default is 4096

SERVER_PRIORITY_CLASS • Priority of the InterBase service on Windows
server platforms

• The value 1 is low priority, 2 is high priority
• Relevant only on Windows server platforms
• Default is 1

SERVER_WORKING_SIZE_MAX • Threshold above which the OS is requested to
swap out all memory

• Relevant only on Windows server platforms
• Default is 0 (system-determined)

Table 3.4 Contents of ibconfig (continued)

Parameter Description

3-22 O p e r a t i o n s G u i d e

C o n f i g u r i n g p a r a m e t e r s i n i b c o n f i g

SERVER_WORKING_SIZE_MIN • Threshold below which the OS is requested to
swap out no memory

• Relevant only on Windows server platforms
• Default is 0 (system-determined)

SWEEP_QUANTUM • Maximum number of records that a garbage
collector thread or a sweeper thread is allowed to
work before yielding control back to the worker
threads

• If you increase SWEEP_QUANTUM, consider
increasing SWEEP_YIELD_TIME also

• Default is 10

SWEEP_YIELD_TIME • Time in milliseconds the sweeper or garbage
collector thread sleeps

• Does not affect worker threads
• If you increase SWEEP_YIELD_TIME, consider

increasing SWEEP_QUANTUM also
• Default is 1 millisecond

TMP_DIRECTORY • Directory to use for storing temporary files
• Specify number of bytes available in the directory

and the path of the directory
• List multiple entries one per line; each directory is

used according to the order specified
• Default is the value of the INTERBASE_TMP

environment variable; otherwise /tmp on UNIX or
C:\temp on Windows

USER_QUANTUM • Maximum number of records that a worker
thread (thread running an user query) is allowed
to work before yielding control back to other
threads

• Default is 250

V4_EVENT_MEMSIZE • Bytes of shared memory allocated for event
manager

• Default is 32768
• Overridden by ANY_EVENT_MEMSIZE

V4_LOCK_GRANT_ORDER • 1 means locks are granted first come, first served
• 0 means emulate InterBase V3.3 behavior, where

locks are granted as soon as they are available; can
result in lock request starvation

• Default is 1

Table 3.4 Contents of ibconfig (continued)

Parameter Description

C h a p t e r 3 S e r v e r C o n f i g u r a t i o n 3-23

V i e w i n g t h e s e r v e r l o g f i l e

Viewing the server log file
InterBase Server logs diagnostic messages in the file interbase.log in the InterBase
install directory. Any messages generated by ibserver are sent to this file. This can
be an important source of diagnostic information if your server is having
configuration problems.

Refer to the Language Reference for a list of error messages that can appear in this
file.

IBConsole displays this log file in a standard text display window. To display the
Server Log dialog:

• Select a server and expand it if it is not already expanded, click Server Log and
then double-click View Logfile in the Work pane.

• Right-click a server in the Tree pane and choose View Logfile from the context
menu.

• Select a server and then choose View Logfile from the Server menu.

V4_LOCK_MEM_SIZE • Bytes of shared memory allocated for lock
manager

• Default is 98304
• Overridden by ANY_LOCK_MEM_SIZE

V4_LOCK_SEM_COUNT • Number of semaphores for interprocess
communication (Classic architecture only)

• Default is 32
• Overridden by ANY_LOCK_SEM_COUNT

V4_LOCK_SIGNAL • UNIX signal to use for interprocess
communication (Classic architecture only)

• Default is 16
• Overridden by ANY_LOCK_SIGNAL

V4_SOLARIS_STALL_VALUE • Number of seconds a server process waits before
retrying for the lock table mutex

• Relevant on Solaris only
• Default is 60

Table 3.4 Contents of ibconfig (continued)

Parameter Description

3-24 O p e r a t i o n s G u i d e

V i e w i n g t h e s e r v e r l o g f i l e

Figure 3.1 Server Log dialog

The standard text display window enables you to search for specific text, save the
text to a file, and print the text. For an explanation of how to use the standard text
display window, see “Standard text display window” on page 2-7.

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-1

C h a p t e r

Chapter 4Network Configuration
This chapter details issues with configuring InterBase in a networked
client/server environment. Topics include network protocols supported by
InterBase, remote connection specifiers, and network troubleshooting tips.

Network protocols
InterBase supports TCP/IP for all combinations of client and server platforms.
Additionally, InterBase supports NetBEUI on Windows server platforms and for
all Windows clients, and a local connection mode (involving interprocess
communication but no network interface) for Windows clients.

InterBase is designed to allow clients running one operating system to access an
InterBase server that is running on a different platform and operating system than
the client.

In the following table, Windows non-server platforms are Windows NT, 2000, and
XP Pro. Windows non-server platforms are Windows 98SE, ME, and XP Home.

Table 4.1 Matrix of connection supported protocols

InterBase server platform

Client platform
Windows
non-server

Windows
server UNIX

Windows non-server TCP/IP, Local TCP/IP, NetBEUI TCP/IP

Windows server TCP/IP TCP/IP, NetBEUI,
Local

TCP/IP

UNIX/Linux TCP/IP TCP/IP TCP/IP

4-2 O p e r a t i o n s G u i d e

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

Connecting to servers and databases
Before performing any database administration tasks, you must first register and
log in to a server. Once you log in, you can register and connect to databases
residing on the server. You can switch context from one connected database to
another by selecting the desired database from the IBConsole Tree pane. The
selected database in the Tree pane is referred to as the current database. The selected
server or the server where the current database resides is referred to as the current
server.

Registering a server
You can access the Register Server and Connect dialog in IBConsole by one of the
following methods:

• Choose Server|Register or click the Register Server toolbar button.

• Double-click InterBase Servers in the Tree pane.

• Right-click InterBase Servers or any server in the Tree pane and choose Register
from the context menu.

Figure 4.1 Register Server and Connect dialog

To register a local or remote server
1 Select either the Local Server option or the Remote Server option.

2 If you choose Local Server, the Server Name, Network Protocol and Alias Name
information is not required. These text fields are disabled. You can proceed to
step 5.

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-3

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

3 If you choose Remote Server, type the name of the server in the Server Name
text field, select a network protocol from the drop-down list, and enter a server
alias name in the Alias Name text field. Check the Save Alias Information check
box if you wish to save the server alias name in the windows registry.

The InterBase server name is the name of the database server machine. There is
not a specific name for the InterBase server process itself. For example, if the
server is running on the NT server “venus”, you enter this name in the Server
Name text field.

The network protocol you select can be TCP/IP on any platform. On Windows,
it can also be NetBEUI or local. Protocols are valid only when they are
supported by both the client and the server.

4 Optionally, enter a description name for the server.

5 At this point you can choose to just register the server (without logging in) or
you can choose to register and connect to the server simultaneously.

• If you want to just register the server you can ignore the Login Information
and click OK.

• If you want to register and connect to the server simultaneously, enter a
username and password in the corresponding text fields and click OK.

The usernames and passwords must be the InterBase usernames and passwords
stored in the InterBase security database (admin.ib by default) on the server.

Once a server is registered, IBConsole displays it in the Tree pane.

Logging in to a server
You can access the Server Login dialog in IBConsole by one of the following
methods:

• In the Tree pane, select a registered server that is not already logged in. Choose
Server|Login or double-click Login in the Work pane.

• In the Tree pane, double-click a registered server that is not already logged in.

• In the Tree pane, right-click a registered server that is not already logged in and
choose Login from the context menu.

4-4 O p e r a t i o n s G u i d e

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

The Server Login dialog appears:

Figure 4.2 Server Login dialog

To log in to a server
1 Verify that the server displayed in the Server field is correct.

2 Enter a username and password in the corresponding text fields. For
convenience, IBConsole defaults the UserName text field to the last username
that was used to log in (successfully or unsuccessfully).

The usernames and passwords must be the InterBase usernames and passwords
that are stored in the InterBase security database (admin.ib by default) on the
server.

The username is significant to 31 characters and is not case-sensitive. The
password is significant to eight characters and is case-sensitive.

All users must enter their username and password to log in to a server. The
username and password are verified against records in the security database. If
a matching record is found, the login succeeds.

3 Click Login to log in to the server.

Important Initially, every server has only one authorized user with username SYSDBA. The
SYSDBA must log on and add other authorized users. For more information about
how to add new users, see “User administration with IBConsole” on page 5-9.

Logging out from a server
Logging out from a server automatically disconnects all databases but does not
un-register any databases on the server.

You can log out from a server in IBConsole by one of the following methods:

• Select a connected server in the Tree pane (you can also select any branch under
the desired server hierarchy) and choose Server|Logout.

• Select a connected server in the Tree pane and double-click Logout in the Work
pane.

• Right-click a connected server in the Tree pane and choose Logout from the
context menu.

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-5

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

A confirmation dialog asks you to confirm that you wish to close the connection to
the selected server. Click Yes if you want to log out from the server, otherwise click
No.

Unregistering a server
You can unregister a disconnected server in IBConsole by one of the following
methods:

• Select a server in the Tree pane and choose Server|Un-register or click the
Unregister Server toolbar button

• Select a server in the Tree pane and double-click Un-register Server in the Work
pane.

• Right-click a server in the Tree pane and choose Un-register from the context
menu.

A confirmation dialog asks you to confirm that you wish to un-register the
selected server. Click Yes if you want to un-register the server, otherwise click No.

Note Un-registering a server removes that server from the Tree pane and automatically
logs you out of the current server as well as disconnects and un-registers any
databases on the server.

Registering a database
You can access the Register Database and Connect dialog in IBConsole by one of
the following methods:

• Choose Database|Register.

• Expand a connected server branch. Right-click Databases in the Tree pane and
choose Register from the context menu.

• Select a disconnected database in the Tree pane and double-click Register in the
work pane, or right-click the database and choose Register from the context
menu.

The Register Database and Connect dialog appears:

4-6 O p e r a t i o n s G u i d e

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

Figure 4.3 Register Database and Connect dialog

To register a database
1 Make sure the server displayed in the Server field is correct.

2 Enter the database filename, including the path where the file is located, in the
File text field. For databases that reside on the local server, you also have the
option of clicking the Browse button to locate the file you want. The Browse
button is disabled for all remote servers.

3 Type an alias name for the database in the Alias Name text field. This is the
name that will appear in the IBConsole window. If you omit this step, the alias
defaults to the filename that you select in step 2.

4 Check the Save Alias Information check box if you wish to permanently register
the database. This saves the database alias name in the Windows registry.

5 At this point you can choose to just register the database without connecting, or
you can choose to register and connect to the database simultaneously.

If you only want to register the database, ignore the Login Information and click
OK.

6 If you want to register and connect a database simultaneously, type the
username, password and optional role and default character set for the
database in the corresponding text fields and click OK.

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-7

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

If you want to connect using a role, specify the role in the Role text field. This is
optional. Connecting using a role gives you all privileges that have been
assigned to that role, assuming that you have previously been granted that role
with the GRANT statement. For more information on roles, refer to “SQL roles”
on page 5-7.

Once you register a database, it appears in the Tree pane.

Connecting to a database
IBConsole provides two methods for connecting to a database. The first method is
a quick connect using the username and password that were supplied with the
login to the server to instantaneously connect the database. The second method
allows you to connect to the database using a different username and password by
accessing the Database Connect dialog.

Connect
If you want to perform an automatic connect, using the username and password
supplied for the server login to instantaneously connect the database, you can do
so by one of the following methods:

• Select a disconnected database in the Tree pane. Choose Database|Connect,
choose Connect in the Work pane, or click on the Database Connect toolbar
button.

• Right-click a disconnected database in the Tree pane and choose Connect from
the context menu.

• Double-click a disconnected database in the Tree pane.

Once you connect to a database, the database tree expands to display the database
hierarchy.

Connect as
If you want to access the Connect Database dialog in IBConsole to connect to the
database using a different username and password from that which was supplied
in the server login, you can do so by one of the following methods:

• Select a disconnected database in the Tree pane. Choose Database|Connect As
or choose Connect As in the Work pane.

• Right-click a disconnected database in the Tree pane and choose Connect As
from the context menu. This displays the Database Connect dialog box:

4-8 O p e r a t i o n s G u i d e

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

To connect to a database
1 Verify that the database displayed in the Database field is correct.

2 Type the username and password for the database in the corresponding User
Name and Password text fields.

3 If you want to connect as a role, specify the role in the Role text field. This is
optional. Connecting as a role gives you all privileges that have been assigned
to that role, assuming that you have previously been granted that role with the
GRANT statement. Once you have typed a character in the Role field, the Case
Sensitive Role Name field becomes active. Check this box if you want the server
to consider case in the role name. Role names are case insensitive by default.

For more information on roles, refer to “SQL roles” on page 5-7

4 Select the SQL Client dialect. The dialect for the database connection will
default to the lower value of the client or server. For more information on SQL
dialects, refer to “Understanding SQL Dialects” in the migration appendix of
the InterBase Operations Guide.

5 Optionally, you can choose a character set to use. If you do not specify one here,
the server uses the default set that was specified at creation time.

6 Click Connect.

Once you connect to a database, the database tree expands to display the database
hierarchy.

Disconnecting a database
You can disconnect a database in IBConsole by one of the following methods:

• Select a connected database in the Tree pane (you can also select any branch
under the desired database hierarchy) and choose Database|Disconnect or click
the Disconnect Database toolbar button

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-9

C o n n e c t i n g t o s e r v e r s a n d d a t a b a s e s

• Select a connected database in the Tree pane and double-click Disconnect in the
Work pane.

• Right-click a connected database in the Tree pane and choose Disconnect from
the context menu.

A confirmation dialog asks you to confirm that you wish to close the connection to
the selected database. Click OK if you want to disconnect the database, otherwise
click Cancel.

Unregistering a database
Un-registering a database automatically disconnects the current database and
removes it from the Tree pane.

You can unregister a disconnected database in IBConsole by one of the following
methods:

• Select a database in the Tree pane (you can also select any branch under the
desired database hierarchy) and choose Database|Un-register.

• Select a database in the Tree pane and double-click Un-register in the Work
pane.

• Right-click a database in the Tree pane and choose Un-register from the context
menu.

A confirmation dialog asks you to confirm that you wish to un-register the
database. Click Yes if you want to un-register the database, otherwise click No.

Connection-specific examples
Here are some examples of connecting to databases on various types of servers.

• For a Windows server, the database path name must contain the appropriate
drive letter designation. For example, to connect to a local database:

D:\users\accting\fin\accred.ib

• To connect to a database on a remote server using the TCP/IP protocol:

ntserver:D:\users\accting\fin\accred.ib

• To connect via NetBEUI (Windows server platforms only), use UNC notation:

\\ntserver\D:\users\accting\fin\accred.ib

• For a UNIX or Linux server, you must enter the complete and absolute directory
path for the database. For example:

server:/usr/accting/fin/accred.ib

4-10 O p e r a t i o n s G u i d e

C o n n e c t i o n t r o u b l e s h o o t i n g

Connection troubleshooting
This section describes some troubleshooting guidelines for issues related to
network configuration and client/server connections. If you are having trouble
connecting client to server over a network, use the steps listed below to diagnose
the cause. On Windows, you can perform some of these tests using the
Communications Diagnostic dialog. See “Communication diagnostics” on
page 4-15 for more information.

Connection refused errors
If the client fails to reach the server host at all, or the gds_db service fails to answer,
you might get a “connection refused” error. Below is a checklist that you can use to
diagnose the source of this error.

Is there low-level network access between the client and server?
You can quickly test whether the client cannot reach the server because of a
physically disconnected network or improper network software configuration, by
using the ping command. Usage is:

ping servername

Error messages from ping indicate that there is a network problem. Check that the
network is plugged in, that the network wires are not damaged, and that the client
and server software is properly configured.

Test connectivity from the client in question to another server; if it succeeds, this
could rule out improper network configuration on the client.

Test connectivity from another client to the InterBase server host; if it succeeds,
this could rule out improper network configuration on the server.

Can the client resolve the server’s hostname?
InterBase clients must specify the server by name, not by IP address, except in
some Linux distributions. Therefore, the client must be able to resolve the server’s
hostname. For TCP/IP, this is done either by maintaining a hosts file on the client
with the mappings of hostnames to IP addresses, or by the client querying a DNS
server or WINS server to resolve this mapping. Make sure the name server has a
correct entry for the server host in question.

Is the server behind a firewall?
If the database server is behind a software or hardware firewall, all network traffic
could be restricted and the client might not be able to reach the server at all. Some
firewalls permit or restrict traffic based on the port to which the client attempts to
connect. Because of this, it is not conclusive whether a given service can reach the

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-11

C o n n e c t i o n t r o u b l e s h o o t i n g

server. Neither is it an indication of connectivity if the client can resolve the IP
address; that merely indicates that the client can reach a name server that resolves
the InterBase server host’s name.

If the client is separated from the server by a firewall, the client cannot connect.

Are the client and server on different subnets?
NetBEUI cannot route network traffic between subnets. Other protocols can also
be configured to restrict traffic between subnets. If the client and server are on a
complex network with multiple subnets, ask your network administrator if the
network configuration allows you to route network traffic between the client and
server in question using a given protocol.

Can you connect to a database locally?
To confirm that the ibserver process is running on the server and able to attach to
your database, try a local database connection:

1 Log in to the console of the database server host, and run an application such as
command-line isql.

2 Attempt to connect to a database without specifying a hostname: list just the
path.

The Communications Diagnostic dialog also has a local database attachment test.
See “DB Connection tab” on page 4-16 for details.

Note Local connection mode is not available on UNIX servers.

Can you connect to a database loopback?
You can simulate a client/server connection and test the server’s configuration
without the additional variable of the client configuration and intervening
network by connecting in a loopback mode.

1 Log in to the console of the database server host and run an application such as
command-line isql or InterBase IBConsole ISQL.

2 Attempt to connect to the database using a remote connection specification,
even though the server named is also the client host.

Whether this test fails or succeeds, it helps to narrow the focus of further
diagnostic tests. If it fails, you can infer that the server’s configuration is at fault. If
it succeeds, you can infer that the server is not at fault and you can concentrate
further tests on the client.

Is the server listening on the InterBase port?
If the ibserver process on the server has not started, there is no answer to attempts
to connect to the gds_db service (port 3050).

Start the ibserver process on the server. Use ibmgr -start on UNIX, or the InterBase
Manager on Windows. See Chapter 3, “Server Configuration.”

4-12 O p e r a t i o n s G u i d e

C o n n e c t i o n t r o u b l e s h o o t i n g

Is the services file configured on client and server?
The services file must have correct entries to indicate the port number associated
with the named service gds_db. This configuration must be accessible on the client
as well as the server.

gds_db 3050/tcp # InterBase Server

This file is found in the following locations:

Windows server platforms: C:\WINNT\system32\drivers\etc\services.
On Windows non-server platforms: C:\windows\services.
On UNIX: /etc/services.

In a UNIX environment with NIS, the NIS server can be configured to supply the
services file to all NIS clients on UNIX workstations.

Connection rejected errors
If the client reaches the server host and the gds_db service answers but you still
cannot attach to a database, it can result in a “connection rejected” error. Below is a
checklist that you can use to diagnose the source of this error.

Did you get the correct path to the database?
Verify that you supplied the correct path to the database file. Keep in mind:

• On NT/2000, you must supply the drive letter with the path.

• On UNIX, paths are case-sensitive.

• Slash (“/”) vs. backslash (“\”) does not matter, unless you need to use double-
backslashes in string literals in C or C++ code.

Is UNIX host equivalence established?
To use the UNIX user-equivalence feature, there must be a trusted host relationship
between the client and the server. See “Users on UNIX” on page 5-2.

Is the database on a networked file system?
A database file must not reside on an NFS file system or a mapped drive. When
the ibserver process finds such a case, it either denies the connection or passes the
connection request on to the InterBase service running on the file server. See
“Networked file systems” on page 6-5 for more details.

To correct this situation, move your database to a file system on a hard disk that is
physically local to the database server.

Are the user and password valid?
The client application must use a valid user and password combination that
matches an entry in the InterBase security database (admin.ib by default).

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-13

C o n n e c t i o n t r o u b l e s h o o t i n g

Does the server have permissions on the database file?
The ibserver process must have permission to read and write the database file at
the operating system level. Check the permissions on the database file, and the uid
of the ibserver process. (On UNIX, you have the option of running ibserver as
user interbase, a non-superuser uid.)

The the InterBase security database (admin.ib by default) that contains users and
passwords must also be writable by the ibserver process.

Does the server have permissions to create files in
the InterBase install directory?
The ibserver process must have write permission in the InterBase directory (by
default, /usr/interbase on UNIX, C:\Program Files\Borland\InterBase on Windows).
The server process must be able to write to, and perhaps create, the interbase.log file
and other temporary files.

Disabling automatic Internet dialup
Microsoft Windows operating systems offer a networking feature that is
convenient for users who use a modem to connect to the Internet: any TCP/IP
request that occurs on the system activates an automatic modem dialing program.
This is helpful for users who want to connect quickly as they launch a web
browser or email client application.

This convenience feature is unnecessary on systems that use a client/server
application to access an InterBase server on a local network. The TCP/IP service
request that the client invokes triggers the Windows automatic modem dialer. This
interferes with quick network connections from client to server.

This section describes several methods to suppress the automatic modem dial
feature of Windows operating systems. No more than one of these methods should
be necessary to accomplish the networking configuration you need.

Reorder network adapter bindings
You probably have a dialup adapter and an ethernet adapter for your local
network. On Windows, you can reverse the bindings order for your two adapters
to force the ethernet adapter service the TCP/IP request before the dialup adapter
tries. You can do this in the Control Panel by choosing Networking|Bindings|
All Adapters|Move Down.

The local ethernet adapter satisfies TCP/IP requests it can, and those requests that
can't be done locally—such as Internet requests—are passed on to the next adapter
in the list, the dialup adapter.

Disabling autodial in the registry
Perform the following:

1 Start the registry editor with regedit.exe

4-14 O p e r a t i o n s G u i d e

C o n n e c t i o n t r o u b l e s h o o t i n g

2 Move to the registry key HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Internet Settings: EnableAutoDial

3 Change the value from 0 to 1

Preventing RAS from dialing out for local network activity
Perform the following if you are using Windows NT RAS:

1 Start the registry editor, with regedit.exe

2 Move to the registry key HKEY_CURRENT_USER\Software\Microsoft\RAS Autodial\
Addresses

A better way to view these is to type rasautou -s from the command prompt

3 In the subkeys look for the local address and name; select the key and select
Delete from the Edit menu

4 Close the registry editor

You might also wish to add addresses to the disabled list:

5 Start the registry editor with regedt32.exe, not regedit.exe

6 Move to the registry key HKEY_CURRENT_USER\Software\Microsoft\RAS Autodial\Control

7 Double click Disabled Addresses and add the address on a new line; click OK
when you are finished

8 Close the registry editor

You must reboot the machine in both of the above cases.

Other errors

Unknown Win32 error 10061
This error is often associated with a missing server-access license for the InterBase
software on the server host. Make sure you have licensed InterBase server to allow
clients to connect from the network.

Unable to complete network request to host
This error occurs in cases when the InterBase client cannot establish a network
connection to the server host. This can occur for a variety of reasons. Below is a list
of common causes:

• The BDE Administrator requires that you specify the InterBase connect string in
the SERVER NAME alias property. You must use this property and must not use the
PATH alias property, or else you receive the network error message.

• The InterBase client attempts to translate the server portion of your connect
string to an IP address, by calling gethostbyname(). If you supplied an IP address,
gethostbyname() is likely to fail to resolve it. Some modern TCP/IP drivers—

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-15

C o m m u n i c a t i o n d i a g n o s t i c s

including Winsock 2 and Linux TCP/IP—do resolve strings that look like IP
addresses. If you are on Windows, specify hosts by name, or else upgrade your
TCP/IP driver to Winsock 2.

• The InterBase client must look up the InterBase network service by name. If the
client doesn’t find the entry for gds_db in the services file, it might fail to
connect to the server, and give the network error. You can create the entry in the
services file manually, or reinstall InterBase to perform this task.

• The server you specify must be running on the network that you use. If the
hostname corresponds to a host that is inaccessible because of network
interruption, or the host is not running, then the connection request fails with
the network error.

• The syntax of the InterBase connect string determines the network protocol the
client uses to connect to the server host (see “Connection-specific examples” on
page 4-9). Different server platforms support different subsets of network
protocols. If your server does not support the protocol indicated by your
connect string, the connection attempt fails with the network error. For
example, the NetBEUI connection syntax (\\server\C:\path\database.ib) works
only if your server is a windows NT, 2000, or XP server. The syntax does not
work if your server is running UNIX or Linux.

• A network connection request succeeds only if the InterBase server is installed
and active on the server host, and that the InterBase server is licensed to receive
remote connection requests. If there is no process listening for connection
requests, the client’s connection requests with the network error. You should
check that the InterBase server is installed on the server, that it is running, and
that the license includes the Server capability.

Communication diagnostics
Network configuration of a client/server system involves several different
software and hardware layers and proper configuration of each of these layers.
When one or more layers are misconfigured, it is not always evident where the
problem lies. InterBase Communication diagnostics helps to identify the source of
the problem by testing each layer progressively for existing or potential network
problems.

You can access the Communication Diagnostics dialog by one of the following
methods:

• Select a disconnected server in the Tree pane. Choose Server|Diagnose
Connection.

• Right-click InterBase Servers or any disconnected server in the Tree pane and
choose Diagnose Connection from the context menu.

• Select a disconnected server from the Tree pane and double-click Diagnose
Connection in the Work pane.

4-16 O p e r a t i o n s G u i d e

C o m m u n i c a t i o n d i a g n o s t i c s

There are four types of diagnostics that you can perform. The Communications
Diagnostics dialog has separate tabs for each diagnostic type.

DB Connection tab
This test lets you connect to an InterBase database using the InterBase client
libraries. It is the most basic test of InterBase operation and is generally used only
after confirmation that the underlying network is working correctly.

Figure 4.4 Communications dialog: DB Connection

To run a DB Connection test
1 Select either the Local Server option or the Remote Server option.

2 If you choose Local Server, the Server Name and Network Protocol information
is not required. These text fields are disabled. You can proceed to step 5.

3 If you choose Remote Server, type the name of the server in the Server Name
text field.

The InterBase server name is the name of the database server machine. There is
not a specific name for the InterBase server process itself. For example, if the
server is running on the NT server “venus”, you enter this name in the Server
Name text field.

4 If you choose Remote Server, select a network protocol from the drop-down list:
either TCP/IP, NetBEUI, named pipe, or local. Protocols are valid only when
they are supported by both the client and the server.

5 Enter the database filename, including the path where file is located, in the
Database text field. If you selected the Local Server option in step 1 you can also
click the browse button to locate the file you want. If you selected the
Remote Server option, however the browse button is disabled.

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-17

C o m m u n i c a t i o n d i a g n o s t i c s

6 Type the username and password for the database in the corresponding
User Name and Password text fields.

7 Click Test to display the results of the connectivity test in the Results text area.

Sample output (local connection)
Attempting to attach to:

C:\Program Files\Borland\InterBase\examples\Database\employee.gdb
Attaching ...Passed!
Detaching ...Passed!

InterBase Communication Test Passed!

TCP/IP tab
Use this property sheet to test Winsock TCP/IP connectivity.

Figure 4.5 Communications dialog: TCP/IP

To run a winsock TCP/IP connectivity test
1 Enter either a network host name or IP address in the Host text field.

2 Select a service name or number from the dropdown Service list. Possible
service selections are: 21, Ping, 3050, ftp, gds_db.

Select Ping from the Service dropdown list to display a summary of round-trip
times and packet loss statistics.

3 Click Test to display the results of the connectivity test in the Results text area.

Sample results (ftp)
Initialized Winsock.

Attempting connection to DBSERVE.
Socket for connection obtained.

4-18 O p e r a t i o n s G u i d e

C o m m u n i c a t i o n d i a g n o s t i c s

Found service ‘FTP’ at port ‘21’.
Connection established to host ‘DBSERVE’ on port 21.

TCP/IP Communication Test Passed!

Sample results (ping)
Pinging DBSERVE [200.34.4.5] with 32 bytes of data.

Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=1ms TTL=128
Reply from 200.34.4.5: bytes=32 time=0ms TTL=128

Ping statistics for 200.34.4.5:
 Packets: Send = 4, Received = 4, Lost = 0 (0%),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 1ms, Average = 0ms

NetBEUI tab
NetBEUI is supported on all Windows clients, but only Windows server platforms
support NetBEUI as a server.

Table 4.2 Using Communication Diagnostics to diagnose connection problems

If the error message is Then check

Failed to find named port Your services file to be sure there is an entry for gds_db in
the form: gds_db 3050/tcp

Failed to connect to host • Hostname, port 3050
• The InterBase Server to make sure it is installed

properly, is running, and is configured for TCP/IP

Failed to resolve hostname • Hostname
• Your hosts file or DNS to be sure it has an entry for the

server
• That you used a hostname and not an IP address

Unavailable database Whether the InterBase server is running; the server must
be running before attempting a database connection

C h a p t e r 4 N e t w o r k C o n f i g u r a t i o n 4-19

C o m m u n i c a t i o n d i a g n o s t i c s

Use this property sheet to test NetBEUI connectivity between the client and the
server.

Figure 4.6 Communications dialog: NetBEUI

To run a NetBEUI connectivity test
1 Select a Windows server on which InterBase has been installed from the Server

Name drop-down list. If the desired server does not exist in this list, you can
type the server name in the edit portion of the drop-down list.

2 Click Test to display the results of the connectivity test in the Results text area.

Sample output (NetBEUI connection)
Attempting to attach to DBSERVE using
the following named pipe:
 \\dbserve\pipe\interbas\server\qds.db.

NetBEUI Communication Test Passed!

The connection may fail if a Microsoft Windows network is not the default
network for the client. You should also be logged into the Windows network with
a valid user name and password.

4-20 O p e r a t i o n s G u i d e

C o m m u n i c a t i o n d i a g n o s t i c s

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-1

C h a p t e r

Chapter 5Database Security
InterBase provides several methods for configuring and enforcing security by
controlling how a database is accessed and used. Server security enables you to:

• Add a user to the security database

• Delete a user from the security database

• Modify user information in the security database

• Display a list of users in the security database

• Embed user authentication

• Create database alias

• Delete a database alias

• Display a list of all database alias

This chapter gives an overview of these options. The user administration tools are
covered here, but SQL statements for configuring privileges are in other InterBase
books; these passages are referenced where appropriate.

Security model
Security for InterBase relies on a central security database for each server host.
This database, admin.ib by default, contains a record for each legitimate user who
has permission to connect to databases and InterBase services on that host. Each
record includes the user login name and the associated encrypted password. The
entries in this security database apply to all databases on that server host.

The username is significant to 31 characters and is not case sensitive. Password is
significant to eight characters and is case sensitive.

5-2 O p e r a t i o n s G u i d e

S e c u r i t y m o d e l

Before performing any database administration tasks, you must first log in to a
server. Once you log in to a server, you can then connect to databases residing on
the server.

All users must enter their username and password to log in to a server. The
password is encrypted for transmission over the network. The username and
password are verified against records in the security database. If a matching
record is found, the login succeeds.

The SYSDBA user
Every InterBase server has a SYSDBA user, with default password masterkey. SYSDBA
is a special user account that can bypass normal SQL security and perform tasks
such as database backups and shutdowns.

Initially, SYSDBA is the only authorized user on a server; the SYSDBA must
authorize all other users on the server. Only the SYSDBA user can update the
security database to add, delete, or modify user configurations. SYSDBA can use
either gsec or IBConsole to authorize a new user by assigning a username and
password in the security database.

Important We strongly recommend you change the password for SYSDBA as soon as possible
after installing InterBase. If you do not alter the SYSDBA password, unauthorized
users have easy access and none of your databases are secure.

Other users
The SYSDBA account can create other users on a per-server basis. Use gsec or
IBConsole to create, modify, or remove users from the InterBase security database.
These users are authorized to connect to any database on that database server host.
It is a common design strategy to create a distinct InterBase user for each person
who uses the databases on your server. However, other strategies are also
legitimate. For example:

• Create one InterBase user for an entire group of people to use, in order to
simplify password administration. For example, a user FINANCE could satisfy
the access needs for any and all staff in a financial analysis team. This team only
needs to remember one password between them.

• Create one InterBase user for a group of people to use, as warranted by
requirements of distinct privilege configurations. For example, if Erin and
Manuel have identical access to the data within a database, they could use the
same InterBase user account.

Users on UNIX
If both the client and the server are running UNIX, you can allow UNIX
usernames access to databases by configuring the server host to treat the client
host as a trusted host.

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-3

T h e I n t e r B a s e s e c u r i t y d a t a b a s e

To establish a trusted host relationship between two hosts, add an entry in /etc/
hosts.equiv or /etc/gds_hosts.equiv on the server. The former file establishes trusted
host status for any service (for example, rlogin, rsh, and rcp); the latter file
establishes trusted host status for InterBase client/server connections only. The
format of entries in both files is identical; see your operating system
documentation on hosts.equiv for details.

The login of the client user must exist on the server. In addition to the hosts.equiv
method of establishing a trusted host, the you can also use the .rhosts file in the
home directory of the account on the server that matches the account on the client.

The InterBase client library defaults to using the current client’s UNIX login as the
InterBase login only when the client specifies no username through any of the
following methods:

• Database parameter buffer (dpb) parameters—see the API Guide

• Command-line options—for example, -user options of isql or another utility

• Environment variables—see “ISC_USER and ISC_PASSWORD” on page 3-16.

Notes
• This feature is not implemented on Windows servers, because Windows does

not implement a trusted host mechanism as UNIX does.

• Windows clients cannot be treated as trusted hosts by UNIX servers.

The InterBase security database
The InterBase server stores the names and passwords of its authorized users in a
special security database that resides in the InterBase home directory. By default, it
is named admin.ib.

You can use another name for the security database if you wish. If you change this
name, you must add an entry to the ibconfig file, setting ADMIN_DB to the new name.

ADMIN_DB newname.ib

Note In older versions of InterBase, the security database was named isc4.gdb. Because
files with a gdb extension automatically get backed up whenever they are touched
in some versions of Windows XP and ME, using this extension degrades database
performance. Therefore, InterBase recommends using a different extension for
database names.

Every user of an InterBase server requires an entry in the InterBase security
database. The gsec security utility lets you display, add, modify, or delete
information in the security database. IBConsole provides a graphical interface for
the same functionality. The following table describes the contents of the security
database:

5-4 O p e r a t i o n s G u i d e

E m b e d d e d d a t a b a s e u s e r a u t h e n t i c a t i o n

Embedded database user authentication
Embedded user authentication stores username/password accounts in the
database. This overrides the server-wide admin.ib for user authentication. Only
the database owner is allowed to administer embedded user authentication
against a database. A normal user may alter the password for their user account.

There are some issues to be aware of. Although embedded user authentication is
under backup/restore, users’ passwords may be restored to a prior state after a
database restore if they changed their passwords subsequent to the last backup. It
is possible for users to be locked out if they forget their passwords. The database
owner can always reset passwords for those users.

It is not required to have a SYSDBA user account under embedded user
authentication but neither is it prohibited. If there is a SYSDBA account, it has all
the privileges for the database in which it is embedded, but no other database, that
a SYSDBA for admin.ib would have. One exception is that the SYSDBA cannot
maintain the embedded user authentication admin control for an embedded user
authentication created by another user. The database owner maintains this
privilege.

gsec has a new option, -user_database [database_name], which allows that tool to
maintain user accounts for embedded user authentication enabled databases.
However, dynamic SQL has been added to offer a more convenient way of
accomplishing the same procedure. Currently embedded user authentication DDL
has not been added to gpre.

Table 5.1 Format of the InterBase security database

Column Required? Description

User name Yes The name that the user supplies when logging in;
maximum length is 31 characters

Password Yes The user’s password
• Case sensitive
• Only the first eight characters are significant
• Maximum length: 32 characters.

UID No An integer that specifies a user ID

GID No An integer that specifies a group ID

Full name No User’s real name (as opposed to login name)

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-5

S y s t e m t a b l e s e c u r i t y

System table security
InterBase stores the database metadata in its system tables. These tables have an
intricate set of dependencies between them, and writing to one without sufficient
knowledge can corrupt the database. For this reason, the system tables have the
following default security access applied to them:

• By default, PUBLIC users have only SELECT privileges on the system tables.

• The database owner, the SYSDBA user, and the operating system administrator
(root on UNIX and Administrator on Windows server platforms) have full
access to the system tables, including write permission. These users can, if
desired, assign write privileges to individual users or to PUBLIC, using the
GRANT statement.

Older databases
InterBase applies this default security (no write access for PUBLIC) to older
databases whenever possible:

• The gbak backup/restore utility applies the default security to any database
when it is restored to ODS 10.1 (InterBase 6.5) or later.

• When an InterBase server that is version 6.5 or later attaches an older database,
it applies the default privileges to that database if they are not already present,
even if the database is ODS 10.0 or earlier.

Scripts for changing database security

Three SQL scripts are included in <ib_install>/examples/security directory:
readmeta.sql, writemeta.sql and blindmeta.sql. These scripts can be run against
databases with ISQL to make wholesale changes to a database's system tables
access privileges, except or rdb$users for security purposes.

• readmeta.sql applies the default PUBLIC access privileges: PUBLIC can only select
from the system tables, but the database owner, system administrator, and
SYSDBA user have full access. This script can be used to return a database that
has customized system table privileges back to this default.

• writemeta.sql grants all system table privileges to PUBLIC. This is the behavior
that existed in InterBase 6.0 and earlier.

• blindmeta.sql revokes all system table privileges from PUBLIC. This prevents any
PUBLIC user from querying the system tables, including InterBase and third-
party utilities run by PUBLIC users. For example, gstat, gbak, QLI and
IBConsole would not be able to query system metadata. This script allows
developers to protect their intellectual property by hiding the database design
of tables, stored procedures and triggers from the general public and
competitors. Blind access makes it difficult, if not impossible, for a general user
to generate ad hoc queries against a database.

5-6 O p e r a t i o n s G u i d e

S Q L p r i v i l e g e s

A database with blind access does not prevent any user from using InterBase
Data Definition Language (DDL) to define new database objects. It just prevents
a user from querying or writing to the system tables directly.

isc_blob_lookup_desc() and isc_array_lookup_bounds() Two client-side APIs,
isc_blob_lookup_desc() and isc_array_lookup_bounds(), cannot execute without
SELECT metadata privileges, because the APIs directly query some InterBase
system tables. Thus databases that have had blindmeta.sql run against them are
not able to execute these APIs for any users except the owner, the system
administrator, and SYSDBA.

Older InterBase clients InterBase 6.0 and previous InterBase kits cannot access a
database on behalf of a user if that user has no privileges to the system tables.
Thus an InterBase developer who runs blindmeta.sql on an InterBase database
cannot ship that database to customers with InterBase 6.0 or older runtime kits
and expect those users to be able to access the database. The developer would
have to run readmeta.sql against a copy of the database and ship that to
customers who have older InterBase runtimes.

Migration issues
The InterBase engine automatically installs the default (SELECT-only) SQL
privileges for PUBLIC on the system tables when attaching ODS 10.0 or older
databases. Thus if all users must be able to write to database metadata,
writemeta.sqlwill have to be run against each database to restore that behavior.

SQL privileges
Connecting to a database does not automatically include privileges to modify or
even view data stored within that database. Privileges must be granted explicitly;
users cannot access any database objects until they have been granted privileges.
Privileges granted to PUBLIC apply to all users.

For full description of syntax of SQL privileges, see entries for GRANT and ROLE in
the Language Reference and Data Definition Guide.

Groups of users
InterBase implements features for assigning SQL privileges to groups of users.
SQL roles are implemented on a per-database basis. UNIX groups are
implemented on a server-wide basis, using the UNIX group mechanism.

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-7

G r o u p s o f u s e r s

SQL roles
InterBase supports SQL group-level security as described in the ISO-ANSI Working
Draft for Database Language. For syntax of SQL ROLEs, see the Language Reference
and Data Definition Guide.

Implementing roles is a four-step process.

1 Declare the role with CREATE ROLE.

CREATE ROLE sales;

2 Assign privileges on specific tables and columns to the role using the GRANT
statement.

GRANT UPDATE ON table1 TO sales;

3 Grant the role to users, again with the GRANT statement.

GRANT sales TO user1, user2, user3;

4 Finally, to acquire the privileges assigned to a role, users must specify the role
when connecting to a database.

CONNECT 'foo.ib' USER 'user1' PASSWORD 'peanuts' ROLE sales;

User1 now has update privileges on TABLE1 for the duration of the connection.

A user can belong to only one role per connection to the database and cannot
change role while connected. To change role, the user must disconnect and
reconnect, specifying a different role name.

You can adopt a role when connecting to a database by any one of the following
means:

• To specify a role when attaching to a database through IBConsole ISQL, display the Database
Connect dialog and type a rolename in the Role field.

• To specify a role programmatically upon connection using the InterBase API, use the dpb
parameter isc_dpb_sql_role_name. See chapter 4 of the API Guide.

• To specify a role for a connection made by an embedded SQL application or isql session, use the
ROLE rolename clause of the CONNECT statement. See the statement reference for
CONNECT in the Language Reference.

Note Applications using BDE version 5.02 or later, including Delphi, JBuilder, and
C++Builder, have a property by which they can specify a role name. Also, the
ODBC driver that currently ships with InterBase also recognizes roles.

5-8 O p e r a t i o n s G u i d e

O t h e r s e c u r i t y m e a s u r e s

UNIX groups
Operating system-level groups are implicit in InterBase security on UNIX,
similarly to the way UNIX users automatically supplement the users in the
InterBase security database. For full description of usage and syntax of using
UNIX groups with InterBase security, see the Language Reference and Data
Definition Guide.

Note Integration of UNIX groups with database security is not a SQL standard feature.

Other security measures
InterBase provides some restrictions on the use of InterBase tools in order to
increase security. In addition, there are things that you can do to protect your
databases from security breaches. This section describes these options.

Restriction on using InterBase tools
As a security measure, InterBase requires that only the owner of a database or
SYSDBA can execute gbak, gstat, and gfix.

• Only the database owner or SYSDBA can use gbak to back up a database.
Anyone can restore a database, because there is no concept of an InterBase user
for a backup file. However, only the owner or SYSDBA can restore a database
over an existing database. For security purposes, make sure that your backup
files are stored in a secure location. This prevents unauthorized persons from
restoring databases and gaining access to them.

• On UNIX platforms, there is a further constraint on gstat: to run gstat, you must
have system-level read access to the database file. To access the database with
gstat, you must either be logged into the account running the InterBase server
(“interbase” or “root”) or someone must change the permissions on the
database file to include read permission for your Group.

Protecting your databases
You can take several steps to increase the security of your databases and other files
on your system:

• UNIX and Linux systems: Before starting the InterBase server, log in as user
“interbase” (or “interbas”, if user names longer than eight characters are not
allowed), rather than “root” (only these users can start the server). This restricts
the ability of other users to accidentally or intentionally access or overwrite
sensitive files such as the password file. Start the InterBase server while you are
logged on as user “interbase”.

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-9

U s e r a d m i n i s t r a t i o n w i t h I B C o n s o l e

• Windows server platforms: When the InterBase server is run as a service, you
can protect a database against unauthorized access from outside InterBase (such
as by a copy command), by making the database files readable only by the
system account, under which services run. However, if you make the database
readable only by the system account, remote access to the database must be by
TCP/IP, not by NetBEUI.

• Because anyone can restore a backed up database, it is wise to keep your
backup files in a directory with restricted access. (On a Windows 98SE/ME
platform, you can either move backup files to physical media such as tape or
high-density removable drives and store these securely, or move the backup
files to a system that restricts directory access). On UNIX, only the backup file
itself, not the directory in which it resides, needs to have permissions restricted
to prevent reading by unauthorized persons.

For example, if all of the following are true:

• the backup file has permission 600 (rw-------) or 640 (rw-r-----)

• only trusted persons belong to the groups

• the directory has permission rwxr-xr-x

then persons other than the responsible owner and group can see that the backup
file is there, but they cannot get at it. If the user or backup script issues the
command umask 077 (or 027, as appropriate) before running gbak, unauthorized
persons will not be able to access the backup file, no matter what the permissions
on the directory. (Of course the directory should not be writable by “other”; that
would permit other persons to delete the backup file.)

User administration with IBConsole
User administration is accomplished through the User Information dialog where
you are able to add, modify, view and delete users. User administration can only
be performed after logging in to the server.

Displaying the User Information dialog
You can use any of the following methods to access the User Information dialog:

• Select a logged in server or any branch under the server hierarchy from the list
of registered servers in the Tree pane; choose Server|User Security.

• Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.

• Select Users under the desired server in the Tree pane to display a list of valid
users in the Work pane. Double-click a user name to display the User
Information dialog.

5-10 O p e r a t i o n s G u i d e

U s e r a d m i n i s t r a t i o n w i t h I B C o n s o l e

Figure 5.1 User information dialog

Adding a user
Use the User Information dialog to add new users. To access this dialog follow one
of the methods described in “Displaying the User Information dialog” on page 5-9.

To add a new user
1 Display the User Information dialog in one of the following ways:

• Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security.

• Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.

• Select Users under the desired server in the Tree pane to display a list of valid
users in the Work pane. Double-click a user name to display the User
Information dialog.

2 Click New. The New and Delete buttons are disabled and the Close button
changes to a Cancel button.

3 Type the new username in the User Name text field.

4 Type the user’s password in both the Password and the Confirm Password text
fields.

5 Add any desired optional information in the corresponding text fields. Each of
the optional text fields can be up to 32 characters.

6 Click Apply to add the new user to the security database or click Cancel to
abandon your changes.

Note Usernames can be up to 31 characters long and are not case sensitive. Passwords are
case-sensitive and only the first eight characters are significant. InterBase does not
allow you to create usernames or passwords containing spaces.

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-11

U s e r a d m i n i s t r a t i o n w i t h I B C o n s o l e

Modifying user configurations
Use the User Information dialog to modify user configurations. To access this
dialog follow one of the methods described in “Displaying the User Information
dialog” on page 5-9.

To modify a user’s details
1 Display the User Information dialog in one of the following two ways:

• Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security to
display the User Information dialog.

• Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.

• Select Users under the desired server in the Tree pane to display a list of valid
users in the Work pane. Double-click a user name to display the User
Information dialog.

2 From the User Name drop-down list, select the user whose configuration you
wish to modify. The user’s details display. You can also type the first letter of the
desired username in the User Name drop-down list to quickly scroll to
usernames beginning with that letter. By repeatedly typing that same letter, you
can scroll through all usernames that begin with that letter.

3 Change any of the text fields except the User Name. If you change the
password, you must enter the same password in the Password text field and the
Confirm Password text field.

4 Click the Apply button to save your changes.

You cannot modify a username. The only way to change a username is to delete
the user and then add a user with the new name.

Deleting a user
Use the User Information dialog to removed users from the security database. To
access this dialog follow one of the methods described in “Displaying the User
Information dialog” on page 5-9.

1 Display the User Information dialog in one of the following two ways:

• Select a logged in server or any branch under the server hierarchy from the
list of registered servers in the Tree pane; choose Server|User Security.

• Select a logged in server from the list of registered servers in the Tree pane.
Double-click User Security in the Work pane or right-click the selected server
and choose User Security from the context menu.

5-12 O p e r a t i o n s G u i d e

U s e r a d m i n i s t r a t i o n w i t h t h e I n t e r B a s e A P I

2 Select the user you wish to delete from the User Name drop-down list. You can
also type the first letter of the desired username in the User Name drop-down
list to quickly scroll to usernames beginning with that letter. By repeatedly
typing that same letter, you can scroll through all usernames that begin with
that letter.

3 Click Delete. A confirmation dialog inquires, “Do you wish to delete user
username?” If you choose OK, the user is removed and is no longer authorized
to access databases on the current server.

Important Although it is possible for the SYSDBA to delete the SYSDBA user, it is strongly not
recommended because it will no longer be possible to add new users or modify
existing user configurations If you do delete the SYSDBA user, you must reinstall
InterBase to restore the InterBase security database (admin.ib by default).

User administration with the InterBase API
The InterBase API includes three functions that permit authors of InterBase
applications to add, delete, and modify users programmatically using three API
functions: isc_add_user(), isc_delete_user(), and isc_modifiy_user(). These functions
are deprecated in InterBase 6 and later, however, because they are replaced by
functions in the InterBase Services API.

The InterBase Services API provides a much broader and more robust set of tools
for programmatically managing users in the security database. See Chapter 12,
“Working with Services” in the API Guide for details and examples of using the
Services API functions.

For programmers using Delphi and C++ Builder, the IBX components include
components for managing users. For more information on using the IBX
components, refer to the Developer’s Guide.

Using gsec to manage security
The InterBase command-line security utility is gsec. This utility is used in
conjunction with the InterBase security database (admin.ib by default) to specify
user names and passwords for an InterBase server. This tool duplicates the
functionality of Server|User Security in IBConsole for Windows.

The security database resides in the InterBase install directory. To connect to a
database on the server, users must specify a user name and password, which are
verified against information stored in the security database. If a matching row is
found, the connection succeeds.

Important Only the SYSDBA can run gsec. To do this, use one of the following methods:

• Invoke the command as:

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-13

U s i n g g s e c t o m a n a g e s e c u r i t y

gsec -user sysdba -password masterkey

• Define the ISC_USER and ISC_PASSWORD environment variables for SYSDBA
before you invoke the command.

• Run gsec when you are logged in as root on UNIX or Administrator on
Windows.

To use gsec interactively, type gsec at the command prompt. The prompt changes
to GSEC>, indicating that you are in interactive mode. To quit an interactive session,
type QUIT.

Running gsec remotely
You can use gsec on a client host to administer users in a security database on a
remote server. Use the -database option with a remote database specification to
connect to a remote InterBase security database. For example:

gsec -database jupiter:/usr/interbase/admin.ib

Running gsec with Embedded Database User Authentication
You can gsec to database which enabled embedded user authentication. Use the -
user_database option with embedded user authentication database specification
to connect to a database which enabled embedded user authentication.

