
Embarcadero® InterBase XE7™

Embedded SQL Guide

Published ReleaseDate: November, 2014

© 2014 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and
all other Embarcadero Technologies product or service names are trademarks or registered trademarks
of Embarcadero Technologies, Inc. All other trademarks are property of their respective owners.

This software/documentation contains proprietary information of Embarcadero Technologies, Inc.;
it is provided under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application developers
and database professionals so they can design systems right, build them faster and run them better,
regardless of their platform or programming language. Ninety of the Fortune 100 and an active
community of more than three million users worldwide rely on Embarcadero products to increase
productivity, reduce costs, simplify change management and compliance, and accelerate innovation.
Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located around the
world. To learn more, please visit http://www.embarcadero.com.

November 14, 2014

http://www.embarcadero.com

Contents
Contents ix

Tables xiii

Figures xv

Chapter 1
Using the Embedded SQL Guide
Who Should Use this Guide 1-1
Topics Covered in this Guide 1-2

Chapter 2
Application Requirements
Requirements for All Applications 2-1

Porting Considerations for SQL 2-2
Porting Considerations for DSQL. 2-2
Declaring Host Variables 2-2

Declaring and Initializing Databases 2-5
Using SET DATABASE 2-5
Using CONNECT. 2-6
Working with a Single Database 2-6

SQL Statements . 2-7
Error Handling and Recovery 2-7
Closing Transactions. 2-7

Accepting Changes. 2-8
Undoing Changes 2-8

Closing Databases 2-8
DSQL Requirements 2-9

Declaring an XSQLDA 2-9
DSQL Limitations 2-10

Using Database Handles 2-11
Using the Active Database 2-11
Using Transaction Names 2-11

Preprocessing Programs. 2-12

Chapter 3
Working with Databases
Declaring a Database 3-1

Declaring Multiple Databases 3-2
Preprocessing and Run Time Databases 3-4
Controlling SET DATABASE Scope 3-5

Specifying a Connection Character Set 3-6
Opening a Database 3-6

Using simple CONNECT Statements 3-7
Additional CONNECT Syntax 3-10
Attaching to Multiple Databases 3-11
Handling CONNECT Errors 3-11
Setting Database Cache Buffers 3-12

Accessing an Open Database 3-13
Differentiating Table Names 3-13
Closing a Database 3-14

With DISCONNECT 3-14

With COMMIT and ROLLBACK 3-15

Chapter 4
Working with Transactions
Starting the Default Transaction 4-2

Starting Without SET TRANSACTION 4-2
Starting With SET TRANSACTION. 4-3

Starting a Named Transaction 4-4
Naming Transactions4-5
Specifying SET TRANSACTION Behavior4-7

Using Transaction Names in Data Statements. . . . 4-18
Ending a Transaction. 4-20

Using COMMIT 4-20
Using ROLLBACK 4-24

Working with Multiple Transactions 4-25
The Default Transaction 4-25
Using Cursors. 4-25
A Multi-transaction Example 4-26

Working with Multiple Transactions in DSQL. 4-27
Modifying Transaction Behavior with “?” 4-28

Chapter 5
Working with Data Definition Statements
Creating Metadata 5-2

Metadata Names 5-2
Creating a Database 5-3
Creating a Domain 5-4
Creating a Table 5-5
Creating a View5-8
Creating an Index 5-10
Creating Generators 5-11

Dropping Metadata 5-12
Dropping an Index 5-12
Dropping a View 5-12
Dropping a Table 5-13

Altering Metadata. 5-13
Altering a Table 5-14
Altering a View 5-17
Altering an Index 5-18

Chapter 6
Working with Data
Supported Datatypes6-2
Understanding SQL Expressions. 6-4

Using the String Operator in Expressions 6-6
Using Arithmetic Operators in Expressions. 6-6
Using Logical Operators in Expressions 6-7
Using Comparison Operators in Expressions . . .6-8
Determining Precedence of Operators 6-15
Using CAST() for Datatype Conversions. 6-17
Using UPPER() on Text Data. 6-18

Understanding Data Retrieval with SELECT 6-19
ix

Listing Columns to Retrieve with SELECT 6-21
Specifying Transaction Names 6-23
Specifying Host Variables with INTO. 6-24
Listing Tables to Search with FROM 6-24
Restricting Row Retrieval with WHERE 6-26
Sorting Rows with ORDER BY 6-29
Grouping Rows with GROUP BY. 6-31
Restricting Grouped Rows with HAVING. 6-32
Limiting Result Sets with ROWS 6-33
Appending Tables with UNION. 6-34
Specifying a Query Plan with PLAN 6-35

Selecting a Single Row 6-36
Selecting Multiple Rows 6-36

Declaring a Cursor 6-37
Opening a Cursor 6-38
Fetching Rows with a Cursor 6-39
Closing the Cursor 6-41
A Complete Cursor Example 6-41
Selecting Rows with NULL Values 6-42
Selecting Rows Through a View 6-44

Selecting Multiple Rows in DSQL 6-44
Declaring a DSQL Cursor 6-45
Opening a DSQL Cursor 6-45
Fetching Rows with a DSQL Cursor 6-46

Joining Tables . 6-46
Choosing Join Columns 6-47
Using Inner Joins 6-47
Using Outer Joins 6-50
Using Nested Joins. 6-52

Using Subqueries 6-52
Simple Subqueries 6-53
Correlated Subqueries 6-54

Inserting Data . 6-55
Using VALUES to Insert Columns 6-55
Using SELECT to Insert Columns 6-56
Inserting Rows with NULL Column Values 6-57
Inserting Data Through a View 6-59
Specifying Transaction Names in an INSERT . . 6-60

Updating Data . 6-61
Updating Multiple Rows 6-61
NULLing Columns with UPDATE. 6-64
Updating Through a View 6-64
Specifying Transaction Names in UPDATE . . . 6-65

Deleting Data . 6-66
Deleting Multiple Rows 6-66
Deleting Through a View 6-69
Specifying Transaction Names in a DELETE . . 6-69

Chapter 7
Working with Dates and Times
Querying the Database for Current Date and Time

Information . 7-2
Getting the Current Date and Time. 7-2
Extracting Date and Time Information 7-2

Selecting Dates and Times 7-3

Formatting Dates for Input 7-4
Inserting Dates and Times7-6
Updating Dates and Times7-7
Using CAST() to Convert Dates and Times7-7

Casting from SQL Datatypes to Date and Time
Datatypes . .7-8

Casting from Date and Time Datatypes to Other SQL
Datatypes . .7-9

Using Date Literals 7-10
Adding and Subtracting Date and Time Datatypes. . 7-11
Comparing Dates and Times 7-12
Using Date and Time Datatypes with Aggregate

Functions . 7-13

Chapter 8
Working with Blob Data
What is a Blob?. .8-1
How are Blob Data Stored? 8-2

Blob Sub-types 8-2
Blob Database Storage8-3
Blob Segment Length. 8-4
Overriding Segment Length 8-5

Accessing Blob Data with SQL8-5
Selecting Blob Data. 8-5
Inserting Blob Data8-7
Updating Blob Data8-9
Deleting Blob Data 8-10

Accessing Blob Data with API Calls 8-11
Filtering Blob Data 8-11

Using the Standard InterBase Text Filters 8-12
Using an External Blob Filter 8-12

Writing an External Blob Filter 8-14
Filter Types . 8-14
Read-only and Write-only Filters 8-14
Defining the Filter Function 8-14

Chapter 9
Using Arrays
Creating Arrays. .9-1

Multi-dimensional Arrays 9-2
Specifying Subscript Ranges9-2

Accessing Arrays9-3
Selecting Data from an Array9-4
Inserting Data into an Array. 9-5
Selecting from an Array Slice9-5
Updating Data in an Array Slice 9-7
Testing a Value in a Search Condition 9-8
Using Host Variables in Array Subscripts. 9-8
Using Arithmetic Expressions with Arrays 9-8

Chapter 10
Working with Stored Procedures
Using Stored Procedures. 10-2

Procedures and Transactions 10-2
Security for Procedures. 10-2
x

Using Select Procedures. 10-3
Calling a Select Procedure 10-3
Using a Select Procedure with Cursors 10-4

Using Executable Procedures 10-4
Executing a Procedure 10-4
Executing a Procedure in a DSQL Application . . 10-5

Chapter 11
Working with Events
Understanding the Event Mechanism 11-1
Signaling Event Occurrences 11-2
Registering Interest in Events 11-2
Registering Interest in Multiple Events 11-3
Waiting for Events with EVENT WAIT 11-4
Responding to Events 11-5

Chapter 12
Error Handling and Recovery
Standard Error Handling 12-1

WHENEVER Statements 12-2
Testing SQLCODE Directly. 12-4
Combining Error-handling Techniques 12-5
Guidelines for Error Handling. 12-6

Additional InterBase Error Handling 12-7
Displaying Error Messages. 12-8
Capturing SQL Error Messages 12-9
Capturing InterBase Error Messages. 12-10
Handling InterBase Error Codes 12-11

Chapter 13
Using Dynamic SQL
Overview of the DSQL Programming Process. . . . 13-1
DSQL Limitations 13-2

Accessing Databases 13-2
Handling Transactions 13-3
Creating a Database 13-4
Processing Blob Data 13-4
Processing Array Data 13-4

Writing a DSQL Application 13-4
SQL Statements that DSQL Can Process 13-5
SQL Character Strings 13-6
Value Parameters in Statement Strings 13-6

Understanding the XSQLDA 13-7
XSQLDA Field Descriptions 13-9
XSQLVAR Field Descriptions. 13-9
Input Descriptors 13-11
Output Descriptors 13-11
Using the XSQLDA_LENGTH Macro 13-11
SQL Datatype Macro Constants 13-12
Handling Varying String Datatypes 13-14
NUMERIC and DECIMAL Datatypes 13-14
Coercing Datatypes. 13-15
Aligning Numerical Data 13-16

DSQL Programming Methods 13-17
Method 1: Non-query Statements Without Parameters

13-17
Method 2: Non-query Statements with Parameters .

13-18
Method 3: Query Statements Without Parameters . .

13-21
Method 4: Query Statements with Parameters . 13-25

Chapter 14
Preprocessing, Compiling, and Linking
Preprocessing . 14-1

Using gpre . 14-1
Setting gpre Client Dialect 14-4
Using a File Extension to Specify Language . . . 14-5
Specifying the Source File 14-5

Compiling and Linking 14-7
Microsoft Windows 14-7
Solaris . 14-8
Compiling an Ada Program 14-8
Linking on UNIX 14-8
xi

xii

Tables

1.1 Chapters in the InterBase Embedded SQL

Guide 1-2
3.1 CONNECT syntax summary 3-10
4.1 SQL transaction management statements 4-1
4.2 Default transaction default behavior . . . 4-3
4.3 SET TRANSACTION parameters. 4-8
4.4 ISOLATION LEVEL options 4-10
4.5 InterBase management of classic transaction

conflicts 4-11
4.6 Isolation level Interaction with SELECT and

UPDATE 4-15
4.7 Table reservation options for the

RESERVING clause 4-17
5.1 Data definition statements supported for

embedded applications 5-1
6.1 Datatypes supported by InterBase 6-2
6.2 Elements of SQL expressions 6-4
6.3 Arithmetic operators. 6-6
6.4 Comparison operators 6-8
6.5 InterBase comparison operators requiring

subqueries 6-8
6.6 Operator precedence by operator type . 6-15
6.7 Mathematical operator precedence . . . 6-16
6.8 Comparison operator precedence . . . 6-16
6.9 Logical operator precedence 6-17
6.10 Compatible datatypes for CAST(). . . . 6-18
6.11 SELECT statement clauses. 6-20
6.12 Aggregate functions in SQL. 6-22

6.13 Elements of WHERE clause SEARCH
conditions. 6-28

6.14 Forms of the ROWS clause 6-33
7.1 Extracting date and time information . . . 7-3
7.2 Casting from SQL datatypes to datetime

datatypes 7-8
7.3 Casting from datetime datatypes to other

SQL datatypes 7-9
7.4 Adding and subtracting date/time datatypes .

7-11
8.1 Blob sub-types defined by InterBase . . . 8-2
8.2 API Blob calls. 8-11
8.3 isc_blob_ctl structure field descriptions 8-17
8.4 Blob access operations. 8-19
8.5 Blob filter status values 8-21
12.1 Possible SQLCODE values 12-1
13.1 XSQLDA field descriptions 13-9
13.2 XSQLVAR field descriptions 13-9
13.3 SQL datatypes, macro expressions, and C

datatypes13-12
13.4 SQL statement strings and recommended

processing methods 13-17
14.1 gpre language switches available on all

platforms 14-2
14.2 Additional gpre language switches . . . 14-2
14.3 gpre option switches 14-3
14.4 Language-specific gpre option switches 14-4
14.5 File extensions for language specification . .

14-5
xiii

xiv

Figures

8.1 Relationship of a Blob ID to Blob segments in

a database 8-4
8.2 Filtering from lowercase to uppercase. . 8-13
8.3 Filtering from uppercase to lowercase. . 8-13

8.4 Filter interaction with an application and a
database 8-15

13.1 XSQLDA and XSQLVAR relationship. . . . 13-8
xv

xvi

C h a p t e r

Chapter 1Using the
Embedded SQL Guide

The InterBase Embedded SQL Guide is a task-oriented explanation of how to
write, preprocess, compile, and link embedded SQL and DSQL database
applications using InterBase and a host programming language, either C or C++.
This chapter describes who should read this book, and provides a brief overview of
its chapters.

Who Should Use this Guide

The InterBase Embedded SQL Guide is intended for database applications
programmers. It assumes a general knowledge of:

• SQL

• Relational database programming

• C programming

The Embedded SQL Guide assumes little or no previous experience with
InterBase. See the Operations Guide for an introduction to InterBase and the
Language Reference Guide for an introduction to SQL.

Note The Embedded SQL Guide focuses on embedded SQL and DSQL programming in
C or C++. It does not address Delphi-specific topics.
C h a p t e r 1 U s i n g t h e E m b e d d e d S Q L G u i d e 1-1

Topics Covered in this Guide
Topics Covered in this Guide

The following table provides a brief description of each chapter in this Embedded
SQL Guide:

Table 1.1 Chapters in the InterBase Embedded SQL Guide

Chapter Description

Chapter 1, “Using the
Embedded SQL Guide”

Introduces the structure of the book and
describes its intended audience.

Chapter 2, “Application
Requirements”

Describes elements common to
programming all SQL and DSQL
applications.

Chapter 3, “Working with Databases” Describes using SQL statements that deal
with databases.

Chapter 4, “Working with
Transactions”

Explains how to use and control transactions
with SQL statements.

Chapter 5, “Working with
Data Definition Statements”

Describes how to embed SQL data definition
statements in applications.

Chapter 6, “Working with Data” Explains how to select, insert, update, and
delete standard SQL data in applications.

Chapter 7, “Working with Dates and
Times”

Describes how to select, insert, update, and
delete DATE, TIME, and TIMESTAMP data in
applications.

Chapter 8, “Working with Blob Data” Describes how to select, insert, update, and
delete Blob data in applications.

Chapter 9, “Using Arrays” Describes how to select, insert, update, and
delete array data in applications.

Chapter 10, “Working with
Stored Procedures”

Explains how to call stored procedures in
applications.

Chapter 11, “Working with Events” Explains how triggers interact with
applications. Describes how to register
interest in events, wait on them, and
respond to them in applications.

Chapter 12, “Error Handling and
Recovery”

Describes how to trap and handle SQL
statement errors in applications.

Chapter 13, “Using Dynamic SQL” Describes how to write DSQL applications.

Chapter 14, “Preprocessing,
Compiling, and Linking”

Describes how to convert source code into
an executable application.
1-2 Embedded SQL Guide

C h a p t e r

Chapter 2Application Requirements
This chapter describes programming requirements for InterBase SQL and dynamic
SQL (DSQL) applications. Many of these requirements may also affect developers
moving existing applications to InterBase.

Requirements for All Applications

All embedded applications must include certain declarations and statements to
ensure proper handling by the InterBase preprocessor, gpre, and to enable
communication between SQL and the host language in which the application is
written. Every application must:

• Declare host variables to use for data transfer between SQL and the
application.

• Declare and set the databases accessed by the program.

• Create transaction handles for each non-default transaction used in the
program.

• Include SQL (and, optionally, DSQL) statements.

• Provide error handling and recovery.

• Close all transactions and databases before ending the program.

Dynamic SQL applications, those applications that build SQL statements at run
time, or enable users to build them, have additional requirements. For more
information about DSQL requirements, see “DSQL Requirements” on page 2-9.

For more information about using gpre, see “Preprocessing,
Compiling, and Linking.”
Chapter 2 Application Requirements 2-1

Requirements for All Applications
Porting Considerations for SQL

When porting existing SQL applications to InterBase, other considerations may be
necessary. For example, many SQL variants require that host variables be
declared between BEGIN DECLARE SECTION and END DECLARE SECTION
statements; InterBase has no such requirements, but gpre can correctly handle
section declarations from ported applications. For additional portability, declare all
host-language variables within sections.

Porting Considerations for DSQL

When porting existing DSQL applications to InterBase, statements that use
another vendor’s SQL descriptor area (SQLDA) must be modified to accommodate
the extended SQLDA (XSQLDA) used by InterBase.

Declaring Host Variables

A host variable is a standard host-language variable used to hold values read from
a database, to assemble values to write to a database, or to store values
describing database search conditions. SQL uses host variables in the following
situations:

• During data retrieval, SQL moves the values in database fields into host
variables where they can be viewed and manipulated.

• When a user is prompted for information, host variables are used to hold the
data until it can be passed to InterBase in a SQL INSERT or UPDATE statement.

• When specifying search conditions in a SELECT statement, conditions can be
entered directly, or in a host variable. For example, both of the following SQL
statement fragments are valid WHERE clauses. The second uses a host-
language variable, country, for comparison with a column, COUNTRY:

… WHERE COUNTRY = 'Mexico';
… WHERE COUNTRY = :country;

One host variable must be declared for every column of data accessed in a
database. Host variables may either be declared globally like any other standard
host-language variable, or may appear within a SQL section declaration with other
global declarations. For more information about reading from and writing to host
variables in SQL programs, see “Working with Data.”

Host variables used in SQL programs are declared just like standard language
variables. They follow all standard host-language rules for declaration,
initialization, and manipulation. For example, in C, variables must be declared
before they can be used as host variables in SQL statements:

int empno; char fname[26], lname[26];
2-2 Embedded SQL Guide

Requirements for All Applications
For compatibility with other SQL variants, host variables can also be declared
between BEGIN DECLARE SECTION and END DECLARE SECTION statements.

Section Declarations
Many SQL implementations expect host variables to be declared between BEGIN
DECLARE SECTION and END DECLARE SECTION statements. For portability and
compatibility, InterBase supports section declarations using the following syntax:

EXEC SQL
BEGIN DECLARE SECTION;

<hostvar>;
. . .

EXEC SQL
END DECLARE SECTION;

For example, the following C code fragment declares three host variables, empno,
fname, and lname, within a section declaration:

EXEC SQL
BEGIN DECLARE SECTION;

int empno;
char fname[26];
char lname[26];

EXEC SQL
END DECLARE SECTION;

Additional host-language variables not used in SQL statements can be declared
outside DECLARE SECTION statements.