For example:

gsec -user_database jupiter:/usr/interbase/employee.ib

Using gsec commands
The following table summarizes gsec commands. The initial part of each
command is required. The part in brackets is optional.

Table 5.2 Summary of gsec commands

Command Description

di[splay] Displays all rows of the InterBase security database
(admin.ib by default)

di[splay] name Displays information only for user name

a[dd] name -pw password
 [option argument]
 [option argument ...]

Adds user name to the security database with password
string. Each option and corresponding argument
specifies other data associated with the user, as shown
in Table 5.3, “gsec options”

5-14 O p e r a t i o n s G u i d e

U s i n g g s e c t o m a n a g e s e c u r i t y

Displaying the security database
To see the contents of the InterBase security database, enter the DISPLAY command
at the GSEC> prompt. All the rows in the security database are displayed:

GSEC> display
user nameuid gidfull name
--
JOHN 123 345John Doe
JANE 124 345Jane Doe
RICH 125 345Richard Roe

Note that passwords are never displayed.

Adding entries to the security database
To add users to the security database, use the add command:

a[dd] name -pw password [options]

followed by a user name, the -pw option followed by a password, and any other
options, as shown in the following table. The password is case sensitive. None of
the other parameters are case sensitive.

For each option, the initial letter or letters are required and optional parts are
enclosed in brackets. Each option must be followed by a corresponding argument,
a string that specifies the data to be entered into the specified column in the
InterBase security database (admin.ib by default).

mo[dify] name [options] Like add, except that name already exists in the security
database

de[lete] name Deletes user name from the security database

alias_add path name Adds a database alias. The path is the location of the
database, and name is the name given for the alias

alias_del name Deletes database alias name from the security database

alias_dis Displays all database alias

alias_dis name Displays information only for alias name

h[elp] or ? Displays gsec commands and syntax

q[uit] Quits the interactive session

Table 5.2 Summary of gsec commands (continued)

Command Description

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-15

U s i n g g s e c t o m a n a g e s e c u r i t y

Note The -pa switch specifies the root or the SYSDBA account password; -pw specifies the
password for the user being added or modified.

For example, to add user “jones” and assign the password “welcome”, enter:

GSEC> add jones -pw welcome

Use display to verify the entry. An unassigned UID or GID defaults to 0:

GSEC> display
user name uid gid full name
--
JONES 0 0

For example, to add authorization for a user named Cindi Brown with user name
“cbrown” and password “coffee2go”, use the following gsec command:

GSEC> add cbrown -pw coffee2go -fname cindi -lname brown

To verify the new entry, display the contents of the security database:

GSEC> display
user name uid gid full name
--
JONES 0 0
CBROWN 0 0 CINDI BROWN

gsec stores the user name in uppercase regardless of how it is entered.

Table 5.3 gsec options

Option Meaning

-password or -pa string Password of user who is performing the change

-user string User who is performing the change

-pw string Target user password

-uid integer Target user ID

-gid integer Group ID for target user

-fname string First Name for target user

-mname string Middle Name for target user

-lname string Last Name for target user

-user_database string Name of user database

-database string Name of remote security database

5-16 O p e r a t i o n s G u i d e

U s i n g g s e c t o m a n a g e D a t a b a s e A l i a s

Modifying the security database
To change existing entries in the security database, use the modify command.
Supply the user name for the entry to change, followed by the option indicating
the items to change and the corresponding values to which to change them.

For example, to set the user ID of user “cbrown” to 8 and change the first name to
“Cindy”, enter the following commands:

GSEC> modify cbrown -uid 8 -fname cindy

To verify the changed line, use display followed by the user name:

GSEC> display cbrown
user name uid gid full name

CBROWN 8 0 CINDY BROWN

Note To modify a user name, first delete the entry in the security database, then enter the
new user name and re-enter the other information.

Deleting entries from the security database
To delete a user’s entry from the security database, use delete and specify the user
name:

GSEC> delete cbrown

You can confirm that the entry has been deleted with the display command.

Using gsec from a Windows command prompt
To use gsec from the Windows command prompt, precede each command with
gsec and prefix each gsec command with a hyphen (-). For example, to add user
“aladdin” and assign the password, “sesame”, enter the following at the command
line:

C:> gsec -add aladdin -pw sesame

To display the contents of the InterBase security database, enter:

C:> gsec -display

Using gsec to manage Database Alias
Database Alias eliminates the need of knowing the exact location of the database
file by the client application as long as the client application refers to the database
by its alias.

Adding database alias to the security database

To add database alias to the security database, use the alias_add command:

C h a p t e r 5 D a t a b a s e S e c u r i t y 5-17

g s e c e r r o r m e s s a g e s

alias_add path name

where path is the location of the database, and name is the alias name.

For example, to add the database alias “emp” with the path “C:\Program Files\
Borland\InterBase\examples\database\employee.gdb”, enter:

GSEC> alias_add “C:\Program Files\Borland\InterBase\examples\database\
employee.gdb” emp

Note Quotes are necessary for paths that contain spaces.

Use alias_dis to verify the entry:

GSEC> alias_dis emp C:\Program Files\Borland\InterBase\examples\database\
employee.gdb

Deleting database alias from the security database

To delete a database alias from the security database, use the alias_del command:
alias_del name

For example, to delete the database alias “emp”, enter:

GSEC> alias_del emp

gsec error messages

Table 5.4 gsec security error messages

Error Message Causes and Suggested Actions to Take

Add record error The add command either specified an existing user,
used invalid syntax, or was issued without
appropriate privilege to run gsec. Change the user
name or use modify on the existing user.

<string> already specified During an add or modify, you specified data for the
same column more than once. Retype the command.

Ambiguous switch specified A command did not uniquely specify a valid
operation.

Delete record error The delete command was not allowed. Check that you
have appropriate privilege to use gsec.

Error in switch specifications This message accompanies other error messages and
indicates that invalid syntax was used. Check other
error messages for the cause.

Find/delete record error Either the delete command could not find a specified
user, or you do not have appropriate privilege to use
gsec.

5-18 O p e r a t i o n s G u i d e

g s e c e r r o r m e s s a g e s

Find/display record error Either the display command could not find a specified
user, or you do not have appropriate privilege to use
gsec.

Find/modify record error Either the modify command could not find a specified
user, or you do not have appropriate privilege to use
gsec.

Incompatible switches specified Correct the syntax and try again.

Invalid parameter, no switch
defined

You specified a value without a preceding argument.

Invalid switch specified You specified an unrecognized option. Fix it and try
again.

Modify record error Invalid syntax for modify command. Fix it and try
again.
Also check that you have appropriate privilege to run
gsec.

No user name specified Specify a user name after add, modify, or delete.

Record not found for user: <string> An entry for the specified user could not be found.
Use display to list all users, then try again.

Unable to open database The InterBase security database does not exist or
cannot be located by the operating system.

Table 5.4 gsec security error messages (continued)

Error Message Causes and Suggested Actions to Take

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-1

C h a p t e r

Chapter 6Database Configuration
and Maintenance

This chapter describes configuration and maintenance issues for individual
databases, including the following topics:

• Database files
• On-disk structure (ODS)
• Read-write and read-only databases
• Creating databases
• Backup file properties
• Shadowing
• Setting database properties
• Sweep interval and automated housekeeping
• Configuring the database cache
• Forced writes vs. buffered writes
• Validation and repair
• Shutting down and restarting databases
• Limbo transactions
• gfix command-line tool

Database files
InterBase database files are in many cases self-contained. All the data and indexes
are maintained as data structures within one type of file. The transaction log is also
kept within this file.

6-2 O p e r a t i o n s G u i d e

D a t a b a s e f i l e s

You can extend the functions available in InterBase database metadata by creating
libraries of functions compiled in your language of choice. You can compile
functions into a dynamic library (called a DLL on Windows, and a shared library
on UNIX) and use them in queries, stored procedures, triggers, views, and so on.

Database file size
InterBase database file size is the product of the number of database pages times
the page size. The minimum page size is 1 KB, the default page size is 4KB, and the
maximum page size is 16KB. Each page can store records only from a single table.
You set the database page size when you create a database by using the PAGE SIZE
clause of the CREATE DATABASE statement, or its equivalent in IBConsole. You can
change the page size when you restore a database using gbak or IBConsole.

InterBase supports 64-bit file IO, so the size of a database file is effectively limited
only by the operating system.

Note Using gbak is the only way to reduce the size of the primary database file. When
you restore a database, you can specify multiple files without reference to the
original file sizes.

Dynamic file sizing
InterBase dynamically expands the last file in a database as needed. This applies to
single-file databases as well as to the last file of multifile databases. Specifying a
LENGTH for the last or only file in a database has no effect.

External files
InterBase permits external files to be used as external tables. These tables are limited
in their functionality:

• From a database that is in read-write mode, you can execute only SELECT and
INSERT statements on external tables. From a read-only database, you can
execute only SELECT statement on external tables.

• You cannot define indexes on external tables; they are outside of the control of
the multigenerational architecture.

The default location for external files is <interbase_home>/ext. InterBase can always
find external files that you place here. If you want to place them elsewhere, you
must specify the location in the ibconfig configuration file using the
EXTERNAL_FILE_DIRECTORY entry.

Important For security reasons, it is extremely important that you not place files
with sensitive content in the same directory with external tables.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-3

D a t a b a s e f i l e s

Migration note: If you are migrating from InterBase 6.x or older to InterBase 7.x or
newer, and your database includes external table files, you must either move these
files to <interbase_home>/ext or note their locations in ibconfig using the
EXTERNAL_FILE_DIRECTORY entry

Temporary files
InterBase dynamically creates files in the temporary file space for scratch space
during sorting operations involving large amounts of data. See “Managing
temporary files” on page 3-18 for details on temporary file use.

File naming conventions
In earlier versions, InterBase database files were given a file extension of gdb by
convention. InterBase no longer recommends using gdb as the extension for
database files, since on some versions of Windows ME and Windows XP, any file
that has this extension is automatically backed up by the System Restore facility
whenever it is touched. On those two platforms, using the gdb extension for
database names can result in a significant detriment to performance. Linux and
Solaris are not affected. InterBase now recommends using gdb as the extension for
database names.

InterBase is available on a wide variety of platforms. In most cases users in a
heterogeneous networking environment can access their InterBase database files
regardless of platform differences between client and server machines if they
know the target platform’s file naming conventions.

Generally, InterBase fully supports each platform’s file naming conventions,
including the use of node and path names. InterBase, however, recognizes two
categories of file specification in commands and statements that accept more than
one file name. The first file specification is called the primary file specification.
Subsequent file specifications are called secondary file specifications. Some
commands and statements place restrictions on using node names with secondary
file specifications. In syntax statements, file specification is denoted as 'filespec'

Primary file specifications
InterBase syntax always supports a full file specification, including optional node
name and full path, for primary file specifications. For example, the syntax
notation for CREATE DATABASE appears as follows:

CREATE {DATABASE | SCHEMA} 'filespec'
[USER 'username' [PASSWORD 'password']]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]

In this syntax, the filespec that follows CREATE DATABASE supports a node name
and path specification, including a platform-specific drive or volume specification.

6-4 O p e r a t i o n s G u i d e

D a t a b a s e f i l e s

Secondary file specifications
For InterBase syntax that supports multiple file specification, such as CREATE
DATABASE, all file specifications after the first one are secondary. Secondary file
specifications cannot include a node name, but can specify a full path name.

Multifile databases
InterBase supports databases that span multiple files and multiple file systems.
You can add additional files to the database without having to take it off line.

The Database Restore task in IBConsole and in the gbak command-line utility
permit you to create a multifile database. The only way to alter the file size
allocation of an existing database is to back up and restore the database file.

Adding database files
You have the option of specifying the size of secondary files in either of two ways:
specify the page on which each secondary file starts, or specify the length in
database pages of each file. When you specify the size using the LENGTH keyword,
do not specify the length of the final file. InterBase sizes the final file dynamically,
as needed.

The following isql example adds files using STARTING AT syntax:

CONNECT ‘first.ib’;

ALTER DATABASE
ADD FILE 'second.ib' STARTING AT 50000;

Altering database file sizes
You cannot use ALTER DATABASE to split an existing database file. For example, if
your existing database is 80,000 pages long and you issue the command above,
InterBase starts the new database file at page 80,001. The only way to split an
existing database file into smaller files is to back it up and restore it. When you
restore a database, you are free to specify secondary file sizes at will, without
reference to the original file sizes.

The following isql example adds a file using LENGTH syntax. second.ib will begin
on the page following the final page of first.ib and will grow to 50,000 database
pages. Then InterBase begins writing to third.ib and dynamically increases the size
as necessary.

CONNECT 'first.ib';
ALTER DATABASE ADD FILE 'second.ib' LENGTH 50000

ADD FILE 'third.ib';

InterBase starts writing data to third.ib only after second.ib file fills up. In the
example above, second.ib is 50,000 pages long, and begins following the original
file. InterBase will begin filling the third.ib file after second.ib reaches 50,000 pages.
Database pages are 4KB each by default and have a maximum size of 8KB.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-5

D a t a b a s e f i l e s

There is no guarantee that a given table resides entirely in one file or another.
InterBase stores records based on available space within database files. Over time,
records from a given table tend to spread over all the files in a multifile database.

Maximum number of files
InterBase allows up to 65,536 database files, including shadow files. Note that
your operating system might have a lower limit on the number of simultaneous
open files than the ibserver process can have.

Application considerations
A multifile database is not the same thing as multiple single-file databases. The
tables are all part of the same database they used to be in, but they can be stored
across the multiple files. From your application's standpoint, they're all part of the
same database and are accessed exactly the same way they would be in a single-
file database.

Your application does not need to know about any files except the first one. Any
time your database operations access/write data in the secondary files, the
InterBase software takes care of it without requiring any special programming
from your application. The application attaches to the database by specifying the
path of the first file of the database; applications don't change.

Reorganizing file allocation
You can change the sizes of the files of a multifile database when using gbak to
restore a database. If you need to move a multi-file database to a different disk or
directory, use gbak to back up the database, then specify the new locations of all
secondary files as you restore the database. See “gbak command-line tool” on
page 8-13.

Tip Any database in a production environment should include a definition for at least
one secondary file, even if the current size of the database does not warrant a
multifile database. Data tends to accumulate without bounds, and some day in the
future your database might exceed your file system size, or the operating system’s
maximum file size. By defining a secondary file, you specify what action InterBase
takes when the database grows beyond these limits. This means that the database
administrator is freed from monitoring the database as it approaches the file size
limit.

Networked file systems
An InterBase database must reside on a disk local to the server software that
accesses it. The database file (including any secondary files and shadow files)
cannot reside on networked or remote file systems (called mapped drives on
Windows and NFS file systems on UNIX). External tables and UDF libraries can
reside on networked file systems, but this practice is not recommended because
networked file systems can suffer from intermittent availability.

6-6 O p e r a t i o n s G u i d e

O n - d i s k s t r u c t u r e (O D S)

On UNIX, the InterBase software detects that a database file is located on an NFS
file system. In this case, it invokes the remote access method to contact an
InterBase server process running on the host that exported the file system. If there
is no InterBase server software running on that node, any connection to the
database fails.

On-disk structure (ODS)
Each release of InterBase has characteristic features in its internal file format. To
distinguish between the file formats, InterBase records an on-disk structure (ODS)
number in the database file. In general, major ODS versions (those incrementing
the number to the left of the decimal point) introduce features that are not
backward compatible with earlier ODS versions. The InterBase 7 format is ODS 11.
InterBase 7.5 uses ODS 11.2. InterBase 7.0 ODS 11.0 databases and InterBase 7.1
ODS 11.1 databases are automatically upgraded to ODS 11.2 when an InterBase 7.5
server attaches to these databases. InterBase 7.x also supports ODS version 10.x,
but features that are new in ODS 11 are not recognized by earlier software.

When you create a new database or restore a backup file in the current version of
InterBase, the resulting database file has the current ODS version.

Important To upgrade the ODS of an older database, you must back it up using the backup
utility for the version of the existing database and then restore it using the current
version of InterBase.

Read-write and read-only databases
InterBase databases have two modes: read-only and read-write. At creation, all
databases are both readable and writable: they are in read-write mode.

Read-write databases
To function in read-write mode, databases must exist on writable media and the
ibserver process must have write access to the database file. For databases that are
in read-write mode, this is true even when they are used only for reading because
the transaction states are kept in an internal inventory data structure within
the database file. Therefore any transaction against the database requires the
ability to write to the transaction inventory.

Under both Windows and UNIX, read-write database files must be writable by the
user ID for the ibserver process. However, the operating environment or file
system can be configured to create files that have limited file privileges by default.
If you attempt to attach to a database and get an error of “unavailable database,”
first check to see if the database file’s permissions are such that the user ID of the
ibserver process does not have write privilege on the database file.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-7

R e a d - w r i t e a n d r e a d - o n l y d a t a b a s e s

Read-only databases
You can change InterBase databases to read-only mode. This provides enhanced
security for databases by protecting them from accidental or malicious updates
and enables distribution on read-only media such as CDROMs. Databases are
always in read-write mode at creation time. This feature is independent of dialect.
Any ODS 10 or higher database can be set to read-only mode.

You can use gbak, gfix, or IBConsole to change a database to read-only mode. (See
“Making a database read-only” below.)

Properties of read-only databases
• In read-only mode, databases can be placed on CD-ROMs or in read-only file

systems as well as on read-write file systems.

• Attempted INSERT, UPDATE, and DELETE operations on a read-only database
generate an error. See the “Error Codes and Messages” chapter of the Language
Reference.

• No metadata changes are allowed in read-only databases.

• Generators in a read-only database do not increment and are allowed only to
return the current value. For example, in a read-only database, the following
statement succeeds:

SELECT GEN_ID(generator_name, 0) FROM table_name;

The following statement fails with the error “attempted update on read-only
database.”

SELECT GEN_ID(generator_name, 1) FROM table_name;

• External files accessed through a read-only database open in read-only mode,
regardless of the file’s permissions at the file system level.

Making a database read-only
To change the mode of a database between read-write and read-only, you must be
either its owner or SYSDBA and you must have exclusive access to a database.

From within InterBase, you can change a read-write database to read-only mode in
any of three ways:

• In IBConsole, select the database, display its properties, and edit the mode. For
more information, refer to “Setting database properties” on page 6-18.

• Use gbak to back up the database and restore it in read-only mode:

gbak -create -mode read_only foo.ibk foo.ib

• Use gfix to change the mode to read-only:

gfix -mode read_only foo.ib

6-8 O p e r a t i o n s G u i d e

C r e a t i n g d a t a b a s e s

Important To set a database to read-only mode from any application that uses BDE, ODBC, or
JDBC, use the isc_action_svc_properties() function in the InterBase Services API.

Tip To distribute a read-write database on a CD-ROM, back it up and put
the database.ibk file on the CD-ROM. As part of the installation, restore the
database to the user’s hard disk.

Read-only with older InterBase versions
• A pre-6 InterBase client can access a read-only database to perform SELECTs. No

other operation succeeds.

• If a current InterBase client tries to set a pre-6 database to read-only mode, the
server silently ignores the request. There is no way to make older databases
read-only. You must upgrade them.

Creating databases
You can create databases on local and remote servers using IBConsole with the
Create Database dialog.

You can use any of the following methods to access the Create Database dialog:

• In the Tree pane, select a server or anywhere in the branch under the desired
server and choose Database|Create Database.

• In the Tree pane, right click the Databases branch under the desired server, and
select Create Database from the context menu.

Figure 6.1 Create Database dialog

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-9

C r e a t i n g d a t a b a s e s

To create a database
1 Ensure that the server indicated is correct. If it is not, cancel this dialog and re-

initiate it under the correct server.

2 Type an Alias name for the new database in the Alias text field.

3 Enter one or more filenames which will make up the database, specifying the
number of pages required for each file. To insert a new row into the Files table,
move to the last row and column of the table and type w-z.

When entering a filename, make sure to include the file path unless you wish to
default the file to the working directory.

Note Database files must reside on a local drive.

4 You can specify create options by entering a valid value, by clicking the option
value and choosing a new value from a drop-down list of values or by double-
clicking the option value to rotate its value to the next in the list of values. For
more information, see “Database options” below.

To create a basic database without any options, leave all options blank.

5 Click OK to create the specified database.

Important The alias name that you specify when creating a database references the necessary
database file information associated with the database. When performing database
configuration and maintenance, you need only specify the alias name, not the
actual database filename. If the database spans multiple files, the server uses the
header page of each file to locate additional files.

Database options
The database options that you can set are Page Size, Default Character Set, and
SQL dialect.

Page size
InterBase supports database page sizes of 1024, 2048, 4096, 8192, and 16384 bytes.
The default is 4096 bytes.

Default character set
See “Character Set” in Table 9.2 for a detailed explanation of character sets.

For more information about creating databases, see the Language Reference. See the
Data Definition Guide for an explanation of character sets.

SQL dialect
An InterBase database SQL dialect determines how double quotes, large exact
numerics, and certain datatypes such as SQL DATE, TIME, and TIMESTAMP are
interpreted. In most cases you should create databases in dialect 3 in order to have
access to all current InterBase features.

6-10 O p e r a t i o n s G u i d e

D r o p p i n g d a t a b a s e s

Changing a database dialect from 1 to 3 may require some preparation if it
contains DATE datatypes, DECIMAL or NUMERIC datatypes with precision greater
than 9, or has strings that are in double quotes rather than single quotes. For more
information about dialects, refer to “Understanding SQL dialects” in the migration
appendix of the Operations Guide.

To change the database dialect
1 Highlight the database in the Tree pane and perform one of the following

actions:

• Choose Database|Properties.

• Right-click and choose Properties from the context menu.

• Double-click Properties in the Work pane.

2 Click the General tab and change the SQL dialect in the Options field.

Tip To suppress the display of system tables in IBConsole, deselect System Data from
the View menu.

Dropping databases
You can drop databases using IBConsole. Dropping a database deletes the current
database and database alias, removing both data and metadata.

A database can be dropped only by its creator or SYSDBA.

To drop a database
1 Select the database you wish to drop in the Tree pane.

2 Choose Database|Drop Database or select Drop Database from the Work pane.

3 A dialog asks you to confirm that you wish to delete the database. Click Yes if
you want to drop the selected database, otherwise click No.

Important Dropping a database deletes all data and metadata in the database.

Backup file properties
You can view and modify backup file information in IBConsole with the Backup
Alias Properties dialog. You can access this dialog with either of the following
methods:

• Expand Backup in the Tree pane, select a backup alias, and double-click Modify
Backup Alias from the Work pane.

• Right-click a backup alias in the Tree pane and choose Modify Backup Alias
from the context menu.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-11

R e m o v i n g d a t a b a s e b a c k u p f i l e s

Figure 6.2 Backup alias properties

To edit backup file properties
1 Enter a new backup alias name in the Alias Name text field.

2 Add, remove, or modify the backup filenames and corresponding file sizes
associated with the backup in the backup files table. When specifying
filenames, be sure to include the file path where the file is located.

To add a new row to the backup files table, move to the last row and column of
the table and type w-z. To remove a file from the backup file list, delete the
values from the table.

3 Select a server from the Target Database Server drop-down list. You can also
type the server name in the edit portion of the drop-down list.

4 Select a database alias from the Target Database Alias drop-down list. You can
also type the alias name in the edit portion of the drop-down list

5 Click Apply to save your changes.

Removing database backup files
You can remove database backup files in IBConsole with either of the following
methods:

• Expand Backup in the Tree pane and select a backup alias and double-click
Delete Alias from the Work pane.

• Right-click a backup alias in the Tree pane and choose Delete Alias from the
context menu.

A dialog asks you to confirm that you wish to remove the selected backup file.
Click Yes if you want to delete the backup file, otherwise click No.

6-12 O p e r a t i o n s G u i d e

S h a d o w i n g

Shadowing
InterBase lets you recover a database in case of disk failure, network failure, or
accidental deletion of the database. The recovery method is called disk shadowing,
or sometimes just shadowing. This chapter describes how to set up and use
shadowing.This section describes the various tasks involved in shadowing, as well
as the advantages and limitations of shadowing.

Tasks for shadowing
The main tasks in setting up and maintaining shadowing are as follows:

1 Creating a shadow.

Shadowing begins with the creation of a shadow. A shadow is an identical,
physical copy of a database. When a shadow is defined for a database, changes
to the database are written simultaneously to its shadow. In this way, the
shadow always reflects the current state of the database. For information about
the different ways to define a shadow, see “Creating a shadow” on page 6-13.

2 Activating a shadow.

If something happens to make a database unavailable, the shadow can be
activated. Activating a shadow means it takes over for the database; the shadow
becomes accessible to users as the main database. Activating a shadow happens
either automatically or through the intervention of a database administrator,
depending on how the shadow was defined. For more information about
activating a shadow, see “Activating a shadow” on page 6-17.

3 Deleting a shadow.

If shadowing is no longer desired, it can be stopped by deleting the shadow. For
more information about deleting a shadow, see “Dropping a shadow” on
page 6-17.

4 Adding files to a shadow.

A shadow can consist of more than one file. As shadows grow in size, files can
be added to accommodate the increased space requirements. For more
information about adding shadow files, see “Adding a shadow file” on
page 6-17.

Advantages of shadowing
Shadowing offers several advantages:

• Recovery is quick. Activating a shadow makes it available immediately.

• Creating a shadow does not require exclusive access to the database.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-13

S h a d o w i n g

• Shadow files use the same amount of disk space as the database. Log files, on
the other hand, can grow well beyond the size of the database.

• You can control the allocation of disk space. A shadow can span multiple files
on multiple disks.

• Shadowing does not use a separate process. The database process handles
writing to the shadow.

• Shadowing can run behind the scenes and needs little or no maintenance.

Limitations of shadowing
Shadowing has the following limitations:

• Shadowing is not an implementation of replication. Shadowing is one-way
writing, duplicating every write operation on the master database. Client
applications cannot access the shadow file directly.

• Shadowing is useful only for recovery from hardware failures or accidental
deletion of the database. User errors or software failures that corrupt the
database are duplicated in the shadow.

• Recovery to a specific point in time is not possible. When a shadow is activated,
it takes over as a duplicate of the database. Shadowing is an “all or nothing”
recovery method.

• Shadowing can occur only to a local disk. Shadowing to a NFS file system or
mapped drive is not supported. Shadowing to tape or other media is
unsupported.

Creating a shadow
A shadow is created with the CREATE SHADOW statement in SQL. Because this
does not require exclusive access, it can be done without affecting users. For
detailed information about CREATE SHADOW, see the Language Reference.

Before creating a shadow, consider the following topics:

• The location of the shadow

A shadow should be created on a different disk from where the main database
resides. Because shadowing is intended as a recovery mechanism in case of disk
failure, maintaining a database and its shadow on the same disk defeats the
purpose of shadowing.

• Distributing the shadow

A shadow can be created as a single disk file called a shadow file or as multiple
files called a shadow set. To improve space allocation and disk I/O, each file in
a shadow set can be placed on a different disk.

• User access to the database

6-14 O p e r a t i o n s G u i d e

S h a d o w i n g

If a shadow becomes unavailable, InterBase can either deny user access to the
database until shadowing is resumed, or allow access even though database
changes are not being shadowed. Depending on which database behavior is
desired, the database administrator creates a shadow either in auto mode or in
manual mode. For more information about these modes, see “Auto mode and
manual mode” on page 6-15.

• Automatic shadow creation

To ensure that a new shadow is automatically created, create a conditional
shadow. For more information, see “Conditional shadows,” in this chapter.

The next sections describe how to create shadows with various options:

• Single-file or multifile shadows

• Auto or manual shadows

• Conditional shadows

These choices are not mutually exclusive. For example, you can create a single-file,
conditional shadow in manual mode.

Creating a single-file shadow
To create a single-file shadow for database employee.gdb, enter:

SQL> CREATE SHADOW 1 '/usr/interbase/examples/employee.shd';

The name of the shadow file is employee.shd, and it is identified by the number 1.
Verify that the shadow has been created by using the isql command SHOW
DATABASE:

SQL> SHOW DATABASE;
Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto
PAGE_SIZE 4096
Number of DB pages allocated = 392
Sweep interval = 20000

The page size of the shadow is the same as that of the database.

Creating a multifile shadow
If your database is large, you can shadow it to a multifile shadow, spreading the
shadow files over several disks. To create a multifile shadow, specify the name and
size of each file in the shadow set. As with multifile databases, you have the option
of specifying the size of secondary files in either of two ways: specify the page on
which each secondary file starts, or specify the length in database pages of each
file. When you specify the size using the LENGTH keyword, do not specify the
length of the final file. InterBase sizes the final file dynamically, as needed.

For example, the following example creates a shadow set consisting of three files.
The primary file, employee.shd, is 10,000 database pages in length. The second file is
20,000 database pages long, and the final file grows as needed.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-15

S h a d o w i n g

SQL> CREATE SHADOW 1 'employee.shd' LENGTH 10000
CON> FILE 'emp2.shd' LENGTH 20000
CON> FILE 'emp3.shd';

Instead of specifying the page length of secondary files, you can specify their
starting page. The following example creates the same shadows as the previous
example:

SQL> CREATE SHADOW 1 'employee.shd'
CON> FILE 'emp1.shd' STARTING AT 10000
CON> FILE 'emp2.shd' STARTING AT 30000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths,
and starting pages for the shadow just created:

SQL> SHOW DATABASE;
Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto length 10000
 file /usr/interbase/examples/emp1.shd length 2000 starting 10000
 file /usr/interbase/examples/emp2.shd length 2000 starting 30000
PAGE_SIZE 4096
Number of DB pages allocated = 392
Sweep interval = 20000

The page length you allocate for secondary shadow files need not correspond to
the page length of the database’s secondary files. As the database grows and its
first shadow file becomes full, updates to the database automatically overflow into
the next shadow file.

Auto mode and manual mode
A shadow can become unavailable for the same reasons a database becomes
unavailable (disk failure, network failure, or accidental deletion). If a shadow
becomes unavailable, and it was created in auto mode, database operations
continue automatically without shadowing. If a shadow becomes unavailable, and
it was created in manual mode, further access to the database is denied until the
database administrator intervenes. The benefits of auto mode and manual mode
are compared in the following table:

6-16 O p e r a t i o n s G u i d e

S h a d o w i n g

Auto mode
The AUTO keyword directs the CREATE SHADOW statement to create a shadow in
auto mode:

SQL> CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In AUTO mode, database operation is uninterrupted even though there is no
shadow. To resume shadowing, it might be necessary to create a new shadow. If
the original shadow was created as a conditional shadow, a new shadow is
automatically created. For more information about conditional shadows, see
“Conditional shadows” on page 6-16.

Manual mode
The MANUAL keyword directs the CREATE SHADOW statement to create a shadow
in manual mode:

SQL> CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than
continuous operation of the database. When a manual-mode shadow becomes
unavailable, further attachments to the database are prevented. To allow database
attachments again, the database owner or SYSDBA must enter the following
command:

gfix -kill database

This command deletes metadata references to the unavailable shadow
corresponding to database. After deleting the references, a new shadow can be
created if shadowing needs to resume.

Conditional shadows
You can define a shadow such that if it replaces a database, the server creates a
new shadow file, allowing shadowing to continue uninterrupted. A shadow
defined with this behavior is called a conditional shadow.

Table 6.1 Auto vs. manual shadows

Mode Advantage Disadvantage

Auto Database operation is
uninterrupted

Creates a temporary period when the
database is not shadowed
The database administrator might be
unaware that the database is operating
without a shadow

Manual Prevents the database from
running unintentionally without a
shadow

Database operation is halted until the
problem is fixed
Needs intervention of the database
administrator

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-17

S h a d o w i n g

To create a conditional shadow, specify the CONDITIONAL keyword with the
CREATE SHADOW statement. For example,

SQL> CREATE SHADOW 3 CONDITIONAL 'atlas.shd';

Creating a conditional file directs InterBase to automatically create a new shadow.
This happens in either of two cases:

• The database or one of its shadow files becomes unavailable.

• The shadow takes over for the database due to hardware failure.

Activating a shadow
When a database becomes unavailable, database operations are resumed by
activating the shadow. To do so, log in as SYSDBA or the database owner and use
gfix with the -activate option.

Important Before activating a shadow, check that the main database is unavailable. If a
shadow is activated while the main database is available, the shadow can be
corrupted by existing attachments to the main database.

To activate a shadow, specify the path name of its primary file. For example, if
database employee.gdb has a shadow named employee.shd, enter:

gfix -activate employee.shd

After a shadow is activated, you should change its name to the name of your
original database. Then, create a new shadow if shadowing needs to continue and
if another disk drive is available.

Dropping a shadow
To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. For example,

SQL> DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW
DATABASE.

Important DROP SHADOW deletes shadow references from a database’s metadata, as well as
the physical files on disk. Once the files have been removed from disk, there is no
opportunity to recover them. However, a shadow is merely a copy of an existing
database, so the new shadow is identical to the dropped shadow.

Adding a shadow file
If a database is expected to increase in size, consider adding files to its shadow. To
add a shadow file, first use DROP SHADOW to delete the existing shadow, then use
CREATE SHADOW to create a multifile shadow.

6-18 O p e r a t i o n s G u i d e

S e t t i n g d a t a b a s e p r o p e r t i e s

The page length you allocate for secondary shadow files need not correspond to
the page length of the database’s secondary files. As the database grows and its
first shadow file becomes full, updates to the database automatically overflow into
the next shadow file.

Setting database properties
The Database Properties dialog enables you to display and configure certain
database settings. You can access the Database Properties dialog by any of the
following methods:

• Select a connected database (or any branch under the database hierarchy) in the
Tree pane and choose Database|Properties.

• Select a connected database in the Tree pane and double-click Properties in the
Work pane.

• Right-click a connected database in the Tree pane and choose Properties from
the context menu.

The Database Properties dialog contains two tabs, Alias and General.

Alias tab
The Alias tab of the Database Properties dialog is where you can specify an alias
name for a database as well as the file path and file name of the selected database.

Figure 6.3 Database Properties: Alias tab

To edit database alias settings
1 Enter the alias name of the database in the Alias Name text field.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-19

S e t t i n g d a t a b a s e p r o p e r t i e s

2 Enter database file name, including the path where the file is located, in the File
text field. If you prefer, you can also click the browse button to locate the file
you want.

If you want to change the database file name, the database must be
disconnected before you access the Database Properties dialog.

3 If you need to view or configure the general database settings, click the General
tab and see “General tab” below for further information.

4 Once you are finished making changes to the database properties click Apply to
save your changes, otherwise click Cancel.

General tab
The General tab of the Database Properties dialog is where you can view such
database settings as the database owner, secondary files and their start pages, the
number of allocated database pages and the page size. You can also set such
options as Forced Writes, Sweep Interval, SQL Dialect and Read Only.

Figure 6.4 Database Properties: General tab

To edit database general options
1 Choose option values in the Options table. You can specify options by clicking

the option value and entering a new value, by choosing a new value from a
drop-down list of values or by double-clicking the option value to rotate its
value to the next in the list of values.

2 If you need to view or configure the database alias settings, click the Alias tab
and see “Alias tab” above for further information.

3 Once you are finished making changes to the database properties click Apply to
save your changes, otherwise click Cancel.

6-20 O p e r a t i o n s G u i d e

S w e e p i n t e r v a l a n d a u t o m a t e d h o u s e k e e p i n g

Sweep interval and automated housekeeping
Sweeping a database is a systematic way of removing outdated records. Periodic
sweeping prevents a database from growing too large. However, sweeping can
also slow system performance.

As a database administrator, you can tune database sweeping, balancing its
advantages and disadvantages to best satisfy users’ needs.

Overview of sweeping
InterBase uses a multigenerational architecture. This means that multiple versions
of data records are stored directly on the data pages. When a record is updated or
deleted, InterBase keeps a copy of the old state of the record and creates a new
version. This can increase the size of a database.

Garbage collection
To limit the growth of the database, InterBase performs garbage collection by
sweeping the database. This process frees up space allocated to outdated record
versions. Whenever a transaction accesses a record, outdated versions of that

Table 6.2 General options

Option Value

Forced Writes Option values are Enabled and Disabled. See “Forced
writes vs. buffered writes” on page 6-25 for further
information on forced writes.

Sweep Interval The sweep interval is the number of transactions that will
occur before an automatic database sweep takes place.
You can enter any positive number for the sweep interval,
or zero to disable the automatic sweep. See “Sweep
interval and automated housekeeping” on page 6-20
for further information on setting the sweep interval.

Database dialect An InterBase database SQL dialect determines how
double quotes, large exact numerics, and certain
datatypes such as SQL DATE, TIME, and TIMESTAMP are
interpreted. In most cases you should choose dialect 3 in
order to have access to all current InterBase features.

Read Only Option values are True and False. To make the database
read only set the Read Only option to True. This prevents
users from performing any DML or updates to the
database. The default setting for this option is False. See
“Making a database read-only” on page 6-7 for more
information.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-21

S w e e p i n t e r v a l a n d a u t o m a t e d h o u s e k e e p i n g

record are collected. Records that were rolled back are not collected. To guarantee
that all outdated records are collected, including those that were rolled back,
InterBase periodically sweeps the database.

Automatic housekeeping
If a transaction is left in an active (unresolved) state, this is an “interesting”
transaction. In a given database’s transaction inventory, the first transaction with a
state other than committed is known as the Oldest Interesting Transaction (OIT).
Automatic housekeeping occurs when the difference between the OIT and the
oldest active transaction (OAT) is greater than the sweep interval. By default, this
sweep interval is 20,000, but it is configurable (see “Setting the sweep interval” on
page 6-21).

Note It is a subtle but important distinction that the automatic sweep does not necessarily
occur every 20,000 transactions. It is only when the difference between the OIT and
OAT reaches the threshold. If every transaction to the database is committed
promptly, then this difference it is not likely to be great enough to trigger the
automatic sweep.

The InterBase server process initiates a special thread to perform this sweep
asynchronously, so that the client process can continue functioning, unaffected by
the amount of work done by the sweep.

Tip Sweeping a database is not the only way to perform systematic garbage collection.
Backing up a database achieves the same result, because the InterBase server must
read every record, an action that forces garbage collection throughout the
database. As a result, regularly backing up a database can reduce the need to
sweep. This enables you to maintain better application performance. For more
information about the advantages of backing up and restoring, see “Benefits of
backup and restore” on page 8-1.

Configuring sweeping
You are able to control several aspects of database sweeping. You can:

• Change the automatic sweep interval.

• Disable automatic sweeping.

• Sweep a database immediately.

The first two functions are performed in the Database Properties dialog. The last is
performed with a sweep menu command and is explained in “Performing an
immediate database sweep” on page 6-22.

Setting the sweep interval
To set the automatic sweep threshold to n transactions:

gfix -h n

6-22 O p e r a t i o n s G u i d e

S w e e p i n t e r v a l a n d a u t o m a t e d h o u s e k e e p i n g

Sweeping a database can affect transaction start-up if rolled back transactions exist
in the database. As the time since the last sweep increases, the time for transaction
start-up can also increase. Lowering the sweep interval can help reduce the time
for transaction start-up.

On the other hand, frequent database sweeps can reduce application performance.
Raising the sweep interval could help improve overall performance. The database
administrator should weigh the issues for the affected applications and decide
whether the sweep interval provides the desired database performance.

To set the sweep interval with IBConsole, refer to “Setting database properties” on
page 6-18.

Tip Unless the database contains many rolled back transactions, changing the sweep
interval has little effect on database size. As a result, it is more common for a
database administrator to tune the database by disabling sweeping and
performing it at specific times. These activities are described in the next two
sections.

Disabling automatic sweeping
To disable automatic sweeping, set the sweep threshold to zero (0). Disabling
automatic sweeping is useful if:

• Maximum throughput is important. Transactions are never delayed by
sweeping.

• You want to schedule sweeping at specific times. You can manually sweep the
database at any time. It is common to schedule sweeps at a time of least activity
on the database server, to avoid competing for resources with clients.

To disable automatic sweeping with IBConsole, refer to “Setting database
properties” on page 6-18.

Performing an immediate database sweep
You can perform an immediate database sweep with any of the following
methods:

• Right click a connected database in the Tree pane and choose Maintenance|
Sweep from the context menu.

• Select a connected database in the Tree pane and double-click Sweep in the
Work pane.

• enter the following command:

gfix -sweep

This operation runs an immediate sweep of the database, releasing space held by
records that were rolled back and by out-of-date record versions. Sweeps are also
done automatically at a specified interval.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-23

C o n f i g u r i n g t h e d a t a b a s e c a c h e

Sweeping a database does not strictly require it to be shut down. You can perform
sweeping at any time, but it can impact system performance and should be done
when it inconveniences users the least.

If a sweep is performed as an exclusive operation on the database, there is
additional tuning that the procedure performs. As long as there are no outstanding
active transactions, the sweep updates the state of data records and the state of the
inventory of past transactions. Non-committed transactions are finally rendered
obsolete, and internal data structures need not track them in order to maintain
snapshots of database versions. The benefit of this is a reduction of memory use,
and a noticeable performance improvement.

Configuring the database cache
The database cache consists of all database pages (also called buffers) held in
memory at one time. Database cache size is the number of database pages. You can
set the default size of the database cache at three levels:

• Server level: applies to all databases

• Database level: applies only to a single database (using gfix to set the size for a
specific database)

• Connection level: applies only to a specific isql connection

We recommend setting cache size at the database level rather than at the server
level. This reduces the likelihood of inappropriate database cache sizes.

In a SuperServer installation (Windows, Linux, or UNIX), every database on a
server requires RAM equal to the cache size (number of database pages) times the
page size. By default, the cache size is 2048 pages per database and the page size is
4KB. Thus, a single database running at the default setting requires 8MB of
memory, but three such databases require 24MB of memory.

In Classic installations, the amount of memory required by a database depends on
the number of client attachments. Each client is allotted 75 cache pages, so
memory usage is calculated by:

cache size × number of attachments × 75

Default cache size per database
The buffers parameter of the gfix utility sets the default number of cache pages for
a specific database:

gfix -buffers n database_name

This sets the number of cache pages for the specified database to n, overriding the
server value, which by default is 2048 pages.

To run gfix, you must be either SYSDBA or the owner of the database.

6-24 O p e r a t i o n s G u i d e

C o n f i g u r i n g t h e d a t a b a s e c a c h e

Default cache size per ISQL connection
To configure the number of cache pages for the duration of one isql connection,
invoke isql with the following option:

isql -c n database_name

n is the number of cache pages to be used as the default for the session; n overrides
any values set by DATABASE_CACHE_PAGES or gfix and must be greater than 9.

A CONNECT statement entered in an isql query accepts the argument CACHE n.
(Refer to the discussion of CONNECT in the Language Reference manual for a full
description of the CONNECT function). For example:

ISQL> CONNECT database_name CACHE n;

The value n can be any positive integer number of database pages. If a database
cache already exists in the server because of another attachment to the database,
the cache size is increased only if n is greater than current cache size.

Setting cache size in applications
InterBase API: use the isc_dpb_num_buffers parameter to set cache size in a
database parameter buffer (DPB).

IBX: use the num_buffers parameter to set cache size in the TIBDatabase’s
parameter list. For example: num_buffers=250. For the parameter to be parsed
correctly, there must be no spaces around the = sign.

Default cache size per server
For SuperServer installations, you can configure the default number of pages used
for the database caches. By default, the database cache size is 2048 pages per
database. You can modify this default by changing the value of
DATABASE_CACHE_PAGES in the ibconfig configuration file. When you change this
setting, it applies to every active database on the server.

You can also set the default cache size for each database using the gfix utility. This
approach permits greater flexibility, and reduces the risk that memory is overused,
or that database caches are too small.

We strongly recommend that you use gfix to set cache size rather than
DATABASE_CACHE_PAGES.

Verifying cache size
To verify the size of the database cache currently in use, execute the following
commands in isql:

ISQL> CONNECT database_name;
ISQL> SET STATS ON;

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-25

F o r c e d w r i t e s v s . b u f f e r e d w r i t e s

ISQL> COMMIT;
Current memory = 415768
Delta memory = -2048
Max memory = 419840
Elapsed time = 0.03 sec
Buffers = 2048
Reads = 0
Writes 2
Fetches = 2
ISQL> QUIT;

The empty COMMIT command prompts isql to display information about memory
and buffer usage. The “Buffers” line specifies the size of the cache for that
database.

Forced writes vs. buffered writes
When an InterBase Server performs forced writes (also referred to as synchronous
writes), it physically writes data to disk whenever the database performs an
(internal) write operation.

If forced writes are not enabled, then even though InterBase performs a write, the
data may not be physically written to disk, since operating systems buffer disk
writes. If there is a system failure before the data is written to disk, then
information can be lost.

Performing forced writes ensures data integrity and safety, but slow performance.
In particular, operations that involve data modification are slower.

Forced writes are enabled or disabled in the Database Properties dialog. For more
information, refer to “Setting database properties” on page 6-18.

Validation and repair
In day-to-day operation, a database is sometimes subjected to events that pose
minor problems to database structures. These events include:

• Abnormal termination of a database application. This does not affect the
integrity of the database. When an application is canceled, committed data is
preserved, and uncommitted changes are rolled back. If InterBase has already
assigned a data page for the uncommitted changes, the page might be
considered an orphan page. Orphan pages are unassigned disk space that
should be returned to free space.

• Write errors in the operating system or hardware. These usually create a
problem with database integrity. Write errors can cause data structures such as
database pages and indexes to become broken or lost. These corrupt data
structures can make committed data unrecoverable.

6-26 O p e r a t i o n s G u i d e

V a l i d a t i o n a n d r e p a i r

Validating a database
You should validate a database:

• Whenever a database backup is unsuccessful.

• Whenever an application receives a “corrupt database” error.

• Periodically, to monitor for corrupt data structures or misallocated space.

• Any time you suspect data corruption.

Database validation requires exclusive access to the database. Shut down a
database to acquire exclusive access. If you do not have exclusive access to the
database, you get the error message:

OBJECT database_name IS IN USE

To shut down a database, refer to the directions in “Shutting down a database” on
page 6-30.

Validating a database using gfix
To validate a database using gfix, follow these steps:

1 Enter the following command:

gfix -v

2 If you suspect you have a corrupt database, make a copy of your database using
an OS command (gbak will not back up corrupt data).

3 Use the gfix command to mark corrupt structures in the copied database:

gfix -mend

4 If gfix reports any checksum errors, validate and repair the database again,
ignoring any checksum errors:

gfix -validate -ignore

Note: InterBase supports true checksums only for ODS 8 and earlier.

It may be necessary to validate a database multiple times to correct all the errors.

Validating a database using IBConsole
To validate a database using IBConsole, access the Database Validation dialog by
any of the following methods:

• Select a disconnected database in the Tree pane and double-click Validation in
the Work pane.

• Right-click a disconnected database in the Tree pane and choose Validation
from the context menu.

• Select Database|Maintenance|Validation.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-27

V a l i d a t i o n a n d r e p a i r

Figure 6.5 Database Validation dialog

To validate database
1 Check that the database indicated is correct. If it is not, cancel this dialog and re-

initiate the Database Validation dialog under the correct database.

2 Specify which validation options you want by clicking in the right column and
choosing True or False from the dropdown list. See Table 6.3, “Validation
options” for a description of each option.

3 Click OK if you want to proceed with the validation, otherwise click Cancel.

When IBConsole validates a database it verifies the integrity of data structures.
Specifically, it does the following:

• Reports corrupt data structures

• Reports misallocated data pages

• Returns orphan pages to free space

6-28 O p e r a t i o n s G u i d e

V a l i d a t i o n a n d r e p a i r

Repairing a corrupt database
If a database contains errors, they are displayed in the following dialog:

Figure 6.6 Validation report dialog

Table 6.3 Validation options

Option Value

Validate Record
Fragments

Option values are True and False. By default, database
validation reports and releases only page structures. If the
Validate Record Fragments option is set to True, validation
reports and releases record structures as well as page
structures.

Read Only Validation Option values are True and False. By default, validating a
database updates it, if necessary. To prevent updating, set the
Read Only Validation option to True.

Ignore Checksum
Errors

Option values are True and False. A checksum is a page-by-
page analysis of data to verify its integrity. A bad checksum
means that a database page has been randomly overwritten (for
example, due to a system crash).
Checksum errors indicate data corruption. To repair a database
that reports checksum errors, set the Ignore Checksum Errors
option to True. This enables IBConsole to ignore checksums
when validating a database. Ignoring checksums allows
successful validation of a corrupt database, but the affected
data may be lost.
Note: InterBase supports true checksums only for ODS 8 and
earlier.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-29

S h u t t i n g d o w n a n d r e s t a r t i n g d a t a b a s e s

The errors encountered are summarized in the text display area. The repair
options you selected in the Database Validation dialog are selected in this dialog
also.

To repair the database, choose Repair. This fixes problems that cause records to be
corrupt and marks corrupt structures. In subsequent operations (such as backing
up), InterBase ignores the marked records.

Some corruptions are too serious for IBConsole to correct. These include
corruptions to certain strategic structures, such as space allocation pages. In
addition, IBConsole cannot fix certain checksum errors that are random by nature
and not specifically associated with InterBase.

Note Free pages are no longer reported, and broken records are marked as damaged.
Any records marked during repair are ignored when the database is backed up.

If you suspect you have a corrupt database, perform the following steps:

1 Make a copy of the database using an operating-system command. Do not use
the IBConsole Backup utility or the gbak command, because they cannot back
up a database containing corrupt data. If IBConsole reports any checksum
errors, validate and repair the database again, setting the Ignore Checksum
Error option to True. Note: InterBase supports true checksums only for ODS 8
and earlier.

2 It may be necessary to validate a database multiple times to correct all the
errors. Validate the database again, with the Read Only Validation option set to
True.