Using BASED ON to Declare Variables
InterBase supports a declarative clause, BASED ON, for creating C language
character variables based on column definitions in a database. Using BASED ON
ensures that the resulting host-language variable is large enough to hold the
maximum number of characters in a CHAR or VARCHAR database column, plus an
extra byte for the null-terminating character expected by most C string functions.

BASED ON uses the following syntax:

BASED ON <dbcolumn> hostvar;

For example, the following statements declare two host variables, fname, and
lname, based on two column definitions, FIRSTNAME, and LASTNAME, in an
employee database:

BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME lname;

Embedded in a C or C++ program, these statements generate the following host-
variable declarations during preprocessing:

char fname[26];
char lname[26];
Chapter 2 Application Requirements 2-3

Requirements for All Applications
To use BASED ON, follow these steps:

1 Use SET DATABASE to specify the database from which column definitions are to
be drawn.

2 Use CONNECT to attach to the database.

3 Declare a section with BEGIN DECLARE SECTION.

4 Use the BASED ON statement to declare a string variable of the appropriate type.

The following statements show the previous BASED ON declarations in context:

EXEC SQL
SET DATABASE EMP = 'employee.ib';

EXEC SQL
CONNECT EMP;

EXEC SQL
BEGIN DECLARE SECTION;

int empno;
BASED ON EMP.FIRSTNAME fname;
BASED ON EMP.LASTNAME lname;

EXEC SQL
END DECLARE SECTION;

Host-language Data Structures
If a host language supports data structures, data fields within a structure can
correspond to a collection of database columns. For example, the following C
declaration creates a structure, BILLING_ADDRESS, that contains six variables, or
data members, each of which corresponds to a similarly named column in a table:

Example 2.1Using host-language data structures to reference table columns

struct
{

char fname[25];
char lname[25];
char street[30];
char city[20];
char state[3];
char zip[11];

} billing_address;

SQL recognizes data members in structures, but information read from or written
to a structure must be read from or written to individual data members in SQL
statements. For example, the following SQL statement reads data from a table into
variables in the C structure, BILLING_ADDRESS:

Example 2.2Using SQL to read table data into a C struct

EXEC SQL
SELECT FNAME, LNAME, STREET, CITY, STATE, ZIP

INTO :billing_address.fname, :billing_address.lname,
2-4 Embedded SQL Guide

Declaring and Initializing Databases
:billing_address.street, :billing_address.city,
:billing_address.state, :billing_address.zip
FROM ADDRESSES WHERE CITY = 'Brighton';

Declaring and Initializing Databases

A SQL program can access multiple InterBase databases at the same time. Each
database used in a multiple-database program must be declared and initialized
before it can be accessed in SQL transactions. Programs that access only a single
database need not declare the database or assign a database handle if, instead,
they specify a database on the gpre command line.

Important DSQL programs cannot connect to multiple databases.

InterBase supports the following SQL statements for handling databases:

• SET DATABASE declares the name of a database to access, and assigns it to a
database handle.

• CONNECT opens a database specified by a handle, and allocates it system
resources.

Database handles replace database names in CONNECT statements. They can
also be used to qualify table names within transactions. For a complete discussion
of database handling in SQL programs, see “Working with Databases.”

Using SET DATABASE

The SET DATABASE statement is used to:

• Declare a database handle for each database used in a SQL program.

• Associate a database handle with an actual database name. Typically, a
database handle is a mnemonic abbreviation of the actual database name.

SET DATABASE instantiates a host variable for the database handle without
requiring an explicit host variable declaration. The database handle contains a
pointer used to reference the database in subsequent SQL statements. To include
a SET DATABASE statement in a program, use the following syntax:

EXEC SQL
SET DATABASE handle = 'dbname';

A separate statement should be used for each database. For example, the
following statements declare a handle, DB1, for the employee.ib database, and
another handle, DB2, for employee2.ib:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';

EXEC SQL
SET DATABASE DB2 = 'employee2.ib';
Chapter 2 Application Requirements 2-5

Declaring and Initializing Databases
Once a database handle is created and associated with a database, the handle
can be used in subsequent SQL database and transaction statements that require
it, such as CONNECT.

Note SET DATABASE also supports user name and password options. For a complete
discussion of SET DATABASE options, see “Working with Databases.”

Using CONNECT

The CONNECT statement attaches to a database, opens the database, and
allocates system resources for it. A database must be opened before its tables can
be used. To include CONNECT in a program, use the following syntax:

EXEC SQL
CONNECT handle;

A separate statement can be used for each database, or a single statement can
connect to multiple databases. For example, the following statements connect to
two databases:

EXEC SQL
CONNECT DB1;

EXEC SQL
CONNECT DB2;

The next example uses a single CONNECT to establish both connections:

EXEC SQL
CONNECT DB1, DB2;

Once a database is connected, its tables can be accessed in subsequent
transactions. Its handle can qualify table names in SQL applications, but not in
DSQL applications. For a complete discussion of CONNECT options and using
database handles, see “Working with Databases.”

Working with a Single Database

In single-database programs preprocessed without the gpre -m switch, SET
DATABASE and CONNECT are optional. The -m switch suppresses automatic
generation of transactions. Using SET DATABASE and CONNECT is strongly
recommended, however, especially as a way to make program code as self-
documenting as possible. If you omit these statements, take the following steps:

1 Insert a section declaration in the program code where global variables are
defined. Use an empty section declaration if no host-language variables are
used in the program. For example, the following declaration illustrates an empty
section declaration:

EXEC SQL
BEGIN DECLARE SECTION;

EXEC SQL
2-6 Embedded SQL Guide

SQL Statements
END DECLARE SECTION;

2 Specify a database name on the gpre command line at precompile time. A
database need not be specified if a program contains a CREATE DATABASE
statement.

For more information about working with a single database in a SQL program, see
“Working with Databases.”

SQL Statements

A SQL application consists of a program written in a host language, like C or C++,
into which SQL and dynamic SQL (DSQL) statements are embedded. Any SQL or
DSQL statement supported by InterBase can be embedded in a host language.
Each SQL or DSQL statement must be:

• Preceded by the keywords EXEC SQL.

• Ended with the statement terminator expected by the host language. For
example, in C and C++, the host terminator is the semicolon (;).

For a complete list of SQL and DSQL statements supported by InterBase, see the
Language Reference Guide.

Error Handling and Recovery

Every time a SQL statement is executed, it returns an error code in the SQLCODE
variable. SQLCODE is declared automatically for SQL programs during
preprocessing with gpre. To catch run-time errors and recover from them when
possible, SQLCODE should be examined after each SQL operation.

SQL provides the WHENEVER statement to monitor SQLCODE and direct program
flow to recovery procedures. Alternatively, SQLCODE can be tested directly after
each SQL statement executes. For a complete discussion of SQL error handling
and recovery, see “Error Handling and Recovery.”

Closing Transactions

Every transaction should be closed when it completes its tasks, or when an error
occurs that prevents it from completing its tasks. Failure to close a transaction
before a program ends can cause limbo transactions, where records are entered
into the database, but are neither committed or rolled back. Limbo transactions
can be cleaned up using the database administration tools provided with
InterBase.
Chapter 2 Application Requirements 2-7

Closing Databases
Accepting Changes

The COMMIT statement ends a transaction, makes the transaction’s changes
available to other users, and closes cursors. A COMMIT is used to preserve
changes when all of a transaction’s operations are successful. To end a
transaction with COMMIT, use the following syntax:

EXEC SQL
COMMIT TRANSACTION name;

For example, the following statement commits a transaction named MYTRANS:

EXEC SQL
COMMIT TRANSACTION MYTRANS;

For a complete discussion of SQL transaction control, see “Working with
Transactions.”

Undoing Changes

The ROLLBACK statement undoes a transaction’s changes, ends the current
transaction, and closes open cursors. Use ROLLBACK when an error occurs that
prevents all of a transaction’s operations from being successful. To end a
transaction with ROLLBACK, use the following syntax:

EXEC SQL
ROLLBACK TRANSACTION name;

For example, the following statement rolls back a transaction named MYTRANS:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

To roll back an unnamed transaction (i.e., the default transaction), use the
following statement:

EXEC SQL
ROLLBACK;

For a complete discussion of SQL transaction control, see “Working with
Transactions.”

Closing Databases

Once a database is no longer needed, you should close it before the program
ends. If you do not, subsequent attempts to use the database may fail or result in
database corruption. There are two ways to close a database:

• Use the DISCONNECT statement to detach a database and close files.

• Use the RELEASE option with COMMIT or ROLLBACK in a program.
2-8 Embedded SQL Guide

DSQL Requirements
DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following
tasks:

• Close open database files.

• Close remote database connections.

• Release the memory that holds database descriptions and InterBase engine-
compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard.

For a complete discussion of closing databases, see “Working with Databases.”

DSQL Requirements

DSQL applications must adhere to all the requirements for all SQL applications
and meet additional requirements as well. DSQL applications enable users to
enter ad hoc SQL statements for processing at run time. To handle the wide variety
of statements a user might enter, DSQL applications require the following
additional programming steps:

• Declare as many extended SQL descriptor areas (XSQLDAs) as are needed in
the application; typically a program must use one or two of these structures.
Complex applications may require more.

• Declare all transaction names and database handles used in the program at
compile time; names and handles are not dynamic, so enough must be
declared to accommodate the anticipated needs of users at run time.

• Provide a mechanism to get SQL statements from a user.

• Prepare each SQL statement received from a user for processing.
PREPARE loads statement information into the XSQLDA.

• EXECUTE each prepared statement.