3 Back up the mended database with IBConsole or gbak. At this point, any
damaged records are lost, since they were not included during the back up. For
more information about database backup, see Chapter 8, “Database Backup
and Restore.”

4 Restore the database to rebuild indexes and other database structures. The
restored database should now be free of corruption.

5 To verify that restoring the database fixed the problem, validate the restored
database with the Read Only Validation option set to True.

Shutting down and restarting databases
Maintaining a database often involves shutting it down. Only the SYSDBA or the
owner of a database (the user who created it) can shut it down. The user who shuts
down the database then has exclusive access to the database.

Exclusive access to a database is required to:

• Validate and repair the database.

• Add or drop a foreign key on a table in the database.

6-30 O p e r a t i o n s G u i d e

S h u t t i n g d o w n a n d r e s t a r t i n g d a t a b a s e s

• Add a secondary database file.

After a database is shut down, the database owner and SYSDBA are still able to
connect to it, but any other user attempting to connect gets an error message
stating that the database is shut down.

Shutting down a database
To shut down a database, select a connected database from the Tree pane and
double-click Shutdown in the Work pane or choose Database|Maintenance|
Shutdown to display the Database Shutdown dialog:

Figure 6.7 Database shutdown dialog

Shutdown timeout options
You can specify a timeout value by selecting a new value from the drop-down list
of values or by typing the value in the edit portion of the drop-down list. Timeout
values can range from 1 minute to 500 minutes.

Shutdown options
You can specify shutdown options by selecting a new value from the drop-down
list of values. Shutdown option values include: Deny New Connections While
Waiting, Deny New Transactions While Waiting, and Force Shutdown After
Timeout.

Deny new connections while waiting
This option allows all existing database connections to complete their operations
unaffected. IBConsole shuts down the database after all processes disconnect from
the database. At the end of the timeout period, if there are still active connections,
then the database is not shut down.

This prevents any new processes from connecting to the database during the
timeout period. This enables current users to complete their work, while
preventing others from beginning new work.

Suppose the SYSDBA needs to shut down database orders.ib at the end of the day
(five hours from now) to perform routine maintenance. The Marketing
department is currently using the database to generate important sales reports.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-31

S h u t t i n g d o w n a n d r e s t a r t i n g d a t a b a s e s

In this case, the SYSDBA would shut down orders.ib with the following
parameters:

• Deny New Connections.

• Timeout of 300 minutes (five hours).

These parameters specify to deny any new database connections and to shut down
the database any time during the next five hours when there are no more active
connections.

Any users who are already connected to the database are able to finish processing
their sales reports, but new connections are denied. During the timeout period, the
SYSDBA sends out periodic broadcast messages asking users to finish their work
by 6 p.m.

When all users have disconnected, the database is shut down. If all users have not
disconnected after five hours, then the database is not shut down. Because the
shutdown is not critical, it is not forced.

It would be inappropriate to deny new transactions, since generating a report
could require several transactions, and a user might be disconnected from the
database before completing all necessary transactions. It would also be
inappropriate to force shutdown, since it might cause users to lose work.

Deny new transactions while waiting
This option allows existing transactions to run to normal completion. Once
transaction processing is complete, IBConsole shuts down the database. Denying
new transactions also denies new database connections. At the end of the timeout
period, if there are still active transactions, then the database is not shut down.

This is the most restrictive shutdown option, since it prevents any new
transactions from starting against the database. This option also prevents any new
connections to the database.

Suppose the SYSDBA needs to perform critical operations that require shutdown
of the database orders.ib. This is a database used by dozens of customer service
representatives throughout the day to enter new orders and query existing orders.

At 5 p.m., the SYSDBA initiates a database shutdown of orders.ib with the
following parameters:

• Deny New Transactions.

• Timeout of 60 minutes.

These parameters deny new transactions for the next hour. During that time, users
can complete their current transactions before losing access to the database.
Simply denying new connections would not be sufficient, since the shutdown
cannot afford to wait for users to disconnect from the database.

6-32 O p e r a t i o n s G u i d e

L i m b o t r a n s a c t i o n s

During this hour, the SYSDBA sends out periodic broadcast messages warning
users that shutdown is happening at 6 p.m and instructs them to complete their
work. When all transactions have been completed, the database is shut down.

After an hour, if there are still any active transactions, IBConsole cancels the
shutdown. Since the SYSDBA needs to perform database maintenance, and has sent
out numerous warnings that a shutdown is about to occur, there is no choice but to
force a shutdown.

Force shutdown after timeout
With this option, there are no restrictions on database transactions or connections.
As soon as there are no processes or connections to the database, IBConsole shuts
down the database. At the end of the timeout period, if there are still active
connections, IBConsole rolls back any uncommitted transactions, disconnects any
users, and shuts down the database.

If critical database maintenance requires a database to be shut down while there
are still active transactions, the SYSDBA can force shut down. This step should be
taken only if broadcast messages have been sent out to users that shutdown is
about to occur. If users have not heeded repeated warnings and remain active,
then their work is rolled back.

This option does not deny new transactions or connections during the timeout
period. If, at any time during the timeout period, there are no connections to the
database, IBConsole shuts down the database.

Important Forcing database shutdown interferes with normal database operations, and
should only be used after users have been given appropriate broadcast notification
well in advance.

Restarting a database
After a database is shut down, it must be restarted (brought back online) before
users can access it.

To restart a database, select a previously shut down database from the Tree pane
and choose Database|Maintenance|Database Restart or double-click Database
Restart in the Work pane. The currently selected database is brought back online
immediately.

Limbo transactions
When committing a transaction that spans multiple databases, InterBase
automatically performs a two-phase commit. A two-phase commit guarantees that
the transaction updates either all of the databases involved or none of them—data
is never partially updated.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-33

L i m b o t r a n s a c t i o n s

Note The Borland Database Engine (BDE), as of version 4.5, does not exercise the two-
phase commit or distributed transactions capabilities of InterBase, therefore
applications using the BDE never create limbo transactions.

In the first phase of a two-phase commit, InterBase prepares each database for the
commit by writing the changes from each subtransaction to the database. A
subtransaction is the part of a multi-database transaction that involves only one
database. In the second phase, InterBase marks each subtransaction as committed
in the order that it was prepared.

If a two-phase commit fails during the second phase, some subtransactions are
committed and others are not. A two-phase commit can fail if a network
interruption or disk crash makes one or more databases unavailable. Failure of a
two-phase commit causes limbo transactions, transactions that the server does not
know whether to commit or roll back.

It is possible that some records in a database are inaccessible due to their
association with a transaction that is in a limbo state. To correct this, you must
recover the transaction using IBConsole. Recovering a limbo transaction means
committing it or rolling it back. Use gfix to recover transactions.

Recovering transactions
You can recover transactions by any of the following methods:

• Select a connected database in the Tree pane and double-click Transaction
Recovery in the Work pane or choose Database|Maintenance|Transaction
Recovery.

• Right-click a connected database in the Tree pane and choose Maintenance|
Transaction Recovery from the context menu.

The Transaction Recovery dialog contains two tabs, Transactions and Details. The
Transactions tab displays a list of limbo transactions that can then be recovered—
that is, to committed or rolled back. You can also seek suggested recovery actions
and set current actions to perform on the selected limbo transactions. The Details
tab displays detailed information about a selected transaction.

Transaction tab
All the pending transactions in the database are listed in the text area of the
Transactions tab. You can roll back, commit, or perform a two-phase commit on
such transactions.

6-34 O p e r a t i o n s G u i d e

L i m b o t r a n s a c t i o n s

Figure 6.8 Transaction Recovery: limbo transactions

To recover limbo transactions
1 Select a limbo transaction in the table.

2 The Connect Path text field displays the current path of the database file for the
selected transaction, if it is a multi-database transaction. You can change the
target database path, if necessary, by overwriting the current path.

The information on the path to the database was stored when the client
application attempted the commit. It is possible that the path and network
protocol from that machine does not work from the client which is now running
IBConsole. Before attempting to roll back or commit any transaction, confirm
the path of all involved databases is correct.

When entering the current path, be sure to include the server name and
separator indicating communication protocol. To use TCP/IP, separate the
server and directory path with a colon (:). To use NetBEUI, precede the server
name with either a double backslash (\\) or a double slash (//), and then
separate the server name and directory path with either a backslash or a slash.

3 If you want to continue with the transaction recovery process select a repair
option and click Repair, otherwise click Cancel. To determine the recommended
action, click on the transaction and select the Details tab. For further
information about transaction recovery suggestions, see “Details tab” below.

Details tab
The Details tab displays the host server, the remote server, database path, and
recommended action: either commit or rollback. If you want to continue with the
transaction recovery process select a repair option and click Repair, otherwise click
Cancel.

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-35

V i e w i n g t h e a d m i n i s t r a t i o n l o g

Figure 6.9 Transaction recovery: Details

Viewing the administration log
IBConsole displays the administration log file in a standard text display window,
the Administration Log dialog, which can be accessed by any of the following
methods:

• Select a server (or any branch under the server hierarchy) in the Tree pane and
choose Server|View Logfile.

• Right-click the desired server in the Tree pane and choose View Logfile from the
context menu.

• Under the desired server, select Server Log in the Tree pane and then double-
click View Logfile in the Work pane.

Figure 6.10 Administration Log dialog

6-36 O p e r a t i o n s G u i d e

g f i x c o m m a n d - l i n e t o o l

The standard text display window enables you to search for specific text, save the
text to a file, and print the text. For an explanation of how to use the standard text
display window, see “Standard text display window” on page 2-7.

gfix command-line tool
The gfix tool performs a number of maintenance activities on a database,
including the following:

• Database shutdown

• Changing database mode to read-only or read-write

• Changing the dialect of a database

• Setting cache size at the database level

• Committing limbo transactions

• Mending databases and making minor data repairs

• Sweeping databases

• Displaying, committing, or recovering limbo transactions

To run gfix, you must attach as either SYSDBA or the owner of the database. Most
of these actions can also be performed through IBConsole.

Syntax gfix [options] db_name

Options In the OPTION column of the following table, only the characters outside the
brackets ([]) are required. You can specify additional characters up to and
including the full option name. To help identify options that perform similar
functions, the TASK column indicates the type of activity associated with an option.

Table 6.4 gfix options

Option Task Description

-ac[tivate] Activate
shadows

Activate shadows when the database dies.
NOTE: syntax is gfix -ac (no database
name)

-at[tach] n Shutdown Used with -shut to prevent new database
connections during timeout period of n
seconds; shutdown is canceled if there are
still processes connected after n seconds

-b[uffers] n Cache buffers Sets default cache buffers for the database
to n pages

-c[ommit] {ID | all} Transaction
recovery

Commits limbo transaction specified by ID
or commit all limbo transactions

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-37

g f i x c o m m a n d - l i n e t o o l

-force n Shutdown Used with -shut to force shutdown of a
database after n seconds; this is a drastic
solution that should be used with caution

-fu[ll] Data repair Used with -v to check record and page
structures, releasing unassigned record
fragments

-h[ousekeeping] n Sweeping Changes automatic sweep threshold to n
transactions
• Setting n to 0 disables sweeping
• Default threshold is 20,000 transactions

(see “Overview of sweeping” on
page 6-20)

• Exclusive access not needed

-i[gnore] Data repair Ignores checksum errors when validating
or sweeping; InterBase supports true
checksums only for ODS 8 and earlier.

-k[ill] Drop shadows • Drops unavailable shadows.
• Syntax is gfix -k (no database name)

-l[ist] Transaction
recovery

Displays IDs of each limbo transaction and
indicates what would occur if -t were used
for automated two-phase recovery

-m[end] Data repair Marks corrupt records as unavailable, so
they are skipped (for example, during a
subsequent backup)

-mo[de]
[read_write|read_only}

Set access
mode

• Sets mode of database to either read-only
or read-write

• Default table mode is read_write
• Requires exclusive access to the database

-n[o_update] Data repair Used with -v to validate corrupt or
misallocated structures; structures are
reported but not fixed

-o[nline] Shutdown Cancels a -shut operation that is scheduled
to take effect or rescinds a shutdown that is
currently in effect

-pa[ssword] text Remote access Checks for password text before accessing a
database

-pr[ompt] Transaction
recovery

Used with -l to prompt for action during
transaction recovery

Table 6.4 gfix options (continued)

Option Task Description

6-38 O p e r a t i o n s G u i d e

g f i x c o m m a n d - l i n e t o o l

Examples The following example changes the dialect of the customer.ib database to 3:

gfix -sql 3 customer.ib

The following example changes the customer.ib database to read-only mode:

gfix -mo read-only customer.ib

-r[ollback] {ID | all} Transaction
recovery

Rolls back limbo transaction specified by
ID or roll back all limbo transactions

-sh[ut] Shutdown • Shuts down the database
• Must be used in conjunction with -attach,

-force, or -tran

-sq[l_dialect] n Database
dialect

Changes database dialect to n
• Dialect 1 = InterBase 5.x compatibility
• Dialect 3 = Current InterBase with SQL92

features

-sw[eep] Sweeping Forces an immediate sweep of the database
• Useful if automatic sweeping is disabled
• Exclusive access is not necessary

-tr[an] n Shutdown Used with -shut to prevent new
transactions from starting during timeout
period of n seconds; cancels shutdown if
there are still active transactions after n
seconds

-tw[o_phase] {ID | all} Transaction
recovery

Performs automated two-phase recovery,
either for a limbo transaction specified by
ID or for all limbo transactions

-user name Remote access Checks for user name before accessing a
remote database

-v[alidate] Data repair Locates and releases pages that are
allocated but unassigned to any data
structures; also reports corrupt structures

-w[rite] {sync | async} Database
writes

Enables or disables forced (synchronous)
writes
sync enables forced writes; async enables
buffered writes

-z Shows version of gfix and of the InterBase
engine

Table 6.4 gfix options (continued)

Option Task Description

C h a p t e r 6 D a t a b a s e C o n f i g u r a t i o n a n d M a i n t e n a n c e 6-39

g f i x e r r o r m e s s a g e s

gfix error messages

Table 6.5 gfix database maintenance error messages

Error Message Causes and Suggested Actions to Take

Database file name <string>
already given

A command-line option was interpreted as a database
file because the option was not preceded by a hyphen
(-) or slash (/). Correct the syntax.

Invalid switch A command-line option was not recognized.

Incompatible switch combinations You specified at least two options that do not work
together, or you specified an option that has no
meaning without another option (for example, -full
by itself).

More limbo transactions than fit.
Try again.

The database contains more limbo transactions than
gfix can print in a single session. Commit or roll back
some of the limbo transactions, then try again.

Numeric value required The -housekeeping option requires a single, non-
negative argument specifying number of transactions
per sweep.

Please retry, specifying <string> Both a file name and at least one option must be
specified.

Transaction number or “all”
required

You specified -commit, -rollback, or -two_phase
without supplying the required argument.

-mode read_only or read_write The -mode option takes either read_only or
read_write as an option.

“read_only” or “read_write”
required

The -mode option must be accompanied by one of
these two arguments.

6-40 O p e r a t i o n s G u i d e

g f i x e r r o r m e s s a g e s

C h a p t e r 7 L i c e n s i n g 7-1

C h a p t e r

Chapter 7Licensing
This chapter describes licensing options and mechanisms for InterBase.

Software activation certificates
To install and use the InterBase software, you must have one or more software
activation certificates (also sometimes called “license certificates”). Each certificate
bears a unique ID and key pair that enables a specific functionality. During
installation, you are required to enter exactly one valid certificate ID and key pair.
Follow the instructions below to enter additional certificate ID/key pairs—and
therefore functionality—to InterBase.

The InterBase Media Kit contains the CD-ROM for your platform. You order
software activation certificates as needed to enable InterBase functionality. You can
purchase additional functionality—such as a greater number of concurrent
users—at any time through your sales representative.

Your initial InterBase kit includes licensing for the InterBase client at no additional
cost.

License registration tools
On Windows platforms, you can add and remove certificate ID and key numbers
using IBConsole.

On all platforms, you can add and remove certificate ID and key numbers using
the iblicense utility at the system prompt.

7-2 O p e r a t i o n s G u i d e

L i c e n s e r e g i s t r a t i o n t o o l s

Using IBConsole
IBConsole permits you to add, remove, and view certificate ID and key numbers
on Windows platforms.

Viewing existing licenses
1 In IBConsole, connect to the server for which you wish to view ID/keys.

2 Expand the node for that server and click Certificates.

The Work pane displays all current certificate IDs and keys for that server.

Adding a certificate ID/key
1 Have the certificate IDs and keys handy.

2 In IBConsole, connect to the server to which you are adding the certificate
ID/keys.

3 Choose Server|Add Certificate or right-click and choose Add Certificate from
the context menu.

Figure 7.1 The Add Certificate dialog

C h a p t e r 7 L i c e n s i n g 7-3

L i c e n s e r e g i s t r a t i o n t o o l s

4 Enter the Certificate ID and Certificate Key numbers in the appropriate fields
and click OK.

InterBase adds the license information to the ib_license.dat file.

5 Restart the server process for the change to take effect.

Deleting a certificate ID/key
1 In IBConsole, connect to the server that you are deleting the certificate ID/keys

from.

2 Expand the node for that server and click Certificates.

3 In the Work pane, highlight the certificate you want to remove.

4 Choose Server|Remove Certificate. When you are asked if you’re sure you
want to remove the certificate, choose Yes.

5 Restart the server process for the change to take effect.

Command-line registration utility
The iblicense utility is available on all platforms. When you use it to add
certificate ID/key pairs, be sure to have the them handy before you begin.

You must run iblicense on the machine where the license file resides.

Command-line syntax
To add only one ID/key, use the following syntax:

iblicense -command [-option parameter ...]

For example:

iblicense -add -key KEYSTRING -id IDNUMBER

To add several ID/keys in one session, invoke iblicense with no arguments.

iblicense u
IB_LICEN> command [-option parameter …]
IB_LICEN> command [-option parameter …]
…
IB_LICEN> Quit

Important After an add or remove command succeeds, you must restart the server to ensure
that the new license is being used.

Removing keys When you remove a key, InterBase saves the current state of the
license file in a backup file, named ib_bckup.dat.

7-4 O p e r a t i o n s G u i d e

L i c e n s e r e g i s t r a t i o n t o o l s

Options Commands are:

Arguments to the add and remove commands listed above are:

You can abbreviate a command or option by issuing the initial letters until you
have uniquely identified it.

Once the command has been issued, the utility reports whether or not the
operation succeeded.

Examples The following are examples of using the iblicense utility.

• Adding a key:

iblicense –add –key 00-b-90-21 –id 50-60--71-XXXx-01234

• Removing a key:

iblicense –r –k 00-b-90-21

• Displaying keys:

iblicense –display

• Displaying help:

iblicense –h

Note The example ID/key pairs above are fictional and do not enable a server.

Table 7.1 iblicense commands and their options

Command/option Description

add -key keynumber -id idnumber Adds a new license key; the key number and ID
number are on your Software Activation Certificate

display Displays all current keys

remove -key key Removes a key

help Prints this list

quit Exits prompt mode

z Displays the version

Table 7.2 iblicense options

Option Description

key License key value

id License id value

C h a p t e r 7 L i c e n s i n g 7-5

L i c e n s e r e g i s t r a t i o n t o o l s

Available certificates
Each software activation certificate enables a specific piece of functionality, which
is identified in the box that contains the Certificate ID and key numbers.

A note on simultaneous connections
The USERS component of an InterBase license string indicates the maximum
number of clients that can simultaneously connect to databases on the server host.
The number following the word USERS determines the number of distinct users
that can connect at one time. Each user can have up to four connections.

The lines in the license file must be unique. InterBase ignores duplicate instances
of a certificate ID.

Tip In Borland Delphi and other VCL-based Borland tools, each TTable and TQuery
component establishes a separate connection to the database by default, and
therefore counts toward the connection limit. You should instead use a TDatabase
component to connect to the database and associate each TTable and TQuery with
the TDatabase. This way, the application uses only one database connection per
TDatabase.

Table 7.3 Certificate keys available for InterBase

Certificate Functionality

Server Activation Activates local access to the server for one (1) user

Metadata Allows database metadata manipulation for the server; that is,
SQL statements CREATE, ALTER, and DROP

Remote Access Enables the server to accept requests for database access from
remote clients

Client Capability Allows the software to act as a client and to connect to other
InterBase servers

Desktop InterBase Activates local access to the server for two users, with
metadata and client capabilities

Simultaneous Users Regulates the number of clients that can connect to this server
at the same time; clients can be local or remote

Internet Access Allows use of the InterBase server with Web servers

Per-processor Allows additional CPUs to be used simultaneously by the
InterBase server

7-6 O p e r a t i o n s G u i d e

L i c e n s e r e g i s t r a t i o n t o o l s

The InterBase license file
Information about what functionality has been enabled is stored in the
ib_license.dat file in the InterBase install directory on both Windows and UNIX.
IBConsole’s Add Certificate function (Windows) and the iblicense utility (all
platforms) both write to this file. Users do not have to write to this file directly.
This section describes the contents of this file.

Elements in the ib_license.dat file
Each line of ib_license.dat contains four or more components, listed in the table
below:

The KEY component is a form of password, encoded from the combination of all
the other components present in the license key string. You need the KEY in order
to activate the capabilities specified in OPTIONS. Any change to the components,
such as adding to the OPTIONS or altering the number of USERS, invalidates the KEY
because the KEY is based on the specific values of the components.

Options in the ib_license.dat file
The capabilities of an InterBase installation are determined by the options present
in the license file. Each license line in the file contains some number of single-letter
option codes in the OPTIONS component of the line. The options and the respective
functions they enable are listed below:

Table 7.4 InterBase components

Component Description

COMMENT string Descriptive comments (optional)

ID string Unique identification for a key

KEY string Encoded key you need to activate a server capability

OPTIONS string Set of single-character codes for enabling specific
InterBase server or client functionality; see below

PRODUCT name INTERBASE

UNTIL date Expiration date of the license (optional)

USERS n User limit for the attachment governor; see below

VERSION string Code for InterBase platform; for example, “WI” for
Windows, “SO” for Solaris, and “LI” for Linux

C h a p t e r 7 L i c e n s i n g 7-7

L i c e n s i n g m u l t i p l e i n s t a n c e s o f I n t e r B a s e

Licensing multiple instances of InterBase
Running multiple instances of InterBase on the same machine simultaneously
requires that each instance of the InterBase server be properly licensed and only
use the licenses that it is supposed to.

Licensing multiple instances of InterBase is dependent on the location of the
installation. Which instance of InterBase used by a client application is directed by
the INTERBASE environmental variable. The INTERBASE environmental variable
contains the directory path of the specific InterBase install. InterBase uses the
directory path contained in the INTERBASE environmental variable to locate the
the InterBase security database (admin.ib), the InterBase license file
(ib_license.dat), the InterBase registration files (SLIP and reg* files, and
borland.lic), and necessary runtime files (interbase.msg, libborland_lm.[dll, so]),
etc.

Table 7.5 InterBase license options

Option Enables functionality

D Metadata changes with CREATE, ALTER or DROP statements

E External table access

I Internal table access

J For Type 3 InterClient only: Listening server capability (like the “S”
option) for the InterServer component of InterClient; appears in
InterServer’s license file, not InterBase’s

Q Query tool (isql)

R Client capability; required for clients

S Server capability; required for servers

W Access license with unlimited users

7-8 O p e r a t i o n s G u i d e

L i c e n s i n g m u l t i p l e i n s t a n c e s o f I n t e r B a s e

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-1

C h a p t e r

Chapter 8Database Backup and Restore
A database backup saves a database to a file on a hard disk or other storage
medium. To protect a database from power failure, disk crashes, or other potential
data loss, you should regularly back up the database. For additional safety, it is
recommended to store the backup medium in a different physical location from
the database server.

A database restore re-creates a database from a backup file.

Benefits of backup and restore
Operating systems usually include facilities for archiving files. Using InterBase’s
gbak utility or IBConsole to backup and restore databases offers several
advantages over system backup methods. The InterBase backup and restore
process accomplishes the following:

• Improves database performance by performing garbage collection on outdated
records, and by balancing indexes.

• Reclaims space occupied by deleted records and packs the remaining data; this
often reduces database size.

• Gives you the option of changing the database page size or distributing the
database among multiple files or disks.

• Enables backups to run concurrently while other users are using the database.
You do not have to shut down the database to run a backup. However, any data
changes that clients commit to the database after the backup begins are not
recorded in the backup file.

• Provides you with a platform-independent, stable snapshot of the database for
archiving purposes.

8-2 O p e r a t i o n s G u i d e

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

• Creates a database backup to a disk file or to a named tape device.

• Upgrades the ODS.

New major releases of the InterBase server often contain changes to the on-disk
structure (ODS). If the ODS has changed and you want to take advantage of any
new InterBase features, upgrade your databases to the new ODS.

You need not upgrade databases to use a new version of InterBase. The new
versions can still access databases created with a previous version, but cannot take
advantage of any new InterBase features.

To upgrade existing databases to a new ODS, perform the following steps:

1 Before installing the new version of InterBase, back up databases using the old
version.

2 Install the new InterBase server.

3 Once the new server is installed, restore the databases using the new gbak.

Database ownership
Although backing up a database can be performed only by the owner or SYSDBA,
any user can restore a database as long as they are not restoring it over an existing
database. A restored database file belongs to the user ID of the person who
performed the restore. This means that backing up and restoring a database is a
mechanism for changing the ownership of a database. It also means that an
unauthorized user can steal a database by restoring a backup file to a machine
where he knows the SYSDBA password. It is important to ensure that your backup
files are secured from unauthorized access.

Note To restore a database over an existing database, you must be SYSDBA or the owner
of the existing database.

Backing up a database using IBConsole
This section describes the steps in backing up a database. The following section,
“Backup options,” describes each of the options.

Use the Database Backup dialog to back up a database. To access this dialog, select
a logged-in server from the list of available servers displayed in the Tree pane and
continue with any of the following methods:

• Select Databases or any database under the Databases hierarchy and choose
Database|Maintenance|Backup/Restore|Backup.

• Right-click any connected database under the Databases hierarchy and choose
Backup/Restore|Backup from the context menu.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-3

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

• Select a connected database under the Databases hierarchy and double-click
Database Backup in the Work pane.

• Select a database alias under Backup in the Tree pane and double-click Backup
in the Work pane.

Each of these actions displays the Database Backup dialog:

Figure 8.1 Database backup dialog

To back up a database
1 Check the database server to make sure the server indicated is correct. If it is

not, cancel this dialog and re-initiate the Database Backup dialog under the
correct server.

2 If you accessed the Database Backup dialog from a database alias, the Alias
field is automatically assigned. If you accessed the Database Backup dialog
from the Databases menu, then you must select an alias from the list of database
aliases.

The database alias references the associated database file name, so you need
only specify the alias name, not the actual database filename, when indicating
the database to back up. If the database spans multiple files, the server uses the
header page of each file to locate additional files, so the entire database can be
backed up based on the alias filename.

3 Select a destination server from a list of registered servers in the Backup Files
Server drop-down list.

4 Once a destination server has been selected, a list of backup file aliases is
available from the Backup Files Alias drop-down list. If you want to overwrite
an existing backup file, select the appropriate file from the drop-down list. If
you want to create a new backup file, you can type a new alias name in the
Backup File(s) Alias field.

8-4 O p e r a t i o n s G u i d e

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

5 Indicate where the backup is to be stored by entering one or more filenames,
specifying a size for each file, in the Backup File(s) table. To insert a new row
into the Backup File(s) table, move to the last row and column in the table and
type w-z.

When entering a filename, make sure to include the file path unless you wish to
write the file to the current working directory.

If you select an existing backup alias, the table displays all the filenames and file
sizes of that alias. You can edit any information within this table. To add
another file to the backup file list, enter a new filename at the end of the table.
To remove a file from the backup file list, delete the values in the table.

6 You can specify backup options by entering a valid value, by clicking the option
value and choosing a new value from a drop-down list of values, or by
double-clicking the option value to rotate its value to the next in the list of
values. See “Backup options” below for descriptions of these options.

7 Click OK to start the backup.

Note Database files and backup files can have any name that is legal on the operating
system; the gdb and gbk file extensions are InterBase conventions only. Because files
that have the gdb extension automatically get backed up whenever they are touched
in some versions of Windows XP and ME, InterBase now recommends using an ib
extension for database files and ibk for backup files.

A backup file typically occupies less space than the source database because it
includes only the current version of data and incurs less overhead for data storage.
A backup file also contains only the index definition, not the index data structures.

If you specify a backup file that already exists, IBConsole overwrites it. To avoid
overwriting, specify a unique name for the backup file.

Backup options
The backup options are shown on the right side of the Database Backup dialog.
You can specify options by entering a value, by clicking the option value and
choosing a new value from a drop-down list of values, or by double-clicking the
option value to rotate its value to the next in the list of values.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-5

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

Figure 8.2 Database backup options

Format
Option values are Transportable and Non-transportable.

To move a database to a machine with an operating system different from the one
under which the backup was performed, make sure the Format option is set to
Transportable. This option writes data in a generic format, enabling you to move
to any machine that supports InterBase.

Important Never copy a database from one location to another. Back it up and then restore it
to the new location.

Metadata Only
Option values are True and False.

When backing up a database, you can exclude its data, saving only its metadata.
You might want to do this to:

• Retain a record of the metadata before it is modified.

• Create an empty copy of the database. The copy has the same metadata but can
be populated with different data.

To back up metadata only, select True for the Metadata Only option.

Tip You can also extract a database’s metadata using isql. isql produces a SQL data
definition text file that contains the SQL code used to create it. IBConsole backup
Metadata Only creates a binary backup file containing only metadata.

This function corresponds to the -metadata option of gbak.

Garbage collection
Option values are True and False.

By default, IBConsole performs garbage collection during backup. To prevent
garbage collection during a backup, set the Garbage Collection option value to
False.

8-6 O p e r a t i o n s G u i d e

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

Garbage collection marks space used by old versions of data records as free for
reuse. Generally, you want IBConsole to perform garbage collection during
backup.

Tip You do not want to perform garbage collection if there is data corruption in old
record versions and you want to prevent InterBase from visiting those records
during a backup.

This function corresponds to the -garbage_collect option of gbak.

Transactions in limbo
Option values are Process and Ignore.

To ignore limbo transactions during backup, set the Transactions in Limbo option
value to Ignore.

When IBConsole ignores limbo transactions during backup, it ignores all record
versions created by any limbo transaction, finds the most recently committed
version of a record, and backs up that version.

Limbo transactions are usually caused by the failure of a two-phase commit. They
can also exist due to system failure or when a single-database transaction is
prepared.

Before backing up a database that contains limbo transactions, it is a good idea to
perform transaction recovery, by choosing Database|Maintenance|
Transaction Recovery in the Database Maintenance window. Refer to “Recovering
transactions” on page 6-33 for more information.

This function corresponds to the -limbo option of gbak.

Checksums
Note For performance reasons, InterBase supports true checksums only for ODS 8 and

earlier. For ODS 9 and later, InterBase always generates the string “12345” as the
checksum. This maintains compatibility with older versions.

Option values are Process and Ignore.

To ignore checksums during backup, set the Checksums option value to Ignore.

A checksum is a page-by-page analysis of data to verify its integrity. A bad
checksum means that a data page has been randomly overwritten; for example,
due to a system crash.

Checksum errors indicate data corruption, and InterBase normally prevents you
from backing up a database if bad checksums are detected. Examine the data the
next time you restore the database.

This function corresponds to the -ignore option of gbak.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-7

B a c k i n g u p a d a t a b a s e u s i n g I B C o n s o l e

Convert to Tables
To convert external files to internal tables, set the Convert to Tables option value to
True.

This function corresponds to the -convert option of gbak.

Verbose Output
Option values are None, To Screen and To File.

To monitor the backup process as it runs, set the Verbose Output option value to
To Screen. This option opens a standard text display window to display status
messages during the backup. For example:

Figure 8.3 Database backup verbose output

The standard text display window enables you to search for specific text, save the
text to a file, and print the text. For an explanation of how to use the standard text
display window, see “Standard text display window” on page 2-7.

This function corresponds to the -verbose option of gbak.

Transferring databases to servers running
different operating systems
1 Set the Format option to Transportable in the Database Backup dialog.

2 Back up the database.

3 If you backed up to a removable medium, proceed to Step 4. If you created a
backup file on disk, use operating-system commands to copy the file to a
removable medium, such as a tape. Then load the contents of the medium onto
another machine, or copy it across a network to another machine.

4 On the destination machine, restore the backup file. If restoring from a
removable medium, such as tape, specify the device name instead of the backup
file.

8-8 O p e r a t i o n s G u i d e

R e s t o r i n g a d a t a b a s e u s i n g I B C o n s o l e

Restoring a database using IBConsole
Use the Database Restore dialog to restore databases. To access this dialog, select a
server from the list of available servers displayed in the Tree pane and continue
with one of these possible methods:

• Select anything under the databases hierarchy and choose Database||
Maintenance|Backup/Restore|Restore.

• Double-click any backup alias name under the Backup hierarchy.

• Right-click Backup or any backup alias name under the Backup hierarchy and
choose Restore from the context menu.

• Select any backup alias name under Backup and click Restore in the Work pane.

The Database Restore dialog appears:

Figure 8.4 Database Restore dialog

Important When restoring a database, do not replace a database that is currently in use.

To restore a database
1 Check the source Backup File(s) Server to make sure the server indicated is

correct. If it is not, cancel this dialog and re-initiate the Database Restore dialog
under the correct server.

2 If you accessed the Database Restore dialog from a backup alias, then the Alias
field is automatically assigned. If you accessed the Database Restore dialog
from Backup, then you must select an alias from the list of backup aliases.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-9

R e s t o r i n g a d a t a b a s e u s i n g I B C o n s o l e

Note The backup alias references the associated backup file names, so you need
only specify the alias name, not the actual backup file name, when indicating
the backup to restore. If the backup spans multiple files, the server uses header
page of each file to locate additional files, so the entire backup can be restored
based on the alias filename.

3 If you choose a backup file alias, the Backup File(s) table displays the associated
backup files. If you do not specify a backup file alias, then you can either enter
the backup filenames manually, or browse for the file by selecting File from the
Alias drop-down list. If you enter the file name manually, include the complete
path. It is important that you include all filenames associated with the restore.

To insert a new row into the Backup File(s) table, move to the last row and
column in the table and type w-z.

4 Select a destination server from a list of registered servers in the Database
Server drop-down list.

5 If you want to restore to an existing database, select its alias from the Database
Alias drop-down list. If you want to restore to a new database, type a new alias
name in the Database Alias field.

6 In the Filename(s) / Pages table, enter one or more filenames for the restored
database and specify the number of pages required for each file. Include the
complete path unless you want to place the files in the current working
directory. To insert a new row into the Database table, move to the last row and
column in the table and type w-z.

You might want to restore a database to multiple files to distribute it among
different disks, which provides more flexibility in allocating system resources.

If you selected an existing database alias, the Database table displays all the
associated filenames and number of pages. You can edit any information within
this table. You can add another file to the database file list by entering a new
filename at the end of the table. You can remove a file from the list by deleting
the values in the table.

Note You cannot restore a database to a network file system (mapped drive).

7 You can specify options for the restore by entering a valid value, by clicking the
option value and choosing a new value from a drop-down list of values or by
double-clicking the option value to rotate its value to the next in the list of
values. See “Restore options” below for a description of these options.

8 Click OK to start the restore.

Typically, a restored database occupies less disk space than it did before being
backed up, but disk space requirements could change if the ODS version
changes. For information about the ODS, see “Benefits of backup and restore”
on page 8-1.

8-10 O p e r a t i o n s G u i d e

R e s t o r i n g a d a t a b a s e u s i n g I B C o n s o l e

Note The InterBase restore utility allows you to restore a database successfully even if for
some reason the restore process could not rebuild indexes for the database. For
example, this can occur if there is not enough temporary disk space to perform the
sorting necessary to build an index. If this occurs, the database is restored and
available, but indexes are inactive. After the restore completes, use ALTER INDEX to
make the indexes active.

Restore options
The restore options are shown on the right side of the Database Restore dialog.
You can specify options by entering a value, by clicking the option value and
choosing a new value from a drop-down list of values, or by double-clicking the
option value to rotate its value to the next in the list of values.

Figure 8.5 Database restore options

Page Size
InterBase supports database page sizes of 1024, 2048, 4096 8192, and 1638 bytes.
The default is 4096 bytes. To change the page size, back up the database and then
restore it, modifying the Page Size option in the Database Restore dialog.

Changing the page size can improve performance for the following reasons:

• Storing and retrieving Blob data is most efficient when the entire Blob fits on a
single database page. If an application stores many Blobs exceeding 4KB, using
a larger page size reduces the time for accessing Blob data.

• InterBase performs better if rows do not span pages. If a database contains long
rows of data, consider increasing the page size.

• If a database has a large index, increasing the database page size reduces the
number of levels in the index tree. Indexes work faster if their depth is kept to a
minimum. Choose Database|Maintenance|Database Statistics to display index
statistics, and consider increasing the page size if index depth is greater than
three on any frequently used index.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-11

R e s t o r i n g a d a t a b a s e u s i n g I B C o n s o l e

• If most transactions involve only a few rows of data, a smaller page size may be
appropriate, because less data needs to be passed back and forth and less
memory is used by the disk cache.

This function corresponds to the -page_size option of gbak.

Overwrite
Option values are True and False.

IBConsole cannot overwrite an existing database file unless the Overwrite option
value is set to True. If you attempt to restore to an existing database name and this
option is set to False, the restore does not proceed.

To restore a database over an existing database, you must be the owner of the
existing database or SYSDBA.

Important Do not replace an existing database while clients are operating on it. When
restoring to an existing file name, a safer approach is to rename the existing
database file, restore the database, then drop or archive the old database as
needed.

This function corresponds to the -replace option of gbak.

Commit After Each Table
Option values are True and False.

Normally, IBConsole restores all metadata before restoring any data. If you set the
Commit After Each Table option value to True, IBConsole restores the metadata
and data for each table together, committing one table at a time.

This option is useful when you are having trouble restoring a backup file. This can
happen if the data is corrupt or is invalid according to integrity constraints.

If you have a problem backup file, restoring the database one table at a time lets
you recover some of the data intact. You can restore only the tables that precede
the bad data; restoration fails the moment it encounters bad data.

This function corresponds to the -one_at_a_time option of gbak.

Create Shadow Files
Shadow files are identical, physical copies of database files in a database. To
recreate shadow files that were saved during the backup process set the Create
Shadow Files option to True. For further information on shadowing see
“Shadowing” on page 6-12.

Deactivate Indexes
Option values are True and False.

8-12 O p e r a t i o n s G u i d e

R e s t o r i n g a d a t a b a s e u s i n g I B C o n s o l e

Normally, InterBase rebuilds indexes when a database is restored. If the database
contained duplicate values in a unique index when it was backed up, restoration
fails. Duplicate values can be introduced into a database if indexes were
temporarily made inactive (for example, to allow insertion of many records or to
rebalance an index).

To enable restoration to succeed in this case, set the Deactivate Indexes option to
True. This makes indexes inactive and prevents them from rebuilding. Then
eliminate the duplicate index values, and re-activate indexes through ALTER INDEX
in isql.

A unique index cannot be activated using the ALTER INDEX statement; a unique
index must be dropped and then created again. For more information about
activating indexes, see the Language Reference.

Tip The Deactivate Indexes option is also useful for bringing a database online more
quickly. Data access is slower until indexes are rebuilt, but the database is
available. After the database is restored, users can access it while indexes are
reactivated.

This function corresponds to the -inactive option of gbak.

Validity Conditions
Option values are Restore and Ignore.

If you redefine validity constraints in a database where data is already entered,
your data might no longer satisfy the validity constraints. You might not discover
this until you try to restore the database, at which time an error message about
invalid data appears.

Important Always make a copy of metadata before redefining it; for example, by extracting it
using isql.

To restore a database that contains invalid data, set the Validity Conditions option
to Ignore. This option deletes validity constraints from the metadata. After the
database is restored, change the data to make it valid according to the new
integrity constraints. Then add back the constraints that were deleted.

This option is also useful if you plan to redefine the validity conditions after
restoring the database. If you do so, thoroughly test the data after redefining any
validity constraints.

This function corresponds to the -no_validity option of gbak.

Use All Space
Option values are True and False.

To restore a database with 100% fill ratio on every data page, instead of the default
80% fill ratio, set the Use All Space option to True.

This function corresponds to the -use_all_space option of gbak.

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-13

g b a k c o m m a n d - l i n e t o o l

Verbose Output
Option values are None, To Screen, and To File.

To monitor the restore process as it runs, set the Verbose Output option to To
Screen. This option opens a standard text display window to display status
messages during the restore. For example:

Figure 8.6 Database restore verbose output

The standard text display window enables you to search for specific text, save the
text to a file, and print the text. For an explanation of how to use the standard text
display window, see “Standard text display window” on page 2-7.

This function corresponds to the -verbose option of gbak.

gbak command-line tool
The gbak command-line tool allows both back up or restore of a database, with
options for changing specified database characteristics. Only SYSDBA or database
owner can back up a database.

Database backup
When backing up a multifile database, specify only the first file name of the
database.

Syntax For backing up to a single file

gbak [-b] [options] database target

For backing up to multiple files
gbak [-b] [options] database target1 size1[k|m|g] target2 [size2[k|m|g] target3

8-14 O p e r a t i o n s G u i d e

g b a k c o m m a n d - l i n e t o o l

Options In the OPTION column of the following tables, only the characters outside the
square brackets ([]) are required.

Table 8.2 lists the options to gbak that are available for creating backups.

Table 8.1 gbak arguments

Argument Description

database • Name of a database to back up
• For a multifile database, the name of the first database file

target Name of a storage device or backup file to which to back up
• On UNIX, can also be stdout, in which case gbak writes its output to

the standard output (usually a pipe)
• No size need be specified when restoring to a single file, since the

database always expands as needed to fill all available space

size Length of a backup file or restored database file
• The only permissible unit for a restored database file is database

pages; minimum value is 200
• Default unit for a backup file is bytes
• Size of backup files can also be specified in kilobytes, megabytes, or

gigabytes
• Do not specify a size for the final backup file or database file; the last

file always expands as needed to fill all available space

Table 8.2 gbak backup options

Option Description

-b[ackup_database] Backs up database to file or device

-co[nvert] Converts external files as internal tables

-e[xpand] Creates a noncompressed back up

-fa[ctor] n Uses blocking factor n for tape device

-g[arbage_collect] Does not garbage collect during backup

-ig[nore] Ignores checksums during backup; Note: InterBase
supports true checksums only for ODS 8 and earlier

-l[imbo] Ignores limbo transactions during backup

-m[etadata] Backs up metadata only, no data

-nt Creates the backup in nontransportable format

-ol[d_descriptions] Backs up metadata in old-style format

-pas[sword] text Checks for password text before accessing a database

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-15

g b a k c o m m a n d - l i n e t o o l

Backing up a database with gbak
When backing up a database, bear the following points in mind:

• Only the database owner or SYSDBA can back up a database.

• Unless the -service option is specified, gbak writes the backup files to the
current directory of the machine on which it is running, not on the server where
the database resides. If you specify a location for the backup file, it is relative to
the machine where gbak is executing. You can write the backup files only to this
local machine or to drives that are mapped to it. Note that the -service switch
changes this behavior. (See “Using gbak with InterBase Service Manager” on
page 8-18.)

• When you are backing up a multifile database, specify only the first file in the
backup command. You must not name the subsequent database files: they will
be interpreted as backup file names.

• The default unit for backup files is bytes. You can choose to specify kilobytes,
megabytes, or gigabytes (k, m, or g) instead. Restored database files can be
specified only in database pages.

-role name Connects as role name

-se[rvice] servicename • Creates the backup files on the host where the original
database files are located, using InterBase’s Service
Manager

• servicename invokes the Service Manager on the server
host; syntax varies with the network protocol in use:

-t[ransportable] Creates a transportable backup [default]

-user name Checks for user name before accessing remote database

-v[erbose] Shows what gbak is doing

-y [file | suppress_output] Direct status messages to file; file must not already exist;
suppress_output suppress output messages

-z Show version of gbak and of InterBase engine

Table 8.2 gbak backup options (continued)

Option Description

TCP/IP hostname:service_mgr

Named pipes \\hostname\service_mgr

Local service_mgr

8-16 O p e r a t i o n s G u i d e

g b a k c o m m a n d - l i n e t o o l

Note It is good security practice to change your backup files to read-only at the system
level after creating them. This prevents them from being accidentally overwritten.
In addition, you can protect your databases from being “kidnapped” on UNIX and
NT/2000 systems by placing the backup files in directories with restricted access.

Tip Use the -transportable switch if you operate in a multiplatform environment. This
switch permits the database to be backed up to a platform other than the one on
which it originally resided. Using this option routinely is a good idea when you
are operating in a multiplatform environment.

Tip Use the -service switch if you are backing up to the same server that holds the
original database. This option invokes the InterBase Service Manager on the server
host and saves both time and network traffic.

Restoring a database with gbak
Syntax For restoring:

gbak {-c|-r} [options] source dbfile

For restoring to multiple files:
gbak {-c|-r} [options] source dbfile1 size1 dbfile2 [size2 dbfile3 …]

For restoring from multiple files:
gbak {-c|-r} [options] source1 source2 [source3 …] dbfile

By extension, you can restore from multiple files to multiple files using the
following syntax:

gbak {-c|-r} [options] source1 source2 [source3 …] dbfile1 size1
dbfile2 [size2 dbfile3 …]

Table 8.3 Restoring a database with gbak: options

Argument Description

source Name of a storage device or backup file from which to
restore
On UNIX, this can also be stdin, in which case gbak reads
input from the standard input (usually a pipe).

dbfile The name of a restored database file

size Length of a backup file or restored database file
• The only permissible unit for a restored database file is

database pages; minimum value is 200
• Default unit for a backup file is bytes
• Size of backup files can also be specified in kilobytes,

megabytes, or gigabytes
• Do not specify a size for the final backup file or

database file; the last file always expands as needed to
fill all available space

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-17

g b a k c o m m a n d - l i n e t o o l

Table 8.4 lists gbak options that are available when restoring databases.

Table 8.4 gbak restore options

Option Description

-c[reate_database] Restores database to a new file

-bu[ffers] Sets cache size for restored database

-i[nactive] Makes indexes inactive upon restore

-k[ill] Does not create any shadows that were previously
defined

-mo[de] [read_write |
 read_only}

Specifies whether the restored database is writable
• Possible values are read_only and read_write
• Default is read_write

-n[o_validity] Deletes validity constraints from restored metadata;
allows restoration of data that would otherwise not meet
validity constraints

-o[ne_at_a_time] Restores one table at a time; useful for partial recovery if
database contains corrupt data

-p[age_size] n Resets page size to n bytes (1024, 2048, 4096, 8192, or
16384); default is 4096

-pas[sword] text Checks for password text before accessing a database

-r[eplace_database] Restores database to new file or replaces existing file

-se[rvice] servicename • Creates the restored database on the host where the
backup files are located, using InterBase’s Service
Manager

• servicename invokes the Service Manager on the server
host; syntax varies with the network protocol in use:

-user name Checks for user name before accessing database

-use_[all_space] Restores database with 100% fill ratio on every data page,
instead of the default 80% fill ratio

TCP/IP hostname:service_mgr

NetBEUI \\hostname\service_mgr

Local service_mgr

8-18 O p e r a t i o n s G u i d e

g b a k c o m m a n d - l i n e t o o l

When restoring a database, bear the following points in mind:

• Anyone can restore a database. However, only the database owner or SYSDBA
can restore a database over an existing database.

• Do not restore a backup over a database that is currently in use; it is likely to
corrupt the database.

• When restoring from a multifile backup, name all the backup files, in any order.

• Do not provide a file size for the last (or only) file of the restored database.
InterBase does not return an error, but it always “grows” the last file as needed
until all available space is used. This dynamic sizing is a feature of InterBase.

• You specify the size of a restored database in database pages. The default size
for database files is 200 pages. The default database page size is 4K, so if the
page size has not been changed, the default database size is 800K. This is
sufficient for only a very small database. To change the size of the database
pages, use the -p[age_size] option when restoring.

Tip Use the -service switch if you are restoring to the same server that holds the
backup file. This option invokes the InterBase Service Manager on the server host
and saves both time and network traffic.

Note If you specify several target database files but have only a small amount of data, the
target files are quite small (around 800K for the first one and 4K for subsequent
ones) when they are first created. They grow in sequence to the specified sizes as
you populate the database.

Using gbak with InterBase Service Manager
When you run gbak with the -service switch, gbak invokes the backup and restore
functions of InterBase’s Service Manager on the server where the database resides.
When run without the -service switch, gbak executes on the machine where it is
invoked—typically a client—and writes the backup file on (or relative to) that
machine. Using the -service switch to invoke the Service Manager saves a
significant amount of time and network traffic when you want to create the
backup on the same host on which the database resides. You have the option of
specifying another machine as the target when using the -service switch, but the
advantages of reduced time and network traffic are lost.

-v[erbose] Shows what gbak is doing

-y [file | suppress_output] If used with -v, directs status messages to file; if used
without -v and file is omitted, suppresses output messages

-z Show version of gbak and of InterBase engine

Table 8.4 gbak restore options (continued)

Option Description

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-19

g b a k c o m m a n d - l i n e t o o l

When you use the -service switch, you specify the host name followed by the
string “service_mgr”. The syntax you use for this varies with the network protocol
you are using. Together, these components are referred to as “host_service” in the
syntax statements that follow in this section.

The syntax in the right column appears in the gbak syntax below as
“host_service.”

The local case is trivial on NT. If you are backing up a local database, the results in
terms of time and network traffic are the same whether you use the -service switch
or not, even though the actual implementation would be slightly different. On
UNIX systems, the local case is equivalent to specifying (for TCP/IP)
localhost:service_mgr and saves both time and network traffic.