EXECUTE IMMEDIATE combines PREPARE and EXECUTE in a single statement. For
more information, see the Language Reference Guide.

In addition, the syntax for cursors involving Blob data differs from that of cursors for
other datatypes. For more information about Blob cursor statements, see
Language Reference Guide.

Declaring an XSQLDA

The extended SQL descriptor area (XSQLDA) is used as an intermediate staging
area for information passed between an application and the InterBase engine. The
XSQLDA is used for either of the following tasks:

• Pass input parameters from a host-language program to SQL.
Chapter 2 Application Requirements 2-9

DSQL Limitations
• Pass output, from a SELECT statement or stored procedure, from SQL to the
host-language program.

A single XSQLDA can be used for only one of these tasks at a time. Many
applications declare two XSQLDAs, one for input, and another for output.

The XSQLDA structure is defined in the InterBase header file, ibase.h, that is
automatically included in programs when they are preprocessed with gpre.

Important DSQL applications written using versions of InterBase prior to 3.3 use an older
SQL descriptor area, the SQLDA. The SQLDA and the gpre -sqlda switch are no
longer supported. Older applications should be modified to use the XSQLDA.

To create an XSQLDA for a program, a host-language datatype of the appropriate
type must be set up in a section declaration. For example, the following statement
creates two XSQLDA structures, inxsqlda, and outxsqlda:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
XSQLDA inxsqlda;
XSQLDA outxsqlda;
. . .

EXEC SQL
END DECLARE SECTION;

. . .

When an application containing XSQLDA declarations is preprocessed, gpre
automatically includes the header file, ibase.h, which defines the XSQLDA as a
host-language datatype. For a complete discussion of the structure of the XSQLDA,
see “Using Dynamic SQL.”

DSQL Limitations

DSQL enables programmers to create flexible applications that are capable of
handling a wide variety of user requests. Even so, not every SQL statement can be
handled in a completely dynamic fashion. For example, database handles and
transaction names must be specified when an application is written, and cannot be
changed or specified by users at run time. Similarly, while InterBase supports
multiple databases and multiple simultaneous transactions in an application, the
following limitations apply:

• Only a single database can be accessed at a time.

• Transactions can only operate on the currently active database.

• Users cannot specify transaction names in DSQL statements; instead,
transaction names must be supplied and manipulated when an application is
coded.
2-10 Embedded SQL Guide

DSQL Limitations
Using Database Handles

Database handles are always static, and can only be declared when an application
is coded. Enough handles must be declared to satisfy the expected needs of
users. Once a handle is declared, it can be assigned to a user-specified database
at run time with SET DATABASE, as in the following C code fragment:

. . .
EXEC SQL

SET DATABASE DB1 = 'dummydb.ib';
EXEC SQL

SET DATABASE DB2 = 'dummydb.ib';
. . .

printf("Specify first database to open: ");
gets(fname1);
printf("\nSpecify second database to open: ");
gets(fname2);

EXEC SQL
SET DATABASE DB1 = :fname1;

EXEC SQL
SET DATABASE DB2 = :fname2;

. . .

For a complete discussion of SET DATABASE, see “Working with Databases.”

Using the Active Database

A DSQL application can only work with one database at a time, even if the
application attaches to multiple databases. All DSQL statements operate only on
the currently active database, the last database associated with a handle in a SET
DATABASE statement.

Embedded SQL statements within a DSQL application can operate on any open
database. For example, all DSQL statements entered by a user at run time might
operate against a single database specified by the user, but the application might
also contain non-DSQL statements that record user entries in a log database.

For a complete discussion of SET DATABASE, see “Working with Databases.”

Using Transaction Names

Many SQL statements support an optional transaction name parameter, used to
specify the controlling transaction for a specific statement. Transaction names can
be used in DSQL applications, too, but must be set up when an application is
compiled. Once a name is declared, it can be directly inserted into a user
statement only by the application itself.
Chapter 2 Application Requirements 2-11

Preprocessing Programs
After declaration, use a transaction name in an EXECUTE or EXECUTE IMMEDIATE
statement to specify the controlling transaction, as in the following C code
fragment:

. . .
EXEC SQL

BEGIN DECLARE SECTION:
long first, second; /* declare transaction names */

EXEC SQL
END DECLARE SECTION;

. . .
first = second = 0L; /* initialize names to zero */
. . .
EXEC SQL

SET TRANSACTION first; /* start transaction 1 */
EXEC SQL

SET TRANSACTION second; /* start transaction 2 */

printf("\nSQL> ");
gets(userstatement);

EXEC SQL
EXECUTE IMMEDIATE TRANSACTION first userstatement;

. . .

For complete information about named transactions, see “Working with
Transactions.”

Preprocessing Programs

After a SQL or DSQL program is written, and before it is compiled and linked, it
must be preprocessed with gpre, the InterBase preprocessor. gpre translates SQL
statements and variables into statements and variables that the host-language
compiler accepts. For complete information about preprocessing with gpre, see
“Preprocessing, Compiling, and Linking.”
2-12 Embedded SQL Guide

C h a p t e r

Chapter 3Working with Databases
This chapter describes how to use SQL statements in embedded applications to
control databases. There are three database statements that set up and open
databases for access:

• SET DATABASE declares a database handle, associates the handle with an
actual database file, and optionally assigns operational parameters for the
database.

• SET NAMES optionally specifies the character set a client application uses for
CHAR, VARCHAR, and text Blob data. The server uses this information to
transliterate from a database’s default character set to the client’s character set
on SELECT operations, and to transliterate from a client application’s character
set to the database character set on INSERT and UPDATE operations.

• CONNECT opens a database, allocates system resources for it, and optionally
assigns operational parameters for the database.

All databases must be closed before a program ends. A database can be closed
by using DISCONNECT, or by appending the RELEASE option to the final COMMIT or
ROLLBACK in a program.

Declaring a Database

Before a database can be opened and used in a program, it must first be declared
with SET DATABASE to:

• Establish a database handle.

• Associate the database handle with a database file stored on a local or remote
node.
Chapter 3 Working with Databases 3-1

Declaring a Database
A database handle is a unique, abbreviated alias for an actual database name.
Database handles are used in subsequent CONNECT, COMMIT RELEASE, and
ROLLBACK RELEASE statements to specify which databases they should affect.
Except in dynamic SQL (DSQL) applications, database handles can also be used
inside transaction blocks to qualify, or differentiate, table names when two or more
open databases contain identically named tables.

Each database handle must be unique among all variables used in a program.
Database handles cannot duplicate host-language reserved words, and cannot be
InterBase reserved words.

The following statement illustrates a simple database declaration:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';

This database declaration identifies the database file, employee.ib, as a database
the program uses, and assigns the database a handle, or alias, DB1.

If a program runs in a directory different from the directory that contains the
database file, then the file name specification in SET DATABASE must include a full
path name, too. For example, the following SET DATABASE declaration specifies the
full path to employee.ib:

EXEC SQL
SET DATABASE DB1 = '/InterBase/examples/employee.ib';

If a program and a database file it uses reside on different hosts, then the file name
specification must also include a host name. The following declaration illustrates
how a Unix host name is included as part of the database file specification on a
TCP/IP network:

EXEC SQL
SET DATABASE DB1 = 'jupiter:/usr/interbase/examples/

employee.ib';

On a Windows network that uses the NetBEUI protocol, specify the path as
follows:

EXEC SQL
SET DATABASE DB1 = '//venus/C:/InterBase/examples/

employee.ib';

Declaring Multiple Databases

A SQL program, but not a DSQL program, can access multiple databases at the
same time. In multi-database programs, database handles are required. A handle
is used to:

• Reference individual databases in a multi-database transaction.

• Qualify table names.
3-2 Embedded SQL Guide

Declaring a Database
• Specify databases to open in CONNECT statements.

• Indicate databases to close with DISCONNECT, COMMIT RELEASE, and ROLLBACK
RELEASE.

DSQL programs can access only a single database at a time, so database handle
use is restricted to connecting to and disconnecting from a database.

In multi-database programs, each database must be declared in a separate SET
DATABASE statement. For example, the following code contains two SET DATABASE
statements:

. . .
EXEC SQL

SET DATABASE DB2 = 'employee2.ib';
EXEC SQL

SET DATABASE DB1 = 'employee.ib';
. . .

Using Handles for Table Names
When the same table name occurs in more than one simultaneously accessed
database, a database handle must be used to differentiate one table name from
another. The database handle is used as a prefix to table names, and takes the
form handle.table.

For example, in the following code, the database handles, TEST and EMP, are used
to distinguish between two tables, each named EMPLOYEE:

. . .
EXEC SQL

DECLARE IDMATCH CURSOR FOR
SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE TESTNO > 100;
EXEC SQL

DECLARE EIDMATCH CURSOR FOR
SELECT EMPNO INTO :empid FROM EMP.EMPLOYEE
WHERE EMPNO = :matchid;

. . .
Important This use of database handles applies only to embedded SQL applications. DSQL

applications cannot access multiple databases simultaneously.

Using Handles with Operations
In multi-database programs, database handles must be specified in CONNECT
statements to identify which databases among several to open and prepare for use
in subsequent transactions.

Database handles can also be used with DISCONNECT, COMMIT RELEASE, and
ROLLBACK RELEASE to specify a subset of open databases to close.
Chapter 3 Working with Databases 3-3

Declaring a Database
To open and prepare a database with CONNECT, see “Opening a Database”. To
close a database with DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE, see
“Closing a Database”. To learn more about using database handles in
transactions, see “Accessing an Open Database”.

Preprocessing and Run Time Databases

Normally, each SET DATABASE statement specifies a single database file to
associate with a handle. When a program is preprocessed, gpre uses the specified
file to validate the program’s table and column references. Later, when a user runs
the program, the same database file is accessed. Different databases can be
specified for preprocessing and run time when necessary.