Syntax Backing up with Service Manager

gbak -b [options] -se[rvice] host_service database filename

Syntax Restoring with Service Manager

gbak {-c|-r} [options] -se[rvice] host_service filename database

You can back up to multiple files and restore from multiple files using Service
Manager.

Important On UNIX systems, in order to restore a database that has been backed up using the
Service Manager, you must either use the Service Manager for the restore or you
must be logged onto the system as the user that InterBase was running as when
the backup was created (either root or interbase). This is because the InterBase user
(root or interbase) is the owner of the backup file at the system level when the
Service Manager is invoked, and the backup file is readable to only that user.
When gbak is used to back up a database without the -service option, the owner of
the backup file at the system level is the login of the person who ran gbak. On
Windows platforms, the system-level constraints do not apply.

The user name and password
When InterBase checks to see whether the user running gbak is authorized to do
so, it determines the user according to the following hierarchy:

• The -user that is specified, with a correct password, as part of the gbak
command

Table 8.5 host_service syntax for calling the Service Manager with gbak

Network protocol Syntax

TCP/IP hostname:service_mgr

NetBEUI \\hostname\service_mgr

Local service_mgr

8-20 O p e r a t i o n s G u i d e

g b a k c o m m a n d - l i n e t o o l

• The user and password specified in the ISC_USER and ISC_PASSWORD
environment variables, provided they also exist in the InterBase security
database. (Setting these environment variables is strongly not recommended,
since it is extremely insecure.)

• UNIX only: If no user is specified at any of the previous levels, InterBase uses
the UNIX login if the user is running on the server or on a trusted host.

Some backup and restore examples
Note The following examples use forward slashes exclusively. InterBase accepts either

forward or backward slashes for paths on Wintel platforms.

Database backup examples
The following example backs up foo.ib, which resides on the server jupiter and
writes the backup file to the current directory of the client machine where gbak is
running. foo.ib can be either a single-file database or the name of the first file in a
multifile database. Using this syntax (without the -se switch) copies a lot of data
over the net.

gbak -b -user joe -password blurf@ jupiter:/foo.ib foo.ibk

The next example backs up foo.ib, which resides on the server jupiter and writes the
backup file to the C:/archive directory on the client machine where gbak is running.
As before, foo.ib can be a single file database or the name of the first file in a
multifile database. This syntax causes the same amount of network traffic as the
first example.

gbak -b -user joe -password blurf@ jupiter:/foo.ib C:\archive\foo.ibk

The next example backs up the same database on jupiter, but uses the -se[rvice]
switch to invoke the Service Manager on jupiter, which writes the backup to the
\backup directory on jupiter. This command causes very little network traffic and is
therefore faster than performing the same task without the -se (-service) switch.
Note that the syntax (jupiter:service_mgr) indicates a TCP/IP connection.

gbak -b -user joe -password blurf@ -se jupiter:service_mgr /foo.ib /backup/foo.ibk

The next example again backs up foo1.ib on server jupiter to multiple files in the
/backup directory on jupiter using the Service Manager. This syntax backs up a
single file or multifile database and uses a minimum of time and network traffic. It
converts external files as internal tables and creates a backup in a transportable
format that can be restored on any InterBase-supported platform. To back up a
multifile database, name only the first file in the backup command. In this
example, the first two backup files are limited to 500K. The last one expands as
necessary.

gbak -b -user joe -pass blurf@ -co -t -se jupiter:service_mgr
/foo1.ib/backup/backup1.ibk 500k /backup/backup2.ibk 500k
/backup/lastBackup.ibk

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-21

g b a k e r r o r m e s s a g e s

Database restore examples
The first example restores a database that resides in the /archive directory on the
machine where gbak is running and restores it to jupiter, overwriting an existing
(but inactive) database.

gbak -r -user joe -pass blurf@ C:\archive\foo.ibk jupiter:/foo.ib

The next example restores a multifile database from the /backup directory of jupiter
to the /companydb directory of jupiter. This command runs on the server by
invoking Service Manager, thus saving time and network traffic. In this example,
the first two files of the restored database are 500 pages long and the last file grows
as needed.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr /backup/foo1.ibk
/backup/foo2.ibk /backup/fooLast.ibk /companydb/foo1.ib 500
/companydb/foo2.ib 500 /companydb/fooLast.ib

The next example executes on server Jupiter using Service Manager and restores a
backup that is on Jupiter to another server called Pluto.

gbak -r user -joe -pass blurf@ -se jupiter:service_mgr
/backup/foo.ibk pluto:/companydb/foo.ib

gbak error messages

Table 8.6 gbak backup and restore error messages

Error Message Causes and Suggested Actions to Take

Array dimension for column <string> is invalid Fix the array definition before backing up

Bad attribute for RDB$CHARACTER_SETS An incompatible character set is in use

Bad attribute for RDB$COLLATIONS Fix the attribute in the named system table

Bad attribute for table constraint Check integrity constraints; if restoring, consider
using the -no_validity option to delete validity
constraints

Blocking factor parameter missing Supply a numeric argument for “factor” option

Cannot commit files • Database contains corruption or metadata violates
integrity constraints

• Try restoring tables using -one_at_a_time option, or
delete validity constraints using -no_validity
option

Cannot commit index <string> • Data might conflict with defined indexes
• Try restoring using “inactive” option to prevent

rebuilding indexes

8-22 O p e r a t i o n s G u i d e

g b a k e r r o r m e s s a g e s

Cannot find column for Blob

Cannot find table <string>

Cannot open backup file <string> Correct the file name you supplied and try again

Cannot open status and error output file
<string>

• Messages are being redirected to invalid file name
• Check format of file or access permissions on the

directory of output file

Commit failed on table <string> • Data corruption or violation of integrity constraint
in the specified table

• Check metadata or restore “one table at a time”

Conflicting switches for backup/restore A backup-only option and restore-only option were
used in the same operation; fix the command and
execute again

Could not open file name <string> Fix the file name and re-execute command

Could not read from file <string> Fix the file name and re-execute command

Could not write to file <string> Fix the file name and re-execute command

Datatype n not understood An illegal datatype is being specified

Database format n is too old to restore to • The gbak version used is incompatible with the
InterBase version of the database

• Try backing up the database using the -expand or
-old options and then restoring it

Database <string> already exists. To replace it,
use the -R switch

• You used -create in restoring a back up file, but the
target database already exists

• Either rename the target database or use -replace

Could not drop database <string> (database
might be in use).

• You used -replace in restoring a file to an existing
database, but the database is in use

• Either rename the target database or wait until it is
not in use

Device type not specified The -device option (Apollo only) must be followed by
ct or mt; obsolete as of InterBase V3.3

Device type <string> not known The -device option (Apollo only) was used
incorrectly; obsolete as of InterBase V3.3

Do not recognize record type n

Do not recognize <string> attribute n --
continuing

Do not understand BLOB INFO item n

Table 8.6 gbak backup and restore error messages (continued)

Error Message Causes and Suggested Actions to Take

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-23

g b a k e r r o r m e s s a g e s

Error accessing BLOB column <string> --
continuing

ERROR: Backup incomplete • The backup cannot be written to the target device or
file system

• Either there is insufficient space, a hardware write
problem, or data corruption

Error committing metadata for table <string> • A table within the database could be corrupt.
• If restoring a database, try using -one_at_a_time to

isolate the table

Exiting before completion due to errors • This message accompanies other error messages
and indicates that back up or restore could not
execute

• Check other error messages for the cause.

Expected array dimension n but instead found
m

Try redefining the problem array

Expected array version number n but instead
found m

Try redefining the problem array

Expected backup database <string>, found
<string>

Check the name of the backup file being restored

Expected backup description record

Expected backup start time <string>, found
<string>

Expected backup version 1, 2, or 3. Found n

Expected blocking factor, encountered <string> The -factor option requires a numeric argument

Expected data attribute

Expected database description record

Expected number of bytes to be skipped,
encountered <string>

Expected page size, encountered <string> The -page_size option requires a numeric argument

Expected record length

Expected volume number n, found volume n When backing up or restoring with multiple tapes, be
sure to specify the correct volume number

Expected XDR record length

Failed in put_blr_gen_id

Table 8.6 gbak backup and restore error messages (continued)

Error Message Causes and Suggested Actions to Take

8-24 O p e r a t i o n s G u i d e

g b a k e r r o r m e s s a g e s

Failed in store_blr_gen_id

Failed to create database <string> The target database specified is invalid; it might
already exist

column <string> used in index <string> seems
to have vanished

• An index references a non-existent column
• Check either the index definition or column

definition

Found unknown switch An unrecognized gbak option was specified

Index <string> omitted because n of the
expected m keys were found

Input and output have the same name.
Disallowed.

A backup file and database must have unique names;
correct the names and try again

Length given for initial file (n) is less than
minimum (m)

• In restoring a database into multiple files, the
primary file was not allocated sufficient space

• InterBase automatically increases the page length to
the minimum value

• No action necessary

Missing parameter for the number of bytes to
be skipped

Multiple sources or destinations specified Only one device name can be specified as a source or
target

No table name for data • The database contains data that is not assigned to
any table

• Use gfix to validate or mend the database

Page size is allowed only on restore or create The -page_size option was used during a back up
instead of a restore

Page size parameter missing The -page_size option requires a numeric argument

Page size specified (n bytes) rounded up to m
bytes

Invalid page sizes are rounded up to 1024, 2048, 4096,
or 8192, whichever is closest

Page size specified (n) greater than limit (8192
bytes)

Specify a page size of 1024, 2048, 4096, or 8192

Password parameter missing • The back up or restore is accessing a remote
machine

• Use -password and specify a password

Protection is not there yet Unimplemented option -unprotected used

Redirect location for output is not specified You specified an option reserved for future use by
InterBase

Table 8.6 gbak backup and restore error messages (continued)

Error Message Causes and Suggested Actions to Take

C h a p t e r 8 D a t a b a s e B a c k u p a n d R e s t o r e 8-25

g b a k e r r o r m e s s a g e s

REPLACE specified, but the first file <string> is
a database

Check that the file name following the -replace option
is a backup file rather than a database

Requires both input and output file names Specify both a source and target when backing up or
restoring

RESTORE: decompression length error • Possible incompatibility in the gbak version used
for backing up and the gbak version used for
restoring

• Check whether -expand should be specified during
back up

Restore failed for record in table <string> Possible data corruption in the named table

Skipped n bytes after reading a bad attribute n

Skipped n bytes looking for next valid attribute,
encountered attribute m

Trigger <string> is invalid

Unexpected end of file on backup file • Restoration of the backup file failed; the backup
procedure that created the backup file might have
terminated abnormally

• If possible, create a new backup file and use it to
restore the database

Unexpected I/O error while <string> backup
file

A disk error or other hardware error might have
occurred during a backup or restore

Unknown switch <string> An unrecognized gbak option was specified

User name parameter missing • The backup or restore is accessing a remote
machine

• Supply a user name with the -user option

Validation error on column in table <string> • The database cannot be restored because it contains
data that violates integrity constraints

• Try deleting constraints from the metadata by
specifying -no_validity during restore

Warning -- record could not be restored Possible corruption of the named data

Wrong length record, expected n encountered n

Table 8.6 gbak backup and restore error messages (continued)

Error Message Causes and Suggested Actions to Take

8-26 O p e r a t i o n s G u i d e

g b a k e r r o r m e s s a g e s

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-1

C h a p t e r

Chapter 9Database Statistics and
Connection Monitoring

InterBase provides a number of ways to view statistics about database behavior
and to exert control over that behavior. This chapter provides a description of the
following InterBase facilities:

• Monitoring with system temporary tables

• Viewing statistics using IBConsole

• The gstat command-line tool

• Viewing lock statistics

• Retrieving statistics with api_database_info()

Monitoring with system temporary tables
The InterBase Server has always kept a lot of statistics about what was going on,
but it has not been easy, or in some cases possible, to surface that information.
Now, InterBase captures that information and makes it available in a set of global
system temporary tables. These tables describe the runtime behavior of a database.
They also provide a level of control.

Although it has always been possible to see a list of users who were currently
attached to a database, you can now find out much more. For example, you can see
how long each user has been connected, what application each user is running, or
the total amount of data I/O used by each attachment. A glance at the temporary
table metadata listed on pages 6-31 to 6-42 of the Language Reference will suggest
the vast possibilities that are available here.

9-2 O p e r a t i o n s G u i d e

M o n i t o r i n g w i t h s y s t e m t e m p o r a r y t a b l e s

It is also possible to exercise a certain amount of control over the state of a
database by performing updates to these tables. See “Updating system temporary
tables” on page 9-4.

These system temporary tables are specific to each database attachment and are
visible only to the sysdba user and the database owner. There is therefore no need
for unique names and no danger of collisions by separate attachments. Each table
is populated only at the point when a client queries it.

The following system temporary tables are available. Their structure is
documented in the Language Reference on pages 6-31 to 6-42.

Querying system temporary tables
Clients can query these tables using SELECT statements, just as they would query
any other table. By querying these tables, a rich collection of data about server
performance and user behavior is available.

You cannot create or redefine temporary tables yourself.

Tip For frequent monitoring, the best transaction control is to start the transaction as
READ_COMMITTED, READ_ONLY. Then commit it with COMMIT_RETAINING. This
has the least impact on the system.

Refreshing the temporary tables
To refresh the rows in the temporary tables, commit your transaction and perform
the SELECT from the temporary tables again. InterBase automatically deletes the
rows stored in temporary tables on a commit.

Table 9.1 InterBase temporary system tables

Table name Description

TMP$ATTACHMENTS One row for each connection to a database

TMP$DATABASE One row for each database you are attached to

TMP$POOL_BLOCKS One row for each block of memory in each pool

TMP$POOLS One row for each current memory pool

TMP$PROCEDURES One row for each procedure executed since the current
connection began

TMP$RELATIONS One row for each relation referenced since the current
connection began

TMP$STATEMENTS One row for each statement currently executing for any
current connection

TMP$TRANSACTIONS One row for each transaction that is active or in limbo

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-3

M o n i t o r i n g w i t h s y s t e m t e m p o r a r y t a b l e s

Listing the temporary tables
To display a list of these temporary tables, issue the following command in isql:

SHOW SYSTEM

The temporary tables are listed at the end of the system tables. To see the metadata
for a particular table, issue:

SHOW TABLE tablename

Note The SHOW SYSTEM command is available only in command-line isql, not in
InterBase Windows isql.

Security
Unlike system tables, which have a default access privilege of SELECT for PUBLIC
users, the temporary tables have no default access by PUBLIC. The display and
manipulation of this runtime information is restricted to SYSDBA and the database
owner. These two users have the option of using the GRANT statement to allow
access to other users. The statement can grant only SELECT privileges.

Examples
To illustrate the richness of the possibilities afforded by these temporary tables,
here are some examples how you might query them.

Top ten SQL statements by execution
SELECT a.tmp$user, s.tmp$timestamp, s.tmp$sql, s.tmp$quantum

FROM TMP$STATEMENTS s, TMP$ATTACHMENTS a
WHERE a.TMP$ATTACHMENT_ID = s.TMP$ATTACHMENT_ID
ORDER BY s.TMP$QUANTUM DESC ROWS 10;

Top ten oldest transaction snapshots
SELECT a.TMP$USER, t.TMP$TIMESTAMP, t.TMP$TRANSACTION_ID, t.TMP$SNAPSHOT

FROM TMP$ATTACHMENTS a, TMP$TRANSACTIONS t
WHERE a.TMP$ATTACHMENT_ID = t.TMP$ATTACHMENT_ID
ORDER BY t.TMP$SNAPSHOT ROWS 10;

Top ten tables with the most garbage to clean up
SELECT TMP$RELATION_NAME, TMP$GARBAGE_COLLECT_PAGES

FROM TMP$RELATIONS
ORDER BY TMP$GARBAGE_COLLECT_PAGES DESC ROWS 10;

Top ten most executed stored procedures
SELECT TMP$PROCEDURE_NAME, TMP$INVOCATIONS

FROM TMP$PROCEDURES
ORDER BY TMP$INVOCATIONS DESC ROWS 10;

Is database sweep active and what's its progress?
SELECT TMP$SWEEP_RELATION, TMP$SWEEP_RECORDS

FROM TMP$DATABASE
WHERE TMP$SWEEP_ACTIVE = 'Y';

9-4 O p e r a t i o n s G u i d e

M o n i t o r i n g w i t h s y s t e m t e m p o r a r y t a b l e s

Pool memory allocations grouped by pool type
SELECT TMP$TYPE, SUM(TMP$POOL_MEMORY) TMP$TOTAL_MEMORY,

SUM(TMP$FREE_MEMORY) TMP$TOTAL_FREE
FROM TMP$POOLS
GROUP BY TMP$TYPE
ORDER BY 2 DESC;

Updating system temporary tables
There are cases where, having acquired information about the state of the
database, you need to take appropriate action. You might, for example, detect a
transaction that had unexpectedly been open for many hours, or one that was
consuming resources that were needed by others. By updating the TMP$STATE
column of certain temporary tables, you can perform the following updates:

• Roll back an active or limbo transaction

• Commit a limbo transaction

• Cancel an attachment’s executing operation

• Shut down the current attachment

• Make an executing statement stop running

To roll back an active transaction
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'ROLLBACK' WHERE TMP$TRANSACTION_ID=123;

To roll back a limbo transaction
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'ROLLBACK' WHERE TMP$TRANSACTION_ID=123;

To commit a limbo transaction
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'COMMIT' WHERE TMP$TRANSACTION_ID=123;

To cancel the attachment’s currently executing operation
UPDATE TMP$ATTACHMENTS SET TMP$STATE = 'CANCEL' WHERE TMP$ATTACHMENT_ID=123;

To shut down the current attachment
UPDATE TMP$ATTACHMENTS SET TMP$STATE = 'SHUTDOWN' WHERE TMP$ATTACHMENT_ID=123;

Shutting down an attachment detaches the user from the database and terminates
the local or network attachment to the server.

To make an executing statement stop running
UPDATE TMP$STATEMENTS SET TMP$STATE = 'CANCEL' WHERE TMP$STATEMENT_ID=123;

Making global changes
The above examples operate on a single attachment or transaction. You can make
more global changes. For example:

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-5

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

To roll back all active transactions
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'ROLLBACK' WHERE TMP$STATE ='ACTIVE';

To roll back all limbo transactions
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'ROLLBACK' WHERE TMP$STATE ='LIMBO';

To commit all limbo transactions
UPDATE TMP$TRANSACTIONS SET TMP$STATE = 'COMMIT' WHERE TMP$STATE ='LIMBO';

Viewing statistics using IBConsole
To view database statistics, use one of the following methods to access the
Database Statistics dialog:

• Select a connected database in the Tree pane and choose Database|
Maintenance|Database Statistics.

• Select a connected database in the Tree pane and double-click Database
Statistics in the Work pane.

• Right-click a connected database in the Tree pane and choose Maintenance|
Database Statistics from the context menu.

A Database Statistics dialog appears where you can select which statistics you
want to display.

Figure 9.1 Database Statistics options

To view database statistics
1 Select the statistical data you wish to generate from the Options list.

You can specify options by entering a value, by clicking the option value and
choosing a new value from a drop-down list of values or by double-clicking the
option value to rotate its value to the next in the list of values.

2 Click OK to generate database statistics.

Note In some cases, it can take a long time to display the statistics for large databases
because, depending on what information has been selected to report, generating
these statistics may analyze all the tables and indexes in a database.

9-6 O p e r a t i o n s G u i d e

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

Figure 9.2 Database Statistics dialog

The Database Statistics report dialog is a standard text display window that
exhibits database summary and database analysis information statistics. For an
explanation of how to use the standard text display window, see “Standard text
display window” on page 2-7.

Database statistics options
When you request a statistic option, InterBase generates and displays information
for that database statistic. Possible statistic option values include: All Options,
Data Pages, Database Log, Header Pages, Index Pages, and System Relations.

Note In addition to the selected statistic, header page information is displayed,
regardless which statistic has been selected to report. If Header Pages is the selected
option value, then only header page information will be displayed.

All Options
Displays statistic information for all options including Data Pages, Database Log,
Header Pages, Index Pages, and System Relations.

This function corresponds to the -all option of gstat.

Data Pages
Displays data page information in the database summary. Below is an example of
data page information, followed by an explanation of each item.

COUNTRY (31)
Primary pointer page: 246, Index root page: 247
Data pages: 1, data page slots: 1, average fill: 59%

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-7

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

Fill distribution:
0 - 19% = 0
20 - 39% = 0
40 - 59% = 1
60 - 79% = 0
80 - 99% = 0

The first line displays a database table name while the remaining lines contain
item information pertaining to the table. These items include:

Database Log
Displays the database log in the database summary. Below is an example of
database log information.

This function corresponds to the -log option of gstat.

Database log page information:
Creation date Dec 20, 1998 11:38:19
Log flags:2

No write ahead log
Next log page:0
Variable log data:
Control Point 1:

File name:
Partition offset: 0 Seqno: 0 Offset: 0

Control Point 2:
File name:
Partition offset: 0 Seqno: 0 Offset: 0

Current File:
File name:
Partition offset: 0 Seqno: 0 Offset: 0

Table 9.2 Data page information

Item Description

Primary pointer page The page that is the first pointer page for the table.

Index root page The page number that is the first pointer page for indexes.

Data pages The total number of data pages.

Data page slots The number of pointers to database pages, whether the pages are
still in the database or not.

Average fill The average percentage to which the data pages are filled.

Fill distribution A histogram that shows the number of data pages that are filled
to the percentages.

9-8 O p e r a t i o n s G u i d e

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

Header Pages
Displays header page information in the database summary. Below is an example
of database summary header page information, followed by an explanation of
each item.

This function corresponds to the -header option of gstat.

Database "C:\Program Files\Borland\InterBase\examples\Database\employee.gdb"

Database header page information:

Flags 0
Checksum 12345
Generation 41
Page size 4096
ODS version 11.1
Oldest transaction 29
Oldest active 30
Oldest snapshot 30
Next transaction 34
Bumped transaction 1
Sequence number 0
Next attachment ID 0
Implementation ID 16
Shadow count 0
Page buffers 0
Next header page 0
Database dialect 1
Creation date Aug 26, 2002 17:05:03

Variable header data:

Sweep interval: 20000
END

Service ended at 9/3/2002 4:59:05 PM

The first line displays the name and location of the primary database file while the
remaining lines contain information on the database header page. These items
include:

Table 9.3 Header page information

Item Description

Checksum InterBase supports true checksums only for ODS 8 and earlier.For
ODS 9 and later, the checksum value is always “12345”.

Generation Counter incremented each time header page is written.

Page size The current database page size, in bytes.

ODS version The version of the database’s on-disk structure.

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-9

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

Oldest transaction The transaction ID number of the oldest “interesting” transaction
(those that are active, in limbo, or rolled back, but not committed).

Oldest active The transaction ID number of the oldest active transaction.

Next transaction The transaction ID number that InterBase assigns to the next
transaction.
The difference between the oldest transaction and the next
transaction determines when database sweeping occurs. For
example, if the difference is greater than this difference (set to
20,000 by default), then InterBase initiates a database sweep. See
“Overview of sweeping” on page 6-20.

Sequence number The sequence number of the header page (zero is used for the first
page, one for second page, and so on).

Next connection ID ID number of the next database connection.

Implementation ID The architecture of the system on which the database was created.
These ID definitions are platform-dependent #define directives for
a macro class named CLASS:
• 1 HP Apollo Domain OS
• 2 Sun Solaris SPARC, HP9000 s300, Xenix, Motorola IMP UNIX,

UnixWare, NCR UNIX, NeXT, Data General DG-UX Intel
• 3 Sun Solaris x86
• 4 VMS
• 5 VAX Ultrix
• 6 MIPS Ultrix
• 7 HP9000 s700/s800
• 8 Novell NetWare
• 9 Apple Macintosh 680x0
• 10 IBM AIX POWER series, IBM AIX PowerPC
• 11 Data General DG-UX 88K
• 12 HP MPE/xl
• 13 SGI IRIX
• 14 Cray
• 15 SF/1
• 16 Microsoft 32-bit Windows
• 17 IBM OS/2
• 18 Microsoft Windows 16-bit
• 19 Linux Intel
• 20 Linux SPARC

Shadow count The number of shadow files defined for the database.

Number of cache
buffers

The number of page buffers in the database cache.

Table 9.3 Header page information (continued)

Item Description

9-10 O p e r a t i o n s G u i d e

V i e w i n g s t a t i s t i c s u s i n g I B C o n s o l e

Index Pages
Displays index information in the database summary. Below is an example of
index page information, followed by an explanation of each item.

Index CUSTNAMEX (2)
Depth: 2, leaf buckets: 2, nodes: 27
Average data length: 45.00, total dup: 0, max dup: 0
Fill distribution:
 0 - 19% = 0
 20 - 39% = 0
 40 - 59% = 1
 60 - 79% = 0
 80 - 99% = 1

Next header page The ID of the next header page.

Database dialect The SQL dialect of the database

Creation date The date when the database was created.

Attributes • force write—indicates that forced database writes are enabled.
• no_reserve—indicates that space is not reserved on each page for

old generations of data. This enables data to be packed more
closely on each page and therefore makes the database occupy
less disk space.

• shutdown—indicates database is shut down.

Variable header data • sweep interval
• secondary file information

Table 9.4 Index pages information

Item Description

Index The name of the index.

Depth The number of levels in the index page tree. If the depth of the
index page tree is greater than three, then sorting may not be as
efficient as possible. To reduce the depth of the index page tree,
increase the page size. If increasing the page size does not
reduce the depth, then return it to its previous size.

Leaf buckets The number of leaf (bottom level) pages in the index page tree.

Nodes The total number of index pages in the tree.

Average data
length

The average length of each key, in bytes.

Table 9.3 Header page information (continued)

Item Description

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-11

M o n i t o r i n g c l i e n t c o n n e c t i o n s w i t h I B C o n s o l e

System Relations
Displays information for system tables in the database.

RDB$CHECK_CONSTRAINTS (24)
 Primary pointer page: 54, Index root page: 55
 Data pages: 5, data page slots: 5, average fill: 59%
 Fill distribution:

 0 - 19% = 0
20 - 39% = 1
40 - 59% = 0
60 - 79% = 4
80 - 99% = 0

Index RDB$INDEX_14 (0)
Depth: 1, leaf buckets: 1, nodes: 68
Average data length: 0.00, total dup: 14, max dup: 1
Fill distribution:
 0 - 19% = 0
 20 - 39% = 0
 40 - 59% = 1
 60 - 79% = 0
 80 - 99% = 0

The statistics contained here are similar to that of data pages and index pages. For
information on the items see “Data Pages” and “Index Pages” above.

Monitoring client connections with IBConsole
You can view a list of users currently connected to a particular database in
IBConsole using the Database Connections dialog. You can access this dialog by
one of the following methods:

• Select a database (or any branch under the database hierarchy) in the Tree pane
and choose Database|Connected Users.

• Select a database in the Tree pane and double-click Connected Users in the
Actions column of the Work pane.

Total dup The total number of rows that have duplicate indexes.

Max dup The number of duplicates of the index with the most duplicates

Fill distribution A histogram that shows the number of index pages filled to the
specified percentages.

Table 9.4 Index pages information (continued)

Item Description

9-12 O p e r a t i o n s G u i d e

T h e g s t a t c o m m a n d - l i n e t o o l

• Right-click a database in the Tree pane and choose Connected Users from the
context menu.

Figure 9.3 Database connections dialog

Note InterBase’s temporary system tables provide resources for more extensive
monitoring of database activity. See “Monitoring with system temporary tables” on
page 9-1 of this chapter

The gstat command-line tool
Syntax gstat [options] database

Description The gstat program is a command-line tool for retrieving and reporting database
statistics. Its function is the same as that described for IBConsole earlier in this
chapter.

You must be SYSDBA or the owner of a database to run gstat. On UNIX platforms,
there is a further constraint on gstat: in order to run gstat, you must have system-
level read access to the database files. You can gain this by logging in as the same
account that the InterBase server is running as (interbase or root) or by setting the
system-level permissions on the database file to include read permission for your
Group. These restrictions exist on UNIX platforms because gstat accesses the
database file at the system level rather than through the InterBase server.

Note You can run gstat only against local databases: run gstat on the server host.

Options Table 9.5 lists the valid options for gstat.

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-13

T h e g s t a t c o m m a n d - l i n e t o o l

Example The following command requests table statistics, including record and version
length for the JOB table in employee.gdb:

gstat -user SYSDBA -pa masterkey employee.gdb -t JOB -r

The command produces the following output:

Database "employee.gdb"

Database header page information:
 Flags 0
 Checksum 12345
 Generation 26
 Page size 4096
 ODS version 11.1
 Oldest transaction 19
 Oldest active 20
 Oldest snapshot 20
 Next transaction 21
 Bumped transaction 1
 Sequence number 0

Table 9.5 gstat options

Option Description

-all Equivalent to supplying -index and -data; this is the default if you
supply none of -index, -data, or -all

-data Retrieves and displays statistics on data tables in the database

-header Stops reporting statistics after reporting the information on the
header page

-index Retrieves and displays statistics on indexes in the database

-log Stops reporting statistics after reporting the information on the log
pages

-pa[ssword] text Checks for password text before accessing a database

-r[ecord] Used with -t, adds lines for average record length and average version
length to the table statistics

-system Retrieves statistics on system tables and indexes in addition to user
tables and indexes

-t[able] Outputs index and fill information for the requested table, in
addition to database header, file, and log statistics; table name is
case sensitive

-user name Checks for user name before accessing database

-z Prints product version of gstat

9-14 O p e r a t i o n s G u i d e

T h e g s t a t c o m m a n d - l i n e t o o l

 Next attachment ID 0
 Implementation ID 16
 Shadow count 0
 Page buffers 0
 Next header page 0
 Database dialect 1
 Creation date Sep 25, 2002 10:06:33

 Variable header data:
 Sweep interval: 20000
 END

Database file sequence:
File employee.gdb is the only file

Database log page information:
 Creation date
 Log flags: 2
 No write ahead log

 Next log page: 0

 Variable log data:
 Control Point 1:
 File name:
 Partition offset: 0 Seqno: 0 Offset: 0
 Control Point 2:
 File name:
 Partition offset: 0 Seqno: 0 Offset: 0
 Current File:
 File name:
 Partition offset: 0 Seqno: 0 Offset: 0
 END

Analyzing database pages ...

JOB (129)
 Primary pointer page: 178, Index root page: 179
 Average record length: 64.87, total records: 31
 Average version length: 0.00, total versions: 0, max versions: 0
 Data pages: 3, data page slots: 3, average fill: 72%
 Fill distribution:
 0 - 19% = 0
 20 - 39% = 1
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 2

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-15

V i e w i n g l o c k s t a t i s t i c s

 Index MAXSALX (2)
 Depth: 1, leaf buckets: 1, nodes: 31
 Average data length: 4.00, total dup: 5, max dup: 1
 Fill distribution:
 0 - 19% = 1
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 0

 Index MINSALX (1)
 Depth: 1, leaf buckets: 1, nodes: 31
 Average data length: 4.00, total dup: 7, max dup: 2
 Fill distribution:
 0 - 19% = 1
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 0

 Index RDB$FOREIGN3 (3)
 Depth: 1, leaf buckets: 1, nodes: 31
 Average data length: 1.00, total dup: 24, max dup: 20
 Fill distribution:
 0 - 19% = 1
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 0

 Index RDB$PRIMARY2 (0)
 Depth: 1, leaf buckets: 1, nodes: 31
 Average data length: 10.00, total dup: 0, max dup: 0
 Fill distribution:
 0 - 19% = 1
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 0

[c:\program files\borland\interbase\examples\database]

Viewing lock statistics
Locking is a mechanism that InterBase uses to maintain the consistency of the
database when it is accessed by multiple users. The lock manager is a thread in the
ibserver process that coordinates locking.

9-16 O p e r a t i o n s G u i d e

V i e w i n g l o c k s t a t i s t i c s

The lock manager uses a lock table to coordinate resource sharing among client
threads in the ibserver process connected to the database. The lock table contains
information on all the locks in the system and their states. The global header
information contains useful aggregate information such as the size of the lock
table, the number of free locks, the number of deadlocks, and so on. There is also
process information such as whether the lock has been granted or is waiting. This
information is useful when trying to correct deadlock situations.

Syntax iblockpr [a,o,w] (Windows) or gds_lock_print [a,o,w] (UNIX)

iblockpr [-i{a,o,w}] [t n]

Description iblockpr monitors performance by checking lock requests.

The first form of syntax given above retrieves a report of lock statistics at one
instant in time. The second form monitors performance by collecting samples at
fixed intervals.

The options display interactive information on current activity in the lock table.
The utility prints out the events per second for each sampling and gives the
average of the values in each column at the end.

Table 9.6 iblockpr/gds_lock_print options

Option Description

[none] Same as -o

-a Prints a static view of the contents of the lock table

-o Prints a static lock table summary and a list of all entities that own
blocks

-w Prints out all the information provided by the -o flag plus wait
statistics for each owner; this option helps to discover which owner’s
request is blocking others in the lock table

The following options supply interactive statistics (events/second) for the
requested items, which are sampled n times every t seconds, with one line
printed for each sample. The average of the sample values is printed at the end
of each column. If you do not supply values for n and t, the default is n=1.

-i Prints all statistics; the output is easier to read if you issue -ia, -io,
and -iw separately

-ia Prints how many threads are trying to acquire access to the lock table
per second

-io Prints operation statistics such lock requests, conversions,
downgrades, and releases per second

C h a p t e r 9 D a t a b a s e S t a t i s t i c s a n d C o n n e c t i o n M o n i t o r i n g 9-17

R e t r i e v i n g s t a t i s t i c s w i t h a p i _ d a t a b a s e _ i n f o ()

Example The following statement prints “acquire” statistics (access to lock table: acquire/s,
acqwait/s, %acqwait, acqrtry/s, and rtrysuc/s) every three seconds until ten
samples have been taken:

gds_lock_print -ia 3 10

Retrieving statistics with api_database_info()
InterBase includes programming facilities to gather performance timings and
database operation statistics.

You can use the API function isc_database_info() to retrieve statistics, by specifying
one or more of the following request buffer items:

-iw Prints number of lock acquisitions and requests waiting per second,
wait percent, and retries

t Specifies the time in seconds between samplings

n Specifies the number of samples to be taken

Table 9.6 iblockpr/gds_lock_print options (continued)

Option Description

Table 9.7 Database I/O statistics information items

Request Buffer Item Result Buffer Contents

isc_info_fetches Number of reads from the memory buffer cache;
calculated since the InterBase server started

isc_info_marks Number of writes to the memory buffer cache; calculated
since the InterBase server started

isc_info_reads Number of page reads; calculated since the InterBase
server started

isc_info_writes Number of page writes; calculated since the InterBase
server started

isc_info_backout_count Number of removals of record versions per table since the
current database attachment started

isc_info_delete_count Number of row deletions
• Reported per table
• Calculated since the current database attachment started

9-18 O p e r a t i o n s G u i d e

R e t r i e v i n g s t a t i s t i c s w i t h a p i _ d a t a b a s e _ i n f o ()

See the API Guide for information on request buffers, and details of using this API
call.

isc_info_expunge_count Number of removals of a record and all of its ancestors, for
records whose deletions have been committed
• Reported per table
• Calculated since the current database attachment started

isc_info_insert_count Number of inserts into the database
• Reported per table
• Calculated since the current database attachment started

isc_info_purge_count Number of removals of old versions of fully mature
records (records committed, resulting in older-ancestor-
versions no longer being needed)
• Reported per table
• Calculated since the current database attachment started

isc_info_read_idx_count Number of reads done via an index
• Reported per table
• Calculated since the current database attachment started

isc_info_read_seq_count Number of sequential database reads, that is, the number
of sequential table scans (row reads)
• Reported per table
• Calculated since the current database attachment started

isc_info_read_update_count Number of row updates
• Reported per table
• Calculated since the current database attachment started

Table 9.7 Database I/O statistics information items (continued)

Request Buffer Item Result Buffer Contents

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-1

C h a p t e r

Chapter 10Interactive Query
This chapter documents the IBConsole interactive SQL (ISQL) and command-line
isql utilities for InterBase. These tools provide an interface to InterBase’s Dynamic
SQL interpreter. You can use these query tools to perform data definition,
prototype queries before implementing them in your application, or to perform ad
hoc examination of data in your database.

Topics covered in this chapter include:

• The IBConsole ISQL window
• Executing SQL statements
• Committing and rolling back transactions
• Saving ISQL input and output
• Changing ISQL settings
• Extracting metadata
• Command-line isql tool

The IBConsole ISQL window
The IBConsole ISQL Window permits you to execute DDL and DML commands to
the InterBase server as well as to load, save, print, cut, paste, and copy SQL scripts
and results.

To display the ISQL window:

• Click the Interactive SQL toolbar button .

• Choose Tools|Interactive SQL.

10-2 O p e r a t i o n s G u i d e

T h e I B C o n s o l e I S Q L w i n d o w

Figure 10.1 The interactive SQL editor in IBConsole

SQL input area
The SQL input area is where you can type SQL statements or scripts to be
executed. It scrolls vertically.

SQL output area
The SQL output area is where the results of the SQL statements or scripts are
displayed. It scrolls both horizontally and vertically. The SQL output area contains
two tabs:

• The Data tab displays any data returned by the SQL output in a grid format.

• The Plan tab displays the plan for the SQL statement or script.

• The Statistics tab displays statistics for the SQL output, including: execution
time, prepare time, starting memory, delta memory, current memory, number of
buffers, number of reads, number of writes, the plan, and the number of records
fetched.

SQL input
area

SQL
output
area

ISQL status bar

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-3

T h e I B C o n s o l e I S Q L w i n d o w

Status bar
The status bar at the bottom of the SQL input area displays information relevant to
the SQL input areas such as cursor position, input status, client dialect, and
transaction status. You can change the client dialect by right clicking on the status
bar.

ISQL menus
The IBConsole Interactive SQL window—also called the SQL Editor—are the File,
Edit, Query, Database, Transactions, and Windows menus.

File menu

The File menu contains the following entries:

• Print prints the current contents of the SQL input area.

• Save saves the stack of SQL commands from the current session to a file.

• Load loads a saved SQL history file.

• Close closes the SQL Editor.

Edit menu

The Edit menu contains the following entries:

• Undo, Cut, and Paste are for use in the SQL input area only. “Undo” in the Edit
menu does not undo database changes. Use Transactions|Rollback to undo
database changes.

• Copy, Select All, and Find are for use in both the input and output area.

10-4 O p e r a t i o n s G u i d e

T h e I B C o n s o l e I S Q L w i n d o w

• Font specifies the font to be used in the input area

• Options are described in Table 10.2 on page 10-12. They include settings for
query plan, auto commit, Blobs, and terminators.

• Highlight Options allows you to set the appearance of text in the input area

Query menu

The Query menu contains the following entries:

• Load Script loads a SQL script file

• Save Script saves a SQL script file

• Next steps you forward to the next SQL statement after you have used the
Previous command to display earlier statements in the stack.

• Previous displays the previous statement that you entered in the input area.
This command can be used repeatedly to step through the stack of statements
entered during the current interactive SQL session.

• Execute executes the SQL statements currently displayed in the input area.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-5

T h e I B C o n s o l e I S Q L w i n d o w

• Fetch All forces the IBConsole to fetch all the rows of a subquery rather than a
subset. Rarely needed, because IBConsole fetches the results as you scroll down
in the output area.

• Prepare displays the optimization plan in the SQL output area.

• Save Output saves the contents of the output area to a text file.

Database menu

The Database menu contains the following entries:

• Connect As allows you to connect to the database as a different user.

• New Connection is active only when you are not connected to a database. It
displays the Database Connect dialog.

• Create Database and Drop Database are exactly the same as the equivalent
commands in the main IBConsole Database menu. They are provided in the
SQL Editor Database menu for convenience.

Transactions menu

The Transactions menu allows you to commit or roll back transactions.

10-6 O p e r a t i o n s G u i d e

T h e I B C o n s o l e I S Q L w i n d o w

Windows menu

Clicking the Windows menu displays a list of current open windows. You can
display a window by highlighting it in the list and clicking Switch to or by double-
clicking the entry.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-7

T h e I B C o n s o l e I S Q L w i n d o w

ISQL toolbar
The IBConsole SQL Editor toolbar contains the following buttons:

Table 10.1 Toolbar buttons for executing SQL statements

Button Description

Displays the previous statement that you entered in the input area. This
button can be used repeatedly to step through the stack of statements
entered during the current interactive SQL session. The accelerator key
is w-P. Click the down arrow next to the button to see a list of available
statements. Click a statement in the list to display it in the input area:

(Same as Query|Previous.)

Steps you forward to the next SQL statement after you have used the
Previous command to display earlier statements in the stack. The
accelerator key is w-N. Click the down arrow next to the button to see
a list of available statements. Click a statement in the list to display it in
the input area. (Same as Query|Next.)

Executes the current statement or script in the SQL input area. The
output is displayed in the SQL output area. The accelerator key is w-E.
(Same as Query|Execute.)

Displays the query plan for the current query in the SQL output area.
(Same as Query|Prepare.)

Forces IBConsole to fetch all the rows of a subquery rather than a subset.
Rarely needed, because IBConsole fetches the results as you scroll down
in the output area. (Same as Query|Fetch All.)

Commits the transaction specified by the SQL statement to the database.
(Same as Transactions|Commit.)

Rolls back all database changes since the last commit. (Same as
Transactions|Commit.)

Loads a script for SQL execution into the SQL input area. (Same as
Query|Load Script.)

Saves SQL statements entered in the SQL input area to a file. (Same as
Query|Save Script.)

10-8 O p e r a t i o n s G u i d e

M a n a g i n g I S Q L t e m p o r a r y f i l e s

Managing ISQL temporary files
ISQL creates temporary files used during a session to store information such as the
command history, output file names, and so on. These files are named in the form
isql_aa.xx. The files are stored in the directory specified by the TMP environment
variable, or if that is not defined, the working directory, or if that is not defined,
they are stored in the Windows or WINNT directory.

To avoid cluttering the Windows or WINNT directory with InterBase temporary
files, specify a different directory for them by defining the TMP environment
variable.

When you exit, ISQL deletes these temporary files. If ISQL terminates abnormally,
then these files remain and may be freely deleted without any adverse effects. You
should not delete any of these temporary files while ISQL is running, because they
may be used in the current session.

Executing SQL statements
Within ISQL, you can execute SQL statements in either of two ways:

• Interactively, one statement at a time

• From a script containing multiple statements

 Finds text in the SQL input area. (Same as Edit|Find.)

Displays a list of current open windows. You can display a window by
highlighting it in the list and clicking Switch To or by double-clicking
the entry.
You can also change windows by clicking the down arrow and clicking
the window you want from the dropdown list:

 Prints the contents of the SQL input area.

Table 10.1 Toolbar buttons for executing SQL statements

Button Description

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-9

E x e c u t i n g S Q L s t a t e m e n t s

Executing SQL interactively
To execute a SQL statement interactively:

1 Type a single SQL statement in the SQL input area. Make sure any other
existing statements are commented. A statement is commented if it is preceded
by “/*” and followed by “*/”.

If the statement already exists in the SQL input area make sure all statements
except the one you wish to execute are commented. Commented statements in
the SQL input area are ignored during execution.

2 Choose Query|Execute, enter w+E, or click the Execute toolbar button.

If more than one statement is uncommented, Execute executes each statement,
one after the other.

Tip You can copy text from other Windows applications such as the Notepad and
Wordpad text editors and paste it into the SQL input area. You can also copy
statements from the ISQL output area and paste them into the SQL input area. This
cut-and-paste method is also a convenient way to use the online SQL tutorial
provided in the online Help.

When SQL statements are executed, whether successfully or not, they become part
of the ISQL command history, a sequential list of SQL statements entered in the
current session.

Preparing SQL statements
Use the Prepare toolbar button, or select Query|Prepare, to prepare SQL
statements for execution and to view the query plan. Prepare compiles the query
plan on the server, and displays it in the Plan tab of the SQL output area. Use
Prepare to determine if your SQL script is well-constructed, without having to
wait for the SQL script to execute.

Valid SQL statements
• You can execute interactively any SQL statement identified as “available in

DSQL” in the Language Reference. You cannot use any statements that are
specifically identified in the Language Reference as isql statements; all these have
functionally equivalent menu items in ISQL.

For example, the SET NAMES statement cannot be executed from the SQL input
area. To change the active character set, choose Edit|Options and select the
desired character set option value in the SQL Options dialog.

• SQL script files can include statements that are not valid to enter interactively.
For example, you can use the SET statements such as SET LIST in scripts.

• Transaction names may not be used with SET TRANSACTION statement.

10-10 O p e r a t i o n s G u i d e

E x e c u t i n g S Q L s t a t e m e n t s

• The SQL input area accepts multiple statements, although only one can be
executed at a time. Each statement entered in the SQL input area must be
terminated by a semicolon (;). The SQL input area accepts multiple statements,
although only one can be executed at a time. An uncommented statement that
holds the mouse cursor is called the current statement.

Executing a SQL script file
To execute a SQL script file containing SQL statements:

1 Choose Query|Load Script or click the Load Script toolbar button.

2 Locate the desired script file in the Open dialog, and click Open to display the
statements of the script file in the SQL input area.

3 Ensure that you are connected to the desired database.

4 If you are connected to the database, comment out any CONNECT or CREATE
DATABASE statements.

5 Choose Query|Execute or click Execute on the toolbar to begin executing the
entire script statement by statement.

Note Statements executed from a loaded script file do not become part of the command
history.

Committing and rolling back transactions
Changes to the database from data definition (DDL) statements—for example,
CREATE and ALTER statements—are automatically committed by default. To turn
off automatic commit of DDL, choose Edit|Options and set the Auto Commit
DDL option to false in the SQL Options dialog.

Changes made to the database by data manipulation (DML) statements—for
example INSERT and UPDATE—are not permanent until they are committed.
Commit changes by choosing Transactions|Commit or by clicking Commit on the
toolbar.

To undo all database changes from DML statements since the last commit, choose
Transactions|Rollback or click Rollback on the toolbar.

Saving ISQL input and output
You can save the following to a file:

• SQL statements entered in the SQL input area of the current session.

• The output of the last SQL statement executed.

Saving SQL input
To save the SQL statements entered in the SQL input area of the current session to
a text file:

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-11

C h a n g i n g I S Q L s e t t i n g s

1 In the SQL Editor, choose Query|Save Script or click the Save Script toolbar
button.

2 Enter a file name, including the location for the new file, in the Save As dialog
and click Save.

To include the location for the file, type the file path and file name in the
Filename text area, or browse to the folder where you would like the file to
reside and type only the file name.

Only the SQL statements entered in the current session, not the output, are saved
to the specified file.

Saving SQL output
To save the results of the last executed SQL statement to a file:

1 In the SQL Editor, choose Query|Save Output.

2 Enter a file name, including the location for the new file, in the Export To dialog
and click Save.

To include the location for the file, either type the file path and file name in the
Filename text area, or browse to the folder where you would like the file to
reside and type only the file name.

The output in the Data tab from the last successful statement is saved to the named
text file.

If you run a SQL script, and then choose to save the output, all the commands in
the script file and their results are saved to the output file. If command display has
been turned off in a script with SET ECHO OFF, then SQL statements in the script are
not saved to the file.

Changing ISQL settings
Use the SQL Options dialog to display and modify ISQL session settings,
determine if the main IBConsole window will be updated based on the statements
given in the ISQL window, and specify how open transactions are handled when
the ISQL window is closed.

Select Edit|Options from the Interactive SQL window to display the SQL Options
dialog.

The SQL Options dialog has two tabs: Options and Advanced.

10-12 O p e r a t i o n s G u i d e

C h a n g i n g I S Q L s e t t i n g s

Options tab
Use the Options tab to display and modify the ISQL session settings. You can
specify options by clicking the option value and choosing a new value from a
drop-down list of values or by double-clicking the option value to rotate its value
to the next in the list of values.

Figure 10.2 Options tab of the SQL Options dialog

The following table summarizes the isql session settings available on the Options
tab.

Table 10.2 Options tab of the SQL Options dialog

Setting Description

Show Query Plan Values: true (default) or false
If this setting is True, IBConsole displays the query plan
chosen by the optimizer when a SELECT statement is entered.
To modify the optimizer plan, use the PLAN option of the SQL
SELECT statement. See “SET PLAN” on page 10-41.

Auto Commit DDL Values: true (default) or false
• If this setting is True, IBConsole automatically commits DDL

(data definition) statements as each statement is entered.
• If this setting is False, you must explicitly commit DDL

statements (with Transactions | Commit) to make them
permanent.

See “SET AUTODDL”on page 10-35.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-13

C h a n g i n g I S Q L s e t t i n g s

Character Set Determines the active character set for strings for subsequent
connections to the database; enables you to override the
default character set for a database.
• Specify the character set before connecting to the database

whose character set you want to specify. For a complete list
of character sets recognized by InterBase, see the Language
Reference.

• Your choice of character set limits possible collation orders
to a subset of all available collation orders. Given a character
set, a collation order can be specified when data is selected,
inserted, or updated in a column.

• You can perform the same function in a SQL script with the
SET NAMES command. Use SET NAMES before connecting
to the database whose character set you want to specify.

See “SET NAMES” on page 10-40 for more information.

BLOB Display • Values: Enabled (default), Disabled, Restrict
Determines how IBConsole displays columns of Blob data.
SELECT always displays the Blob ID for columns of Blob
datatype. By default, a SELECT also displays actual Blob data
of text subtypes beneath the associated row.
• If this setting is set to Enabled, IBConsole displays the

contents of Blob columns.
• If this setting is set to Disabled, IBConsole does not display

the contents of Blob columns.
If this setting is set to Restrict, IBConsole displays the contents
of only Blob columns of the specified BLOB Subtype.