Using the COMPILETIME Clause
A program can be designed to run against any one of several identically structured
databases. In other cases, the actual database that a program will use at runtime
is not available when a program is preprocessed and compiled. In such cases, SET
DATABASE can include a COMPILETIME clause to specify a database for gpre to test
against during preprocessing. For example, the following SET DATABASE statement
declares that employee.ib is to be used by gpre during preprocessing:

EXEC SQL
SET DATABASE EMP = COMPILETIME 'employee.ib';

Important The file specification that follows the COMPILETIME keyword must always be a
hard-coded, quoted string.

When SET DATABASE uses the COMPILETIME clause, but no RUNTIME clause, and
does not specify a different database file specification in a subsequent CONNECT
statement, the same database file is used both for preprocessing and run time. To
specify different preprocessing and runtime databases with SET DATABASE, use
both the COMPILETIME and RUNTIME clauses.

Using the RUNTIME Clause
When a database file is specified for use during preprocessing, SET DATABASE can
specify a different database to use at run time by including the RUNTIME keyword
and a runtime file specification:

EXEC SQL
SET DATABASE EMP = COMPILETIME 'employee.ib'

RUNTIME 'employee2.ib';

The file specification that follows the RUNTIME keyword can be either a hard-
coded, quoted string, or a host-language variable. For example, the following C
code fragment prompts the user for a database name, and stores the name in a
variable that is used later in SET DATABASE:

. . .
char db_name[125];
3-4 Embedded SQL Guide

Declaring a Database
. . .
printf("Enter the desired database name, including node

and path):\n");
gets(db_name);
EXEC SQL

SET DATABASE EMP = COMPILETIME 'employee.ib' RUNTIME
:db_name;
. . .

Note Host-language variables in SET DATABASE must be preceded, as always, by a colon.

Controlling SET DATABASE Scope

By default, SET DATABASE creates a handle that is global to all modules in an
application. A global handle is one that may be referenced in all host-language
modules comprising the program. SET DATABASE provides two optional keywords
to change the scope of a declaration:

• STATIC limits declaration scope to the module containing the SET DATABASE
statement. No other program modules can see or use a database handle
declared STATIC.

• EXTERN notifies gpre that a SET DATABASE statement in a module duplicates a
globally-declared database in another module. If the EXTERN keyword is used,
then another module must contain the actual SET DATABASE statement, or an
error occurs during compilation.

The STATIC keyword is used in a multi-module program to restrict database handle
access to the single module where it is declared. The following example illustrates
the use of the STATIC keyword:

EXEC SQL
SET DATABASE EMP = STATIC 'employee.ib';

The EXTERN keyword is used in a multi-module program to signal that SET
DATABASE in one module is not an actual declaration, but refers to a declaration
made in a different module. gpre uses this information during preprocessing. The
following example illustrates the use of the EXTERN keyword:

EXEC SQL
SET DATABASE EMP = EXTERN 'employee.ib';

If an application contains an EXTERN reference, then when it is used at run time,
the actual SET DATABASE declaration must be processed first, and the database
connected before other modules can access it.

A single SET DATABASE statement can contain either the STATIC or EXTERN
keyword, but not both. A scope declaration in SET DATABASE applies to both
COMPILETIME and RUNTIME databases.
Chapter 3 Working with Databases 3-5

Specifying a Connection Character Set
Specifying a Connection Character Set

When a client application connects to a database, it may have its own character
set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client
application specifies its character set requirement using the SET NAMES statement
before it connects to the database.

SET NAMES specifies the character set the server should use when translating data
from the database to the client application. Similarly, when the client sends data to
the database, the server translates the data from the client’s character set to the
database’s default character set (or the character set for an individual column if it
differs from the database’s default character set).

For example, the following statements specify that the client is using the DOS437
character set, then connect to the database:

EXEC SQL
SET NAMES DOS437;

EXEC SQL
CONNECT 'europe.ib' USER 'JAMES' PASSWORD 'U4EEAH';

For more information about character sets, see the Data Definition Guide. For the
complete syntax of SET NAMES and CONNECT, see the Language Reference Guide.

Opening a Database

After a database is declared, it must be attached with a CONNECT statement before
it can be used. CONNECT:

• Allocates system resources for the database.

• Determines if the database file is local, residing on the same host where the
application itself is running, or remote, residing on a different host.

• Opens the database and examines it to make sure it is valid.

InterBase provides transparent access to all databases, whether local or remote. If
the database structure is invalid, the on-disk structure (ODS) number does not
correspond to one required by InterBase, or if the database is corrupt, InterBase
reports an error, and permits no further access.

Optionally, CONNECT can be used to specify:

• A user name and password combination that is checked against the server’s
security database before allowing the connect to succeed. User names can be
up to 31 characters. Passwords are restricted to 8 characters.
3-6 Embedded SQL Guide

Opening a Database
• A SQL role name that the user adopts on connection to the database, provided
that the user has previously been granted membership in the role. Regardless
of role memberships granted, the user belongs to no role unless specified with
this ROLE clause. The client can specify at most one role per connection, and
cannot switch roles except by reconnecting.

• The size of the database buffer cache to allocate to the application when the
default cache size is inappropriate.

Using simple CONNECT Statements

In its simplest form, CONNECT requires one or more database parameters, each
specifying the name of a database to open. The name of the database can be a:

• Database handle declared in a previous SET DATABASE statement.

• Host-language variable.

• Hard-coded file name.

Using a Database Handle
If a program uses SET DATABASE to provide database handles, those handles
should be used in subsequent CONNECT statements instead of hard-coded names.
For example,

. . .
EXEC SQL

SET DATABASE DB1 = 'employee.ib';
EXEC SQL

SET DATABASE DB2 = 'employee2.ib';
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;
. . .

There are several advantages to using a database handle with CONNECT:

• Long file specifications can be replaced by shorter, mnemonic handles.

• Handles can be used to qualify table names in multi-database transactions.
DSQL applications do not support multi-database transactions.

• Handles can be reassigned to other databases as needed.

• The number of database cache buffers can be specified as an additional
CONNECT parameter.

For more information about setting the number of database cache buffers, see
“Setting Database Cache Buffers”.
Chapter 3 Working with Databases 3-7

Opening a Database
Using Strings or host-language Variables
Instead of using a database handle, CONNECT can use a database name supplied
at run time. The database name can be supplied as either a host-language
variable or a hard-coded, quoted string.

The following C code demonstrates how a program accessing only a single
database might implement CONNECT using a file name solicited from a user at run
time:

. . .
char fname[125];
. . .
printf('Enter the desired database name, including node

and path):\n');
gets(fname);
. . .
EXEC SQL

CONNECT :fname;
. . .

Tip This technique is especially useful for programs that are designed to work with many
identically structured databases, one at a time, such as CAD/CAM or architectural
databases.

Multiple Database Implementation
To use a database specified by the user as a host-language variable in a CONNECT
statement in multi-database programs, follow these steps:

1 Declare a database handle using the following SET DATABASE syntax:

EXEC SQL
SET DATABASE handle = COMPILETIME 'dbname';

Here, handle is a hard-coded database handle supplied by the programmer, dbname is a
quoted, hard-coded database name used by gpre during preprocessing.

2 Prompt the user for a database to open.

3 Store the database name entered by the user in a host-language variable.

4 Use the handle to open the database, associating the host-language variable
with the handle using the following CONNECT syntax:

EXEC SQL
CONNECT :variable AS handle;

The following C code illustrates these steps:

. . .
char fname[125];
. . .
EXEC SQL

SET DATABASE DB1 = 'employee.ib';
3-8 Embedded SQL Guide

Opening a Database
printf("Enter the desired database name, including node
and path):\n");

gets(fname);
EXEC SQL

CONNECT :fname AS DB1;
. . .

In this example, SET DATABASE provides a hard-coded database file name for
preprocessing with gpre. When a user runs the program, the database specified in
the variable, fname, is used instead.

Using a Hard-coded Database Names

In singe-database programs
In a single-database program that omits SET DATABASE, CONNECT must contain a
hard-coded, quoted file name in the following format:

EXEC SQL
CONNECT '[host[path]]filename';

host is required only if a program and a database file it uses reside on different
nodes. Similarly, path is required only if the database file does not reside in the
current working directory. For example, the following CONNECT statement contains
a hard-coded file name that includes both a Unix host name and a path name:

EXEC SQL
CONNECT 'valdez:usr/interbase/examples/employee.ib';

Note Host syntax is specific to each server platform.

Important A program that accesses multiple databases cannot use this form of CONNECT.

in multi-database programs
A program that accesses multiple databases must declare handles for each of
them in separate SET DATABASE statements. These handles must be used in
subsequent CONNECT statements to identify specific databases to open:

. . .
EXEC SQL

SET DATABASE DB1 = 'employee.ib';
EXEC SQL

SET DATABASE DB2 = 'employee2.ib';
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;
. . .

Later, when the program closes these databases, the database handles are no
longer in use. These handles can be reassigned to other databases by hard-
coding a file name in a subsequent CONNECT statement. For example,
Chapter 3 Working with Databases 3-9

Opening a Database
. . .
EXEC SQL

DISCONNECT DB1, DB2;
EXEC SQL

CONNECT 'project.ib' AS DB1;
. . .

Additional CONNECT Syntax

CONNECT supports several formats for opening databases to provide programming
flexibility. The following table outlines each possible syntax, provides descriptions
and examples, and indicates whether CONNECT can be used in programs that
access single or multiple databases:

For a complete discussion of CONNECT syntax and its uses, see the Language
Reference Guide.

Table 3.1 CONNECT syntax summary

Syntax Description
Single
access

Multiple
access

CONNECT ‘dbfile’; Opens a single, hard-coded database file,
dbfile.