Terminator Identifies the end-of-statement symbol to be used for SQL
queries

Clear input window
on success

Check this box to clear the SQL input window after a SQL
statement is successfully executed

Table 10.2 Options tab of the SQL Options dialog (continued)

Setting Description

10-14 O p e r a t i o n s G u i d e

C h a n g i n g I S Q L s e t t i n g s

Advanced tab
Use the Advanced tab to determine whether the main IBConsole window will be
updated based on the statements given in the ISQL window, and to specify how
open transactions are handled when the ISQL window is closed.

Figure 10.3 Advanced tab of the SQL Options dialog

The following table summarizes the settings available on the Advanced tab:

Table 10.3 Advanced tab of the SQL Options dialog

Setting Description

Update
IBConsole on
Connect

Does not update the connected databases in the IBConsole
window; however, it ensures that the IBConsole window
is updated to reflect statements executed in the ISQL
window.

Update
IBConsole on
Create

Updates the main window if the currently selected server
is active. Automatically registers any database created in
the ISQL window and creates an alias for it.

Commit on exit Commits any active transactions when the ISQL window
is closed.

Rollback on exit Rolls back any active transactions when the ISQL window
is closed.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-15

I n s p e c t i n g d a t a b a s e o b j e c t s

Inspecting database objects
Use the object inspector to view properties, metadata, permissions, data, and
dependencies for the entire database or for a specific table, view, function,
procedure, or any other database attribute displayed in the Tree pane.

To open the object inspector, double-click a database object in the Work pane. The
object inspector appears:

Figure 10.4 Object inspector

Depending on the database object selected, the object inspector has some or all of
the following tabs: Properties, Metadata, Permissions, Data, and Dependencies.
These are discussed in the following sections.

Viewing object properties
The Properties tab is available when viewing Table and View database objects. Use
the Properties tab of the object inspector to display properties for database objects,
including columns, triggers, check constraints, indexes, unique constraints, and
referential constraints. The Properties tab has five toolbar buttons for displaying
the various object properties:

10-16 O p e r a t i o n s G u i d e

I n s p e c t i n g d a t a b a s e o b j e c t s

Viewing metadata
The metadata which the Metadata tab of the object inspector displays depends on
the database that is selected in the Tree pane, or the item that is selected in the
Work pane.

To view metadata for an entire database Select a connected database in the Tree pane, and
then double-click View Metadata in the Work pane. The metadata is displayed in a
text window.

To view metadata for a specific database object perform one of the following actions:

• Select a database element from the hierarchy displayed in the Tree pane, and
then in the Work pane double-click an object to display its Properties dialog.
Click the Metadata tab to see the object’s metadata.

• Select a database element from the hierarchy displayed in the Tree pane, and
then in the Work pane right-click a database object associated with that element
and select Extract from the context menu.

Table 10.4 Object inspector toolbar buttons

Button Description

Show columns: displays the name, type, collation, character set, default value, and
whether or not null values are acceptable for every row in the column. The
accelerator key is w+y+C. For more information on columns, refer to
“Defining columns” in the Data Definition Guide.

Show triggers: displays the name and type of each trigger, as well as whether or
not it is active. In addition, it displays the SQL trigger statement. The accelerator
key is w+y+T. For more information on triggers, refer to “Working with
Triggers” in the Data Definition Guide.

Show check constraints: displays the names of the constraints, whether or not they
can be deferred, and if they were initially deferred. In addition, it displays the
SQL check constraint statements. The accelerator key is w+y+H. For more
information, refer to “Defining a CHECK constraint” in the Data Definition Guide.

Show indexes: displays the name of the index keys, and whether or not they are
unique, descending, or active. The accelerator key is w+y+R. For more
information, refer to “Working with Indexes” in the Data Definition Guide.

Show unique constraints: displays the names of the constraints, whether or not
they can be deferred, if they were initially deferred, and the index keys. The
accelerator key is w+y+U.

Show referential constraints: displays the names of the constraints, whether or not
they can be deferred, if they were initially deferred, the update rule, the update
rules, the delete rules, the index, and the reference table. The accelerator key is
w+y+R.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-17

I n s p e c t i n g d a t a b a s e o b j e c t s

For example, if you want metadata for domains only, expand the desired database
hierarchy (if it is not already expanded), select Domains, double-click on a domain
in the Work pane, and select the Metadata tab of the Properties dialog.

Use the drop-down list at the top of the dialog to select other objects associated
with the database element.

The following table lists the items for which you can view metadata for associated
objects with the object inspector.

Extracting metadata
You can extract a metadata script to a file by displaying the desired metadata in
the Metadata tab and clicking the Save Script toolbar button.

Extracting an entire database exports metadata in a specific order, to allow the
resulting script to be used as input to recreate the database.

Table 10.5 Metadata information items

Item Displays

Blob Filters Blob filters definition

Domains Metadata script, dependencies, datatype, description, check constraints,
and default values

Exceptions Description, exception number, exception message, metadata script, and
dependencies

External
Functions

 UDFs definition

Generators Generator ID, current value, metadata script, and dependencies

Stored
Procedures

Metadata script, procedure body, input parameters, output parameters,
permissions, data, and dependencies

Roles Role definition

Tables Columns, datatypes, triggers, indexes, unique constraints, referential
constraints, check constraints, metadata script, permissions, data, and
dependencies

Views Metadata script, permissions, data, and dependencies

10-18 O p e r a t i o n s G u i d e

I n s p e c t i n g d a t a b a s e o b j e c t s

Items that are not extracted include:

• Code of external functions or filters, because that code is not part of the
database. The declarations to the database (with DECLARE EXTERNAL FUNCTION
and DECLARE FILTER) are extracted

• System tables, system views, and system triggers

• Because DDL statements do not contain references to object ownership, the
extracted file does not show ownership. The output file includes the name of
the object and the owner if one is defined. There is no way to assign an object to
its original owner.

Table 10.6 Metadata extraction constraints

Metadata Comments

1. Database Extracts database with default character set and
PAGE_SIZE

2. Domains Must be before tables that reference domains

3. Tables Must be after domains

4. Indexes Must be after tables

5. FOREIGN KEY constraints Must be added after tables to avoid tables being
referenced before they have been created

6. Views Must be after tables

7. CHECK constraints Must be after tables

8. Exceptions Must be extracted before stored procedures and triggers
that contain code to raise exceptions

9. Stored procedures Stored procedures are shown with no body in CREATE
PROCEDURE and then ALTER PROCEDURE to add the
text of the procedure body; this is to allow circular or
recursive procedure references

10. Triggers Must be after tables
Must be after stored procedures, to allow trigger code to
reference procedures
Does not extract triggers from CHECK constraints

11. Roles Must be before GRANT privileges

12. GRANTs Must be after tables, views, stored procedures, triggers,
and roles

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-19

I n s p e c t i n g d a t a b a s e o b j e c t s

Extracting metadata
You can extract a metadata script to a file by displaying the desired metadata in
the Metadata tab and clicking the Save Script toolbar button.

Extracting an entire database exports metadata in a specific order, to allow the
resulting script to be used as input to recreate the database.

Items that are not extracted include:

• Code of external functions or filters, because that code is not part of the
database. The declarations to the database (with DECLARE EXTERNAL FUNCTION
and DECLARE FILTER) are extracted.

• System tables, system views, and system triggers.

Table 10.7 Order of metadata extraction

Metadata Comments

1. Database Extracts database with default character set and PAGE_SIZE

2. Domains Must be before tables that reference domains

3. Tables Must be after domains

4. Indexes Must be after tables

5. FOREIGN KEY constraints Must be added after tables to avoid tables being referenced
before they have been created

6. Views Must be after tables

7. CHECK constraints Must be after tables

8. Exceptions Must be extracted before stored procedures and triggers
that contain code to raise exceptions

9. Stored procedures Stored procedures are shown with no body in CREATE
PROCEDURE and then ALTER PROCEDURE to add the text
of the procedure body; this is to allow circular or recursive
procedure references

10. Triggers Must be after tables
Must be after stored procedures, to allow trigger code to
reference procedures
Does not extract triggers from CHECK constraints.

11. Roles Must be before GRANT privileges

12. GRANTs Must be after tables, views, stored procedures, triggers,
and roles

10-20 O p e r a t i o n s G u i d e

C o m m a n d - l i n e i s q l t o o l

• Because DDL statements do not contain references to object ownership, the
extracted file does not show ownership. The output file includes the name of
the object and the owner if one is defined. There is no way to assign an object to
its original owner.

Command-line isql tool
Command-line isql is a utility for processing SQL data definition (DDL) and data
manipulation (DML) statements from interactive input or from a source file. It
enables you to create and view metadata, add and modify data, grant user
permissions, test queries, and perform database administration tasks.

This section provides an introduction to using isql. For a description of the
standard SQL commands available in isql, see the Language Reference. For a
description of special isql commands, see “isql command reference” on
page 10-28.

You can use isql in the following ways:

• Interactively to process SQL statements, by entering statements at the isql
prompt

• Noninteractively to process SQL statements in a file

Invoking isql
To start the isql utility, type the following at a UNIX shell prompt or Windows
console prompt:

isql [options] [database_name]

where options are command-line options and database_name is the name of the
database to connect to, including disk and directory path.

If no options are specified, isql starts an interactive session. If no database is
specified, you must connect to an existing database or create a new one. If a
database was specified, isql starts the interactive session by connecting to the
named database.

If options are specified, isql starts interactively or noninteractively, depending on
the options. For example, reading an input file and writing to an output file are
noninteractive tasks, so the -input or -output options do not start an interactive
session. Additional noninteractive options include -a, -database, -extract, and -x,
which are used when extracting DDL statements.

When you start an interactive isql session, the following prompt appears:

SQL>

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-21

C o m m a n d - l i n e i s q l t o o l

You must then end each command with a terminator character. The default
terminator is a semicolon (;). You can change the terminator to any character or
group of characters with the SET TERMINATOR command or with the -terminator
command-line option. If you omit the terminator, a continuation prompt appears
(CON>).

Note For clarity, all of the commands and examples in this chapter end with the default
semicolon terminator.

Command-line options
Only the initial characters in an option are required. You can also type any portion
of the text enclosed in brackets, including the full option name. For example,
specifying -n, -no, or -noauto has the same effect.

Table 10.8 isql command-line options

Option Description

-a Extracts all DDL for the named database

-c[ache] Set number of cache buffers for this connection to the database; see
“Default cache size per ISQL connection” on page 6-24.

-d[atabase] name Used with -x; changes the CREATE DATABASE statement that is
extracted to a file
• Without -d, CREATE DATABASE appears as a C-style comment

and uses the database name specified on the isql command line
• With -d, isql extracts an uncommented CREATE DATABASE and

substitutes name as its database argument

-e[cho] Displays (echoes) each statement before executing it

-ex[tract] Same as -x

-i[nput] file Reads commands from an input file such as a SQL script file
instead of from standard input
• input files can contain -input commands that call other files,

enabling execution to branch and then return
• isql exits (with a commit) when it reaches the end of the first file
• In interactive sessions, use -input to read commands from a file

-m[erge_stderr] • Merges stderr output with stdout
• Useful for capturing output and errors to a single file when

running isql in a shell script or batch file

-n[oauto] Turns off automatic commitment of DDL statements; by default,
DDL statements are committed automatically in a separate
transaction

-nowarnings Displays warning messages if and only if an error occurs (be
default, isql displays any message returned in a status vector, even
if no error occurred)

10-22 O p e r a t i o n s G u i d e

C o m m a n d - l i n e i s q l t o o l

Using warnings
Warnings can be issued for the following conditions:

• SQL statements with no effect

• SQL expressions that produce different results in InterBase 5 versus InterBase 6
or later

• API calls that will be replaced in future versions of the product

-o[utput] file Writes results to an output file instead of to standard output; in
interactive sessions, use -output to write results to a file

-pas[sword]
password

Used with -user
• Specifies a password when connecting to a remote server
• For access, both password and user must represent a valid entry in

the security database

-page[length] n Prints column headers every n lines instead of the default 20

-q[uiet]

-r[ole] rolename Grants privileges of role rolename to user on connection to the
database

-s[qldialect] n Interprets subsequent commands as dialect n until end of session
or until dialect is changed by a SET SQL DIALECT statement
• For n = 1, commands are processed as in InterBase 5 or earlier
• For n = 2, elements that have different interpretations in dialect 1

and 3 are all flagged with warnings or errors to assist in
migrating databases to dialect 3

• For n = 3, all statements are parsed as current InterBaseSQL
semantics: double quotes are delimited identifiers, DATE
datatype is SQL DATE, and exact numerics with precision greater
than 9 are stored as INT64

-t[erminator] x Changes the end-of-statement symbol from the default semicolon
(;) to x, where x is a single character or any sequence of characters;
deprecated in InterBase 7

-u[ser] user Used with -password; specifies a user name when connecting to a
remote server
• For access, both password and user must represent a valid entry in

the security database

-x Extracts DDL for the named database; displays DDL to the screen
unless redirected to a file

-z Displays the software version of isql

Table 10.8 isql command-line options (continued)

Option Description

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-23

C o m m a n d - l i n e i s q l t o o l

• Pending database shutdown

Examples
• Suppose createdb.sql contains DDL statements to create a database. To execute

the statements, enter:

isql -input createdb.sql

• The following example starts an interactive connection to a remote database.
The remote server, jupiter, accepts the specified user and password combination
with the privileges assigned to the STAFF role:

isql -user sales -password mycode -role 'staff''jupiter:/usr/customer.ib'

• The next example starts an interactive session but does not attach to a database.
isql commands are displayed, and query results print column headers every 30
lines:

isql -echo -page 30

Exiting isql
To exit isql and roll back all uncommitted work, enter:

QUIT;

To exit isql and commit all work, enter:

EXIT;

Connecting to a database
If you do not specify a database on the command-line when invoking isql, you
must either connect to an existing database or create a new one. Use the CONNECT
command to connect to a database and CREATE DATABASE to create a database. For
the full syntax of CONNECT and CREATE DATABASE, see the Language Reference.

You can connect to either local or remote databases. The syntax is slightly different
for the two:

To connect to a local database on a Windows platform, use the CONNECT command
with the full path of the database as the argument. For example:

SQL> CONNECT 'C:/Borland/InterBase/Database/examples/employee.gdb' role 'staff';

To connect to a remote database on a Windows or UNIX server using TCP/IP, use the
CONNECT command with the full node name and path of the database as the
argument. Separate the node name from the database path with a colon.

Examples of connecting to remote databases
To connect to a database on a UNIX platform named jupiter:

SQL> CONNECT 'jupiter:/usr/interbase/examples/employee.gdb';

10-24 O p e r a t i o n s G u i d e

C o m m a n d - l i n e i s q l t o o l

To connect to a database on a Windows platform named venus:

SQL> CONNECT 'venus:c:/InterBase/InterBase/examples/database/employee.gdb';

Note Be careful not to confuse node names and shared disks, since both are specified
with a colon separator. If you specify a single letter that maps to a disk drive, it is
assumed to be a drive, not a node name.

Tip You can use either forward slashes (/) or backslashes (\) as directory separators.
InterBase automatically converts either type of slash to the appropriate type for
the server operating system.

Setting isql client dialect
To use isql to create a database in a particular dialect, first set isql to the desired
dialect and then create the database. You can set isql dialect the following ways:

• On the command line, start isql with option -sql_dialect n, where n is 1, 2, or 3:

isql -sql_dialect n

• Within an isql session or in a SQL script, include the following statement:

SET SQL DIALECT n;

isql dialect precedence is as follows:

• Lowest: Dialect of an attached version 6 or later database

• Next lowest: Dialect specified on the command line

• Next highest: Dialect specified during the session

• Highest: Dialect of an attached Version 5 database (=1)

In InterBase, isql has the following behavior with respect to dialects:

• If you start isql and attach to a database without specifying a dialect, isql takes
on the dialect of the database.

• If you specify a dialect on the command line when you invoke isql, it retains
that dialect after connection unless explicitly changed.

• When you change the dialect during a session using SET SQL DIALECT n, isql
continues to operate in that dialect until it is explicitly changed.

• When you create a database using isql, the database is created with the dialect
of the isql client; for example, if isql has been set to dialect 1, when you create a
database, it is a dialect 1 database.

• If you create a database without first specifying a dialect for the isql client or
attaching to a database, isql creates the database in dialect 3.

The statements above are true whether you are running isql as a command-line
utility or accessing it through IBConsole.

Important Any InterBase isql client that attaches to a Version 5 database resets to dialect 1.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-25

C o m m a n d - l i n e i s q l t o o l

Transaction behavior in isql
When you start isql, InterBase begins a transaction. That transaction remains in
effect until you issue a COMMIT or ROLLBACK statement. You must issue a COMMIT
or ROLLBACK statement to end a transaction. Issuing one of these statements
automatically starts a new transaction. You can also start a transaction with the SET
TRANSACTION statement.

isql uses a separate transaction for DDL statements. When these statements are
issued at the SQL> prompt, they are committed automatically as soon as they are
completed. DDL scripts should issue a COMMIT after every CREATE statement to
ensure that new database objects are available to all subsequent statements that
depend on them. For more information on DDL statements, see the Data Definition
Guide.

Extracting metadata
You can extract the DDL statements that define the metadata for a database to an
output file with the -extract option. Adding the optional -output flag reroutes
output to a named file. Use this syntax:

isql [[-extract | -x][-a] [[-output | -o] outputfile]] database;

The -x option is an abbreviation for -extract. The -a flag directs isql to extract all
database objects. Note that the output file specification, outputfile, must follow the
-output flag, while you can place the name of the database being extracted at the
end of the command.

You can use the resulting text file to:

• Examine the current state of a database’s system tables before you plan
alterations to it, or when a database has changed significantly since its creation.

• Use your text editor to make changes to the database definition or create a new
database source file.

The -extract option does not extract UDF code and Blob filters, because they are
not part of the database. It does extract the declarations to the database (with
DECLARE EXTERNAL FUNCTION and DECLARE FILTER).

Table 10.9 isql extracting metadata arguments

Option Description

database File specification of the database from which metadata is being
extracted

outputfile File specification of the text file to receive the extracted statements; if
omitted, isql writes the information to the screen

10-26 O p e r a t i o n s G u i d e

C o m m a n d - l i n e i s q l t o o l

The -extract option also does not extract system tables, system views, or system
triggers.

Because DDL statements do not contain references to object ownership, the
extracted file does not show ownership. The output file includes the name of the
object and the owner if one is defined. There is no way to assign an object to its
original owner.

For a list of the order of extraction of metadata objects, see “Extracting metadata”
on page 10-19.For example, the following statement extracts the system catalogs
from the database employee.gdb to a file called employee.sql:

isql -extract -output employee.sql employee.gdb;

The resulting output script is created with -commit following each set of
commands, so that tables can be referenced in subsequent definitions. This
command extracts all keywords and object names in uppercase when possible
(some international metadata has no uppercase).

To extract DDL statements from database employee.gdb and store in the file
employee.sql, enter:

isql -a employee.gdb -output employee.sql

The following example extracts the DDL statements from the database dev.ib:

isql -x dev.ib

This example combines the -extract and -output options to extract the DDL
statements from the database dev.ib into a file called dev.out. The output database
name must follow the -output flag.

isql -extract -output dev.out dev.ib

isql commands
At the SQL> prompt, you can enter any of three kinds of commands:

• SQL data definition (DDL) statements, such as CREATE, ALTER, DROP, GRANT,
and REVOKE. These statements create, modify, or remove metadata and objects,
and control user access (via privileges) to the database. For more information
about DDL, see the Data Definition Guide.

• SQL data manipulation (DML) statements such as SELECT, INSERT, UPDATE, and
DELETE. These four data manipulation operations affect the data in a database.
They retrieve, modify, add, or delete data. For more information about DML
statements, see the Language Reference.

• isql commands that fall into three main categories:

• SHOW commands (to display metadata or other database information)

• SET commands (to modify the isql environment)

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-27

C o m m a n d - l i n e i s q l t o o l

• Other commands (for example, commands to read an input file, write to an
output file, or end an isql session)

Some isql commands have many options. See “isql command reference” on
page 10-28

SHOW commands
SHOW commands are used to display metadata, including tables, indexes,
procedures, and triggers.

SHOW commands list all of the specified objects or give information about a
particular object when used with name.

SHOW commands operate on a separate transaction from user statements. They
run as READ COMMITTED background statements and acknowledge all metadata
changes immediately.

SET commands
SET commands enable you to view and change the isql environment.

Other isql commands
The remaining isql commands perform a variety of useful tasks, including reading
a SQL file, executing shell commands, and exiting isql. The other isql commands
are: BLOBDUMP, EDIT, EXIT, HELP, INPUT, OUTPUT, QUIT, SHELL.

Exiting isql
To exit the isql utility and roll back all uncommitted work, enter:

SQL> QUIT;

To exit the isql utility and commit all work, enter:

SQL> EXIT;

Error handling
InterBase handles errors in isql and DSQL in the same way. To indicate the causes
of an error, isql uses the SQLCODE variable and the InterBase status array.

The following table lists values that are returned to SQLCODE:

10-28 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

For a detailed discussion of error handling, see the Embedded SQL Guide. For a
complete listing of SQLCODE and InterBase status array codes, see the Language
Reference.

isql command reference
This chapter describes the syntax and usage for commands available only in
InterBase isql (interactive SQL). These commands are also available in SQL
scripts. For a description of the standard DSQL commands available in isql, see
the Language Reference.

Command-line isql supports the following special commands:

Table 10.10 SQLCODE and message summary

SQLCODE Message Meaning

< 0 SQLERROR Error occurred; statement did not execute

0 SUCCESS Successful execution

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND No qualifying rows found, or end of current active
set of rows reached

Table 10.11 isql commands

BLOBDUMP SET BLOBDISPLAY SHELL SHOW INDEX

EDIT SET COUNT SHOW CHECK SHOW INDICES

EXIT SET ECHO SHOW DATABASE SHOW PROCEDURES

HELP SET LIST SHOW DOMAINS SHOW ROLES

INPUT SET NAMES SHOW EXCEPTIONS SHOW SYSTEM

OUTPUT SET PLAN SHOW FILTERS SHOW TABLES

QUIT SET STATS SHOW FUNCTIONS SHOW TRIGGERS

SET SET TERM SHOW GENERATORS SHOW VERSION

SET AUTODDL SET TIME SHOW GRANT SHOW VIEWS

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-29

i s q l c o m m a n d r e f e r e n c e

BLOBDUMP
Places the contents of a BLOB column in a named file for reading or editing.

Syntax BLOBDUMP blob_id filename;

Description BLOBDUMP stores Blob data identified by blob_id in the file specified by filename.
Because binary files cannot be displayed, BLOBDUMP is useful for viewing or
editing binary data. BLOBDUMP is also useful for saving blocks of text (Blob data)
to a file.

To determine the blob_id to supply in the BLOBDUMP statement, issue any SELECT
statement that selects a column of Blob data. When the table’s columns appear, any
Blob columns contain hexadecimal Blob IDs. The display of Blob output can be
controlled using SET BLOBDISPLAY.

Example Suppose that Blob ID 58:c59 refers to graphical data in JPEG format. To place this
Blob data into a graphics file named picture.jpg, enter:

BLOBDUMP 58:c59 picture.jpg;

See also SET BLOBDISPLAY

EDIT
Allows editing and re-execution of isql commands.

Syntax EDIT [filename];

Description The EDIT command enables you to edit commands in:

• A source file and then execute the commands upon exiting the editor.

• The current isql session, then re-execute them.

Argument Description

blob_id System-assigned hexadecimal identifier, made up of two
hexadecimal numbers separated by a colon (:)
• First number is the ID of the table containing the BLOB column
• Second number is a sequential number identifying a particular

instance of Blob data

filename Name of the file into which to place Blob contents

Argument Description

filename Name of the file to edit

10-30 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

On Windows platforms, EDIT calls the text editor specified by the EDITOR
environment variable. If this environment variable is not defined, then EDIT uses
the Microsoft mep editor.

On UNIX, EDIT calls the text editor specified by either the VISUAL environment
variable or EDITOR, in that order. If neither variable is defined, then EDIT uses the
vi editor.

If given filename as an argument, EDIT places the contents of filename in an edit
buffer. If no file name is given, EDIT places the commands in the current isql
session in the edit buffer.

After exiting the editor, isql automatically executes the commands in the edit
buffer.

Filenames with spaces You can optionally delimit the filename with double or single
quotes. This allows you to use filenames with spaces in EDIT statements.

Examples To edit the commands in a file called start.sql and execute the commands when
done, enter:

EDIT START.SQL;

In the next example, a user wants to enter SELECT DISTINCT JOB_CODE, JOB_TITLE FROM
JOB; interactively: Instead, the user mistakenly omits the DISTINCT keyword.
Issuing the EDIT command opens the statement in an editor and then executes the
edited statement when the editor exits.

SELECT JOB_CODE, JOB_TITLE FROM JOB;
EDIT;

See also INPUT, OUTPUT, SHELL

EXIT
Commits the current transaction, closes the database, and ends the isql session.

Syntax EXIT;

Description Both EXIT and QUIT close the database and end an isql session. EXIT commits any
changes made since the last COMMIT or ROLLBACK, whereas QUIT rolls them back.

EXIT is equivalent to the end-of-file character, which differs across systems.

Important EXIT commits changes without prompting for confirmation. Before using EXIT, be
sure that no transactions need to be rolled back.

See also QUIT, SET AUTODDL

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-31

i s q l c o m m a n d r e f e r e n c e

HELP
Displays a list of ISQL commands and short descriptions.

Syntax HELP;

Description HELP lists the built-in isql commands, with a brief description of each.

Example To save the HELP screen to a file named isqlhelp.lst, enter:

OUTPUT isqlhelp.lst;
HELP;
OUTPUT;

After issuing the HELP command, use OUTPUT to redirect output back to the
screen.

INPUT
Read and execute commands from the named file.

Syntax INPUT filename;

Description INPUT reads commands from filename and executes them as a block. In this way,
INPUT enables execution of commands without prompting. filename must contain
SQL statements or isql commands.

Input files can contain their own INPUT commands. Nesting INPUT commands
enables isql to process multiple files. When isql reaches the end of one file,
processing returns to the previous file until all commands are executed.

The INPUT command is intended for noninteractive use. Therefore, the EDIT
command does not work in input files.

Using INPUT filename from within an isql session has the same effect as using
-input filename from the command line.

Unless output is redirected using OUTPUT, any results returned by executing
filename appear on the screen.

You can optionally delimit the filename with double or single quotes. This allows
you to use filenames with spaces in INPUT statements.

Examples For this example, suppose that file add.lst contains the following INSERT statement:

INSERT INTO COUNTRY (COUNTRY, CURRENCY)
VALUES ('Mexico', 'Peso');

Argument Description

filename Name of the file containing SQL statements and SQL commands

10-32 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

To execute the command stored in add.lst, enter:

INPUT add.lst;

For the next example, suppose that the file, table.lst, contains the following SHOW
commands:

SHOW TABLE COUNTRY;
SHOW TABLE CUSTOMER;
SHOW TABLE DEPARTMENT;
SHOW TABLE EMPLOYEE;
SHOW TABLE EMPLOYEE_PROJECT;
SHOW TABLE JOB;

To execute these commands, enter:

INPUT table.lst;

To record each command and store its results in a file named table.out, enter

SET ECHO ON;
OUTPUT table.out;
INPUT table.lst;
OUTPUT;

See also OUTPUT

OUTPUT
Redirects output to the named file or to standard output.

Syntax OUTPUT [filename];

Description OUTPUT determines where the results of isql commands are displayed. By default,
results are displayed on standard output (usually a screen). To store results in a
file, supply a filename argument. To return to the default mode, again displaying
results on the standard output, use OUTPUT without specifying a file name.

By default, only data is redirected. Interactive commands are not redirected unless
SET ECHO is in effect. If SET ECHO is in effect, isql displays each command before it
is executed. In this way, isql captures both the results and the command that
produced them. SET ECHO is useful for displaying the text of a query immediately
before the results.

Note Error messages cannot be redirected to an output file.

Using OUTPUT filename from within an isql session has the same effect as using the
option -output filename from the command line.

Argument Description

filename Name of the file in which to save output; if no file name is given,
results appear on the standard output

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-33

i s q l c o m m a n d r e f e r e n c e

You can optionally delimit the filename with double or single quotes. This allows
you to use filenames with spaces in OUTPUT statements.

Example The following example stores the results of one SELECT statement in the file,
sales.out. Normal output processing resumes after the SELECT statement.

 OUTPUT sales.out;
 SELECT * FROM SALES;
 OUTPUT;

See also INPUT, SET ECHO

QUIT
Rolls back the current transaction, closes the database, and ends the isql session.

Syntax QUIT;

Description Both EXIT and QUIT close the database and end an isql session. QUIT rolls back any
changes made since the last COMMIT or ROLLBACK, whereas EXIT commits the
changes.

Important QUIT rolls back uncommitted changes without prompting for confirmation. Before
using QUIT, be sure that any changes that need to be committed are committed. For
example, if SET AUTODDL is off, DDL statements must be committed explicitly.

See also EXIT, SET AUTODDL

SET
Lists the status of the features that control an isql session.

Syntax SET;

Description isql provides several SET commands for specifying how data is displayed or how
other commands are processed.

The SET command, by itself, verifies which features are currently set. Some SET
commands turn a feature on or off. Other SET commands assign values.

Many isql SET commands have corresponding SQL statements that provide
similar or identical functionality. In addition, some of the isql features controlled
by SET commands can also be controlled using isql command-line options. SET
Statements are used to configure the isql environment from a script file. Changes
to the session setting from SET statements in a script affect the session only while
the script is running. After a script completes, the session settings prior to running
the script are restored.

The isql SET statements are:

10-34 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

By default, all settings are initially OFF except AUTODDL and TIME, and the
terminator is a semicolon (;). Each time you start an isql session or execute an isql
script file, settings begin with their default values.

SET statements are used to configure the isql environment from a script file.
Changes to the session setting from SET statements in a script affect the session
only while the script is running. After a script completes, the session settings prior
to running the script are restored to their values before the script was run. So you
can modify the settings for interactive use, then change them as needed in an isql
script, and after running the script they automatically return to their previous
configuration.

Notes
• You cannot enter isql SET statements interactively in the SQL Statement area of

IBConsole ISQL. You can perform the same functions with menu items.

• SET GENERATOR and SET TRANSACTION (without a transaction name) are DSQL
statements and so you can enter them interactively in IBConsole ISQL or isql.
These statements are not exclusively isql statements, so they are not
documented in this chapter. See the Language Reference for details.

• SET DATABASE is exclusively an embedded SQL statement. See the Language
Reference and the Embedded SQL Guide for details.

Example To display the isql features currently in effect, enter:

SET;

Table 10.12 SET statements

Statement Description Default

SET AUTODDL Toggles the commit feature for DDL statements ON

SET BLOBDISPLAY n Turns on the display of Blob type n; the parameter n
is required to display Blob types

OFF

SET COUNT Toggles the count of selected rows on or off OFF

SET ECHO Toggles the display of each command on or off OFF

SET LIST string Displays columns vertically or horizontally OFF

SET NAMES Specifies the active character set OFF

SET PLAN Specifies whether or not to display the optimizer’s
query plan

OFF

SET STATS Toggles the display of performance statistics on or off OFF

SET TERM string Allows you to change to an alternate terminator
character (deprecated in InterBase 7)

;

SET TIME Toggles display of time in DATE values ON

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-35

i s q l c o m m a n d r e f e r e n c e

Print statistics:OFF
Echo commands:OFF
List format: OFF
Row count: OFF
Autocommit DDL:OFF
Access plan: OFF
Display BLOB type:1
Terminator: ;
Time: OFF

The output shows that isql is set to not echo commands, to display Blob data if
they are of subtype 1 (text), to automatically commit DDL statements, and to
recognize a semicolon (;) as the statement termination character.

See also SET AUTODDL, SET BLOBDISPLAY, SET COUNT, SET ECHO, SET LIST,
SET NAMES, SET PLAN, SET STATS, SET TIME

SET AUTODDL
Specifies whether DDL statements are committed automatically after being
executed or committed only after an explicit COMMIT.

Syntax SET AUTODDL [ON | OFF];

Description SET AUTODDL is used to turn on or off the automatic commitment of data
definition language (DDL) statements. By default, DDL statements are
automatically committed immediately after they are executed, in a separate
transaction. This is the recommended behavior.

If the OFF keyword is specified, auto-commit of DDL is then turned off. In OFF
mode, DDL statements can only be committed explicitly through a user’s
transaction. This mode is useful for database prototyping, because uncommitted
changes are easily undone by rolling them back.

SET AUTODDL has a shorthand equivalent, SET AUTO.

Tip The ON and OFF keywords are optional. If they are omitted, SET AUTO switches
from one mode to the other. Although you can save typing by omitting the
optional keyword, including the keyword is recommended because it avoids
potential confusion.

Examples The following example shows part of an isql script that turns off AUTODDL, creates
a table named TEMP, then rolls back the work.

. . .

Argument Description

ON Turns on automatic commitment of DDL [default]

OFF Turns off automatic commitment of DDL

10-36 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

SET AUTO OFF;
CREATE TABLE TEMP (a INT, b INT);
ROLLBACK;
. . .

This script creates TEMP and then rolls back the statement. No table is created.
because its creation was rolled back.

The next script uses the default AUTODDL ON. It creates the table TEMP and then
performs a rollback:

. . .
CREATE TABLE TEMP (a INT, b INT);
ROLLBACK;
. . .

Because DDL is automatically committed, the rollback does not affect the creation
of TEMP.

See also EXIT, QUIT

SET BLOBDISPLAY
Specifies subtype of Blob data to display.

Syntax SET BLOBDISPLAY [n | ALL | OFF];

Description SET BLOBDISPLAY has the following uses:

• To display Blob data of a particular subtype, use SET BLOBDISPLAY n. By default,
isql displays Blob data of text subtype (n = 1).

• To display Blob data of all subtypes, use SET BLOBDISPLAY ALL.

• To avoid displaying Blob data, use SET BLOBDISPLAY OFF. Omitting the OFF
keyword has the same effect. Turn Blob display off to make output easier to
read.

Argument Description

n Integer specifying the Blob subtype to display
• Use 0 for Blob data of an unknown subtype
• Use 1 for Blob data of a text subtype [default]
• Use other integer values for other subtypes

ALL Displays Blob data of all subtypes

OFF Turns off display of Blob data of all subtypes

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-37

i s q l c o m m a n d r e f e r e n c e

In any column containing Blob data, the actual data does not appear in the
column. Instead, the column displays a Blob ID that represents the data. If SET
BLOBDISPLAY is on, data associated with a Blob ID appears under the row
containing the Blob ID. If SET BLOBDISPLAY is off, the Blob ID still appears even
though its associated data does not.

SET BLOBDISPLAY has a shorthand equivalent, SET BLOB.

To determine the subtype of a BLOB column, use SHOW TABLE.

Examples The following examples show output from the same SELECT statement. Each
example uses a different SET BLOB command to affect how output appears. The
first example turns off Blob display.

SET BLOB OFF;
SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

With BLOBDISPLAY OFF, the output shows only the Blob ID:

PROJ_NAME PROJ_DESC
==================== =================
Video Database 24:6
DigiPizza 24:8
AutoMap 24:a
MapBrowser port 24:c
Translator upgrade 24:3b
Marketing project 3 24:3d

The next example restores the default by setting BLOBDISPLAY to subtype 1 (text).

SET BLOB 1;
SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

Now the contents of the Blob appear below each Blob ID:

PROJ_NAME PROJ_DESC
=====================================
Video Database 24:6
==
PROJ_DESC:
Design a video data base management system for
controlling on-demand video distribution.
PROJ_NAME PROJ_DESC
=====================================
DigiPizza 24:8
==
PROJ_DESC:
Develop second generation digital pizza maker
with flash-bake heating element and
digital ingredient measuring system.
. . .

See also BLOBDUMP

10-38 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

SET COUNT
Specifies whether to display number of rows retrieved by queries.

Syntax SET COUNT [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, no message
appears to say how many rows were retrieved.

Use SET COUNT ON to change the default behavior and display the message. To
restore the default behavior, use SET COUNT OFF.

Tip The ON and OFF keywords are optional. If they are omitted, SET COUNT switches
from one mode to the other. Although you can save typing by omitting the
optional keyword, including the keyword is recommended because it avoids
potential confusion.

Example The following example sets COUNT ON to display the number of rows returned by
all following queries:

SET COUNT ON;
SELECT * FROM COUNTRY

WHERE CURRENCY LIKE '%FRANC%';

The output displayed would then be:

COUNTRY CURRENCY
=============== ==========
SWITZERLAND SFRANC
FRANCE FFRANC
BELGIUM BFRANC

3 rows returned

SET ECHO
Specifies whether commands are displayed to the isql output area before being
executed.

Syntax SET ECHO [ON | OFF];

Argument Description

ON Turns on display of the “rows returned” message

OFF Turns off display of the “rows returned” message [default]

Argument Description

ON Turns on command echoing [default]

OFF Turns off command echoing

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-39

i s q l c o m m a n d r e f e r e n c e

Description By default, commands in script files are displayed (echoed) in the isql output area,
before being executed. Use SET ECHO OFF to change the default behavior and
suppress echoing of commands. This can be useful when sending the output of a
script to a file, if you want only the results of the script and not the statements
themselves in the output file.

Command echoing is useful if you want to see the commands as well as the results
in the isql output area.

Tip The ON and OFF keywords are optional. If they are omitted, SET ECHO switches
from one mode to the other. Although you can save typing by omitting the
optional keyword, including the keyword is recommended because it avoids
potential confusion.

Example Suppose you execute the following script from IBConsole ISQL:

. . .
SET ECHO OFF;
SELECT * FROM COUNTRY;
SET ECHO ON;
SELECT * FROM COUNTRY;
EXIT;

The output (in a file or the isql output area) looks like this:

. . .
SET ECHO OFF;
COUNTRY CURRENCY
===================
USA Dollar
England Pound
. . .
SELECT * FROM COUNTRY;
COUNTRY CURRENCY
===================
USA Dollar
England Pound
. . .

The first SELECT statement is not displayed, because ECHO is OFF. Notice also that
the SET ECHO ON statement itself is not displayed, because when it is executed,
ECHO is still OFF. After it is executed, however, the second SELECT statement is
displayed.

See also INPUT, OUTPUT

SET LIST
Specifies whether output appears in tabular format or in list format.

Syntax SET LIST [ON | OFF];

10-40 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

Description By default, when a SELECT statement retrieves rows from a query, the output
appears in a tabular format, with data organized in rows and columns.

Use SET LIST ON to change the default behavior and display output in a list format.
In list format, data appears one value per line, with column headings appearing as
labels. List format is useful when columnar output is too wide to fit nicely on the
screen.

Tip The ON and OFF keywords are optional. If they are omitted, SET LIST switches from
one mode to the other. Although you can save typing by omitting the optional
keyword, including the keyword is recommended because it avoids potential
confusion.

Example Suppose you execute the following statement in a script file:

SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB
WHERE JOB_COUNTRY = 'Italy';

The output is:

JOB_CODE JOB_GRADE JOB_COUNTRY JOB_TITLE
======== ========= =========== ====================
SRep 4 Italy Sales Representative

Now suppose you precede the SELECT with SET LIST ON:

SET LIST ON;
SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE FROM JOB

WHERE JOB_COUNTRY = 'Italy';

The output is:

JOB_CODE SRep
JOB_GRADE 4
JOB_COUNTRY Italy
JOB_TITLE Sales Representative

SET NAMES
Specifies the active character set to use in database transactions.

Syntax SET NAMES [charset];

Argument Description

ON Turns on list format for display of output

OFF Turns off list format for display of output [default]

Argument Description

charset Name of the active character set; default is NONE

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-41

i s q l c o m m a n d r e f e r e n c e

Description SET NAMES specifies the character set to use for subsequent database connections
in isql. It enables you to override the default character set for a database. To return
to using the default character set, use SET NAMES with no argument.

Use SET NAMES before connecting to the database whose character set you want to
specify. For a complete list of character sets recognized by InterBase, see the
Language Reference.

Choice of character set limits possible collation orders to a subset of all available
collation orders. Given a specific character set, a specific collation order can be
specified when data is selected, inserted, or updated in a column.

Example The following statement at the beginning of a script file indicates to set the active
character set to ISO8859_1 for the subsequent database connection:

SET NAMES ISO8859_1;
CONNECT 'jupiter:/usr/interbase/examples/employee.gdb';
. . .

SET PLAN
Specifies whether to display the optimizer’s query plan.

Syntax SET PLAN [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not
display the query plan used to retrieve the data.

Use SET PLAN ON to change the default behavior and display the query optimizer
plan. To restore the default behavior, use SET PLAN OFF.

To change the query optimizer plan, use the PLAN clause in the SELECT statement.

Tip The ON and OFF keywords are optional. If they are omitted, SET PLAN switches
from one mode to the other. Although you can save typing by omitting the
optional keyword, including the keyword is recommended because it avoids
potential confusion.

Example The following example shows part of a script that sets PLAN ON:

SET PLAN ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = 'France';

Argument Description

ON Turns on display of the optimizer’s query plan

OFF Turns off display of the optimizer’s query plan [default]

10-42 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

The output then includes the query optimizer plan used to retrieve the data as well
as the results of the query:

PLAN (JOB INDEX (RDB$FOREIGN3,MINSALX,MAXSALX))
JOB_COUNTRY MIN_SALARY
=============== ======================
France 118200.00

SET STATS
Specifies whether to display performance statistics after the results of a query.

Syntax SET STATS [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not
display performance statistics after the results. Use SET STATS ON to change the
default behavior and display performance statistics. To restore the default
behavior, use SET STATS OFF. Performance statistics include:

• Current memory available, in bytes

• Change in available memory, in bytes

• Maximum memory available, in bytes

• Elapsed time for the operation

• CPU time for the operation

• Number of cache buffers used

• Number of reads requested

• Number of writes requested

• Number of fetches made

Performance statistics can help determine if changes are needed in system
resources, database resources, or query optimization.

Tip The ON and OFF keywords are optional. If they are omitted, SET STATS switches
from one mode to the other. Although you can save typing by omitting the
optional keyword, including the keyword is recommended because it avoids
potential confusion.

Do not confuse SET STATS with the SQL statement SET STATISTICS, which
recalculates the selectivity of an index.

Argument Description

ON Turns on display of performance statistics

OFF Turns off display of performance statistics [default]

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-43

i s q l c o m m a n d r e f e r e n c e

Example The following part of a script file turns on display of statistics and then performs a
query:

SET STATS ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = 'France';

The output displays the results of the SELECT statement and the performance
statistics for the operation:

JOB_COUNTRY MIN_SALARY
=============== ======================
France 118200.00

Current memory = 407552
Delta memory = 0
Max memory = 412672
Elapsed time= 0.49 sec
Cpu = 0.06 sec
Buffers = 75
Reads = 3
Writes = 2
Fetches = 441

See also SHOW DATABASE

SET TIME
Specifies whether to display the time portion of a DATE value.

Syntax SET TIME [ON | OFF];

Description The InterBase Date datatype includes a date portion (including day, month, and
year) and a time portion (including hours, minutes, and seconds).

By default, isql displays only the date portion of Date values. SET TIME ON turns
on the display of time values. SET TIME OFF turns off the display of time values.

Tip The ON and OFF keywords are optional. If they are omitted, the command toggles
time display from ON to OFF or OFF to ON.

Example The following example shows the default display of a DATE datatype, which is to
display day, month, and year:

SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;

Argument Description

ON Turns on display of time in DATE value

OFF Turns off display of time in DATE value [default]

10-44 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

HIRE_DATE

2-MAY-1994

This example shows the effects of SET TIME ON, which causes the hours, minutes
and seconds to be displayed as well:

SET TIME ON;
SELECT HIRE_DATE FROM EMPLOYEE WHERE EMP_NO = 145;
HIRE_DATE

2-MAY-1994 12:25:00

SHELL
Allows execution of an operating system command or temporary access to an
operating system shell.

Syntax SHELL [os_command];

Description The SHELL command provides temporary access to operating system commands
in an isql session. Use SHELL to execute an operating-system command without
ending the current isql session.

If os_command is specified, the operating system executes the command and then
returns to isql when complete.

If no command is specified, an operating system shell prompt appears, enabling
you to execute a sequence of commands. To return to isql, type exit. For example,
SHELL can be used to edit an input file and run it at a later time. By contrast, if an
input file is edited using the EDIT command, the input file is executed as soon as
the editing session ends.

Using SHELL does not commit transactions before it calls the shell.

This isql statement has no equivalent function in IBConsole ISQL.

Example The following example uses SHELL to display the contents of the current directory:

SHELL DIR;

See also EDIT

SHOW CHECK
Displays all CHECK constraints defined for a specified table.

Argument Description

os_command An operating system command; if no command is specified,
isql provides interactive access to the operating system

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-45

i s q l c o m m a n d r e f e r e n c e

Syntax SHOW CHECK table;

Description SHOW CHECK displays CHECK constraints for a named table in the current
database. Only user-defined metadata is displayed. To see a list of existing tables,
use SHOW TABLE.

Example The following example shows CHECK constraints defined for the JOB table. The
SHOW TABLES command is used first to display a list of available tables.

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECTJOB
PHONE_LIST PROJECT
PROJ_DEPT_BUDGETSALARY_HISTORY
SALES

SHOW CHECK JOB;
CHECK (min_salary < max_salary)

See also SHOW TABLES

SHOW DATABASE
Displays information about the current database.

Syntax SHOW [DATABASE | DB];

Description SHOW DATABASE displays the current database’s file name, page size and
allocation, and sweep interval.

The output of SHOW DATABASE is used to verify data definition or to administer
the database. For example, use the backup and restore utilities to change page size
or reallocate pages among multiple files, and use the database maintenance utility
to change the sweep interval.

SHOW DATABASE has a shorthand equivalent, SHOW DB.

Example The following example connects to a database and displays information about it:

CONNECT 'employee.gdb';
Database: employee.gdb

SHOW DB;
Database: employee.gdb

Owner: SYSDBA
PAGE_SIZE 4096
Number of DB pages allocated = 422

Argument Description

table Name of an existing table in the current database

10-46 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

Sweep interval = 20000

SHOW DOMAINS
Lists all domains or displays information about a specified domain.

Syntax SHOW {DOMAINS | DOMAIN name};

Options To see a list of existing domains, use SHOW DOMAINS without specifying a domain
name. SHOW DOMAIN name displays information about the named domain in the
current database. Output includes a domain’s datatype, default value, and any
CHECK constraints defined. Only user-defined metadata is displayed.

Example The following example lists all domains and then shows the definition of the
domain, SALARY:

SHOW DOMAINS;
FIRSTNAME LASTNAME
PHONENUMBER COUNTRYNAME
ADDRESSLINE EMPNO
DEPTNO PROJNO
CUSTNO JOBCODE
JOBGRADE SALARY
BUDGET PRODTYPE
PONUMBER

SHOW DOMAIN SALARY;
SALARY NUMERIC(15, 2) Nullable

DEFAULT 0
CHECK (VALUE > 0)

SHOW EXCEPTIONS
Lists all exceptions or displays the text of a specified exception.

Syntax SHOW {EXCEPTIONS | EXCEPTION name};

Description SHOW EXCEPTIONS displays an alphabetical list of exceptions. SHOW EXCEPTION
name displays the text of the named exception.

Argument Description

name Name of an existing domain in the current database

Argument Description

name Name of an existing exception in the current database

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-47

i s q l c o m m a n d r e f e r e n c e

Examples To list all exceptions defined for the current database, enter:

SHOW EXCEPTIONS;
Exception Name Used by, Type
================== ==
UNKNOWN_EMP_ID ADD_EMP_PROJ, Stored procedure

Invalid employee number or project ID.
. . .

To list the message for a specific exception and the procedures or triggers that use
it, enter the exception name:

SHOW EXCEPTION CUSTOMER_CHECK;
Exception Name Used by, Type
=========================== =======================================
CUSTOMER_CHECK SHIP_ORDER, Stored procedure
 Overdue balance -- can’t ship.

SHOW FILTERS
Lists all Blob filters or displays information about a specified filter.

Syntax SHOW {FILTERS | FILTER name};

Options To see a list of existing filters, use SHOW FILTERS. SHOW FILTER name displays
information about the named filter in the current database. Output includes
information previously defined by the DECLARE FILTER statement, the input
subtype, output subtype, module (or library) name, and entry point name.

Example The following example lists all filters and then shows the definition of the filter,
DESC_FILTER:

SHOW FILTERS;
DESC_FILTER

SHOW FILTER DESC_FILTER;
BLOB Filter: DESC_FILTER
Input subtype: 1 Output subtype -4
Filter library is: desc_filter
Entry point is: FILTERLIB

Argument Description

name Name of an existing Blob filter in the current database

10-48 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

SHOW FUNCTIONS
Lists all user-defined functions (UDFs) defined in the database or displays
information about a specified UDF.

Syntax SHOW {FUNCTIONS | FUNCTION name};

Options To see a list of existing functions defined in the database, use SHOW FUNCTIONS. To
display information about a specific function in the current database, use SHOW
FUNCTION function_name. Output includes information previously defined by the
DECLARE EXTERNAL FUNCTION statement: the name of the function and function
library, the name of the entry point, and the datatypes of return values and input
arguments.

Example The following UNIX example lists all UDFs and then shows the definition of the
MAXNUM() function:

SHOW FUNCTIONS;
ABS MAXNUM
TIME UPPER_NON_C
UPPER

SHOW FUNCTION maxnum;
Function MAXNUM:
Function library is /usr/interbase/lib/gdsfunc.so
Entry point is FN_MAX
Returns BY VALUE DOUBLE PRECISION
Argument 1: DOUBLE PRECISION
Argument 2: DOUBLE PRECISION

SHOW GENERATORS
Lists all generators or displays information about a specified generator.

Syntax SHOW {GENERATORS | GENERATOR name};

Description To see a list of existing generators, use SHOW GENERATORS. SHOW GENERATOR
name displays information about the named generator in the current database.
Output includes the name of the generator and its next value.

Argument Description

name Name of an existing UDF in the current database

Argument Description

name Name of an existing generator in the current database

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-49

i s q l c o m m a n d r e f e r e n c e

SHOW GENERATOR has a shorthand equivalent, SHOW GEN.

Example The following example lists all generators and then shows information about
EMP_NO_GEN:

SHOW GENERATORS;
Generator EMP_NO_GEN, Next value: 146
Generator CUST_NO_GEN, Next value: 1016

SHOW GENERATOR EMP_NO_GEN;
Generator EMP_NO_GEN, Next value: 146

SHOW GRANT
Displays privileges for a database object.

Syntax SHOW GRANT object;

Description SHOW GRANT displays the privileges defined for a specified table, view, or
procedure. Allowed privileges are DELETE, EXECUTE, INSERT, SELECT, UPDATE, or
ALL. To change privileges, use the SQL statements GRANT or REVOKE.

Before using SHOW GRANT, you might want to list the available database objects.
Use SHOW PROCEDURES to list existing procedures; use SHOW TABLES to list
existing tables; use SHOW VIEWS to list existing views.

Example To display GRANT privileges on the JOB table, enter:

SHOW GRANT JOB;
GRANT SELECT ON JOB TO ALL
GRANT DELETE, INSERT, SELECT, UPDATE ON JOB TO MANAGER

SHOW GRANT can also show role membership:

SHOW GRANT DOITALL;
GRANT DOITALL TO SOCKS

See also SHOW PROCEDURES, SHOW TABLES, SHOW VIEWS

SHOW INDEX
Displays index information for a specified index, for a specified table, or for all
tables in the current database.

Syntax SHOW {INDICES | INDEX {index | table} };

Argument Description

object Name of an existing table, view, or procedure in the current database

10-50 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

Description SHOW INDEX displays the index name, the index type (for example, UNIQUE or
DESC), and the columns on which an index is defined.

If the index argument is specified, SHOW INDEX displays information only for that
index. If table is specified, SHOW INDEX displays information for all indexes in the
named table; to display existing tables, use SHOW TABLES. If no argument is
specified, SHOW INDEX displays information for all indexes in the current
database.

SHOW INDEX has a shorthand equivalent, SHOW IND. SHOW INDICES is also a
synonym for SHOW INDEX. SHOW INDEXES is not supported.

Examples To display indexes for database employee.gdb, enter:

SHOW INDEX;
RDB$PRIMARY1 UNIQUE INDEX ON COUNTRY(COUNTRY)
CUSTNAMEX INDEX ON CUSTOMER(CUSTOMER)
CUSTREGION INDEX ON CUSTOMER(COUNTRY, CITY)
RDB$FOREIGN23 INDEX ON CUSTOMER(COUNTRY)

. . .

To display index information for the SALES table, enter:

SHOW IND SALES;
NEEDX INDEX ON SALES(DATE_NEEDED)
QTYX DESCENDING INDEX ON SALES(ITEM_TYPE, QTY_ORDERED)
RDB$FOREIGN25 INDEX ON SALES(CUST_NO)
RDB$FOREIGN26 INDEX ON SALES(SALES_REP)
RDB$PRIMARY24 UNIQUE INDEX ON SALES(PO_NUMBER)
SALESTATX INDEX ON SALES(ORDER_STATUS, PAID)

See also SHOW TABLES

SHOW PROCEDURES
Lists all procedures or displays the text of a specified procedure.

Syntax SHOW {PROCEDURES | PROCEDURE name};

Argument Description

index Name of an existing index in the current database

table Name of an existing table in the current database

Argument Description

name Name of an existing procedure in the current database

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-51

i s q l c o m m a n d r e f e r e n c e

Description SHOW PROCEDURES displays an alphabetical list of procedures, along with the
database objects they depend on. Deleting a database object that has a dependent
procedure is not allowed. To avoid an isql error, delete the procedure (using DROP
PROCEDURE) before deleting the database object.

SHOW PROCEDURE name displays the text and parameters of the named
procedure.

SHOW PROCEDURE has a shorthand equivalent, SHOW PROC.

Examples To list all procedures defined for the current database, enter:

SHOW PROCEDURES;

Procedure Name Dependency Type
================= ==================== =======
ADD_EMP_PROJ EMPLOYEE_PROJECT Table
 UNKNOWN_EMP_ID Exception
DELETE_EMPLOYEE DEPARTMENT Table

EMPLOYEE Table
EMPLOYEE_PROJECT Table
PROJECT Table
REASSIGN_SALES Exception
SALARY_HISTORY Table
SALES Table

DEPT_BUDGET DEPARTMENT Table
DEPT_BUDGET Procedure

. . .

To display the text of the procedure, ADD_EMP_PROJ, enter:

SHOW PROC ADD_EMP_PROJ;

Procedure text:
===

BEGIN
BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (:emp_no,

:proj_id);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;
END
RETURN;

END
===
Parameters:
EMP_NO INPUT SMALLINT
PROJ_ID INPUT CHAR(5)

10-52 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

SHOW ROLES
Displays the names of SQL roles for the current database.

Syntax SHOW {ROLES | ROLE}

Description SHOW ROLES displays the names of all roles defined for the current database. To
show user membership in roles, use SHOW GRANT rolename.

Example SHOW ROLES;

DOITALL DONOTHING
DOONETHING DOSOMETHING

See also SHOW GRANT

SHOW SYSTEM
Displays the names of system tables and system views for the current database.

Syntax SHOW SYSTEM [TABLES];

Description SHOW SYSTEM lists system tables and system views in the current database. SHOW
SYSTEM accepts an optional keyword, TABLES, which does not affect the behavior
of the command.

SHOW SYSTEM has a shorthand equivalent, SHOW SYS.

Example To list system tables and system views for the current database, enter:

SHOW SYS;
RDB$CHARACTER_SETS RDB$CHECK_CONSTRAINTS
RDB$COLLATIONS RDB$DATABASE
RDB$DEPENDENCIES RDB$EXCEPTIONS
RDB$FIELDS RDB$FIELD_DIMENSIONS
RDB$FILES RDB$FILTERS
RDB$FORMATS RDB$FUNCTIONS
RDB$FUNCTION_ARGUMENTS RDB$GENERATORS
RDB$INDEX_SEGMENTS RDB$INDICES
RDB$LOG_FILES RDB$PAGES
RDB$PROCEDURES RDB$PROCEDURE_PARAMETERS
RDB$REF_CONSTRAINTS RDB$RELATIONS
RDB$RELATION_CONSTRAINTS RDB$RELATION_FIELDS
RDB$ROLES RDB$SECURITY_CLASSES
RDB$TRANSACTIONS RDB$TRIGGERS
RDB$TRIGGER_MESSAGES RDB$TYPES
RDB$USER_PRIVILEGES RDB$VIEW_RELATIONS

See also For more information about system tables, see the Language Reference.

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-53

i s q l c o m m a n d r e f e r e n c e

SHOW TABLES
Lists all tables or views, or displays information about a specified table or view.

Syntax SHOW {TABLES | TABLE name};

Description SHOW TABLES displays an alphabetical list of tables and views in the current
database. To determine which listed objects are views rather than tables, use SHOW
VIEWS.

SHOW TABLE name displays information about the named object. If the object is a
table, command output lists column names and definitions, PRIMARY KEY,
FOREIGN KEY, and CHECK constraints, and triggers. If the object is a view,
command output lists column names and definitions, as well as the SELECT
statement that the view is based on.

Examples To list all tables or views defined for the current database, enter:

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECT JOB
PHONE_LIST PROJECT
PROJ_DEPT_BUDGET SALARY_HISTORY
SALES

To show the definition for the COUNTRY table, enter:

SHOW TABLE COUNTRY;
COUNTRY (COUNTRYNAME) VARCHAR(15) NOT NULL
CURRENCY VARCHAR(10) NOT NULL
PRIMARY KEY (COUNTRY)

See also SHOW VIEWS

SHOW TRIGGERS
Lists all triggers or displays information about a specified trigger.

Syntax SHOW {TRIGGERS | TRIGGER name};

Argument Description

name Name of an existing table or view in the current database

Argument Description

name Name of an existing trigger in the current database

10-54 O p e r a t i o n s G u i d e

i s q l c o m m a n d r e f e r e n c e

Description SHOW TRIGGERS displays all triggers defined in the database, along with the table
they depend on. SHOW TRIGGER name displays the name, sequence, type,
activation status, and definition of the named trigger.

SHOW TRIGGER has a shorthand equivalent, SHOW TRIG.

Deleting a table that has a dependent trigger is not allowed. To avoid an isql error,
delete the trigger (using DROP TRIGGER) before deleting the table.

Examples To list all triggers defined for the current database, enter:

SHOW TRIGGERS;
Table name Trigger name
=========== ============
EMPLOYEE SET_EMP_NO
EMPLOYEE SAVE_SALARY_CHANGE
CUSTOMER SET_CUST_NO
SALES POST_NEW_ORDER

To display information about the SET_CUST_NO trigger, enter:

SHOW TRIG SET_CUST_NO;

Triggers:
SET_CUST_NO, Sequence: 0, Type: BEFORE INSERT, Active
AS
BEGIN

new.cust_no = gen_id(cust_no_gen, 1);
END

SHOW VERSION
Displays information about software versions.

Syntax SHOW VERSION;

Description SHOW VERSION displays the software version of isql, the InterBase engine, and the
on-disk structure (ODS) of the database to which the session is attached.

Certain tasks might not work as expected if performed on databases that were
created using older versions of InterBase. To check the versions of software that
are running, use SHOW VERSION.

SHOW VERSION has a shorthand equivalent, SHOW VER.

Example To display software versions, enter:

SQL> SHOW VERSION;

ISQL Version: WI-V7.0.0.168
InterBase/x86/Windows NT (access method), version "WI-V7.0.0.168"
on disk structure version 11.0

See also SHOW DATABASE

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-55

U s i n g S Q L s c r i p t s

SHOW VIEWS
Lists all views or displays information about a specified view.

Syntax SHOW {VIEWS | VIEW name};

Description SHOW VIEWS displays an alphabetical list of all views in the current database.
SHOW VIEW name displays information about the named view.

Example To list all views defined for the current database, enter:

SHOW VIEWS;
PHONE_LIST

See also SHOW TABLES

Using SQL scripts
The basic steps for using script files are:

1 Create the script file using a text editor.

2 Run the file with isql or IBConsole.

3 View output and confirm database changes.

Creating an isql script
You can use any text editor to create a SQL script file, as long as the final file
format is plain text (ASCII).

Every SQL script file must begin with either a CREATE DATABASE statement or a
CONNECT statement (including username and password) that specifies the
database on which the script file is to operate. The CONNECT or CREATE statement
must contain a complete database file name and directory path.

Note You cannot set dialect in a CREATE DATABASE statement. To create a dialect 3
database, specify isql option -r 3.

A SQL script can contain any of the following elements:

• SQL statements, as described in the Language Reference

• isql SET commands as described in this chapter

• Comments.

Each SQL statement in a script must end with a terminator.

Argument Description

name Name of an existing view in the current database

10-56 O p e r a t i o n s G u i d e

U s i n g S Q L s c r i p t s

Note The SQL statement silently fails if significant text follows the terminator character
on the same line. Whitespace and comments can safely follow the terminator, but
other statements cannot.

Each SQL script file should end with either EXIT to commit database changes made
since the last COMMIT, or QUIT to roll back changes made by the script. If neither is
specified, then database changes are committed by default.

For the full syntax of CONNECT and CREATE DATABASE, see the Language Reference.

Running a SQL script
The following steps execute all the SQL statements in the specified script file. The
contents of the script are not displayed in the SQL input area.

To run a SQL script using IBConsole
1 If you are not already in the SQL window, click the Launch SQL toolbar button

or choose Tools|Interactive SQL.

2 If you are not running the SQL script on the database to which you are currently
connected, then check that the file begins with a valid, uncommented,
CONNECT or CREATE DATABASE statement.

3 Choose Query|Load Script.

4 Enter or locate the desired script filename in the Open dialog, and click Open to
load the script into the SQL input area.

5 Click the Execute toolbar button, or choose Query|Execute.

If IBConsole encounters an error, an information dialog appears indicating the
error. Once IBConsole finishes executing the script, the script results are displayed
in the SQL output window.

After a script executes, all isql session settings prior to executing the script are
restored as well as the previous database connection, if any. In other words, any
isql SET commands in the script affect only the isql session while the script is
running.

To run a SQL script using the command-line isql tool
You can run a script from any console prompt using the -input option to isql.
Specify the full path and filename. In the following example, the script does not
contain a CREATE DATABASE statement; it runs against an existing database:

isql database_name -input filename

The following example runs a script that creates a database:

isql -input filename

C h a p t e r 1 0 I n t e r a c t i v e Q u e r y 10-57

U s i n g S Q L s c r i p t s

During an active isql session in which you are already connected to a database,
you use the INPUT command to read and execute a SQL script against that
database:

SQL> INPUT filename

See “Invoking isql” on page 10-20 for more about running isql.

Committing work in a SQL script
Changes to the database from data definition (DDL) statements—for example,
CREATE and ALTER statements—are automatically committed by default. This
means that other users of the database see changes as soon as each DDL statement
is executed. To turn off automatic commit of DDL in a script, use SET AUTODDL
OFF, or set it in the Query Options dialog. See “Using InterBase Manager to start
and stop InterBase” on page 3-10 for more information.

Note When creating tables and other database objects with AUTODDL OFF, it is good
practice to put a COMMIT statement in the SQL script after each CREATE statement
or group of related statements. This ensures that other users of the database see the
objects immediately.

Changes made to the database by data manipulation (DML) statements—for
example INSERT and UPDATE—are not permanent until they are committed.
Commit changes in a script with COMMIT. To undo all database changes since the
last COMMIT, use ROLLBACK. For the full syntax of COMMIT and ROLLBACK, see the
Language Reference book.

Adding comments in an isql script
isql scripts are commented exactly like C programs:

/* comment */

A comment can occur on the same line as a SQL statement or isql command and
can be of any length, as long as it is preceded by “/*” and followed by “*/”.

10-58 O p e r a t i o n s G u i d e

U s i n g S Q L s c r i p t s

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-1

C h a p t e r

Chapter 11Database and Server Performance
This chapter describes techniques for designing and operating an InterBase client/
server system for best speed and efficiency.

The guidelines in this chapter are organized into the following categories:

• Hardware configuration

• Operating system configuration

• Network configuration

• Database properties

• Database design principles

• Database tuning tasks

• Application design techniques

• Application development tools

Introduction
One of the most important requirements for a database as part of your application
is to store and retrieve data as quickly as possible. Like any software development
technique, there is always more than one method to implement a given specified
software solution, and it takes knowledge and experience to choose the design that
results in the most efficient operation and the highest performance.

Each project offers unique challenges and requires specific solutions. The
suggestions in this chapter augment your own software engineering discipline,
which should include careful analysis, testing, and experimentation to implement
the best design for your specific project.

11-2 O p e r a t i o n s G u i d e

H a r d w a r e c o n f i g u r a t i o n

Hardware configuration
This section gives guidelines for platform hardware sizing. The suggestions focus
on requirements for a server platform.

Choosing a processor speed
The performance of database systems tends by nature to be bound by I/O
bandwidth or network bandwidth. An application often waits for I/O or network
operations, instead of being computationally intensive. A fast CPU clock speed
gives definite performance advantage, but a 10% increase in CPU clock speed is
less important for server performance than some other hardware factors, such as
RAM configuration, I/O system, or network hardware.

CPU clock speed is often more important on client platforms, because applications
that use data might perform CPU-intensive computational analysis on data, or
might render sophisticated visualization of data in a computationally costly
manner.

It’s not appropriate for this document to recommend a specific CPU clock speed
for your server, because it is likely that such a recommendation would be obsolete
as you read it. You should evaluate the benefit of spending more money on a faster
CPU, because the price/performance curve becomes steep for the latest CPU
hardware.

Sizing memory
It is important to equip your server with a sufficient amount of physical memory
to ensure good performance.

While InterBase can function in a low-profile hardware configuration, with as little
as 32MB of RAM on most operating systems, it is recommended to have at least
64MB of RAM on a server system. Database servers that experience a high load
can benefit from more RAM.

The base RAM requirement of the ibserver executable and for each connected user
is low: approximately 1500KB, plus 28KB for each client connection. ibserver
caches metadata and data for each database to which it connects. User operations
such as sorting temporarily consume additional memory. A heavily loaded server
with dozens of clients performing concurrent queries requires up to 256MB of
RAM.

On Windows, you can use the Task Manager, Performance Monitor, and other
tools to monitor the resource use of ibserver. UNIX and Linux servers have similar
resource consumption reporting tools. Add RAM to a system that shows too many
page faults.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-3

H a r d w a r e c o n f i g u r a t i o n

Using high-performance I/O subsystems
A multiuser database server’s hard drives are no place to be thrifty, especially in
today’s market of inexpensive storage. Configuring a relatively high-end I/O
system is a cost-effective way to increase performance.

Slow disk subsystems are often the weak link in an otherwise high-performance
server machine. The top-rated CPU and maximum memory helps. But if a cheap
disk I/O interface limits the data transfer rate, then the money spent on the
expensive components is wasted.

It’s not appropriate for this document to recommend a particular configuration.
The technology changes so quickly that any recommendation here would be
outdated. When you specify the machine for a server platform, research the best
hardware solution available.

Read the following guidelines for principles:

• Advanced SCSI technology offers superior I/O throughput. The following
graph illustrates the relative maximum throughput of different disk interfaces.

Figure 11.1 Comparing external transfer rate of disk I/O interfaces

• The external interface capacity usually exceeds the internal or sustained
transfer rate of any individual device. Only systems that use multiple disk
devices make full use of a high-capacity I/O interface.

• Bus-mastering I/O controllers use less CPU resources. This is particularly
important on I/O-intensive server machines. SCSI is generally bus-mastering,
and newer PCI EIDE interfaces are bus-mastering. IDE is not.

• Use a disk controller with built in cache memory. The controller cache reduces
the need for the operating system to use system RAM for disk cache.

Ultra3 SCSI 160MB/sec

Ultra2 SCSI 80MB/sec
Ultra Wide SCSI 40MB/sec

Ultra ATA (DMA-33) 33MB/sec
Fast Wide/Ultra SCSI 20MB/sec

Fast/Wide SCSI-2 10MB/sec

SCSI-2 5MB/sec
IDE 2.5MB/sec

ATA PIO mode 2 8.3MB/sec

ATA PIO mode 3 (EIDE) 11.1MB/sec
ATA PIO mode 4 (EIDE) 16.6MB/sec

11-4 O p e r a t i o n s G u i d e

H a r d w a r e c o n f i g u r a t i o n

• Don’t assume all disks of a given size perform equally; research performance
ratings made by independent testing labs.

Distributing I/O
Disk device I/O is orders of magnitude slower than physical memory accesses or
CPU cycles. There is a delay while the disk device seeks the data requested. While
an application is waiting for data it has requested from a disk device, it is
advantageous for the application to spend the time executing other tasks. One
appropriate way to do this is to spread multiple data requests over multiple
devices. While one disk is preparing to return data, the application requests
another disk to start seeking another set of data. This is called distributed I/O or
parallel I/O.

This section describes ways you can persuade InterBase to distribute I/O over
multiple disk devices.

Using RAID
You can achieve up to a ten times performance improvement by using RAID.

RAID (redundant array of inexpensive disks) is a hardware design that is intended
to give benefits to performance and reliability by storing data on multiple physical
disk devices. It is transparent for software applications to use RAID, because it is
implemented in the operating system or at the hardware level. InterBase uses
operating system I/O interfaces, so InterBase supports RAID as would any other
application software.

Disk striping (included in RAID levels 0, 3, or 5) provides performance benefits by
distributing I/O across multiple disks.

Hardware RAID is faster than software RAID or software disk mirroring. RAID
implemented with software provides only protection from hard disk failure; it is
actually slower than operating without RAID.

Using multiple disks for database files
Similarly to RAID, you can distribute files of a multifile InterBase database among
multiple physical disk drives.

For example, if you have a server with four physical disks, C:, D:, E:, and F:, and a
10GB database, you can create your database to take advantage of parallel I/O
with the following database creation statement:

CREATE DATABASE 'C:\data\bigdata1.ib' PAGE_SIZE 4096
FILE 'D:\data\bigdata2.ib' STARTING AT PAGE 1000000
FILE 'E:\data\bigdata3.ib' STARTING AT PAGE 2000000
FILE 'F:\data\bigdata4.ib' STARTING AT PAGE 3000000;

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-5

H a r d w a r e c o n f i g u r a t i o n

Using multiple disk controllers
If you have so much disk activity on multiple disks that you saturate the I/O bus,
you should equip the server with multiple disk controllers, and connect the
multiple drivers to the controllers as evenly as possible.

For example, if you have sixteen disk devices hosting database files, you might
benefit from using four disk controllers, and attaching four disks to each
controller.

Making drives specialized
A database server makes heavy use of both the operating system’s virtual memory
page file and of temporary disk space. If possible, equip the server with multiple
disks and configure the virtual memory file, temporary directory, and database
files on separate physical disk devices. This can use parallel I/O to the fullest
advantage.

For example, on Windows, you could locate the operating system files and
pagefile.sys on C:, the temporary directory and infrequently-used files on D:, and
database files on drives E: and higher.

Change the location of the virtual memory file with Control Panel|System|
Performance|Virtual Memory.

Change the location of the InterBase temporary directory by either specifying a
system environment variable INTERBASE_TMP, or editing the ibconfig file and
specifying the path of the appropriate directory as a value for the TMP_DIRECTORY
entry (see “Configuring sort files” on page 3-18).

Using high-bandwidth network systems
For client/server systems, hardware that supports high network bandwidth is as
important as I/O capacity. The speed of the network often becomes a bottleneck
for performance when many users are making demands on the network
simultaneously.

Inexpensive 10 Base-T ethernet equipment is common today, but this technology is
bare minimum for LAN configuration. It is recommended to use at least 100
Base-T for a high-performance network. The following graph illustrates relative
bandwidth rates for various network interface technology.

11-6 O p e r a t i o n s G u i d e

H a r d w a r e c o n f i g u r a t i o n

Figure 11.2 Comparing bandwidth of network interfaces

The maximum bandwidth of gigabit ethernet extends beyond the scale of the
graph above.

At the time of this writing, most gigabit ethernet network interface cards (NICs)
provide only 600 to 700Mbps bandwidth. Switches, routers, and repeaters also
have constrained capacity. It is expected that the state of this technology will
continue to improve.

It is recommended that you research reviews and experiment to learn the true
throughput of all network hardware in your environment. The slowest component
ultimately determines the true throughput.

Tip Network cables develop flaws surprisingly frequently. The result can be sporadic
lost packets, for which operating systems compensate by automatically resending
packets. This translates into mysterious network performance degradation. You
should test network cables regularly. Replacing flawed cables is a low-cost way to
keep your network running at peak efficiency.

Using high-performance bus
Bus is important for both I/O controllers and network interface hardware.

Gigabit ethernet 1000M

Fast ethernet 100Mbps
T-3 (DS3) 43Mbps

DSL 32Mbps (downstream) / 1Mbps (upstream)
Ethernet 10 Base-T 10Mbps

PPP over analog phones 53Kbps
ISDN 128Kbps
T-1 1.544Mbps

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-7

O p e r a t i n g s y s t e m c o n f i g u r a t i o n

Figure 11.3 Comparing throughput of bus technologies

While 32-bit full-duplex PCI bus is capable of up to 264Mbps, PCI cards actually
range from 40Mbps to 130Mbps.

Tip Use controllers on an integrated local PCI bus, it’s faster than peripheral cards that
plug into the motherboard.

Useful links
• The T10 Committee home page:

http://www.symbios.com/t10/
This is a useful place to find information on various storage interface
technology.

• PC Guide Hard disk interface & configuration:
http://www.pcguide.com/ref/hdd/if/index.htm

• The SCSI Trade Association:
http://www.scsita.org
News and vendor information about the state of SCSI technology and products.

• The Gigabit Ethernet home page:
http://www.gigabit-ethernet.org/

• The Fibre Channel home page.
http://www.fibrechannel.com/
Fibre Channel (FC-AL) is an emerging extended bus technology for network,
storage, video transmission, and clustering.

Operating system configuration
After you have equipped your server hardware appropriately, you should spend
time tuning your operating system for server performance.

PCI 264 Mbp

Microchannel 150+ Mbps

EISA 60+ Mbps

ISA 10Mbps

11-8 O p e r a t i o n s G u i d e

O p e r a t i n g s y s t e m c o n f i g u r a t i o n

Disabling screen savers
Screen savers can have a serious impact on the performance of a server. Because
servers are often set aside in a machine room, it’s easy for the performance impact
of a screen saver to be overlooked. Screen savers demand a surprising amount of
CPU resources to run, and these programs run continuously, 24 hours a day.

Screen savers are evasive in their ability to disappear when a database
administrator logs in to the console to diagnose a mysterious drop in performance.
The server seems responsive to the database administrator as soon as she touches
the server, but the speed degrades soon after she leaves the server.

Not all screen savers have the same performance cost. The Windows OpenGL
screen savers perform continuous floating-point computations to draw
three-dimensional shaded shapes in real time. They demand up to 90% of the
system CPU, and cause InterBase and other services to slow to one-tenth their
normal speed.

The Windows Marquee screen saver is one of the least demanding ones, especially
when it is configured to pass text across the screen slowly. Some system
administrators like to configure a Marquee on each screen in the machine room, to
display the respective machine’s hostname. This becomes a machine-name label,
in raster form.

A screen saver can also be entertainment, but these should be reserved for
workstations. A server in a machine room should be unattended, not used as a
workstation.

If you must have phosphor burn protection for a monitor that you leave on, get an
Energy Star approved monitor that has a power conservation mode. This mode
blackens the screen after a configurable period of idleness. This not only protects
against phosphor burn, but it conserves power. This is like a simple black screen
saver, but it is handled by the electronics of the monitor, instead of by software.

The best option is to simply turn off the monitor when you aren’t using it. This
saves the phosphors, saves electricity, and decreases the amount of heat in the
machine room.

Console logins
Don’t leave the console logged in on a Windows database server. Even if the
desktop is idle, it might use as much as 30 percent of the machine’s CPU resources
just maintaining the interface. You should log out of the server’s console when you
aren’t using it. IBConsole enables you to perform most InterBase maintenance and
monitoring tasks from another workstation, without logging in at the server’s
console.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-9

O p e r a t i n g s y s t e m c o n f i g u r a t i o n

Sizing a temporary directory
When you configure a temporary directory (see “Managing temporary files” on
page 3-18), choose a location that has plenty of free disk space. For some
operations such as building an index, InterBase can use a great deal of space for
sorting. InterBase can even use an amount of space up to twice the size of your
database.

The effects of insufficient temporary space include rapid virtual memory page
faults, called thrashing, which causes a dramatic performance penalty. Another
possible effect is a series of “I/O error” related messages printed to the interbase.log
file on the server.

Use a dedicated server
Using a server for both workgroup file and print services and as a database server
is like letting another user play a video game on your workstation. It detracts from
the performance of the workstation, and it’s not the intended use for the machine.

Use a secondary server as the file and print server, and a new machine for the
database server. Alternately, use the secondary server for InterBase, depending on
the relative priority of these tasks—the database server benefits from having a
dedicated machine, even if it is not the fastest model available. Whatever is the
most important service should be given the best machine as dedicated hardware.

If performance is a high priority, you can spend money more effectively by buying
a dedicated machine instead of trying to increase resources such as RAM on a
machine that is providing another competing service. Compare the cost of the
hardware with the cost of having less than maximum performance.

Similarly, it is best to put a database on a dedicated drive, so that the database I/O
doesn’t compete with the operating system virtual memory paging file or other
operating system I/O. See “Making drives specialized” on page 11-5.

Optimizing Windows for network applications
It is recommended to set the Windows server to optimize for network
applications. Without this setting, you might see the CPU usage of InterBase peak
for a few seconds every InterBase server is configured by default to give priority to
filesharing services. You can change this configuration on the server:
Control Panel|Network|Services|Server. In the Optimization panel, choose
Optimize Throughput For Network Applications.

This change can result in a dramatic improvement of performance for InterBase, as
well as other services.

11-10 O p e r a t i o n s G u i d e

N e t w o r k c o n f i g u r a t i o n

Understanding Windows server pitfalls
Windows servers have a peculiar way of balancing processes on SMP machines. If
a process is exercising one CPU and the other CPU is relatively idle, Windows NT
tries to switch the context of the process to the less burdened CPU. On a dedicated
database server, the ibserver process is likely to be the only significant user of CPU
resources. Unfortunately, Windows still tries to reassign the context of the process
to the other CPU in this case. Once Windows has moved the ibserver process to
the idle CPU, the first CPU becomes less burdened. The Windows server detects
this and tries to move ibserver back to the first CPU. The second CPU becomes
less burdened. This continues many times per minute, and the overhead of
switching the process context between the CPUs degrades performance.

There are several possible solutions:

• Run ibserver on an SMP server that has enough other duties to occupy the
other CPU

• Run ibserver only on a single-CPU machine

• Assign CPU affinity to the ibserver process:

a Launch the Task Manager

b Highlight the ibserver process

c Right-click to raise a window that includes CPU affinity settings

This technique works only if you run ibserver as an application, not as a service. If
you run InterBase as a service, you must use the Windows API to
programmatically set the CPU affinity of the ibserver process.

On some operating systems, using a RAM disk is a technique for forcing very
heavily used files to be in memory, but still allow them to be opened and closed
like any other file. If you consider using a RAM disk on Windows, be aware that
the Microsoft RAM disk utility for Windows uses paged memory to allocate the
RAM disk. The RAM disk itself can be paged out of RAM and stored on the
physical disk in pagefile.sys. Therefore, it is futile to use a RAM disk on Windows to
create a high-performance file system.

Network configuration
This section describes performance considerations you should know when
configuring a network configuration.

Choosing a network protocol
InterBase supports two protocols: TCP/IP when connecting to any server, and
NetBEUI when connecting to a Windows server. See “Network protocols” on
page 4-1 for more details.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-11

N e t w o r k c o n f i g u r a t i o n

NetBEUI
You can use NetBEUI on a network with fewer than 20 users without significant
performance costs. Use TCP/IP if you have more active users on your network
simultaneously.

NetBEUI is a network protocol designed for use on small local area networks. It is
commonly used for filesharing services. It is a connectionless protocol, which
means that it broadcasts packets to the entire network. This causes a growing
amount of “noise” on a LAN. Noise, from the point of view of any given host, can
be defined as network traffic that is not intended for that host. On a LAN with
many hosts, enabling NetBEUI can overwhelm the network and reduce the
available bandwidth for everyone to use. On most enterprise networks, IT experts
discourage the use of NetBEUI.

TCP/IP
TCP/IP is a connection-based protocol, which means packets are routed to the
intended recipient. This reduces the saturation of the network and the load on
individual hosts. There is effectively more bandwidth available to all hosts, and a
large number of hosts can share the same network with less performance penalty.

Configuring hostname lookups
Each host on a TCP/IP network has a designated IP address, and TCP/IP traffic is
routed to hosts by address. TCP/IP requires a mechanism for clients to translate
hostnames to their numeric addresses. Each client host can store the hostname/
address associations in a file called hosts. You can alternately store this information
on a central server, and the clients then retrieve the information on demand using
a protocol called DNS. The client requests that the DNS server resolve a hostname,
and the server returns the IP address. Then the client can use the IP address to
communicate directly with the intended destination. In this configuration, the
client must keep only one IP address locally: that of the DNS server host.

Depending on the load on the network and the DNS server itself, hostname
resolution can take several seconds. This translates directly into delays when
making a network connection. This is related to the message you might see in a
web browser, “Looking up host name…” followed by, “Connecting to host
name…” This indicates the delay while querying a DNS server to resolve a
hostname.

You can speed up hostname resolution by adding the hostname/address mapping
of the database server to the hosts file on the client computer. The client can resolve
the hostname to its address much faster and more reliably by looking it up in a
local file than by querying a service running on another host over the network.
This reduces the hostname resolution delay when initiating connections to hosts
listed in the local hosts file.

11-12 O p e r a t i o n s G u i d e

D a t a b a s e p r o p e r t i e s

Note If you use this technique and later change the address of your database server, you
must manually update the hosts files on each client workstation. Depending on the
number of workstations in your enterprise, this can be tedious and time
consuming. That’s why DNS was invented, to centralize TCP/IP address
administration. The suggestion to keep the database server address in a local file is
intended to provide improved connection performance, but you should be aware
of the administrative workload that it requires.

Tip If you object to the general IP address administration tasks required by using
TCP/IP (independently from the DNS issue), consider using DHCP to simplify the
task of assigning and tracking IP addresses of each host on the network. InterBase
works in a DHCP environment as long as the client host has some means to
resolve the server’s IP address correctly at the time a client application requests an
InterBase connection.

Database properties
Changing database properties can give an improvement in performance without
changing anything in the design of your database. Applications require no change
in their coding or design. Property changes are transparent to the client and
database design.

Choosing a database page size
InterBase pages are 4KB by default. A typical production InterBase database gains
25 to 30 percent performance benefit by using this page size, relative to smaller
page sizes. This page size results in better performance for the following reasons:

• Fewer record fragments are split across pages

It is common for records to be larger than a single page. This means that
InterBase fragments records and stores them on multiple pages. Querying a
given record requires multiple page reads from the database.

By increasing the size of a page, InterBase can reduce the number of multiple
page reads and can store record fragments more contiguously.

• Index B-trees are more shallow

Indexes are B-trees of pointers to data pages containing instances of specific
indexed values. If the index B-tree is larger than one page, InterBase allocates
additional database pages for the index tree. If the index pages are larger,
InterBase needs fewer additional pages to store the pointers. It is easier for the
database cache to store the entire B-tree in memory, and indexed lookups are
much faster.

• I/O is more contiguous

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-13

D a t a b a s e p r o p e r t i e s

It is fairly likely for a query to request successive records in a table. For
example, this is done during a table scan, or query that returns or aggregates all
records in a table. InterBase stores records on the first page that is unused,
rather than ensuring that they are stored near each other in the file. Doing a
table scan can potentially require retrieval of data by seeking all over the
database. Seeks take time just as reading data takes time.

Any given page can store records from only one table. This indicates that a
larger page is certain to contain more data from the same table, and therefore
reading that page returns more relevant data.

• Default number of cache buffers is a larger amount of memory

InterBase allocates the database cache in number of pages, rather than a fixed
number of bytes. Therefore defining a larger page size increases the cache size.
A larger cache is more likely to have a better hit rate than a smaller cache.

• Most operating systems perform low-level I/O in 4096 byte blocks

InterBase performs a page read or write at the OS level by reading in 4096 byte
increments regardless of the size of the database page. Therefore, by defining
the database with a page size of 4096, the database I/O matches the low-level I/
O and this results in greater efficiency when reading and writing pages.

Although 4KB seems to be the best page size for most databases, the optimal size
depends on the structure of the specific metadata and the way in which
applications access the data. For this reason, you should not consider the 4KB page
size guideline to be a magic value. Instead, you should perform testing with your
application and database under several different page sizes to analyze which
configuration gives the best performance.

Setting the database page fill ratio
Data pages store multiple versions of data records, as applications update data.
When a database is restored, the gbak utility fills pages with data only up to 80
percent of the capacity of each page, to leave space for new record version deltas to
be stored, hopefully on the same page with the original record. But in a database
that is used mostly for reading data rather than updating it, applications never
benefit from this 80 percent fill ratio. In this case, it makes sense to restore data
using the full capacity of each page. By storing 25 percent more data on each page,
it reduces the amount of record fragmentation and increases the amount of data
returned in each page read. You can specify the option to use all the space of every
page for storing data during a database restore using the command:

gbak -c -use_all_space backup_file.ibk database_file.ib

11-14 O p e r a t i o n s G u i d e

D a t a b a s e p r o p e r t i e s

Sizing database cache buffers
InterBase maintains a cache in the server’s RAM of database pages currently in
use. If you have a highly active database, you can gain some performance benefit
by raising the default cache from its default of 2048 database pages. As with any
cache system, at some point you find diminishing returns. Some experimentation
with your particular application and database reveals that point.

See “Configuring the database cache” on page 6-23 for details about server cache
settings.

The ibserver process running on an InterBase server maintains a cache in memory
of recently used data and index pages. Like any cache, it depends on repeated use
of data on a given page to help speed up subsequent access. In InterBase
SuperServer implementations, the cache is shared by all clients connected to the
database.

By default, InterBase allocates enough memory for 2048 pages per database. If the
page size of the current database is 4KB, then ibserver uses 8MB of memory. If the
page size is 8KB, then ibserver uses 16MB of RAM for cache. The InterBase API
provides a method for any individual client to request that the size of the cache be
higher. You can set a property on an individual database that establishes a
different default cache size when any client connects to that database:

gfix -buffers 5000 database.ib

The default of 2048 assumes that the server has a sufficient memory configuration
to allocate for 8MB of RAM per database. If memory is less plentiful on your
server, or you have many databases that require simultaneous access, you might
need to reduce the default number of cache buffers.

It is highly recommended to increase the cache size for a database if you have
enough memory to accommodate it. Consider the following points:

• It is not useful to raise the cache size so high that the memory used by ibserver
starts to page into virtual memory. That defeats the benefit of caching data from
disk in memory.

• It is not useful to raise the cache size higher than the number of pages in the
database (which you can view with View Database Statistics in IBConsole, or
with the gstat command-line program). There’s no benefit to this, since any
given page from disk occupies only one page in the cache, and isn’t duplicated.

• One block of memory is allocated for cache per database. If a client connects to
two separate databases on one server, the ibserver process maintains two
separate cache areas of memory. For example, if database1.ib has a default cache
size of 8000 pages of 4KB each, and database2.ib has a default cache size of 10,000
pages of 2KB each, then while both databases have at least one connection,
ibserver allocates a total of 32MB + 20MB of RAM.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-15

D a t a b a s e d e s i g n p r i n c i p l e s

You should experiment with larger cache sizes and analyze the performance
improvements. At some point, you will observe diminishing returns. A typical
application can achieve up to 30% performance increase from proper cache sizing.

The InterBase server does not use more than 512MB of cache per database, so you
should not configure the number of cache buffers so high that it exceeds this
amount of RAM.

Buffering database writes
InterBase on Windows platforms implements a write-through cache by default.
Every write operation to a page in cache is immediately written out to the
operating system’s disk I/O, which itself might have a cache.

By contrast, a write-back cache defers flushing of the contents of a given cache page
until a later time. InterBase performs multiple writes to a cache page in RAM
before it writes the page out to disk. This results in better response time for the
majority of write operations. Write-back cache consolidates I/O efficiently, and
therefore it is much faster than write-through cache.

InterBase offers write-back cache as the default on UNIX and Linux, and as an
option on Windows platforms. You can configure this at the database level using
gfix -write async or by disabling forced writes for the database in IBConsole
(Database Properties|General tab|Options).

The real benefit of using asynchronous writes (write-back cache) is about four
times performance in the typical case. Some users have reported up to 20 times
performance improvement from configuring asynchronous writes, in applications
that make heavy use of write operations (INSERT, UPDATE, DELETE). The more
writing an application does to the database—including write operations spawned
by triggers—the more benefit the application gains.

The risk of asynchronous writes is that data in cache might be lost if the server has
a power loss, or if ibserver exits abnormally for any reason. Write-through cache
protects against data loss, at some performance cost. If you test your server host
and client/server application thoroughly and they aren’t susceptible to crashes,
then it is highly recommended to use asynchronous writes.

Tip Use an uninterruptible power supply (UPS) to help protect your server against
sudden power loss. A modest UPS is inexpensive relative to the cost of losing your
data, and easy to install. This can allow you to gain the benefits of the
asynchronous I/O mode in safety.

Database design principles
This section presents guidelines for database design techniques that benefit
performance.

11-16 O p e r a t i o n s G u i d e

D a t a b a s e d e s i g n p r i n c i p l e s

Defining indexes
Proper use of indexes is an important factor in database performance. Effective
policies for defining and maintaining indexes can be the key to a very high
performance client/server system. The self-tuning nature of indexes in InterBase
greatly benefits performance, but you can gain some additional benefit by periodic
maintenance tasks.

What is an index?
An index in InterBase is a Balanced-Tree data structure stored inside the database
file that provides a quick lookup mechanism for the location of specific values in a
table. Queries make use of appropriate indexes automatically by means of the
cost-based optimizer, which analyzes the tables and columns used in a given
query and chooses indexes that speed up the searching, sorting, or joining
operations.

Defining indexes for some columns is part of designing a production database.
Indexes dramatically improve performance of SELECT queries. The greater the
number of rows in the table, the greater the benefit of using an index. Intelligently
analyzing your database and defining indexes appropriately always improves
performance.

Indexes incur a small cost to maintain the index B-tree data structure during
INSERT and UPDATE operations. Because of this cost, it is not recommended to be
overly liberal with index definitions. Don’t create redundant indexes, and don’t
make an index on every column as a substitute for database usage analysis.

You shouldn’t define an index for columns that have few distinct data values. For
example, a column FISCAL_QUARTER might have only four distinct values over a
potentially very large data set. An index doesn’t provide much benefit for retrieval
of data with this kind of distribution of values, and the work required to maintain
the index tree might outweigh the benefits.

What queries use an index?
InterBase uses indexes to speed up data fetching for the following query elements:

• Primary and foreign keys

• Join keys

• Sort keys, including DISTINCT and GROUP BY

• Search criteria (WHERE)

In general, you should define indexes on all columns that you use in JOIN criteria
or as sorting keys in an ORDER BY clause. You don’t have to define indexes on
primary or foreign key columns, because these table constraints implicitly create
indexes.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-17

D a t a b a s e d e s i g n p r i n c i p l e s

What queries don’t use indexes?
InterBase doesn’t employ an index in the following operations, even if an index
exists for the specified columns:

• Search criteria for CONTAINING, LIKE, and < > inequality operations

• Columns used in aggregate functions, like COUNT()

• Other expressions, like UPPER()

Directional indexes
Indexes are defined as either ASCENDING or DESCENDING. To sort in both
directions, you need one index of each type. This is also very important if you are
using a scrolling list in a Delphi form, or when using the TTable.Last method.

Normalizing databases
Design your database with proper normalization of data. Records that have lots of
repeating groups of fields are larger than they need to be. Large records can
increase the cost of sorting, and also cause records to span more pages than is
necessary, resulting in more page fragmentation and needlessly large databases.

Denormalized table design can be more convenient for some types of client
applications. You can use InterBase views and stored procedures to in effect store a
denormalized query on the server, for convenient access from client applications.
Meanwhile, the physical storage of the data is kept in a more efficient, normalized
form.

See the Data Definition Guide for details on views and stored procedures.

Choosing Blob segment size
A Blob is a datatype with an unbounded size. It can be many megabytes in size,
much larger than any database interface can handle in a single I/O transfer.
Therefore, Blobs are defined as a series of segments of uniform size, and the I/O
interface transfers Blobs one segment at a time.

Blobs are a special case because there is a special Blob page type, on which other
datatypes cannot be stored. The data page for a record containing a Blob stores a
Blob ID, which indicates which Blob page the Blob is stored on. A Blob is stored on
the same page as the primary record version, if it fits. If it does not fit on that page,
special pages are allocated for the Blob--as many as are required--and an index is
stored on the primary page. Blob pages are never shared; either a Blob is on a
normal data page, or it has a page to itself.

11-18 O p e r a t i o n s G u i d e

D a t a b a s e t u n i n g t a s k s

It is advantageous to define a Blob with a segment size equal to the page size. If
both the page size and the Blob segment size are 4096 bytes, queries of large Blobs
can achieve a data transfer rate of up to 20MB per second. InterBase ceases to be
any kind of bottleneck in this situation; it is more likely that the hardware I/O bus,
the network bandwidth, or the middleware are the limiting factors for throughput.

Database tuning tasks
This section describes ways you can perform periodic maintenance on your
database to keep it running with the best performance.

Tuning indexes
Periodic maintenance of indexes can improve their performance benefit. You can
write SQL scripts to automate these tasks. See “Using SQL scripts” on page 10-55.

Rebuilding indexes
Periodically, a B-tree data structure might become imbalanced, or it might have
some values in the tree that have been deleted from the database (this should not
happen in InterBase versions later than 5, due to index garbage collection).

You should periodically rebuild indexes by turning them off and on:

ALTER INDEX name INACTIVE;
ALTER INDEX name ACTIVE;

Recalculating index selectivity
The selectivity of an index is an indicator of its uniqueness. The optimizer uses
selectivity in its cost-based analysis algorithm when deciding whether to use a
given index in a query execution plan. If the selectivity is out of date and doesn’t
accurately represent the state of the index, the optimizer might use or discount the
index inappropriately. This doesn’t usually have a great performance penalty
unless the selectivity is highly out of date.

You should recalculate the index selectivity if a change to the table affects the
average distribution of data values:

SET STATISTICS INDEX name;

Performing regular backups
There are several performance-related benefits to doing periodic backup and
restore of an InterBase database. See “Benefits of backup and restore” on page 8-1.

Increasing backup performance
• Disable garbage collection if you’re just going to replace the database

immediately anyway; this can make the backup execute faster.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-19

A p p l i c a t i o n d e s i g n t e c h n i q u e s

• Back up to a different disk drive.

Increasing restore performance
• Restore from a different disk drive.

• Disable indexes on restore; this makes the restore execute faster so you have a
usable database quickly. You must then have to manually activate the indexes
after the restore is complete.

Tip Create a SQL script with all the ALTER INDEX statements necessary to activate your
indexes, and keep that handy. Use it like a batch file with isql -i script.sql to help
automate this procedure. You can create this script with this query:

SELECT 'ALTER INDEX ' || RDB$INDEX_NAME || ' ACTIVE;'
FROM RDB$INDICES
WHERE RDB$SYSTEM_FLAG = 0 OR RDB$SYSTEM_FLAG IS NULL;

You can get the database up and restored more quickly, then activate indexes
afterwards. The data is accessible even if the indexes are inactive, but it’s slower to
query the tables.

Facilitating garbage collection
By default, InterBase databases have a built-in function to automatically sweep old
record versions when they become too numerous. However, sweeping is partially
inhibited by outstanding active transactions. If the server cannot do complete
garbage collection, it has to do extra work to maintain each client’s snapshot of the
database.

Design your client applications to explicitly start and COMMIT transactions
promptly, to reduce the number of outstanding transactions.

See “Overview of sweeping” on page 6-20 for more details on sweeping, garbage
collection, and the database snapshot.

Application design techniques
This section describes general application programming methods for InterBase,
that help to create high-performance clients.

Using transaction isolation modes
InterBase’s multigenerational architecture requires that any query or other
operation be associated with an active transaction. Without a transaction, an
operation has no context with which to maintain its snapshot of the database.
IBConsole and BDE tools do a certain amount of automatic transaction
management, but it is helpful for performance to manually start and finish
transactions.

11-20 O p e r a t i o n s G u i d e

A p p l i c a t i o n d e s i g n t e c h n i q u e s

In the InterBase server engine, a snapshot is generated by making a copy of the
state of all other transactions in the database. This snapshot is static for the current
transaction. This means that any data committed to the database after the snapshot
is created is not visible to operations using that snapshot. This is the repeatable
read transaction mode. Two identical queries made at different times are
guaranteed to get the same result set, even if other clients are updating data in the
database.

Starting a transaction and making a snapshot data structure for the new
transaction incurs some amount of overhead. This overhead is magnified when
using automatic transaction-handling, because the typical automatic transaction
behavior is to start a new transaction and commit it for every statement executed
against the database!

Another mode the default mode for BDE is called read committed. In this mode,
the snapshot is updated every time the state of any transaction changes. This
allows operations in the current transaction to view or act on data that has been
committed since the snapshot was created. Updating the snapshot also costs a
little bit in performance, so it is recommended to always use the repeatable read
mode in InterBase. To do this, configure BDE driver flags to the value 512 or 4608.

Using correlated subqueries
Subqueries are SELECT statements which are included as a clause or expression
within another statement. They are typically used to generate a value or result set
that are used in conditions of the superior query.

A correlated subquery is one in which the conditions of the subquery are different
for each row in the parent query, because they depend on values that vary from
row to row. InterBase executes the subquery many times, once for each row in the
parent query. Evaluating each row has a large cost in performance relative to a
non-correlated subquery. InterBase optimizes non-correlated subqueries out of the
loop, executes once, and uses the result as a fixed dataset.

Example as correlated subquery:

SELECT * FROM DEPARTMENT D
WHERE EXISTS (SELECT * FROM EMPLOYEE E

WHERE E.EMP_NO = D.MNGR_NO AND E.JOB_COUNTRY = 'England')

Example as join:

SELECT D.*
FROM DEPARTMENT D JOIN EMPLOYEE E

ON D.MNGR_NO = E.EMP_NO WHERE E.JOB_COUNTRY = 'England'

InterBase’s optimizer executes a non-correlated subquery once, and uses the result
set as many times as necessary in the parent query.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-21

A p p l i c a t i o n d e s i g n t e c h n i q u e s

Sometimes a correlated subquery is necessary, given the semantics of the SQL
language. However, these types of queries should be used with care and with the
understanding that their performance is geometric in relation to the size of the
dataset on which they operate.

Preparing parameterized queries
Any dynamic SQL (DSQL) statement must go through a cycle of parse, prepare,
and execute. You can submit a DSQL statement to go through this process for each
invocation, or you can separate the steps. If you have a situation where you
execute the same statement multiple times, or the same form of statement with
different parameters, you should explicitly prepare the statement once, then
execute it as your looping action.

With parameterized queries, you can prepare a statement, but defer supplying the
specific values for certain elements of the query.