Example:

EXEC SQL
CONNECT ‘employee.ib’;

Yes No

CONNECT handle; Opens the database file associated with a
previously declared database handle.
This is the preferred CONNECT syntax.

Example:

EXEC SQL
CONNECT EMP;

Yes Yes

CONNECT ‘dbfile’
AS handle;

Opens a hard-coded database file, dbfile,
and assigns a previously declared
database handle to it.

Example:

EXEC SQL
CONNECT ‘employee.ib’ AS EMP;

Yes Yes

CONNECT
:varname AS
handle;

Opens the database file stored in the
host-language variable, varname, and
assigns a previously declared database
handle to it.

Example:

EXEC SQL
CONNECT :fname AS EMP;

Yes Yes
3-10 Embedded SQL Guide

Opening a Database
Attaching to Multiple Databases

CONNECT can attach to multiple databases. To open all databases specified in
previous SET DATABASE statements, use either of the following CONNECT syntax
options:

EXEC SQL
CONNECT ALL;

EXEC SQL
CONNECT DEFAULT;

CONNECT can also attach to a specified list of databases. Separate each database
request from others with commas. For example, the following statement opens two
databases specified by their handles:

EXEC SQL
CONNECT DB1, DB2;

The next statement opens two hard-coded database files and also assigns them to
previously declared handles:

EXEC SQL
CONNECT 'employee.ib' AS DB1, 'employee2.ib' AS DB2;

Tip Opening multiple databases with a single CONNECT is most effective when a program’s
database access is simple and clear. In complex programs that open and close several
databases, that substitute database names with host-language variables, or that assign
multiple handles to the same database, use separate CONNECT statements to make program
code easier to read, debug, and modify.

Handling CONNECT Errors

The WHENEVER statement should be used to trap and handle runtime errors that
occur during database declaration. The following C code fragment illustrates an
error-handling routine that displays error messages and ends the program in an
orderly fashion:

. . .
EXEC SQL

WHENEVER SQLERROR
GOTO error_exit;

. . .

:error_exit
isc_print_sqlerr(sqlcode, status_vector);
EXEC SQL

DISCONNECT ALL;
exit(1);

. . .
Chapter 3 Working with Databases 3-11

Opening a Database
For a complete discussion of SQL error handling, see “Error Handling and
Recovery.”

Setting Database Cache Buffers

Besides opening a database, CONNECT can set the number of cache buffers
assigned to a database for that connection. When a program establishes a
connection to a database, InterBase allocates system memory to use as a private
buffer. The buffers are used to store accessed database pages to speed
performance. The number of buffers assigned for a program determine how many
simultaneous database pages it can have access to in the memory pool. Buffers
remain assigned until a program finishes with a database.

The default number of database cache buffers assigned to a database is 256. This
default can be changed either for a specific database or for an entire server.

• Use the gfix utility to set a new default cache buffer size for a database. See the
Operations Guide for more information about setting database buffer size with
gfix.

• Change the value of DATABASE_CACHE_PAGES in the InterBase configuration file
to change the default cache buffer size on a server-wide basis. Use this option
with care, since it makes it easy to overuse memory or create caches too small
to be usable.

Setting Individual Database Buffers
For programs that access or change many rows in many databases, performance
can sometimes be improved by increasing the number of buffers. The maximum
number of buffers allowed is system dependent.

• Use the CACHE n parameter with CONNECT to change the number of buffers
assigned to a database for the duration of the connection, where n is the
number of buffers to reserve. To set the number of buffers for an individual
database, place CACHE n after the database name. The following CONNECT
specifies 500 buffers for the database pointed to by the EMP handle:

EXEC SQL
CONNECT EMP CACHE 500;

Note If you specify a buffer size that is less than the smallest one currently in use for the
database, the request is ignored.

The next statement opens two databases, TEST and EMP. Because CACHE is not
specified for TEST, its buffers default to 256. EMP is opened with the CACHE clause
specifying 400 buffers:

EXEC SQL
CONNECT TEST, EMP CACHE 400;
3-12 Embedded SQL Guide

Accessing an Open Database
Specifying Buffers for All Databases
To specify the same number of buffers for all databases, use CONNECT ALL with the
CACHE n parameter. For example, the following statements connect to two
databases, EMP, and EMP2, and allot 400 buffers to each of them:

. . .
EXEC SQL

SET DATABASE EMP = 'employee.ib';
EXEC SQL

SET DATABASE EMP2 = 'test.ib';
EXEC SQL

CONNECT ALL CACHE 400;
. . .

The same effect can be achieved by specifying the same amount of cache for
individual databases:

. . .
EXEC SQL

CONNECT EMP CACHE 400, TEST CACHE 400;
. . .

Accessing an Open Database

Once a database is connected, its tables can be accessed as follows:

• One database can be accessed in a single transaction.

• One database can be accessed in multiple transactions.

• Multiple databases can be accessed in a single transaction.

• Multiple databases can be accessed in multiple transactions.

For general information about using transactions, see “Working with
Transactions.”

Differentiating Table Names

In SQL, using multiple databases in transactions sometimes requires extra
precautions to ensure intended behavior. When two or more databases have
tables that share the same name, a database handle must be prefixed to those
table names to differentiate them from one another in transactions.

A table name differentiated by a database handle takes the form:

handle.table
Chapter 3 Working with Databases 3-13

Closing a Database
For example, the following cursor declaration accesses an EMPLOYEE table in
TEST, and another EMPLOYEE table in EMP. TEST and EMP are used as prefixes to
indicate which EMPLOYEE table should be referenced:

. . .
EXEC SQL

DECLARE IDMATCH CURSOR FOR
SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE (SELECT EMPNO FROM EMP.EMPLOYEE WHERE EMPNO =
TESTNO);
. . .

Note DSQL does not support access to multiple databases in a single statement.

Closing a Database

When a program is finished with a database, the database should be closed. In
SQL, a database can be closed in either of the following ways:

• Issue a DISCONNECT to detach a database and close files.

• Append a RELEASE option to a COMMIT or ROLLBACK to disconnect from a
database and close files.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following
tasks:

• Close open database files.

• Disconnect from remote database connections.

• Release the memory that holds database metadata descriptions and InterBase
engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard. Do not close a database until it is no longer needed. Once closed, a
database must be reopened, and its resources reallocated, before it can be used
again.

With DISCONNECT

To close all open databases by disconnecting from them, use the following
DISCONNECT syntax:

EXEC SQL
DISCONNECT {ALL | DEFAULT};

For example, each of the following statements closes all open databases in a
program:

EXEC SQL
DISCONNECT ALL;
3-14 Embedded SQL Guide

Closing a Database
EXEC SQL
DISCONNECT DEFAULT;

To close specific databases, specify their handles as comma-delimited
parameters, using the following syntax:

EXEC SQL
DISCONNECT handle [, handle ...];

For example, the following statement disconnects from two databases:

EXEC SQL
DISCONNECT DB1, DB2;

Note A database should not be closed until all transactions are finished with it, or it must
be reopened and its resources reallocated.

With COMMIT and ROLLBACK

To close all open databases when you COMMIT or ROLLBACK, use the following
syntax:

EXEC SQL
{COMMIT | ROLLBACK} RELEASE;

For example, the following COMMIT closes all open databases:

EXEC SQL
COMMIT RELEASE;

To close specific databases, provide their handles as parameters following the
RELEASE option with COMMIT or ROLLBACK, using the following syntax:

EXEC SQL
COMMIT | ROLLBACK RELEASE handle [, handle ...];

In the following example, the ROLLBACK statement closes two databases:

EXEC SQL
ROLLBACK RELEASE DB1, DB2;
Chapter 3 Working with Databases 3-15

Closing a Database
3-16 Embedded SQL Guide

C h a p t e r

Chapter 4Working with Transactions
All SQL data definition and data manipulation statements take place within the
context of a transaction, a set of SQL statements that works to carry out a single
task. This chapter explains how to open, control, and close transactions using the
following SQL transaction management statements:

Table 4.1 SQL transaction management statements

Statement Purpose

SET TRANSACTION Starts a transaction, assigns it a name, and specifies its
behavior. The following behaviors can be specified:

Access mode describes the actions a transaction’s
statements can perform.

Lock resolution describes how a transaction should react if
a lock conflict occurs.

Isolation level describes the view of the database given a
transaction as it relates to actions performed by other
simultaneously occurring transactions.

Table reservation, an optional list of tables to lock for access
at the start of the transaction rather than at the time of explicit
reads or writes.

Database specification, an optional list limiting the open
databases to which a transaction may have access.

COMMIT Saves a transaction’s changes to the database and ends the
transaction.

ROLLBACK Undoes a transaction’s changes before they have been
committed to the database, and ends the transaction.
Chapter 4 Working with Transactions 4-1

Starting the Default Transaction
Transaction management statements define the beginning and end of a
transaction. They also control its behavior and interaction with other
simultaneously running transactions that share access to the same data within and
across applications.

There are two types of transactions in InterBase:

• GDS__TRANS is a default transaction that InterBase uses when it encounters a
statement requiring a transaction without first finding a SET TRANSACTION
statement. A default behavior is defined for GDS__TRANS, but it can be changed
by starting the default transaction with SET TRANSACTION and specifying
alternative behavior as parameters. Treat GDS__TRANS as a global variable of
type isc_tr_handle.

Note When using the default transaction without explicitly starting it with SET
TRANSACTION, applications must be preprocessed without the gpre -m switch.

• Named transactions are always started with SET TRANSACTION statements.
These statements provide unique names for each transaction, and usually
include parameters that specify a transaction’s behavior.