InterBase supports parameterized queries in DSQL, for cases when a given
statement is to be executed multiple times with different values. For example,
loading a table with data might require a series of INSERT statements with values
for each record inserted. Executing parameterized queries has a direct
performance benefit, because the InterBase engine keeps the internal
representation and optimization of the query after preparing it once.

Use parameterized DSQL queries in Delphi by following these steps:

1 Place a named parameter in the statement with the Delphi :PARAMETER
syntax. in place of a constant value in a query. InterBase supports parameters in
place constants. Tables and column names cannot be parameterized.

2 Prepare the statement. Use the TQuery method Prepare. Delphi automatically
prepares a query if it is executed without first being prepared. After execution,
Delphi unprepares the query. When a query will be executed a number of times,
an application should always explicitly prepare the query to avoid multiple and
unnecessary prepares and unprepares.

3 Specify parameters. For example, with the TQuery component, use the
ParamByName method to supply values for each parameter in the query.

4 Execute the statement. SELECT statements should use the Open method of
TQuery. INSERT, UPDATE, and DELETE statements should use the ExecSQL
method. These methods prepares the statement in SQL property for execution if
it has not already been prepared. To speed performance, an application should
ordinarily call Prepare before calling ExecSQL for the first time.

5 Repeat steps 3 and 4 as needed.

6 Unprepare the query.

In some real-world cases involving repetitive operations, using parameterized
queries has increased performance 100%.

11-22 O p e r a t i o n s G u i d e

A p p l i c a t i o n d e v e l o p m e n t t o o l s

Designing query optimization plans
The optimization plan describes the way the optimizer has chosen to execute a
query. For certain types of queries, the optimizer might not select the truly optimal
plan. A human can analyze different alternate plans and specify a plan overriding
the optimizer’s analysis. The result can be amazing improvements in performance
for some types of queries. In some dramatic cases, this has been used to reduce a
15 minute query to three seconds.

The elements of plan selection are:

• Assigning indexes

• Combining indexes

• Determining join order

• Generating rivers

• Cost estimation

• Sort merges

InterBase supports syntax with the SELECT expression in embedded SQL and
DSQL to allow the user to specify the PLAN for a query. The syntax also works
with SELECT statements in the body of a view, a stored procedure, or a trigger.

It is beyond the scope of this chapter to describe in detail the syntax of the PLAN
clause for specifying the execution plan, or techniques for analyzing queries
manually. The section on SELECT in the Language Reference includes some examples
of using PLAN.

Deferring index updates
Inserting and updating data requires indexes to be updated, which can cause
performance to suffer during data INSERT or UPDATE. Some cost incurred while
data is entered can result in a big performance win during later data queries.

To minimize the performance hit during INSERT, consider temporarily disabling
indexes during high-volume INSERTs. This “turns off” the indexes, making them
unavailable to help speed up queries, but also making them not be updated by
data INSERTs. Then re-enable the indexes after INSERTing data. This updates and
rebalances the indexes once for all the inserted data.

Application development tools
This section describes ways you can develop applications that are efficient, using
various popular development environments and tools.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-23

A p p l i c a t i o n d e v e l o p m e n t t o o l s

InterBase Express™ (IBX)
InterBase engineers at Borland have created a full-featured set of data-aware VCL
components for use with the TDataSet architecture in Delphi. IBX can also be used
with Borland’s C++ Builder. See the Developer’s Guide for full documentation of
InterBase Express.

IB Objects
Another set of VCL components is available for projects with Delphi. It is designed
to provide very sophisticated data component technology that is optimized for use
with InterBase. The demo product can be downloaded from http://
www.ibobjects.com.

Borland Database Engine
You should change the default values for BDE driver options in the BDE
Administrator. This section provides guidelines for the driver options, and
recommends values that you should use for better performance.

BDE driver flags
The recommended value for the DRIVER FLAGS is 4608.

By adding 512 to the DRIVER FLAGS in BDE Config tool, you specify that the
default transaction mode is repeatable read transactions. This reduces the overhead
that automatic transaction control incurs.

By adding 4096 to the DRIVER FLAGS, you specify that the InterBase SQL Links
driver should use soft commits. Soft commits are a feature of InterBase that let the
driver retain the cursor when committing changes. Soft commits improve
performance on updates to large sets of data. When using hard commits, the BDE
must refetch all the records in a dataset, even for a single record change. This is
less expensive when using a desktop database, because the data is transferred in
core memory. For a client/server database like InterBase, refreshing a dataset
consumes the network bandwidth and degrades performance significantly. With
soft commits, the client retains the cursor and doesn’t perform a refetch.

Table 11.1 Matrix of BDE driver flags values

Driver flags Isolation level Commit type

0 Read committed Hard commit

512 Repeatable read Hard commit

4096 Read committed Soft commit

4608 Repeatable read Soft commit

11-24 O p e r a t i o n s G u i d e

A p p l i c a t i o n d e v e l o p m e n t t o o l s

Caveat: soft commits are never used in explicit transactions started by BDE client
applications. This means that if you use explicit transaction start and commit, then
the driver flag for soft commit is not used.

SQL passthru mode
The recommended value for this property is SHARED NOAUTOCOMMIT.

SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL statements
can share the same database connections. In most cases, SQLPASSTHRU MODE is set
by default to SHARED AUTOCOMMIT. If however, you want to pass SQL transaction
control statements to your server, you must use the SQL Explorer to set the BDE
SQLPASSTHRU MODE to NOT SHARED. Depending on the quantity of data the client
handles, you can achieve up to 10 times performance improvement by using the
SHARED NOAUTOCOMMIT setting.

Use explicit transaction control and avoid autocommitted statements. Use the
following methods: TDatabase.StartTransaction, and TDatabase.Commit.

SQL query mode
The recommended value for this property is SERVER.

The Active Server of InterBase includes a dynamic SQL parser and execution
engine. In order for BDE to execute your SQL queries by sending them to the
InterBase SQL engine, you must choose the value SERVER in this property.
Otherwise, BDE parses and executes your query, which it does by fashioning a
new SQL query and executing it by sending it to the InterBase server. There is no
benefit to forcing BDE to reconstruct SQL that you have already written, only
performance cost.

Visual components
This section describes visual components that developers commonly use in Delphi
and C++Builder to access data from InterBase. Follow the recommendations below
for better client/server performance.

Understanding fetch-all operations
In a client/server configuration, a “fetch-all” is the nadir of performance, because
it forces BDE to request that the database generate a dataset again and send it over
the network.

InterBase and most relational databases do not keep datasets in cache on the
server in case the client requests a refresh. InterBase must execute the SQL query
again when the BDE requests a refresh. If the query involves a large quantity of
data, or complex joining or sorting operations, it is likely to take a long time to
generate the dataset.

C h a p t e r 1 1 D a t a b a s e a n d S e r v e r P e r f o r m a n c e 11-25

A p p l i c a t i o n d e v e l o p m e n t t o o l s

It is also costly for the server to transfer a large dataset across a network interface.
It is more costly by far than it is for a desktop database like Paradox to return a
dataset, because a desktop database typically runs locally to the application

It is often the case that software developers choose to use a relational database like
InterBase because they are managing a larger amount of data than a desktop
database like Paradox can handle efficiently. Naturally, larger datasets take more
time to generate and to send over a network.

The person using the client application perceives that it has better performance if
the user doesn’t have to wait for refreshes. The less often the client application
requests a refresh of the dataset, the better it is for the user.

Important A principle of client/server application design is therefore to reduce the number
of costly refresh operations as much as possible.

TQuery
• CachedUpdates = False

Allows the server to handle updates, deletes, and conflicts.

• RequestLive = False

Setting RequestLive to False can prevent the VCL from keeping a client-side copy of
rows; this has a benefit to performance because it reduces the network bandwidth
requirement

• Below are some operations in which a TQuery perform a fetch-all. Avoid these
as much as possible, or be aware of the cost of such operations.

Using the Locate method
You should use Locate only on local datasets.

Using the RecordCount property
It’s convenient to get the information on how many records are in a dataset, but
when using InterBase, calculation of the RecordCount itself forces a fetch-all. For
this reason, referencing the RecordCount property takes as much time as fetching
the entire result dataset of the query.

A common use of RecordCount is to determine if the result set of an opened TQuery
contains any records, or if it contains zero records. If this is the case, you can
determine this without performing a fetch-all by testing for both EOF and BOF
states. If both end of file and beginning of file are true for the dataset, then no
records are in the result set. These operations do not involve a fetch-all.

For example, for a given TQuery instance called qryTest:

qryTest.Open;
if qryTest.BOF and qryTest.EOF then begin

// There are no result set records.
end
else begin

// There are some result set records.

11-26 O p e r a t i o n s G u i d e

A p p l i c a t i o n d e v e l o p m e n t t o o l s

end;

Using the Constraints property
Let the server enforce the constraint.

Using the Filter property
For the TQuery to filter records, it must request a much larger dataset than that
which it subsequently displays. The InterBase server can perform the filtering in a
much more efficient manner before returning the filtered dataset. You should use a
WHERE clause in your SQL query. Even if you use a WHERE clause, any use of the
TQuery.Filter property still forces a fetchall.

TTable
The TTable component is designed for use on relatively small tables in a local
database, accessed in core memory. TTable gathers information about the metadata
of the table, and tries to maintain a cache of the dataset in memory. TTable refreshes
its client-side copy of data when you issue the TTable.post method and when you
use the TDatabase.rollback method. This incurs a huge network overhead for client/
server databases, which tend to have larger datasets and are accessed over a
network. You can observe the activity of TTable with the SQL Monitor tool. This
reports all calls to the BDE and InterBase API.

Though TTable is very convenient for its RAD methods and its abstract data-aware
model, you should use it sparingly with InterBase or any other client/server
database. TTable was not designed to be used for client/server applications.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A-1

A p p e n d i x

Chapter AMigrating to InterBase 6 and later
InterBase is a mature product that was originally architected before current
standards came into existence. As the standards evolved, it became clear that
bringing InterBase into compliance with them would produce a somewhat
challenging migration path.

With the advent of InterBase 6, Borland decided that it was time to take the leap.
InterBase 6 introduced an increased compliance with the SQL-92 standard, but
migrating older (InterBase 5 and earlier) clients and databases might, in some
cases, require considerable attention to detail.

The feature areas affected are: the use of double quotes, which are now reserved
for delimited identifiers; the meaning of the DATE datatype; the behavior of exact
numeric datatypes, and the existence of new keywords that might conflict with
older metadata names.

This document describes how to plan and execute a smooth migration from earlier
versions of InterBase to InterBase 6 or later.

The earlier pages of this guide discuss the issues involved in the migration. Near
the end, you will find detailed, step-by-step instructions for both in-place
migration and for migrating an old database to a new one. See “Migrating servers
and databases” on page 20, “Migrating databases to dialect 3” on page 24, and
“Migrating clients” on page 31.

Migration process
These are the steps you must take to migrate servers, databases, and clients. Each
is discussed in detail in later sections:

A-2 O p e r a t i o n s G u i d e

M i g r a t i o n I s s u e s

Server and database migration
1 Backup all databases to be migrated

2 Install the latest InterBase server

3 Restore databases to be migrated using the most recent gbak; at this point, you
have dialect 1 databases

4 Validate migrated databases

5 Migrate databases to SQL dialect 3 (see pages A-24 to A-31)

Client migration
1 Identify the clients that must be upgraded.

2 Identify areas in your application which may need upgrading.

3 Install the InterBase client to each machine that requires it.

4 Upgrade SQL applications to SQL dialect 3.

Migration Issues
Before migrating your databases, you need to learn about InterBase SQL dialects
and understand their effect on servers, clients, and the use of certain features
introduced in InterBase 6.

InterBase SQL dialects
InterBase recognizes different client and database dialects to allow users more
mobility in how their legacy databases are used, accessed, and updated. Beginning
with InterBase 6, each client and database has a SQL dialect: an indicator that
instructs an InterBase 6 or later server how to interpret transition features: those
features whose meanings have changed between InterBase versions. The
following transition features have different meanings based on the dialect used by
the client applications:

• Double quote (“): changed from a synonym for the single quote (‘) to the
delimiter for an object name.

• DECIMAL and NUMERIC datatypes with precision greater than 9: now stored as
INT64 datatypes instead of DOUBLE PRECISION.

• DATE, TIME, and TIMESTAMP datatypes: DATE has changed from a 64-bit
quantity containing both date and time information to a 32-bit quantity
containing only date information. TIME is a 32-bit quantity containing only time
information, while TIMESTAMP is a 64-bit quantity containing both date and
time information (the same as DATE in pre-Version 6 SQL).

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 3

M i g r a t i o n I s s u e s

Clients and databases
Clients and databases each have dialects. Servers do not themselves have a dialect,
but they interpret data structures and client requests based on the dialect of each.
Applications using an older version of the InterBase client work with InterBase 6
and 7 servers and their databases with some restrictions:

• Version 5 clients cannot access dialect 3 columns that are stored as INT64, TIME,
or DATE. (DECIMAL and NUMERIC columns with precision greater than 9 are
stored as INT64.)

• Version 5 clients cannot display new datatypes in metadata using the SHOW
command, or any equivalent.

• Version 5 clients interpret the DATE datatype as TIMESTAMP, since that was the
definition of DATE prior to InterBase 6.

• Version 5 clients cannot access any object named with a delimited identifiers.

• Clients that use the Borland Database Engine (BDE) to access an InterBase 6.0
server are not able to access any of the new field type regardless of the version
of the InterBase client installed.

Keywords used as identifiers
Version 5 clients have one advantage over version 6 clients: If you migrate an older
database that uses some version 6 keywords as identifiers to version 6 dialect 1,
these older version 5 clients can still access those keyword objects. Version 6
dialect 1 cannot do so. Dialect 3 clients can access these keyword objects if the
objects are delimited in double quotes.

If version 5 clients use any InterBase 6 or 7 keywords as object names, the
InterBase 6 server permits this without error because it recognizes that these
clients were created at a time when these were not keywords.

Example For example, the following statement uses the new keyword word TIME:

SELECT TIME FROM atable;

This statement, when executed via a pre-InterBase 6 client returns the information
as it did in previous versions. If this same query is issued using a version 6 or 7
client, an error is returned since TIME is now a reserved word. See page A-9 for a
list of new keywords.

Understanding SQL dialects
Below are explanations of server and client behavior with SQL dialects 1, 2, and 3.

Dialect 1 clients and databases
In dialect 1, the InterBase 6 and InterBase 7 servers interpret transition features
exactly as an InterBase 5 server does:

A-4 O p e r a t i o n s G u i d e

M i g r a t i o n I s s u e s

• Double quoted text is interpreted as a string literal. Delimited identifiers are not
available.

• The DATE datatype contains both time and date information and is interpreted
as TIMESTAMP; the name has changed but the meaning has not. Dialect 1 clients
expect the entire timestamp to be returned. In dialect 1, DATE and TIMESTAMP
are identical.

• The TIME datatype is not available.

• Dialect 1 databases store DECIMAL and NUMERIC datatypes with precision
greater than 9 as DOUBLE PRECISION, not INT64.

• Dialect 1 clients expect information stored DECIMAL and NUMERIC datatypes to
be returned as double precision; such clients cannot create database fields to
hold 64-bit integers.

InterBase 6 and later servers recognize all the other InterBase features in dialect 1
clients and databases.

Dialect 2 clients
Dialect 2 is available only on the client side. It is intended for assessing possible
problems in legacy metadata that is being migrated to dialect 3. To determine
where the problem spots are when you migrate a database from dialect 1 to dialect
3, you extract the metadata from the database, set isql to dialect 2, and then run
that metadata file through isql. isql issues warning whenever it encounters
double quotes, DATE datatypes, or large exact numerics to alert you to places
where you might need to change the metadata in order to make a successful
migration to dialect 3.

To detect problem areas in the metadata of a database that you are migrating,
extract the metadata and run it through a dialect 2 client, which will report all
instances of transition features. For example:

isql -i v5metadata.sql

Do not assign dialect 2 to databases.

Dialect 3 clients and databases
In dialect 3, the InterBase server interprets transition features as InterBase 6 SQL
92-compliant:

• Double quoted strings are treated as delimited identifiers.

• Dialect 3 DATE datatype fields contain only date information. Dialect 3 clients
expect only date information from a field of datatype DATE.

• The TIME datatype is available, and stores only time information.

• Dialect 3 databases store DECIMAL and NUMERIC datatypes with precision
greater than 9 as INT64 if and only if they are in columns that were created in dialect 3.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 5

S e t t i n g S Q L d i a l e c t s

• Dialect 3 clients expect DECIMAL and NUMERIC datatypes with precision greater
than 9 to be returned as INT64.

To learn how to migrate older data to INT64 storage, see “Do you really need to
migrate your NUMERIC and DECIMAL datatypes?” on page 29 and “Migrating
NUMERIC and DECIMAL datatypes” on page 29.

Setting SQL dialects
You can set the SQL dialect for a server or client in a variety of ways. For example,
the IBConsole user interface has menu options for specifying the SQL dialect. See
the Operations Guide for a complete explanation of using IBConsole. This section
explores the command-line methods for setting a dialect.

Setting the isql client dialect
To use isql to create a database in a particular dialect, first set isql to the desired
dialect and then use it to create the database.You can set isql dialect in the
following ways:

• On the command line, start isql with option -sql_dialect n, where n is 1, 2, or 3.

isql -sql_dialect n

• Within an isql session or in a SQL script, you can issue this statement:

SET SQL DIALECT n

The following table shows the precedence for setting isql dialect:

In InterBase 6, isql has the following behavior with respect to dialects:

• If you start isql and attach to a database without specifying a dialect, isql takes
on the dialect of the database.

• If you specify a dialect on the command line when you invoke isql, it retains
that dialect after connection unless explicitly changed.

Table A.1 isql dialect precedence

Ranking How dialect is set

Lowest Dialect of an attached Version 6 database

Next lowest Dialect specified on the command line:

isql -sql_dialect n

Next highest Dialect specified during the session:

SET SQL DIALECT n;

Highest Dialect of an attached Version 5 database (=1)

A-6 O p e r a t i o n s G u i d e

S e t t i n g S Q L d i a l e c t s

• When you change the dialect during a session using SET SQL DIALECT n, isql
continues to operate in that dialect until explicitly changed.

• When you create a database using isql, the database is created with the dialect
of the isql client; for example, if isql has been set to dialect 1, when you create a
database, it is a dialect 1 database.

• If you create a database without first specifying a dialect for the isql client or
attaching to a database, isql creates the database in dialect 3.

The statements above are true whether you are running isql as a command-line
utility or are accessing it through IBConsole, InterBase’s new interface.

Important Any InterBase 6 isql client that attaches to a version 5 database resets to dialect 1.

Setting the gpre dialect
In InterBase 6, gpre’s default behavior is to take on the dialect of the database to
which it is connected. This enables gpre to parse pre-Version 6 source files without
moderation.

There are two ways to change the dialect of gpre:

• Start gpre with option -sql_dialect n. For example, this command sets gpre to
dialect 3:

gpre -sql_dialect 3

• Specify dialect within the source, for example:

EXEC SQL
SET SQL DIALECT n

The dialect precedence for gpre is as follows:

Setting the database dialect
To set the dialect of an ODS 10 or later database, attach to the database as either the
owner or SYSDBA. Use gfix with the command-line option -sql_dialect n, where n
is 1 or 3. For example, the following statement sets mydb.gdb to dialect 3:

gfix -sql_dialect 3 mydb.gdb

Lowest

Middle

Highest

Dialect of an attached database

Command line specification:

gpre -sql_dialect n

Dialect explicitly specified within the source, for
example

EXEC SQL
 SET SQL DIALECT n

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 7

F e a t u r e s a n d d i a l e c t s

See “Migrating databases to dialect 3” on page 24 for details about issues to
consider before you issue the command.

Features and dialects
Many of the features introduced in InterBase 6 and later operate without reference
to dialect. Other features are dialect-specific. The dialect-specific features are
discussed below:

Features available in all dialects
The following new features are available in both dialect1 and dialect 3:

IBConsole, InterBase’s graphical interface
IBConsole, InterBase’s graphical user interface, combines the functionality of the
older Server Manager and InterBase Windows ISQL. You now create and maintain
databases, configure and maintain servers, and execute interactive SQL from one
integrated interface.

Read-only databases
You can make InterBase 6 databases be read-only. This permits distribution on
read-only media such as CDROMs and reduces the chance of accidental or
malicious changes to databases.

Altering column definitions
The ALTER COLUMN clause of the ALTER TABLE statement can change a column’s
name, datatype, or position.

Altering domain definitions
ALTER DOMAIN now includes the ability to change the name or datatype of a
domain definition.

The EXTRACT() function
The new EXTRACT() function extracts information from the new DATE, TIMESTAMP,
and TIME datatypes. In dialect 1, you can use it to extract information from the
TIMESTAMP datatype. Note “DATE” is new in the sense that it has a different
meaning in dialect 3 databases than it did previously.

SQL warnings
The InterBase API function set now returns warnings and informational messages
along with error messages in the status vector.

A-8 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

The Services API, Install API, and Licensing API
InterBase now provides three new function libraries. The Services API, which is
part of the InterBase client library, provides functions for database maintenance
tasks, software activation, requesting information about the configuration of
databases and server, and working with user entries in the security database.

New gbak functionality
In InterBase 6, gbak’s functionality has been extended. gbak can now perform all
of the following actions:

• Back up to multiple files and restore to multiple files

• Perform server-side backups and restores using the -service switch

• Set databases to read-only mode when restoring

InterBase Express™ (IBX)
IBX provides native Delphi components for InterBase data access, services, and
installation. Borland C++ Builder also can access IBX components.

Features available only in dialect 3 databases
The following features are available only in dialect 3 clients and databases because
they conflict with dialect 1 usage.

Delimited identifiers
Identifiers can now be keywords, contain spaces, be case sensitive, and contain
non-ASCII characters. Such identifiers must be delimited by double quotes. String
constants must be delimited by single quotes.

INT64 data storage
In dialect 3 databases, data stored in DECIMAL and NUMERIC columns is stored as
INT64 when the precision is greater than 9. This is true only for columns that are
created in dialect 3. These same datatypes are stored as DOUBLE PRECISION in
dialect 1 and in all older InterBase versions. This change in storage also requires
different arithmetic algorithms.

DATE and TIME datatypes
In dialect 3, the DATE datatype holds only date information. This is a change from
earlier InterBase versions in which it stored the whole timestamp.

Dialect 3 allows the use of the TIME datatype, which hold only the time portion of
the timestamp.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 9

F e a t u r e s a n d d i a l e c t s

New InterBase keywords
InterBase 6, 6.5, and 7 introduced the following new keywords:

These keywords are reserved words in all dialects.

• Beginning with InterBase 6, you cannot create objects in a dialect 1 database that
have any of these keywords as object names (identifiers).

• You can migrate a version 5 database that contains these keywords used as
identifiers to version 6 or later dialect 1 without changing the object names: a
column could be named “YEAR”, for instance.

• Version 5 clients can access these keyword identifiers without error.

• Version 6 clients cannot access keywords that are used as identifiers. In a
dialect 1 database, you must change the names so that they are not
keywords.

• If you migrate directly to dialect 3, you can retain the names, but you must
delimit them with double quotes. To retain accessibility for older clients, put
the names in all upper case. Delimited identifiers are case sensitive.

• Although TIME is a reserved word in version 6 dialect 1, you cannot use it as a
datatype because such databases guarantee datatype compatibility with version
5 clients.

• In dialect 3 databases and clients, any reserved word can be used as an
identifier as long as it is delimited with double quotes.

Delimited identifiers
To increase compliance with the SQL 92 standard, InterBase 6 introduces delimited
identifiers. An identifier is the name of any database object; for instance a table, a
column, or a trigger. A delimited identifier is an identifier that is enclosed in
double quotes. Because the quotes delimit the boundaries of the name, the
possibilities for object names are greatly expanded from previous versions of
InterBase. Object names can now:

• mimic keywords

BOOLEAN
COLUMN
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DAY
EXTRACT
FALSE

HOUR
MINUTE
MONTH
PERCENT
ROWS
SECOND
TIES
TIME

TIMESTAMP
TRUE
TYPE
UNKNOWN
WEEKDAY
YEAR
YEARDAY

A-10 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

• include spaces (except trailing spaces)

• be case sensitive

How double quotes have changed
Up to and including version 5, InterBase allowed the use of either single or double
quotes around string constants. The concept of delimited identifiers did not exist.
Beginning with InterBase 6 (dialect 3), anything in single quotes is interpreted as a
string constant and anything in double quotes is interpreted as a delimited
identifier. Here is the summary:

• In all versions of InterBase, anything inside single quotes is treated as a string
constant.

• In InterBase version 5 and older, anything within double quotes is treated as a
string constant, because those versions do not have the concept of a delimited
identifier.

• Version 6 dialect 1 is a transition mode that behaves like older versions of
InterBase with respect to quote marks: it interprets strings within either single
or double quotes as string constants.

• Beginning with version 6 dialect 3, InterBase interprets anything inside double
quotes as a delimited identifier. Anything inside single quotes is interpreted as
a string constant.

• When InterBase servers version 6 or later detect that the client is dialect 1, they
permit client DML (data manipulation) statements to contain double quotes
and they correctly handle these as string constants. However, they do not
permit double quotes in client DDL (data definition) statements because that
metadata would not be allowed in dialect 3. Version 6 servers all insist that
string constants be delimited with single quotes when clients create new
metadata.

DATE, TIME, and TIMESTAMP datatypes
InterBase 6 dialect 3 replaces the old InterBase DATE datatype, which contains both
date and time information, with SQL-92 standard TIMESTAMP, DATE, and TIME
datatypes. The primary migration problem exists in the source code of application
programs that use the InterBase 5 DATE datatype. In InterBase 6, the DATE
keyword represents a date-only datatype, while a Version 5 DATE represents a
date-and-time datatype.

Columns and domains that are defined as DATE datatype in InterBase 5 DATE
appear as TIMESTAMP columns when the database is restored in InterBase 6.
However, a TIMESTAMP datatype has four decimal points of precision, while a
Version 5 DATE datatype has only two decimal points of precision.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 11

F e a t u r e s a n d d i a l e c t s

If you migrate your database to dialect 3 and you require only date or only time
information from a TIMESTAMP column, you can use ALTER COLUMN to change the
datatype to DATE or TIME. These columns each take only four bytes, whereas
TIMESTAMP and the InterBase 5 DATE columns each take eight bytes. If your
TIMESTAMP column holds both date and time information, you cannot change it to
an InterBase 6 DATE or TIME column using ALTER COLUMN, because ALTER
COLUMN does not permit data loss. Dialect use also enforces certain rules:

• In dialect 1, only TIMESTAMP is available. TIMESTAMP is the equivalent of the
DATE datatype in previous versions. When you back up an older database and
restore it in version 6, all the DATE columns and domains are automatically
restored as TIMESTAMP. DATE and TIMESTAMP datatypes are both available and
both mean the same thing in dialect 1.

• In dialect 3, TIMESTAMP functions as in dialect 1, but two additional datatypes
are available: DATE and TIME. These datatypes function as their names suggest:
DATE holds only date information and TIME holds only time.

• In dialect 3, DATE and TIME columns require only four bytes of storage, while
TIMESTAMP columns require eight bytes.

The following example shows the differences between dialect 1 and dialect 3
clients when date information is involved.

Example CREATE TABLE table1 (fld1 DATE, fld2 TIME);

INSERT INTO table1 VALUES (CURRENT_DATE, CURRENT_TIME);

Using dialect 1 clients
SELECT * FROM table1;

Statement failed, SQLCODE = -804
Dynamic SQL Error
-SQL error code = -804
-datatype unknown
-Client SQL dialect 1 does not support reference to TIME datatype

SELECT fld1 FROM table1;

Statement failed, SQLCODE = -206
Dynamic SQL Error
-SQL error code = -206
-Column unknown
-FLD1
-Client SQL dialect 1 does not support reference to DATE datatype

Using dialect 3 clients
SELECT * FROM table1;

FLD1 FLD2
=========== =============
1999-06-25 11:32:30.0000

SELECT fld1 FROM table1;

A-12 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

FLD1
===========
1999-06-25

Example CREATE TABLE table1 (fld1 TIMESTAMP);

INSERT INTO table1 (fld1) VALUES (CURRENT_TIMESTAMP);
SELECT * FROM table1;

In dialect 1
FLD1
===========
25-JUN-1999

In dialect 3
FLD1
=========================
1999-06-25 10:24:35.0000

Example SELECT CAST (fld1 AS CHAR(5)) FROM table1;

In dialect 1
======
25-JU

In dialect 3
Statement failed, SQLCODE = -802
arithmetic exception, numeric overflow, or string truncation

Converting TIMESTAMP columns to DATE or TIME
Once you have migrated a database to dialect 3, any columns that previously had
the DATE datatype will have the TIMESTAMP datatype. If you want to store that
data in a DATE or TIME column, follow these steps:

1 Use ALTER TABLE to create a new column of the desired type.

2 Insert the values from the original column into the new column:

UPDATE tablename SET new_field = CAST (old_field AS new_field);

3 Use ALTER TABLE to drop the original column.

4 Use ALTER TABLE … ALTER COLUMN to rename the new column.

Casting date/time datatypes
InterBase 6 dialect 3 no longer allows the use of the CAST operator to remove the
date portion of a timestamp by casting the timestamp value to a character value.
When you cast a TIMESTAMP to a CHAR or VARCHAR in dialect 3, the destination
type must be at least 24 characters in length or InterBase will report a string
overflow exception. This is required by the SQL3 standard.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 13

F e a t u r e s a n d d i a l e c t s

You can use the CAST() function in SELECT statements to translate between date/
time datatypes and various character-based datatypes. The character datatype
must be at least 24 characters in length. You can, however, cast a TIMESTAMP to a
DATE and then cast the DATE to a CHAR of less than 24 characters. For example:

SELECT CAST (CAST (timestamp_col AS DATE) AS CHAR(10)) FROM table1;

It is not possible to cast a date/time datatype to or from BLOB, SMALLINT, INTEGER,
FLOAT, DOUBLE PRECISION, NUMERIC, or DECIMAL datatypes.

For more information, refer to “Using CAST() to convert dates and times” in the
Embedded SQL Guide.

Table A.2 outlines the results of casting to date/time datatypes:

Casting DATE to string results in YYYY-MM-DD where “MM” is a two-digit month. If
the result does not fit in the string variable a string truncation exception is raised.
In earlier versions, this case results in DD-Mon-YYYY HH:mm:SS.hundreds where
“Mon” was a 3-letter English month abbreviation. Inability to fit in the string
variable resulted in a silent truncation.

Casting a string to a date now permits strings of the form:

'yyyy-mm-dd' 'yyyy/mm/dd' 'yyyy mm dd'
'yyyy:mm:dd' 'yyyy.mm.dd'

In all of the forms above, you can substitute a month name or 3-letter abbreviation
in English for the 2-digit numeric month. However, the order must always be
4-digit year, then month, then day.

Table A.2 Results of casting to date/time datatypes

Cast From

To

TIMESTAMP DATE TIME

VARCHAR(n)
CHARACTER(n)
CSTRING(n)

String must be in
format
YYYY-MM-DD
HH:MM:SS.thousands

See below. String must be in format
HH:MM:SS.thousands

TIMESTAMP Always succeeds Date portion of
timestamp

Time portion of
timestamp

DATE Always succeeds; time
portion of timestamp
set to 0:0:0.0000

Always succeeds Error

TIME Always succeeds; date
portion of timestamp
set to current date

Error Always succeeds

A-14 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

In previous versions of InterBase, you could enter date strings in a number of
forms, including ones that had only two digits for the year. Those forms are still
available in InterBase 6. If you enter a date with only two digits for the year,
InterBase uses its “sliding window” algorithm to assign a century to the years.

The following forms were available in earlier versions of InterBase and are still
permitted in InterBase 6:

'mm-dd-yy' 'mm-dd-yyyy' 'mm/dd/yy' 'mm/dd/yyyy'
'mm dd yy' 'mm dd yyyy' 'mm:dd:yy' 'mm:dd:yyyy'
'dd.mm.yy' 'dd.mm.yyyy'

If you write out the month name in English or use a three-character English
abbreviation, you can enter either the month or the day first. In the following
examples, “xxx” stands for either a whole month name or a three-letter
abbreviation. All of the following forms are acceptable:

'dd-xxx-yy''dd-xxx-yyyy' 'xxx-dd-yy' 'xxx-dd-yyyy'
'dd xxx yy''dd xxx yyyy' 'xxx dd yy' 'xxx dd yyyy'
'dd:xxx:yy''dd:xxx:yyyy' 'xxx:dd:yy' 'xxx:dd:yyyy'

For example, the following INSERT statements all insert the date “January 22,
1943”:

INSERT INTO t1 VALUES ('1943-01-22');
INSERT INTO t1 VALUES ('01/22/1943');
INSERT INTO t1 VALUES ('22.01.1943');
INSERT INTO t1 VALUES ('jan 22 1943');

The following statement would enter the date “January 22, 2043”:

INSERT INTO t1 VALUES ('01/22/43');

Table A.3 outlines the results of casting from date/time datatypes:

Adding and subtracting datetime datatypes
The following table shows the result of adding and subtracting DATE, TIME,
TIMESTAMP, and numeric values. “Numeric value” refers to any value that can be
cast as an exact numeric value by the database engine (for example, INTEGER,
DECIMAL, or NUMERIC).

Table A.3 Results of casting to date/time datatypes

Cast From To VARCHAR(n), CHARACTER (n), or CSTRING(n)

TIMESTAMP Succeeds if n is 24 or more. Resulting string is in format
YYYY-MM-DD HH:MM:SS.thousands.

DATE Succeeds if n is 10 or more. Resulting string is in the format
YYYY-MM-DD.

TIME Succeeds if n is 13 or more. Resulting string is the format
HH:MM:SS.thousands.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 15

F e a t u r e s a n d d i a l e c t s

Table A.4 Adding and subtracting date/time datatypes

Operand1 Operator Operand2 Result

DATE + DATE Error

DATE + TIME TIMESTAMP (concatenation)

DATE + TIMESTAMP Error

DATE + Numeric value DATE + number of days: fractional part
ignored

TIME + DATE TIMESTAMP (concatenation)

TIME + TIME Error

TIME + TIMESTAMP Error

TIME + Numeric value TIME + number of seconds: 24-hour modulo
arithmetic

TIMESTAMP + DATE Error

TIMESTAMP + TIME Error

TIMESTAMP + TIMESTAMP Error

TIMESTAMP + Numeric value TIMESTAMP: DATE + number of days;
TIME + fraction of day converted to seconds

DATE – DATE DECIMAL(9,0) representing the number of
days

DATE – TIME Error

DATE – TIMESTAMP Error

DATE – Numeric value DATE: number of days; fractional part
ignored

TIME – DATE Error

TIME – TIME DECIMAL(9,4) representing number of
seconds

TIME – TIMESTAMP Error

TIME – Numeric value TIME: number of seconds; 24-hour modulo
arithmetic

TIMESTAMP – DATE Error

A-16 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

Note Numeric value + DATE, TIME, or TIMESTAMP is symmetric to DATE, TIME, or
TIMESTAMP + numeric value.

Using date/time datatypes with aggregate functions
You can use the date/time datatypes with the MIN(), MAX(), COUNT() functions,
the DISTINCT argument to those functions, and the GROUP BY argument to the
SELECT() function. An attempt to use SUM() or AVG() with date/time datatypes
returns an error.

Default clauses
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP can be specified as the
default clause for a domain or column definition.

Extracting date and time information
The EXTRACT() function extracts date and time information from databases. In
dialect 3, the EXTRACT operator allows you to return different parts of a
TIMESTAMP value. The EXTRACT operator makes no distinction between dialects
when formatting or returning the information. EXTRACT() has the following
syntax:

EXTRACT (part FROM value)

The value passed to the EXTRACT() expression must be DATE, TIME, or TIMESTAMP.
Extracting a part that doesn’t exist in a datatype results in an error. For example:

EXTRACT (TIME FROM aTime)

A statement such as EXTRACT (YEAR from aTime) would fail.

TIMESTAMP – TIME Error

TIMESTAMP – TIMESTAMP DECIMAL(18,9) representing days and
fraction of day

TIMESTAMP – Numeric value TIMESTAMP: DATE – number of days;
TIME: fraction of day converted to seconds

Table A.4 Adding and subtracting date/time datatypes

Operand1 Operator Operand2 Result

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 17

F e a t u r e s a n d d i a l e c t s

The datatype of EXTRACT() expressions depends on the specific part being
extracted:

SELECT EXTRACT (YEAR FROM timestamp_fld) FROM table_name;
=======
1999

SELECT EXTRACT (YEAR FROM timestamp_fld) FROM table_name;
=======
1999

SELECT EXTRACT (MONTH FROM timestamp_fld) FROM table_name;
=======
6

SELECT EXTRACT (DAY FROM timestamp_fld) FROM table_name;
=======
25

SELECT EXTRACT (MINUTE FROM timestamp_fld) FROM table_name;
=======
24

SELECT EXTRACT (SECOND FROM timestamp_fld) FROM table_name;
============
35.0000

SELECT EXTRACT (WEEKDAY FROM timestamp_fld) FROM table_name;
=======
5

SELECT EXTRACT (YEARDAY FROM timestamp_fld) FROM table_name;
=======

Table A.5 Extracting date and time information

Extract
Resulting
datatype Representing

YEAR SMALLINT Year, range 0-5400

MONTH SMALLINT Month, range 1-12

DAY SMALLINT Day, range 1-31

HOUR SMALLINT Hour, range 1-23

MINUTE SMALLINT Minute, range 1-59

SECOND DECIMAL(6,4) Second, range 0-59.9999

WEEKDAY SMALLINT Day of the week, range 0-6
(0 = Sunday, 1 = Monday, and so on)

YEARDAY SMALLINT Day of the year, range 1-366

A-18 O p e r a t i o n s G u i d e

F e a t u r e s a n d d i a l e c t s

175

SELECT EXTRACT (MONTH FROM timestamp_fld) ||
 '-' || EXTRACT (DAY FROM timestamp_fld) ||
 '-' || EXTRACT (YEAR FROM timestamp_fld) FROM table_name;

====================
6-25-1999

DECIMAL and NUMERIC datatypes
The following sections highlight some of the changes introduced by InterBase 6
when dealing with numeric values. They need to be considered carefully when
migrating your database from dialect 1 to dialect 3. When considering these issues,
keep in mind that in order to make use of the new functionality, the statements
must be created with a client dialect setting of 3.

The most notable migration issues involve using the division operator and the
AVG() function (which also implies division) with exact numeric operands. Exact
numeric refers to any of the following datatypes: INTEGER, SMALLINT, DECIMAL,
NUMERIC. NUMERIC and DECIMAL datatypes that have a precision greater than 9
are called “large exact numerics” in this discussion. Large exact numerics are
stored as DOUBLE PRECISION in dialect 1 and as INT64 in columns created in
dialect 3.

Important When you migrate an exact numeric column to dialect 3 it is still stored as DOUBLE
PRECISION. The migration does not change the way the data is stored because
INT64 cannot store the whole range that DOUBLE PRECISION can store. There is
potential data loss, so InterBase does not permit direct conversion. If you decide
that you want your data stored as INT64, you must create a new column and copy
the data. Only exact numeric columns that are created in dialect 3 are stored as
INT64. The details of the process are provided in “Migrating databases to dialect 3”
on page 24.

You might or might not want to change exact numeric columns to INT64 when you
migrate to dialect 3. See “Do you really need to migrate your NUMERIC and
DECIMAL datatypes?” on page A-29 for a discussion of issues.

Dialect 3 features and changes include

• Support for 64 bit integers.

• Overflow protection. In dialect 1, if the product of two integers was bigger than
31 bits, the product was returned modulo 232. In dialect 3, the true result is
returned as a 64-bit integer. Further, if the product, sum, difference, or quotient
of two exact numeric values is bigger than 63 bits, InterBase issues an arithmetic
overflow error message and terminates the operation. (Previous versions
sometimes returned the least-significant portion of the true result.). The stored
procedure bignum below demonstrates this.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 19

F e a t u r e s a n d d i a l e c t s

Operations involving division return an exact numeric if both operands are exact
numerics in dialect 3. When the same operation is performed in dialect 1, the result
is a DOUBLE PRECISION.

To obtain a DOUBLE PRECISION quotient of two exact numeric operands in dialect
3, explicitly cast one of the operands to DOUBLE PRECISION before performing the
division:

CREATE TABLE table 1 (n1 INTEGER, n2 INTEGER);

INSERT INTO table 1 (n1, n2) VALUES (2, 3);

SELECT n1 / n2 FROM table1;

======================
 0

Similarly, to obtain a double precision value when averaging an exact numeric
column, you must cast the argument to double precision before the average is
calculated:

SELECT AVG(CAST(int_col AS DOUBLE PRECISION))FROM table1;

Compiled objects
The behavior of a compiled object such as a stored procedure, trigger, check
constraint, or default value depends on the dialect setting of the client at the time
the object is compiled. Once compiled and validated by the server the object is
stored as part of the database and its behavior is constant regardless of the dialect
of the client that calls it.

Example Consider the following procedure:

CREATE PROCEDURE exact1 (a INTEGER, b INTEGER) RETURNS (c INTEGER)
AS BEGIN

c = a / b;
EXIT;

END;

When created by a dialect 1 client
EXECUTE PROCEDURE exact 1 returns 1 when executed by either a dialect 1 or
dialect 3 client.

When created by a dialect 3 client
EXECUTE PROCEDURE exact 1 returns 0 when executed by either a dialect 1 or
dialect 3 client.

Example Consider the following procedure:

CREATE PROCEDURE bignum (a INTEGER, b INTEGER) RETURNS (c NUMERIC(18,0)
AS BEGIN

c = a * b;
EXIT;

END;

A-20 O p e r a t i o n s G u i d e

M i g r a t i n g s e r v e r s a n d d a t a b a s e s

When created by a dialect 1 client
EXECUTE PROCEDURE bignum (65535, 65535) returns –131071.0000 when executed
by either a dialect 1 or dialect 3 client.

When created by a dialect 3 client
EXECUTE PROCEDURE bignum (65535, 65535) returns *ERROR* can’t access INT64 when
executed by a dialect 1 client.

EXECUTE PROCEDURE bignum (65535, 65535) returns 4294836225 when executed by
a dialect 3 client.

Generators
InterBase 6 generators return a 64-bit value, and only wrap around after 264
invocations (assuming an increment of 1), rather than after 232 as in InterBase 5.
Applications should use an ISC_INT64 variable to hold the value returned by a
generator. A client using dialect 1 receives only the least significant 32 bits of the
updated generator value, but the entire 64-bit value is incremented by the engine
even when returning a 32-bit value to a client that uses dialect 1. If your database
was using an INTEGER field for holding generator values, you need to recreate the
field so that it can hold 64-bit integer values.

Miscellaneous issues
• IN clauses have a limit of 1500 elements

Resolution If you have more than 1500 elements, place the values in a temporary
table and use a SELECT subquery in place of the list elements.

• Arithmetic operations on character fields are no longer permitted in client
dialect 3

Resolution Explicitly cast the information before performing arithmetic
calculations.

• Using isql to select from a TIMESTAMP column displays all information when
client dialect is 3.

Resolution In versions of InterBase prior to 6.0, the time portion of a timestamp
displayed only if SET TIME ON was in effect. In 6.0 client dialect 3, the time portion
of the timestamp always displays.

Migrating servers and databases
You can migrate your servers and applications to InterBase 6 at different times.
They are separate migrations. Bear the following issues in mind as you plan your
migration:

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 21

M i g r a t i n g s e r v e r s a n d d a t a b a s e s

• Older clients can still access databases that have been migrated to InterBase 6.
You must be aware, however, that they cannot access new datatypes or data
stored as INT64, and they always handle double quoted material as strings.

• InterBase strongly recommends that you establish a migration testbed to check
your migration procedures before migrating production servers and databases.
The testbed does not need to be on the same platform as the production clients
and servers that you are migrating.

The migration path varies somewhat depending on whether you are replacing an
existing server or installing a new server and moving old databases there.
Upgrading an existing server costs less in money, but may cost more in time and
effort. The server and all the databases you migrate with it are unavailable during
the upgrade. If you have hardware available for a new InterBase 6 server, the
migration can be done in parallel, without interrupting service more than very
briefly. This option also offers an easier return path if problems arise with the
migration.

“In-place” server migration
This section describes the recommended steps for replacing an InterBase 5 server
with an InterBase 6 server.

1 Shut down each database before backup to ensure that no transactions are in
progress.

2 Back up all databases on the version 5 server. Include isc4.gdb if you want to
preserve your configured user IDs.

As a precaution, you should validate your databases before backing up and
then restore each database to ensure that the backup file is valid.

3 Shut down the version 5 server. If your current server is a Superserver, you are
not required to uninstall the server if you intend to install over it, although
uninstalling is always good practice. You cannot have multiple versions of
InterBase on the same machine. If your current server is Classic, you must
uninstall before installing InterBase 6.

4 Install the version 6 server.

Note The install does not overwrite isc4.gdb or isc4.gbk.

5 Start the new server.

• On Windows NT, go to Services in the Control Panel and start the InterBase
Guardian.

• On Windows 2000, go to Control Panel|Administrative Tools|Services and
start the InterBase Guardian.

• On Windows 98/ME, run the InterBase Guardian application.

A-22 O p e r a t i o n s G u i d e

M i g r a t i n g s e r v e r s a n d d a t a b a s e s

• On UNIX/Linux platforms, issue the following command to start the
InterBase Superserver as user “interbase”:

 # echo "/usr/interbase/bin/ibmgr -start -forever" | su interbase

Note that InterBase can run only as user “root” or user “interbase” on UNIX.

6 To restore the list of valid users, follow these steps:

a Restore isc4.gbk to isc4_old.gdb

b Shut down the server

c Copy isc4_old.gdb over isc4.gdb

d Copy isc4_old.gbk over isc4.gbk

e Restart the server

7 Delete each older database file. Restore each database from its backup file. This
process creates databases in the current version. For databases that were 5.x or
older when they were backed up, the dialect is 1. For later databases, the dialect
is preserved.

8 Perform a full validation of each database.

After performing these steps, you have an InterBase 6 server and InterBase 6,
dialect 1 databases. See “About InterBase 6, dialect 1 databases” on page 23 to
understand more about these databases. See “Migrating databases to dialect 3” on
page 24 for a description of how to migrate databases to dialect 3. See “Migrating
clients” on page 31 for an introduction to client migration.

Migrating to a new server
This section describes the recommended steps for installing InterBase 6 or newer
as a new server and then migrating databases from a previous InterBase 5 or older
installation. The process differs only slightly from an in-line install.

In the following steps, older refers to databases that are on a version 5 or older
InterBase server. Newer and new refer to an InterBase version 6 or newer server.

1 Shut down the older databases before backup to ensure that no transactions are
in progress.

2 Back up all databases that are on the older server. Include isc4.gdb if you want to
preserve your configured user IDs.

3 Install the new server.

4 Start the new server.

• On Windows NT/2000, go to Services in the Control Panel and start the
InterBase Guardian.

• On Windows 98, run the InterBase Guardian application.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 23

M i g r a t i n g s e r v e r s a n d d a t a b a s e s

• On UNIX/Linux platforms, issue the following command to start the
InterBase Superserver as user “interbase”:

 # echo "/usr/interbase/bin/ibmgr -start -forever" | su interbase

Note that InterBase can run only as user “root” or user “interbase” on UNIX.

5 Copy the database backup files to the new server and restore each database
from its backup file. This process creates databases that have the current
version, ODS, and dialect. (Note: In later versions of InterBase, it creates the
appropriate current ODS, but always dialect 1.)

Save your backup files until your migration to dialect 3 is complete.

6 To restore the list of valid users, follow these steps:

a Restore isc4.gbk to isc4_old.gdb

b Shut down the server

c Copy isc4_old.gdb over isc4.gdb

d Copy isc4_old.gbk over isc4.gbk

e Restart the server

7 Perform a full validation of each database on the new server.

After performing these steps, you have an InterBase 6 server and InterBase 6,
dialect 1 databases. See “About InterBase 6, dialect 1 databases” on page 23 to
understand more about these databases. See “Migrating databases to dialect 3” on
page 24 for a description of how to migrate databases to dialect 3. See “Migrating
clients” on page 31 for an introduction to client migration.

About InterBase 6, dialect 1 databases
When you back up a version 5 database and restore it in InterBase 6, what do you
have?

• A version 5 client can access everything in the database with no further
changes.

• If there are object names—column or table names, for instance—that include
any of the 17 new keywords, you must change these names in order to access
these objects with a version 6 dialect 1 client. The new ALTER COLUMN clause of
ALTER TABLE makes it easy to implement column name changes.

• Version 5 clients can still access the columns.

• Dialect 3 clients can access these columns as long as they delimit them with
double quotes.

A-24 O p e r a t i o n s G u i d e

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

• The 17 new keywords are reserved words. However, the new datatypes TIME
and DATE are not available to use as datatypes. DATE columns have the old
meaning—both date and time. The new meaning of DATE—date only—is
available only in dialect 3.

• All columns that were previously DATE datatype are now TIMESTAMP datatype.
TIMESTAMP contains exactly the information that DATE did in previous versions.

• Exact numeric columns—those that have a DECIMAL or NUMERIC datatype with
precision greater than 9—are still stored as DOUBLE PRECISION datatypes. All
arithmetic algorithms that worked before on these columns still work as before.
It is not possible to store data as INT64 in dialect 1.

Migrating databases to dialect 3
There are four major areas of concern when migrating a database from dialect 1 to
dialect 3:

• Double quotes

• The DATE datatype

• Large exact numerics (for purposes of this discussion, NUMERIC and DECIMAL
datatypes that have a precision greater than 9)

• Keywords

The process varies somewhat depending on whether you can create an application
to move data from your original database to an empty dialect 3 database. If you do
not have access to such a utility, you need to perform an in-place migration of the
original database.

Overview
In either method, you begin by extracting the metadata from your database,
examining it for problem areas, and fixing the problems.

• If you are performing an in-place migration, you copy corrected SQL statements
from the metadata file into a new script file, modify them, and run the script
against the original database. Then you set the database to dialect 3. There are
some final steps to take in the dialect 3 database to store old data as INT64.

• If you have a utility for moving data from the old database to a newly created
empty database, you use the modified metadata file to create a new dialect 3
database and use the utility to transfer data from the old database to the new.

In both cases, you must make changes to the new database to accommodate
migrated columns that must be stored as INT64 and column constraints and
defaults that originally contained double quotes.

The two methods are described below.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 25

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

Method one: in-place migration
1 If you have not migrated the database to version 6, dialect 1, do so first. Back up

the database again.

2 Extract the metadata from the database using isql -x. If you are migrating
legacy databases that contain GDML, see “Migrating older databases” on
page 31.

3 Prepare an empty text file to use as a script file. As you fix data structures in the
metadata files, you will copy them to this file to create a new script.

Note You could also proceed by removing unchanged SQL statements from the
original metadata file, but this is more likely to result in problems from
statements that were left in error. Borland recommends creating a new script file
that contains only the statements that need to be run against the original
database.

For the remaining steps, use a text editor to examine and modify the metadata and script
files. Place copied statements into the new script file in the same order they occur in the
metadata file to avoid dependency errors.

4 Search for each instance of double quotes in the extracted metadata file. These
can occur in triggers, stored procedures, views, domains, table column defaults,
and constraints. Change each double quote that delimits a string to a single
quote. Make a note of any tables that have column-level constraints or column
defaults in double quotes.

Copy each changed statement to your script file, but do not copy ALTER TABLE
statements whose only double quotes are in column-level constraints or column
defaults.

Important When copying trigger or stored procedure code, be sure to include
any associated SET TERM statements.

Quoted quotes If there is any chance that you have single or double quotes inside
of strings, you must search and replace on a case-by-case basis to avoid
inappropriate changes. The handling of quotation marks within strings is as
follows:

Table A.6 Handling quotation marks inside of strings

String: In "peg" mode

Double-quoted: "In ""peg"" mode"

Single-quoted: 'In "peg" mode'

String: O'Reilly

Double-quoted: "O'Reilly"

Single-quoted: 'O''Reilly'

A-26 O p e r a t i o n s G u i d e

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

5 In the new script file, search for occurrences of the TIMESTAMP datatype. In most
cases, these were DATE datatypes in your pre-6 database. For each one, decide
whether you want it to be TIME, TIMESTAMP, or DATE in your dialect 3 database.
Change it as needed.

6 Repeat step 5 in the metadata file. Copy each changed statement to your new
script file.

7 In the new script file, search for occurrences of reserved words that are used as
object names and enclose them in double quotes; that makes them delimited
identifiers.

8 Repeat step 7 in the metadata file. Copy each changed statement to your new
script file.

9 In each of the two files, search for each instance of a DECIMAL or NUMERIC
datatype with a precision greater than 9. Consider whether or not you want
data stored in that column or with that domain to be stored as DOUBLE
PRECISION or INT64. See “Do you really need to migrate your NUMERIC and
DECIMAL datatypes?” on page 29 for a discussion of issues. For occurrences
that should be stored as DOUBLE PRECISION, change the datatype to that. Leave
occurrences that you want stored as INT64 alone for now. Copy each changed
statement that occurs in the metadata file to your new script file.

Perform the following steps in your new script file:

10 Locate each CREATE TRIGGER and CREATE DOMAIN statement and change it to
ALTER TRIGGER or ALTER DOMAIN as appropriate.

11 Locate each CREATE VIEW statement. Precede it by a corresponding DROP
statement. For example, if you have a CREATE VIEW foo statement, put a DROP
VIEW foo statement right before it, so that when you run this script against your
database, each view first gets dropped and then re-created.

12 If you have any ALTER TABLE statements that you copied because they contain
named table-level constraints, modify the statement so that it does nothing
except drop the named constraint and then add the constraint back with the
single quotes.

13 Check that stored procedure statements are ALTER PROCEDURE statements. This
should already be the case.

14 At the beginning of the script, put a CONNECT statement that connects to the
original database that you are migrating.

15 Make sure your database is backed up and run your script against the database.

16 Use gfix to change the database dialect to 3.

gfix -sql_dialect 3 database.gdb

Note To run gfix against a database, you must attach as either the database
owner or SYSDBA.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 27

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

17 At this point, DECIMAL and NUMERIC columns with a precision greater than 9
are still stored as DOUBLE PRECISION. To store the data as INT64, read “Do you
really need to migrate your NUMERIC and DECIMAL datatypes?” on page 29
and, if necessary, follow the steps in “Migrating NUMERIC and DECIMAL
datatypes” on page 29.

18 Validate the database using either IBConsole or gfix.

That’s it. You’ve got a dialect 3 database. There is a little more work to do if you
want your NUMERIC and DECIMAL columns with a precision of greater than 9 to be
stored as INT64. At this point, they are still stored as DOUBLE PRECISION. To decide
whether you want to change they way data in these columns is stored, read “Do
you really need to migrate your NUMERIC and DECIMAL datatypes?” on
page 29 and “Migrating NUMERIC and DECIMAL datatypes” on page 29.

In addition, there are some optional steps you can take that are described in the
following sections, “Column defaults and column constraints” and “Unnamed
table constraints”.

Important If you ever extract metadata from the dialect 3 database that you created using the
steps above, and if you plan to use that metadata to create a new database, check
to see if the extracted metadata contains double quotes delimiting string constants
in column defaults, column constraints, or unnamed table constraints. Change any
such occurrences to single quotes before using the metadata to create the new
database.

Column defaults and column constraints
The steps above permitted you to retain double quoted string constants in column
defaults, column constraints, and unnamed table constraints. This is possible
because, once created, InterBase stores them in binary form.

Following the steps above creates a dialect 3 database that is fully functional, but if
it contains double quoted string constants in column defaults, column constraints,
or unnamed column constraints, inconsistencies are visible when you SHOW
metadata or extract it. You can choose to resolve these inconsistencies by following
these steps:

1 Back up the database.

2 Examine the metadata to detect each occurrence of a column default or column
constraint that uses double quotes.

3 For each affected column, use the ALTER COLUMN clause of the ALTER TABLE
statement to give the column a temporary name. If column position is likely to
be an issue with any of your clients, change the position as well.

4 Create a new column with the desired datatype, giving it the original column
name and position.

5 Use UPDATE to copy the data from old column to the new column:

A-28 O p e r a t i o n s G u i d e

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

UPDATE table_name
SET new_col = old_col;

6 Drop the old column.

Unnamed table constraints
Read the first two paragraphs under “Column defaults and column constraints”
on page 27 to understand why you don’t always need to change constraints with
double quotes to single-quoted form, and why you might want to change them.

To bring unnamed table constraints that contain double quotes into compliance
with the dialect 3 standard, follow these steps:

1 Back up the database.

2 Examine the metadata to detect each occurrence of an unnamed table constraint
that uses double quotes.

3 For each occurrence, use SHOW TABLE to see the name that InterBase has
assigned to the constraint.

4 Use ALTER TABLE to drop the old constraint, using the name given in the SHOW
TABLE output and add a new constraint. For ease in future handling, give the
constraint a name.

If SHOW TABLE shows that InterBase stores the unnamed constraint as
“INTEG_2”, then issue the following statement to change the constraint:

ALTER TABLE foo
DROP CONSTRAINT INTEG_2,
ADD CONSTRAINT new_name

CHECK (col_name IN ('val1', 'val2', 'val3'));

About NUMERIC and DECIMAL datatypes
If you back up a NUMERIC or DECIMAL column with a precision greater than 9 (for
example, NUMERIC(12,2)) in an InterBase 5 or earlier database and restore the
database as InterBase 6, the column is still stored as DOUBLE PRECISION. Because
InterBase does not allow datatype conversions that could potentially result in data
loss, you cannot use the ALTER COLUMN statement to change the column datatype
from DOUBLE PRECISION to INT64. To migrate a DOUBLE PRECISION column to an
INT64 column, you must create a new INT64 column and copy the contents of the
older column into it.

In InterBase 6 dialect 3, when you create a NUMERIC or DECIMAL column with a
precision of greater than 9, data in it is automatically stored as an INT64 exact
numeric.

If you want NUMERIC and DECIMAL datatypes with a precision greater than 9 to
be stored as exact numerics, you must take some extra steps after migrating to
dialect 3. The following sections tell you how to decide whether you really need to
take these steps and how to perform them if you decide you want the exact
numerics.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 29

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

Do you really need to migrate your NUMERIC and DECIMAL datatypes?
As you migrate your databases to dialect 3, consider the following questions about
columns defined with NUMERIC and DECIMAL datatypes:

• Is the precision less than 10? If so, there is no issue. You can migrate without
taking any action and there will be no change in the database and no effect on
clients.

• For NUMERIC and DECIMAL columns with precision greater than 9, is DOUBLE
PRECISION an appropriate way to store your data?

• In many cases, the answer is “yes.” If you want to continue to store your data
as DOUBLE PRECISION, change the datatype of the column to DOUBLE
PRECISION either before or after migrating your database to dialect 3. This
doesn’t change any functionality in dialect 3, but it brings the declaration
into line with the storage mode. In a dialect 3 database, newly-created
columns of this type are stored as INT64, but migrated columns are still
stored as DOUBLE PRECISION. Changing the declaration avoids confusion.

• DOUBLE PRECISION may not be appropriate or desirable for financial
applications and others that are sensitive to rounding errors. In this case, you
need to take steps to migrate your column so that it is stored as INT64 in
dialect 3. As you make this decision, remember that INT64 does not store the
same range as DOUBLE PRECISION. Check whether you will experience data
loss and whether this is acceptable.

Migrating NUMERIC and DECIMAL datatypes
Read “Do you really need to migrate your NUMERIC and DECIMAL datatypes?”
on page 29 to decide whether you have columns in a dialect 1 database that would
be best stored as 64-bit integers in a dialect 3 database. If this is the case, follow
these steps for each column:

1 Migrate your database to InterBase 6 as described in “Method one: in-place
migration” on page 25.

2 Use the ALTER COLUMN clause of the ALTER DATABASE statement to change the
name of each affected column to something different from its original name. If
column position is going to be an issue with any of your clients, use ALTER
COLUMN to change the positions as well.

3 Create a new column for each one that you are migrating. Use the original
column names and if necessary, positions. Declare each one as a DECIMAL or
NUMERIC with precision greater than 9.

4 Use UPDATE to copy the data from each old column to its corresponding new
column:

UPDATE tablename
SET new_col = old_col;

5 Check that your data has been successfully copied to the new columns and drop
the old columns.

A-30 O p e r a t i o n s G u i d e

M i g r a t i n g d a t a b a s e s t o d i a l e c t 3

Method two: migrating to a new database
If you can create a data transfer utility that copies data between databases, the
process of migrating a database to dialect 3 is considerably simplified.

Overview Extract the metadata from your database, examine it for problem areas,
and fix the problems. Use the modified metadata file to create a new dialect 3
database and use an application to transfer data from the old database to the new.

1 If you have not migrated the database to version 6, dialect 1, do so first. Back up
the database again.

2 Extract the metadata from the database using isql. If you are migrating a
database that contains data structures created with GDML, see “Migrating
older databases” on page 31.

For the following steps, use a text editor to examine and modify the metadata file.

3 Search for each occurrence of the TIMESTAMP datatype. In most cases, these
were DATE datatypes in your pre-6 database. Decide whether you want it to be
TIME, TIMESTAMP, or DATE in your dialect 3 database. Change it as needed.

4 Find all instances of reserved words that are used as object names and enclose
them in double quotes to make them delimited identifiers.

5 Search for each instance of double quotes in the extracted metadata file. These
can occur in triggers, stored procedures, views, domains, exceptions, table
column defaults, and constraints. Change each double quote to a single quote.

6 Search for each instance of a DECIMAL or NUMERIC datatype with a precision
greater than 9. Consider whether or not you want that data stored as DOUBLE
PRECISION or INT64. See “Do you really need to migrate your NUMERIC and
DECIMAL datatypes?” on page 29 for a discussion of issues. For occurrences
that should be stored as DOUBLE PRECISION, change the datatype to that. Leave
occurrences that you want stored as INT64 alone for now.

7 At the beginning of the file, enter SET SQL DIALECT 3. On the next line,
uncomment the CREATE DATABASE statement and edit it as necessary to create a
new database.

8 Run the metadata file as a script to create a new database.

9 Use your data transfer utility to copy data from the old database to the new
dialect 3 database. In the case of a large database, allow significant time for this.

10 Validate the database using gfix.

11 At this point, DECIMAL and NUMERIC columns with a precision greater than 9
are still stored as DOUBLE PRECISION. To store the data as INT64, read “Do you
really need to migrate your NUMERIC and DECIMAL datatypes?” on page 29
and, if necessary, follow the steps in “Migrating NUMERIC and DECIMAL
datatypes” on page 29.

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 31

M i g r a t i n g c l i e n t s

Migrating older databases
If you have legacy databases in which some data structures were created with
GDML, you may need to extract metadata in a slightly different way.

1 Try extracting metadata as described in Step 2 above and examine it to see if all
tables and other DDL structures are present. If they are not, delete the metadata
file and extract using the -a switch instead of the -x switch. This extracts objects
created in GDML.

2 You may have to change some of the code to SQL form. For example, the
following domain definition

CREATE DOMAIN NO_INIT_FLAG AS SMALLINT
(no_init_flag = 1 or
no_init_flag = 0 or
no_init_flag missing);

needs to be translated to:

CREATE DOMAIN NO_INIT_FLAG AS SMALLINT
CHECK (VALUE = 1 OR VALUE = 0 OR VALUE IS NULL);

3 Some code may be commented out. For example:

CREATE TABLE BOILER_PLATE (BOILER_PLATE_NAME NAME,
 DATE DATE,

 CREATED_DATE COMPUTED BY /* Date */);

needs to be changed to:

CREATE TABLE BOILER_PLATE (BOILER_PLATE_NAME NAME,
"DATE" DATE,

 CREATED_DATE COMPUTED BY "DATE");

Migrating clients
To migrate an older client application to InterBase 6, install the InterBase 6 client
onto the platform where the client application resides. An InterBase server then
recognizes that client as a version 6 dialect 1 client.

It is good practice to recompile and relink the application and make note of field
names, datatype use, and so on in the new application. When you recompile, state
the dialect explicitly:

SET SQL DIALECT n;

A-32 O p e r a t i o n s G u i d e

M i g r a t i n g c l i e n t s

Important If you have databases that use any of the new version 6 keywords as object
identifiers and you are not migrating those databases to dialect 3, you might
consider not migrating your version 5 clients. If you migrate them to version 6
dialect 1, you lose the ability to access those keyword columns. See “New
InterBase keywords” on page 9.

When you recompile an existing gpre client, you must recompile it with the
gpre -sql_dialect n switch.

There are several paths that permit you to create dialect 3 clients that access all
new InterBase 6 features:

• In Delphi, make calls to functions in the new InterBase Express (IBX) package.
Because the Delphi beta includes InterBase 5, it ships with a version of IBX that
does not include calls to the new InterBase 6 Services, Install, and Licensing
APIs.

• To write embedded SQL applications that address all InterBase 6 dialect 3
functionality, compile them using gpre -sql_dialect 3.

Table A.7 Migrating clients: summary

Client How to migrate

Older applications such as
InterBase version 5
applications

• Dialect is 1; there is no way to change the dialect
• A version 5 client application becomes version 6

dialect 1 client whenever the InterBase 6 client is
installed on the machine with the client

ISQL • Issue the command line option:
 -sql_dialect n
• Or issue the command
 SET SQL DIALECT n;

GPRE • Issue the command line option
 -sql_dialect n
• Or issue the command
 EXEC SQL
 SET SQL DIALECT n;

BDE All applications use SQL dialect 1. To access
InterBase dialect 3 features from Delphi, use the IBX
components

InterClient InterBase 6: All applications use SQL dialect 1
InterBase 7 introduced InterClient 3, which is a
dialect 3 client

Direct API calls Set the dialect parameter on
isc_dsql_execute_immediate(), isc_dsql_exec_immed2(),
isc_dsql_prepare() API calls to the desired dialect
value: 1 or 3

M i g r a t i n g t o I n t e r B a s e 6 a n d l a t e r A- 33

I B R e p l i c a t o r m i g r a t i o n i s s u e s

IBReplicator migration issues
InterBase 6 contains a new version of IBReplicator that should be used instead of
previous versions. It contains new features, described in the Release Notes and in
the Operations Guide, and a few changes which should be addressed when moving
from InterBase 5 to interBase 6. If you having been using IBReplicator with
previous versions of InterBase, keep these issues in mind:

• If you have any schemas defined that have a source database replicating to
more than one target (within the same schema), then you should run the Create
System Objects command for each of those source databases. In such schemas,
more than one entry is placed in the log for any row modified. This does not
cause any data errors, but does cause some changes to be replicated more than
once.

Note Do not run the Remove System Objects command, as this will empty the
REPL_LOG table.

• If you have been using older licenses purchased from Synectics Software, those
licenses will not work with InterBase 6. You must use the version of
IBReplicator for Opensource InterBase, or buy new licenses from Borland
Software Corporation for use with the version of IBReplicator for Borland
InterBase (the certified commercial version of InterBase).

Migrating data from other DBMS products
If you have a large amount of data in another DBMS such as Paradox, the most
efficient way to bring the data into InterBase is to export the data from the original
DBMS into InterBase external file format. (See the Data Definition Guide for more
information about InterBase external files.) Then insert the data from the external
files into the internal tables. It is best not to have any constraints on new internal
tables; you can validate the database more easily once the data is in InterBase. If
constraints do exist, you will need triggers to massage the incoming data.

A-34 O p e r a t i o n s G u i d e

M i g r a t i n g d a t a f r o m o t h e r D B M S p r o d u c t s

A p p e n d i x B I n t e r B a s e L i m i t s B-1

A p p e n d i x

Appendix BInterBase Limits

This appendix defines the limits of a number of InterBase characteristics. The
values the following table lists are design limits, and in most cases are further
restricted by finite resource restrictions in the operating system or computer
hardware.

B-2 O p e r a t i o n s G u i d e

V a r i o u s I n t e r B a s e l i m i t s

Various InterBase limits

Table B.1 InterBase specifications

Characteristic Value

Maximum number of clients
connected to one server

There is no single number for the maximum number of
clients the InterBase server can serve—it depends on a
combination of factors including capability of the
operating system, limitations of the hardware, and the
demands that each client puts on the server. Applications
that engage in high levels of contention or that perform
complex or high-volume operations could cause the
practical number of clients to be fewer. In applications
that don’t generate much contention, InterBase can
support a large number of users, where “large” is not
well-defined.

Maximum database size No limit is imposed by InterBase; maximum size is
defined by the operating system

Maximum number of files
per database

By design, 216 (65,536), because the files are enumerated
with an unsigned 16-bit integer. Shadow files count
toward this limit.
This is a design parameter of InterBase, but most
operating systems have a much lower limit on the number
of files that a single process can have open
simultaneously. In some cases, the OS provides a means to
raise this limit. Refer to your OS documentation for the
default open files limit, and the means to raise this limit.

Maximum number of cache
pages per database

65,536; for the sake of performance, a more practical upper
limit would be 10,000. Total size of cache pages should
never exceed 50% of memory.

Maximum number of
databases open in one
transaction

No restriction. The parameters in a transaction parameter
buffer comprise a linked list, so there is no limit except
that imposed by system resources.

Maximum number of tables
per database

32,640.

Maximum versions per table 255; then no more metadata changes until the database
has been backed up and restored.

Maximum row size 64KB. Each Blob and array contributes eight bytes to this
limit in the form of their Blob handle.
Systems tables (tables maintained by the InterBase engine
for system data) have a row size limit of 128KB.

A p p e n d i x B I n t e r B a s e L i m i t s B-3

V a r i o u s I n t e r B a s e l i m i t s

Maximum number of rows
and columns per table

By design, 232 rows, because rows are enumerated with a
32-bit unsigned integer per table.
Number of columns in a row depends on datatypes used.
One row can be 64K. For example, you can define 16,384
columns of type INTEGER (four bytes each) in one table.

Maximum number of
indexes per table

By design, 216 (65,536), because indexes per table are
enumerated with a 16-bit unsigned integer.

Maximum number of
indexes per database

By design, 232, because you can create 216 tables per
database, and each table can have 216 indexes.

Maximum index key size Starts at 252 bytes for a single-column key, and 200 for
multicolumn keys; subtract four bytes for each additional
column.
Example: a single-column CHAR key can be up to
256 – 4 = 252 bytes; a three-column key must add up to
200 – 12 = 188 bytes.
Note that multibyte character sets must fit within the key
by counting bytes, not by counting characters. For
example, a single-column key using 3-byte
UNICODE_FSS characters can have a maximum of
(256 – 4) / 3 = 84 characters.
It is good practice to keep index keys as small as possible.
This limits the depth of indexes and increases their
efficiency.

Maximum number of events
per stored procedure

No restriction by design, but there is a practical limit,
given that there is a limit on the length of code in a stored
procedure or trigger (see below).

Maximum stored procedure
or trigger code size

48KB of BLR, the bytecode language compiled from stored
procedure or trigger language.

Maximum Blob size The size of the largest single Blob depends on the
database page size:
1KB page size: largest Blob is 64MB
2KB page size: largest Blob is 512MB
4KB page size: largest Blob is 4GB
8KB page size: largest Blob is 32GB
A Blob is a stream of many segments. The maximum Blob
segment size is 64KB.

Maximum tables in a JOIN No restriction by design, but the task of joining tables is
exponential in relation to number of tables in the join.
The largest practical number of tables in a JOIN is about
16, but experiment with your application and a realistic
volume of data to find the most complex join that has
acceptable performance.

Table B.1 InterBase specifications

Characteristic Value

B-4 O p e r a t i o n s G u i d e

V a r i o u s I n t e r B a s e l i m i t s

Maximum levels of nested
queries

There is no restriction by design.
The practical limit depends on the type of queries you
nest. Experiment with your application and a realistic
volume of data to find the deepest nested query that has
acceptable performance.

Maximum number of
columns per one composite
index

16

Levels of nesting
per stored procedure or
trigger

• 750 on Windows platforms
• 1000 for UNIX platforms

Maximum size of key
in SORT clause

32 KB.

Maximum size of external
table file

4 GB on Windows NT/2000/XP; 2 GB on Solaris, Linux,
and Windows 98/ME

Range of date values January 1, 100 a.d. to February 29, 32768 a.d.

Table B.1 InterBase specifications

Characteristic Value

I n d e x I-1

A
accessing databases 5-2 to 5-9
activating shadows 6-17
adding

comments in ISQL script files 10-57
database file 6-4
shadow files 6-17
users 5-10, 5-14 to 5-15

ADMIN_DB 5-3
application development

InterBase Express 11-23
assigning passwords 5-10, 5-12, 5-14
attachments See connections
AUTO mode 6-16
automatic commit of DDL statements 10-12, 10-21
average

data length 9-10
fill 9-7

B
backing up databases

converting external files to internal tables 8-7,
8-14

metadata only 8-5, 8-14
options 8-4, 8-14
preventing sweeping 8-5, 8-14
upgrading the on-disk structure 8-2

binary
data 10-29
files 10-29

blindmeta.sql 5-5
BLOB data

editing 10-29
ID numbers, retrieval 10-29
improving access time 8-10
saving 10-29
segment size 11-17

BLOB filters 10-47
BLOBDUMP 10-29
buffered writes vs. forced writes 6-25

C
cache buffers, number of 6-23, 9-9
changing

character set 10-9
database page size 8-10, 8-17
gsec entries 5-16
user names 5-16

character set, changing 10-9, 10-13

CHECK constraints 10-44, 10-46
checksums

header page 9-8
ignoring 8-6, 8-14

client dialect 10-3, 10-24
column headers, changing page length 10-22
commands

gbak 8-13 to 8-21
gfix 6-36 to 6-38
gsec 5-13 to 5-16
isql 10-26 to 10-27

displaying 10-31, 10-32
editing 10-29
executing 10-8, 10-10, 10-31

comments in ISQL scripts 10-57
COMMIT 10-25, 10-57
commit

after each table 8-11, 8-17
automatic 10-12, 10-21

conditional shadows 6-16
configuration parameters 3-19
CONNECT 10-23
connecting to databases 4-7 to 4-9

denying new connections 6-30
troubleshooting 4-10 to 4-14

connections
databases 10-23
denying 6-30
monitoring 9-1 to 9-4
remote servers 4-3, 4-16, 10-22, 10-23

constraints 10-44, 10-46
continuation prompt 10-21
corrupt databases

backing up by ignoring checksums 8-6, 8-14
repairing 6-28

CREATE DATABASE 10-21, 10-23
creating

conditional shadows 6-16
databases 6-8
multifile databases 6-4
shadows 6-13 to 6-17, 8-11

creation date, database 9-10

D
data page slots 9-7
data pages 9-7
database administration 5-10

adding users 5-14
changing users 5-11, 5-16
overview 1-8

Index

I-2 O p e r a t i o n s G u i d e

security utility 5-12 to 5-16
database dialect 10-22
database statistics

gstat 9-12
IBConsole 9-5

databases
accessing 5-2 to 5-9
backing up 8-3, 8-13, 8-14, 8-15
closing 4-8, 10-30, 10-33
connecting to 4-7 to 4-9
creating 6-8
creating multifile 6-4
creation date 9-10
deactivating indexes 8-11
deleting 6-10
denying new connections 6-30
disabling validity checking 8-12, 8-17
dropping 6-10
extracting metadata 8-5, 8-14
file naming conventions 6-3
file, adding 6-4
gbak and gsplit 1-11
locking statistics 9-15
name information 9-8
naming 5-3, 6-3
overwriting 8-11, 8-17
page size 8-10 to 8-11, 8-17, 9-8
read-only 6-7, 6-37, 8-17
registering 4-5
repairing 6-28 to 6-29
replacing 8-11, 8-17
restarting 6-29, 6-32
security 5-8
shadowing 6-12 to 6-18, 8-11
shutdown and restart 6-29
shutting down 6-30
structure, retrieving 10-45
sweeping 6-20 to 6-22, 6-37

immediately 6-22, 6-38
sweep interval 6-21

testing connections 4-16
unregistering 4-9
upgrading the on-disk structure 8-2
validating 6-25 to 6-29, 6-38
viewing information 10-45
viewing metadata 10-16

DDL
automatic commits 10-12, 10-21
defined 10-26
extracting 10-21, 10-22, 10-25 to 10-26
processing 10-20
transactions 10-25

deactivating indexes 8-11, 8-17
deadlocks 9-16

DECLARE FILTER 10-19, 10-25, 10-47
default terminator 10-21, 10-34
deleting

databases 6-10
shadows 6-17
users 5-12

dialect 10-24
database 10-22

disabling
garbage collection 8-5, 8-14
validity checking 8-12, 8-17

disabling automatic internet dialup 4-13
displaying

error messages 10-32
metadata 10-16, 10-27
objects 10-51
query plan 10-12, 10-41
statements 10-21
statistics 10-42
version numbers 10-22

DML 10-26
processing 10-20

domains 10-46
DROP SHADOW 6-17
dropping

databases 6-10
shadows 6-17
users 5-11

E
echoing 10-21
EDIT 10-29

INPUT and 10-31
editing

BLOB data 10-29
input files 10-44
isql commands 10-29

editors 10-30
environments, isql 10-27
errors

connection refused 4-10, 4-14
connection rejected 4-12
gbak 8-21, 8-25
gfix 6-39
gsec 5-17
isql 10-27

exceptions 10-46
executing SQL scripts

with IBConsole 10-10
EXIT 10-30

QUIT vs. 10-33
external tables 6-2
EXTERNAL_FILE_DIRECTORY 6-2

I n d e x I-3

extracting
DDL 10-21, 10-22
metadata 8-5, 10-19, 10-25 to 10-26

F
files

input 10-10, 10-21
naming 5-3, 6-3
naming conventions 6-3
shadow 6-14, 6-17, 8-11
writing to 10-11, 10-22, 10-25

fill distribution 9-7, 9-11
filters, displaying 10-17, 10-47
forced writes vs. buffered writes 6-25

G
garbage collection, disabling 8-5, 8-14
gbak

commands 8-13 to 8-21
errors 8-21 to 8-25

generators, displaying 10-17, 10-48
gfix

activating shadows 6-17
commands 6-36 to 6-38
errors 6-39
killing shadows 6-16

global header information 9-16
gpre

licensing 7-6
gsec 5-12 to 5-16

adding users 5-14 to 5-15
changing entries 5-16
commands 5-13 to 5-16
deleting entries 5-16
errors 5-17
exiting 5-13
help 5-14
options 5-14
running remotely 5-13
starting 5-13, 5-16

gsplit 1-11
gstat 9-12
Guardian 3-1, 3-10, A-21, A-22

H
header page generation 9-8
help

gsec 5-14
IBConsole 2-3
InterBase 2-3
ISQL commands 10-31
UNIX 3-12

I
ibconfig 3-18, 3-19
IBConsole

character sets 10-13
commit and rollback 10-10
denying new connections 6-30
displaying metadata 10-16
executing SQL statements 10-8 to 10-11
extracting metadata 10-19
restarting databases 6-32
saving ISQL input and output 10-10
script file, adding comments 10-57
security 5-9
toolbar 2-4
Tree pane 2-5
viewing statistics 9-5
Work pane 2-6

ibguard 3-10
ignoring

checksums 8-6, 8-14
limbo transactions 8-6, 8-14

implementation ID 9-9
index root page 9-7
indexes

correcting duplicate values 8-11
deactivating 8-11, 8-17
depth 9-10
displaying 10-27, 10-49
improving performance 8-10 to 8-11, 11-18
retrieving 10-49

INPUT 10-31
input files 10-10, 10-21, 10-31

editing 10-44
interactive SQL. See isql
InterBase

API, user administration 5-12
developing database applications with

IBX 11-23
Guardian 3-1, 3-10, A-21, A-22
on UNIX 3-11
version numbers 10-22, 10-54

ISC4.GDB 5-12
viewing contents 5-14, 5-16, 8-20

isql 10-20 to 10-28
commands 10-26 to 10-27
connecting to databases 10-23
displaying help 10-31
editing 10-29
errors 10-27
executing 10-8, 10-10, 10-31
exiting 10-23, 10-27, 10-30, 10-33
options 10-20 to 10-23
output 10-32

I-4 O p e r a t i o n s G u i d e

saving input and output 10-10
script files, adding comments in

IBConsole 10-57
SET statements 10-33 to 10-44
setting environment 10-27
setting SQL dialect 10-24
specifying database 10-20
starting 10-20 to 10-21, 10-23
terminator characters 10-21, 10-22

isql scripts See SQL scripts

K
killing shadows 6-16

L
leaf buckets 9-10
limbo transactions

ignoring 8-6, 8-14
two-phase commit 6-32

lock
manager 9-15
table 9-16

locks 9-15
logging in to a server 4-3

M
MANUAL mode 6-16
max dup 9-11
metadata

command-line ISQL 10-20
displaying 10-16, 10-27
extracting 8-5, 10-19, 10-25 to 10-26
in IBConsole 10-16

monitoring attachments 9-1 to 9-4
multifile databases 6-4
multiprocessor support 3-3, 3-8

N
name information 9-8
naming

databases 5-3, 6-3
nesting INPUT commands 10-31
next

connection ID 9-9
header page 9-10
transaction 9-9

node names, shared disks vs. 10-24
nodes 9-10
number of cache buffers 9-9

O
objects

deleting 10-51
displaying 10-51

ODS See on-disk structure
oldest

active transaction 9-9
transaction 9-9

on-disk structure
upgrading 8-2
version 9-8

operating system shells 10-44
OUTPUT 10-32
output

files 10-11, 10-22, 10-25
isql 10-10, 10-32
metadata 10-16, 10-27
redirecting 10-11, 10-32
statements 10-21
user-defined functions 10-17, 10-48
verbose 8-7, 8-13, 8-15

P
page size

changing 8-10 to 8-11, 8-17
default 6-9
displaying current 9-8

passwords
assigning 5-10, 5-12, 5-14
connecting to remote servers 10-22

PLAN 11-22
PLAN option 10-12, 10-41
platforms, server 1-5
primary pointer page 9-7
procedures, listing 10-19, 10-27, 10-50

Q
query 10-20

displaying plan 10-12, 10-41
testing 11-25

QUIT 10-33
EXIT vs. 10-30

R
readmeta.sql 5-5
read-only databases 6-7, 6-37, 8-17
registering

databases 4-5
servers 4-2

remote servers, connecting to 4-3, 4-16, 10-22, 10-23
repairing databases 6-28 to 6-29

I n d e x I-5

replacing databases 8-11, 8-17
restarting databases 6-29, 6-32
restore options 8-10
ROLLBACK 10-25
running a SQL script See SQL scripts 10-10

S
saving ISQL input and output 10-10
scripts See SQL scripts
security

adding a user 5-10, 5-14
database 5-8
displaying privileges 10-49
dropping users 5-11, 5-16
IBConsole 5-9
modifying user configuration 5-11, 5-16

security database 5-1
name 5-3

sequence number 9-9
server platforms 1-5
servers

log 3-23
logging in 4-3
registering 4-2
starting on UNIX 3-12
unregistering 4-5

SET 10-33
SET AUTODDL 10-35
SET BLOBDISPLAY 10-36
SET COUNT 10-38
SET ECHO 10-38
SET LIST 10-39
SET NAMES 10-40
SET PLAN 10-41 to 10-42
SET statements 10-33 to 10-44
SET STATS 10-42
SET TERMINATOR 10-21
SET TIME 10-43
SET TRANSACTION 10-25
shadow count 9-9
shadows

activating 6-17
adding files 6-17
advantages 6-12
AUTO mode 6-16
conditional 6-16
creating 6-13 to 6-17, 8-11
dropping 6-17
killing 6-16
limitations 6-13
MANUAL mode 6-16
overview 6-12 to 6-13

shared disks, node names vs. 10-24

SHELL 10-44
SHOW CHECK 10-44
SHOW DATABASE 6-14, 10-45
SHOW DOMAINS 10-46
SHOW EXCEPTIONS 10-46
SHOW FILTERS 10-47
SHOW FUNCTIONS 10-48
SHOW GENERATORS 10-48
SHOW GRANT 10-49
SHOW INDEX 10-49
SHOW PROCEDURES 10-50
SHOW SYSTEM 10-52
SHOW TABLES 10-53
SHOW TRIGGERS 10-53
SHOW VERSION 10-54
SHOW VIEWS 10-55
shutting down databases

denying new connections 6-30
denying new transactions 6-31
forced shutdown after timeout 6-32, 6-37
timeout options 6-30

SMP support 3-3, 3-8
SQL dialect 6-9, 10-22, 10-24
SQL scripts

committing work 10-57
creating 10-55
executing with IBConsole 10-10
running 10-56
running with isql 10-31

SQL statements
committing in IBConsole 10-10
executing in IBConsole 10-8 to 10-11
rolling back in IBConsole 10-10

SQLCODE 10-27
starting

gsec 5-13, 5-16
InterBase Guardian 3-10
InterBase Server 3-10
isql 10-20 to 10-21, 10-23

statements
displaying 10-21
terminator characters 10-21, 10-22

statistics
displaying 10-42
gstat 9-12
IBConsole 9-5

SuperServer architecture 1-10
sweeping databases 6-20 to 6-22, 6-37

disabling 6-22
immediately 6-22, 6-38
preventing during a backup 8-5, 8-14
sweep interval 6-21

SYSDBA 5-2
system

I-6 O p e r a t i o n s G u i d e

editors 10-30
shells 10-44
tables 10-52
views 10-52

system table security 5-5
system temporary tables 9-1 to 9-4

T
tables

constraints 10-44, 10-46
listing 10-17, 10-27

TCP/IP 10-23
terminator characters

default 10-21
isql 10-21, 10-22

testing
database connection 4-16

text
editors 10-30
saving blocks to file 10-29

toolbar 2-4
total dup 9-11
transactions

committing 10-25, 10-30
DDL 10-25
denying new transactions 6-31
isql 10-25
oldest 9-9
oldest active 9-9
rolling back 10-25, 10-33
rolling back limbo transactions 8-6
two-phase commit 6-32

Tree pane 2-5
triggers, listing 10-27, 10-53
troubleshooting, database connection 4-10 to 4-14
trusted host 5-2

two-phase commit 6-32, 8-6

U
unregistering

databases 4-9
servers 4-5

upgrading the on-disk structure (ODS) 8-2
use all space 8-12
user administration with the InterBase API 5-12
user names 10-22

adding 5-12, 5-14 to 5-15
changing 5-16
dropping 5-11
UNIX 5-2

user-defined functions
listing 10-17, 10-48
viewing 10-48

V
validating databases 6-25 to 6-29, 6-38
validity checking, disabling 8-12
verbose output 8-7, 8-13, 8-15
version

numbers, displaying 10-22, 10-54
on-disk structure 9-8

views, listing 10-17, 10-55

W
warnings 10-22
Windows OS commands 10-44
Windows server platforms 1-5
Work pane 2-6
writemeta.sql 5-5

	Operations Guide
	Contents
	Tables
	Figures
	Introduction
	Who should use this guide
	Topics covered in this guide
	InterBase PDF documentation
	About enhanced Acrobat Reader
	Using Full-Text Search
	Installing Acrobat

	System requirements and server sizing
	Primary InterBase features
	SQL support
	Multiuser database access
	Transaction management
	Multigenerational architecture
	Optimistic row-level locking
	Database administration
	Managing server security
	Backing up and restoring databases
	Maintaining a database
	Viewing statistics

	About InterBase SuperServer architecture
	Overview of command-line tools
	isql
	gbak
	gfix
	gsec
	gstat
	iblockpr (gds_lock_print)
	ibmgr

	IBConsole: The InterBase Interface
	Starting IBConsole
	IBConsole menus
	Context menus
	IBConsole toolbar

	Tree pane
	Work pane
	Standard text display window
	Switching between IBConsole windows
	Managing custom tools in IBConsole

	Server Configuration
	Configuring server properties
	The General tab
	The Alias tab

	Multi-Instance
	Windows server setup
	Accessing remote databases
	Client side settings
	Remote servers

	Accessing local databases
	Automatic rerouting of databases
	Server Side setup
	Client side settings

	Startup parameters

	SMP support
	Expanded processor control: CPU_AFFINITY
	ibconfig parameter: MAX_THREADS

	Hyperthreading support on Intel processors
	Using InterBase Manager to start and stop InterBase
	Starting and stopping the InterBase Server on UNIX
	Using ibmgr to start and stop the server
	Starting the server
	Stopping the server
	Starting the server automatically

	The attachment governor
	Using environment variables
	ISC_USER and ISC_PASSWORD
	The INTERBASE environment variables
	The TMP environment variable
	UNIX and Linux host equivalence

	Managing temporary files
	Configuring history files
	Configuring sort files

	Configuring parameters in ibconfig
	Viewing the server log file

	Network Configuration
	Network protocols
	Connecting to servers and databases
	Registering a server
	Logging in to a server
	Logging out from a server
	Unregistering a server
	Registering a database
	Connecting to a database
	Connect
	Connect as

	Disconnecting a database
	Unregistering a database
	Connection-specific examples

	Connection troubleshooting
	Connection refused errors
	Is there low-level network access between the client and server?
	Can the client resolve the server’s hostname?
	Is the server behind a firewall?
	Are the client and server on different subnets?
	Can you connect to a database locally?
	Can you connect to a database loopback?
	Is the server listening on the InterBase port?
	Is the services file configured on client and server?

	Connection rejected errors
	Did you get the correct path to the database?
	Is UNIX host equivalence established?
	Is the database on a networked file system?
	Are the user and password valid?
	Does the server have permissions on the database file?
	Does the server have permissions to create files in the InterBase install directory?

	Disabling automatic Internet dialup
	Reorder network adapter bindings
	Disabling autodial in the registry
	Preventing RAS from dialing out for local network activity

	Other errors
	Unknown Win32 error 10061
	Unable to complete network request to host

	Communication diagnostics
	DB Connection tab
	To run a DB Connection test
	Sample output (local connection)

	TCP/IP tab
	NetBEUI tab

	Database Security
	Security model
	The SYSDBA user
	Other users
	Users on UNIX

	The InterBase security database
	Embedded database user authentication
	System table security
	Older databases
	Scripts for changing database security
	Migration issues

	SQL privileges
	Groups of users
	SQL roles
	UNIX groups

	Other security measures
	Restriction on using InterBase tools
	Protecting your databases

	User administration with IBConsole
	Displaying the User Information dialog
	Adding a user
	Modifying user configurations
	Deleting a user

	User administration with the InterBase API
	Using gsec to manage security
	Running gsec remotely
	Running gsec with Embedded Database User Authentication
	Using gsec commands
	Displaying the security database
	Adding entries to the security database
	Modifying the security database
	Deleting entries from the security database

	Using gsec from a Windows command prompt

	Using gsec to manage Database Alias
	gsec error messages

	Database Configuration and Maintenance
	Database files
	Database file size
	Dynamic file sizing
	External files
	Temporary files
	File naming conventions
	Primary file specifications
	Secondary file specifications

	Multifile databases
	Adding database files
	Altering database file sizes
	Maximum number of files
	Application considerations
	Reorganizing file allocation

	Networked file systems

	On-disk structure (ODS)
	Read-write and read-only databases
	Read-write databases
	Read-only databases
	Properties of read-only databases
	Making a database read-only
	Read-only with older InterBase versions

	Creating databases
	Database options
	Page size
	Default character set
	SQL dialect

	Dropping databases
	Backup file properties
	Removing database backup files
	Shadowing
	Tasks for shadowing
	Advantages of shadowing
	Limitations of shadowing
	Creating a shadow
	Creating a single-file shadow
	Creating a multifile shadow
	Auto mode and manual mode
	Conditional shadows

	Activating a shadow
	Dropping a shadow
	Adding a shadow file

	Setting database properties
	Alias tab
	General tab

	Sweep interval and automated housekeeping
	Overview of sweeping
	Garbage collection
	Automatic housekeeping
	Configuring sweeping

	Setting the sweep interval
	Disabling automatic sweeping
	Performing an immediate database sweep

	Configuring the database cache
	Default cache size per database
	Default cache size per ISQL connection
	Setting cache size in applications
	Default cache size per server
	Verifying cache size

	Forced writes vs. buffered writes
	Validation and repair
	Validating a database
	Validating a database using gfix
	Validating a database using IBConsole

	Repairing a corrupt database

	Shutting down and restarting databases
	Shutting down a database
	Shutdown timeout options
	Shutdown options

	Restarting a database

	Limbo transactions
	Recovering transactions
	Transaction tab
	Details tab

	Viewing the administration log
	gfix command-line tool
	gfix error messages

	Licensing
	Software activation certificates
	License registration tools
	Using IBConsole
	Viewing existing licenses
	Adding a certificate ID/key
	Deleting a certificate ID/key

	Command-line registration utility
	Available certificates
	A note on simultaneous connections
	The InterBase license file
	Options in the ib_license.dat file

	Licensing multiple instances of InterBase

	Database Backup and Restore
	Benefits of backup and restore
	Database ownership

	Backing up a database using IBConsole
	Backup options
	Format
	Metadata Only
	Garbage collection
	Transactions in limbo
	Checksums
	Convert to Tables
	Verbose Output

	Transferring databases to servers running different operating systems

	Restoring a database using IBConsole
	Restore options
	Page Size
	Overwrite
	Commit After Each Table
	Create Shadow Files
	Deactivate Indexes
	Validity Conditions
	Use All Space
	Verbose Output

	gbak command-line tool
	Database backup
	Backing up a database with gbak
	Restoring a database with gbak
	Using gbak with InterBase Service Manager
	The user name and password
	Some backup and restore examples
	Database backup examples
	Database restore examples

	gbak error messages

	Database Statistics and Connection Monitoring
	Monitoring with system temporary tables
	Querying system temporary tables
	Refreshing the temporary tables
	Listing the temporary tables
	Security
	Examples

	Updating system temporary tables
	Making global changes

	Viewing statistics using IBConsole
	Database statistics options
	All Options
	Data Pages
	Database Log
	Header Pages
	Index Pages
	System Relations

	Monitoring client connections with IBConsole
	The gstat command-line tool
	Viewing lock statistics
	Retrieving statistics with api_database_info()

	Interactive Query
	The IBConsole ISQL window
	SQL input area
	SQL output area
	Status bar
	ISQL menus
	File menu
	Edit menu
	Query menu
	Database menu
	Transactions menu
	Windows menu

	ISQL toolbar

	Managing ISQL temporary files
	Executing SQL statements
	Executing SQL interactively
	Preparing SQL statements
	Valid SQL statements
	Executing a SQL script file

	Committing and rolling back transactions
	Saving ISQL input and output
	Saving SQL input
	Saving SQL output

	Changing ISQL settings
	Options tab
	Advanced tab

	Inspecting database objects
	Viewing object properties
	Viewing metadata
	Extracting metadata

	Extracting metadata

	Command-line isql tool
	Invoking isql
	Command-line options
	Using warnings
	Examples
	Exiting isql
	Connecting to a database

	Setting isql client dialect
	Transaction behavior in isql
	Extracting metadata
	isql commands
	SHOW commands
	SET commands
	Other isql commands
	Exiting isql

	Error handling

	isql command reference
	BLOBDUMP
	EDIT
	EXIT
	HELP
	INPUT
	OUTPUT
	QUIT
	SET
	SET AUTODDL
	SET BLOBDISPLAY
	SET COUNT
	SET ECHO
	SET LIST
	SET NAMES
	SET PLAN
	SET STATS
	SET TIME
	SHELL
	SHOW CHECK
	SHOW DATABASE
	SHOW DOMAINS
	SHOW EXCEPTIONS
	SHOW FILTERS
	SHOW FUNCTIONS
	SHOW GENERATORS
	SHOW GRANT
	SHOW INDEX
	SHOW PROCEDURES
	SHOW ROLES
	SHOW SYSTEM
	SHOW TABLES
	SHOW TRIGGERS
	SHOW VERSION
	SHOW VIEWS

	Using SQL scripts
	Creating an isql script
	Running a SQL script
	To run a SQL script using IBConsole
	To run a SQL script using the command-line isql tool

	Committing work in a SQL script
	Adding comments in an isql script

	Database and Server Performance
	Introduction
	Hardware configuration
	Choosing a processor speed
	Sizing memory
	Using high-performance I/O subsystems
	Distributing I/O
	Using RAID
	Using multiple disks for database files
	Using multiple disk controllers
	Making drives specialized

	Using high-bandwidth network systems
	Using high-performance bus
	Useful links

	Operating system configuration
	Disabling screen savers
	Console logins
	Sizing a temporary directory
	Use a dedicated server
	Optimizing Windows for network applications
	Understanding Windows server pitfalls

	Network configuration
	Choosing a network protocol
	NetBEUI
	TCP/IP

	Configuring hostname lookups

	Database properties
	Choosing a database page size
	Setting the database page fill ratio
	Sizing database cache buffers
	Buffering database writes

	Database design principles
	Defining indexes
	What is an index?
	What queries use an index?
	What queries don’t use indexes?
	Directional indexes

	Normalizing databases
	Choosing Blob segment size

	Database tuning tasks
	Tuning indexes
	Rebuilding indexes
	Recalculating index selectivity

	Performing regular backups
	Increasing backup performance
	Increasing restore performance

	Facilitating garbage collection

	Application design techniques
	Using transaction isolation modes
	Using correlated subqueries
	Preparing parameterized queries
	Designing query optimization plans
	Deferring index updates

	Application development tools
	InterBase Express™ (IBX)
	IB Objects
	Borland Database Engine
	BDE driver flags
	SQL passthru mode
	SQL query mode

	Visual components
	Understanding fetch-all operations
	TQuery
	TTable

	Migrating to InterBase 6 and later
	Migration process
	Server and database migration
	Client migration

	Migration Issues
	InterBase SQL dialects
	Clients and databases
	Keywords used as identifiers
	Understanding SQL dialects
	Dialect 1 clients and databases
	Dialect 2 clients
	Dialect 3 clients and databases

	Setting SQL dialects
	Setting the isql client dialect
	Setting the gpre dialect
	Setting the database dialect

	Features and dialects
	Features available in all dialects
	IBConsole, InterBase’s graphical interface
	Read-only databases
	Altering column definitions
	Altering domain definitions
	The EXTRACT() function
	SQL warnings
	The Services API, Install API, and Licensing API
	New gbak functionality
	InterBase Express™ (IBX)

	Features available only in dialect 3 databases
	Delimited identifiers
	INT64 data storage
	DATE and TIME datatypes

	New InterBase keywords
	Delimited identifiers
	How double quotes have changed

	DATE, TIME, and TIMESTAMP datatypes
	Converting TIMESTAMP columns to DATE or TIME
	Casting date/time datatypes
	Adding and subtracting datetime datatypes
	Using date/time datatypes with aggregate functions
	Default clauses
	Extracting date and time information

	DECIMAL and NUMERIC datatypes
	Compiled objects
	Generators
	Miscellaneous issues

	Migrating servers and databases
	“In-place” server migration
	Migrating to a new server
	About InterBase 6, dialect 1 databases

	Migrating databases to dialect 3
	Overview
	Method one: in-place migration
	Column defaults and column constraints
	Unnamed table constraints
	About NUMERIC and DECIMAL datatypes

	Method two: migrating to a new database
	Migrating older databases

	Migrating clients
	IBReplicator migration issues
	Migrating data from other DBMS products

	InterBase Limits
	Various InterBase limits

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