Except for naming conventions and use in multi-transaction programs, both the
default and named transactions offer the same control over transactions. SET
TRANSACTION has optional parameters for specifying access mode, lock
resolution, and isolation level.

For more information about gpre, see “Preprocessing, Compiling, and Linking.”
For more information about transaction behavior, see “Specifying SET
TRANSACTION Behavior” .

Starting the Default Transaction

If a transaction is started without a specified behavior, the following default
behavior is used:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The default transaction is especially useful for programs that use only a single
transaction. It is automatically started in programs that require a transaction
context where none is explicitly provided. It can also be explicitly started in a
program with SET TRANSACTION.

Starting Without SET TRANSACTION

Simple, single transaction programs can omit SET TRANSACTION. The following
program fragment issues a SELECT statement without starting a transaction:

. . .
EXEC SQL

SELECT * FROM CITIES
4-2 Embedded SQL Guide

Starting the Default Transaction
WHERE POPULATION > 4000000
ORDER BY POPULATION, CITY;

. . .

A programmer need only start the default transaction explicitly in a single
transaction program to modify its operating characteristics or when writing a DSQL
application that is preprocessed with the gpre -m switch.

During preprocessing, when gpre encounters a statement, such as SELECT, that
requires a transaction context without first finding a SET TRANSACTION statement, it
automatically generates a default transaction as long as the -m switch is not
specified. A default transaction started by gpre uses a predefined, or default,
behavior that dictates how the transaction interacts with other simultaneous
transactions attempting to access the same data.

Important DSQL programs should be preprocessed with the gpre -m switch if they start a
transaction through DSQL. In this mode, gpre does not generate the default
transaction as needed, but instead reports an error if there is no transaction.

 For more information about transaction behaviors that can be modified, see
“Specifying SET TRANSACTION Behavior” . For more information about using the
gpre -m switch, see “Preprocessing, Compiling, and Linking.”

Starting With SET TRANSACTION

SET TRANSACTION issued without parameters starts the default transaction,
GDS__TRANS, with the following default behavior:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The following table summarizes these settings:

Note Explicitly starting the default transaction is good programming practice. It makes a
program’s source code easier to understand.

Table 4.2 Default transaction default behavior

Parameter Setting Purpose

Access mode READ WRITE Access mode. This transaction can select,
insert, update, and delete data.

Lock resolution WAIT Lock resolution. This transaction waits for
locked tables and rows to be released to see if it
can then update them before reporting a lock
conflict.

Isolation level ISOLATION LEVEL
SNAPSHOT

This transaction receives a stable, unchanging
view of the database as it is at the moment the
transaction starts; it never sees changes made
to the database by other active transactions.
Chapter 4 Working with Transactions 4-3

Starting a Named Transaction
The following statements are equivalent. They both start the default transaction
with the default behavior.

EXEC SQL
SET TRANSACTION;

EXEC SQL
SET TRANSACTION NAME gds__trans READ WRITE WAIT ISOLATION

LEVEL
SNAPSHOT;

To start the default transaction, but change its characteristics, SET TRANSACTION
must be used to specify those characteristics that differ from the default.
Characteristics that do not differ from the default can be omitted. For example, the
following statement starts the default transaction for READ ONLY access, WAIT lock
resolution, and ISOLATION LEVEL SNAPSHOT:

EXEC SQL
SET TRANSACTION READ ONLY;

As this example illustrates, the NAME clause can be omitted when starting the
default transaction.

Important In DSQL, changing the characteristics of the default transaction is accomplished
as with PREPARE and EXECUTE in a manner similar to the one described, but the
program must be preprocessed using the gpre -m switch.

For more information about preprocessing programs with the -m switch, see
“Preprocessing, Compiling, and Linking.” For more information about transaction
behavior and modification, see “Specifying SET TRANSACTION Behavior” .

Starting a Named Transaction

A single application can start simultaneous transactions. InterBase extends
transaction management and data manipulation statements to support transaction
names, unique identifiers that specify which transaction controls a given statement
among those transactions that are active.

Transaction names must be used to distinguish one transaction from another in
programs that use two or more transactions at a time. Each transaction started
while other transactions are active requires a unique name and its own SET
TRANSACTION statement. SET TRANSACTION can include optional parameters that
modify a transaction’s behavior.

There are four steps for using transaction names in a program:

1 Declare a unique host-language variable for each transaction name. In C and
C++, transaction names should be declared as long pointers.

2 Initialize each transaction name to zero.
4-4 Embedded SQL Guide

Starting a Named Transaction
3 Use SET TRANSACTION to start each transaction using an available transaction
name.

4 Include the transaction name in subsequent transaction management and data
manipulation statements that should be controlled by a specified transaction.

Important Using named transactions in dynamic SQL statements is somewhat different. For
information about named transactions in DSQL, see “Working with Multiple
Transactions in DSQL” .

For additional information about creating multiple transaction programs, see
“Working with Multiple Transactions” .

Naming Transactions

A transaction name is a programmer-supplied variable that distinguishes one
transaction from another in SQL statements. If transaction names are not used in
SQL statements that control transactions and manipulate data, then those
statements operate only on the default transaction, GDS__TRANS.

The following C code declares and initializes two transaction names using the
isc_tr_handle datatype. It then starts those transactions in SET TRANSACTION
statements.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
isc_tr_handle t1, t2; /* declare transaction names */

EXEC SQL
END DECLARE SECTION;

. . .
t1 = t2 = (isc_tr_handle) NULL; /* initialize names to zero
*/
. . .
EXEC SQL

SET TRANSACTION NAME t1; /* start trans. w. default
behavior */
EXEC SQL

SET TRANSACTION NAME t2; /* start trans2. w. default
behavior */
. . .

Each of these steps is fully described in the following sections.

A transaction name can be included as an optional parameter in any data
manipulation and transaction management statement. In multi-transaction
programs, omitting a transaction name causes a statement to be executed for the
default transaction, GDS__TRANS.

For more information about using transaction names with data manipulation
statements, see “Working with Data.”
Chapter 4 Working with Transactions 4-5

Starting a Named Transaction
Declaring Transaction Names
Transaction names must be declared before they can be used. A name is declared
as a host-language pointer. In C and C++, transaction names should be declared
as long pointers.

The following code illustrates how to declare two transaction names:

EXEC SQL
BEGIN DECLARE SECTION;

isc_tr_handle t1;
isc_tr_handle t2;

EXEC SQL
END DECLARE SECTION;

Note In this example, the transaction declaration occurs within a SQL section declaration.
While InterBase does not require that host-language variables occur within a
section declaration, putting them there guarantees compatibility with other SQL
implementations that do require section declarations.

Transaction names are usually declared globally at the module level. If a
transaction name is declared locally, ensure that:

• The transaction using the name is completely contained within the function
where the name is declared. Include an error-handling routine to roll back
transactions when errors occur. ROLLBACK releases a transaction name, and
sets its value to NULL.

• The transaction name is not used outside the function where it is declared.

To reference a transaction name declared in another module, provide an external
declaration for it. For example, in C, the external declaration for t1 and t2 might be
as follows:

EXEC SQL
BEGIN DECLARE SECTION;

extern isc_tr_handle t1, t2;
EXEC SQL

END DECLARE SECTION;

Initializing Transaction Names
Once transaction names are declared, they should be initialized to zero before
being used for the first time. The following C code illustrates how to set a starting
value for two declared transaction names:

/* initialize transaction names to zero */
t1 = t2 = (isc_tr_handle) NULL;

Once a transaction name is declared and initialized, it can be used to:

• Start and name a transaction. Using a transaction name for all transactions
except for the default transaction is required if a program runs multiple,
simultaneous transactions.
4-6 Embedded SQL Guide

Starting a Named Transaction
• Specify which transactions control data manipulation statements. Transaction
names are required in multi-transaction programs, unless a statement affects
only the default transaction.

• Commit or roll back specific transactions in a multi-transaction program.

Specifying SET TRANSACTION Behavior

Use SET TRANSACTION to start a named transaction, and optionally specify its
behavior. The syntax for starting a named transaction using default behavior is:

SET TRANSACTION NAME name;

For a summary of the default behavior for a transaction started without specifying
behavior parameters, see table 4.2 on page 4-3. The following statements are
equivalent: they both start the transaction named t1, using default transaction
behavior.

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT ISOLATION LEVEL

SNAPSHOT;
Chapter 4 Working with Transactions 4-7

Starting a Named Transaction
The following table lists the optional SET TRANSACTION parameters for specifying
the behavior of the default transaction:

The complete syntax of SET TRANSACTION is:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE| READ ONLY]

Table 4.3 SET TRANSACTION parameters

Parameter Setting Purpose

Access
Mode

READ ONLY or READ WRITE Describes the type of access this transaction is
permitted for a table. For more information about
access mode, see “Access Mode” .

Lock
Resolution

WAIT or NO WAIT Specifies what happens when this transaction
encounters a locked row during an update or
delete. It either waits for the lock to be released
so it can attempt to complete its actions, or it
returns an immediate lock conflict error message.
For more information about lock resolution, see
“Lock Resolution” .

Isolation
Level

SNAPSHOT provides a view of the
database at the moment this
transaction starts, but prevents
viewing changes made by other active
transactions.

SNAPSHOT TABLE STABILITY
prevents other transactions from
making changes to tables that this
transaction is reading and updating,
but permits them to read rows in the
table.

READ COMMITTED reads the most
recently committed version of a row
during updates and deletions, and
allows this transaction to make
changes if there is no update conflict
with other transactions.

Determines this transaction’s interaction with
other simultaneous transactions attempting to
access the same tables.

READ COMMITTED isolation level also enables a
user to specify which version of a row it can read.
There are two options:

• RECORD_VERSION: the transaction immediately
reads the latest committed version of a requested
row, even if a more recent uncommitted version
also resides on disk.

• NO RECORD_VERSION: if an uncommitted
version of the requested row is present and WAIT
lock resolution is specified, the transaction waits
until the committed version of the row is also the
latest version; if NO WAIT is specified, the
transaction immediately returns an error
(“deadlock”) if the committed version is not the
most recent version.

Table
Reservation

RESERVING Specifies a subset of available tables to lock
immediately for this transaction to access.

Database
Specification

USING Specifies a subset of available databases that
this transaction can access; it cannot access any
other databases. The purpose of this option is to
reduce the amount of system resources used by
this transaction.

Note: USING is not available in DSQL.
4-8 Embedded SQL Guide

Starting a Named Transaction
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
[RESERVING <reserving_clause>

| USING dbhandle [, dbhandle ...]];

<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [,

<reserving_clause>]

Transaction options are fully described in the following sections.

Access Mode
The access mode parameter specifies the type of access a transaction has for the
tables it uses. There are two possible settings:

• READ ONLY specifies that a transaction can select data from a table, but cannot
insert, update, or delete table data.

• READ WRITE specifies that a transaction can select, insert, update, and delete
table data. This is the default setting if none is specified.

InterBase assumes that most transactions both read and write data. When starting
a transaction for reading and writing, READ WRITE can be omitted from SET
TRANSACTION statement. For example, the following statements start a
transaction, t1, for READ WRITE access:

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE;

Tip It is good programming practice to specify a transaction’s access mode, even
when it is READ WRITE. It makes an application’s source code easier to read and
debug because the program’s intentions are clearly spelled out.

Start a transaction for READ ONLY access when you only need to read data. READ
ONLY must be specified. For example, the following statement starts a transaction,
t1, for read-only access:

EXEC SQL
SET TRANSACTION NAME t1 READ ONLY;

Isolation Level
The isolation level parameter specifies the control a transaction exercises over
table access. It determines the:

• View of a database the transaction can see.

• Table access allowed to this and other simultaneous transactions.
Chapter 4 Working with Transactions 4-9

Starting a Named Transaction
The following table describes the three isolation levels supported by InterBase:

The isolation level for most transactions should be either SNAPSHOT or READ
COMMITTED. These levels enable simultaneous transactions to select, insert,
update, and delete data in shared databases, and they minimize the chance for
lock conflicts. Lock conflicts occur in two situations:

• When a transaction attempts to update a row already updated or deleted by
another transaction. A row updated by a transaction is effectively locked for
update to all other transactions until the controlling transaction commits or rolls
back. READ COMMITTED transactions can read and update rows updated by
simultaneous transactions after they commit.

• When a transaction attempts to insert, update, or delete a row in a table locked
by another transaction with an isolation level of SNAPSHOT TABLE STABILITY.
SNAPSHOT TABLE STABILITY locks entire tables for write access, although
concurrent reads by other SNAPSHOT and READ COMMITTED transactions are
permitted.

Using SNAPSHOT TABLE STABILITY guarantees that only a single transaction can
make changes to tables, but increases the chance of lock conflicts where there are
simultaneous transactions attempting to access the same tables. For more
information about the likelihood of lock conflicts, see “Isolation level interactions”
.

Comparing SNAPSHOT, READ COMMITTED,
and SNAPSHOT TABLE STABILITY
There are five classic problems all transaction management statements must
address:

Table 4.4 ISOLATION LEVEL options

Isolation level Purpose

SNAPSHOT Provides a stable, committed view of the database at the time
the transaction starts; this is the default isolation level. Other
simultaneous transactions can UPDATE and INSERT rows, but
this transaction cannot see those changes. For updated rows,
this transaction sees versions of those rows as they existed at
the start of the transaction. If this transaction attempts to
update or delete rows changed by another transaction, an
update conflict is reported.

SNAPSHOT TABLE
STABILITY

Provides a transaction sole insert, update, and delete access
to the tables it uses. Other simultaneous transactions may still
be able to select rows from those tables.

READ COMMITTED Enables the transaction to see all committed data in the
database, and to update rows updated and committed by
other simultaneous transactions without causing lost update
problems.
4-10 Embedded SQL Guide

Starting a Named Transaction
• Lost updates, which can occur if an update is overwritten by a simultaneous
transaction unaware of the last updates made by another transaction.

• Dirty reads, which can occur if the system allows one transaction to select
uncommitted changes made by another transaction.

• Non-reproducible reads, which can occur if one transaction is allowed to update
or delete rows that are repeatedly selected by another transaction. READ
COMMITTED transactions permit non-reproducible reads by design, since they
can see committed deletes made by other transactions.

• Phantom rows, which can occur if one transaction is allowed to select some, but
not all, new rows written by another transaction. READ COMMITTED transactions
do not prevent phantom rows.

• Update side effects, which can occur when row values are interdependent, and
their dependencies are not adequately protected or enforced by locking,
triggers, or integrity constraints. These conflicts occur when two or more
simultaneous transactions randomly and repeatedly access and update the
same data; such transactions are called interleaved transactions.

Except as noted, all three InterBase isolation levels control these problems. The
following table summarizes how a transaction with a particular isolation level
controls access to its data for other simultaneous transactions:

Table 4.5 InterBase management of classic transaction conflicts

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

Lost updates Other transactions cannot
update rows already updated by
this transaction.

Other transactions cannot
update tables controlled by this
transaction.

Dirty reads Other SNAPSHOT transactions
can only read a previous version
of a row updated by this
transaction.

Other READ COMMITTED
transactions can only read a
previous version, or committed
updates.

Other transactions cannot
access tables updated by this
transaction.
Chapter 4 Working with Transactions 4-11

Starting a Named Transaction
Choosing Between SNAPSHOT and READ COMMITTED
The choice between SNAPSHOT and READ COMMITTED isolation levels depends on
an application’s needs. SNAPSHOT is the default InterBase isolation level. READ
COMMITTED duplicates SNAPSHOT behavior, but can read subsequent changes
committed by other transactions. In many cases, using READ COMMITTED reduces
data contention.

SNAPSHOT transactions receive a stable view of a database as it exists the
moment the transactions start. READ COMMITTED transactions can see the latest
committed versions of rows. Both types of transactions can use SELECT
statements unless they encounter the following conditions:

• Table locked by SNAPSHOT TABLE STABILITY transaction for UPDATE.

• Uncommitted inserts made by other simultaneous transactions. In this case, a
SELECT is allowed, but changes cannot be seen.

READ COMMITTED transactions can read the latest committed version of rows. A
SNAPSHOT transaction can read only a prior version of the row as it existed before
the update occurred.

Non-reproducible
reads

SNAPSHOT and SNAPSHOT
TABLE STABILITY transactions
can only read versions of rows
committed when they started.

READ COMMITTED transactions
must expect that reads cannot
be reproduced.

SNAPSHOT and SNAPSHOT
TABLE STABILITY transactions
can only read versions of rows
committed when they started.

Other transactions cannot
access tables updated by this
transaction.

Phantom rows READ COMMITTED transactions
may encounter phantom rows.

Other transactions cannot
access tables controlled by this
transaction.

Update side
effects

Other SNAPSHOT transactions
can only read a previous version
of a row updated by this
transaction.

Other READ COMMITTED
transactions can only read a
previous version, or committed
updates.

Use triggers and integrity
constraints to try to avoid any
problems with interleaved
transactions.

Other transactions cannot
update tables controlled by this
transaction.

Use triggers and integrity
constraints to avoid any
problems with interleaved
transactions.

Table 4.5 InterBase management of classic transaction conflicts (continued)

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY
4-12 Embedded SQL Guide

Starting a Named Transaction
SNAPHOT and READ COMMITTED transactions with READ WRITE access can use
INSERT, UPDATE, and DELETE unless they encounter tables locked by SNAPSHOT
TABLE STABILITY transactions.

SNAPSHOT transactions cannot update or delete rows previously updated or
deleted and then committed by other simultaneous transactions. Attempting to
update a row previously updated or deleted by another transaction results in an
update conflict error.

A READ COMMITTED READ WRITE transaction can read changes committed by other
transactions, and subsequently update those changed rows.

Occasional update conflicts may occur when simultaneous SNAPSHOT and READ
COMMITTED transactions attempt to update the same row at the same time. When
update conflicts occur, expect the following behavior:

• For mass or searched updates, updates where a single UPDATE modifies
multiple rows in a table, all updates are undone on conflict. The UPDATE can be
retried. For READ COMMITTED transactions, the NO RECORD_VERSION option
can be used to narrow the window between reads and updates or deletes. For
more information, see “Starting a transaction with READ COMMITTED
isolation level” .

• For cursor or positioned updates, where rows are retrieved and updated from an
active set one row at a time, only a single update is undone. To retry the update,
the cursor must be closed, then reopened, and updates resumed at the point of
previous conflict.

For more information about UPDATE through cursors, see “Working with Data.”

Starting a Transaction with SNAPSHOT Isolation Level
InterBase assumes that the default isolation level for transactions is SNAPSHOT.
Therefore, SNAPSHOT need not be specified in SET TRANSACTION to set the
isolation level. For example, the following statements are equivalent. They both
start a transaction, t1, for READ WRITE access and set isolation level to SNAPSHOT.

EXEC SQL
SET TRANSACTION NAME t1;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE SNAPSHOT;

When an isolation level is specified, it must follow the access and lock resolution
modes.

Tip It is good programming practice to specify a transaction’s isolation level, even
when it is SNAPSHOT. It makes an application’s source code easier to read and
debug because the program’s intentions are clearly spelled out.

Starting a transaction with READ COMMITTED isolation level
To start a READ COMMITTED transaction, the isolation level must be specified. For
example, the following statement starts a named transaction, t1, for READ WRITE
access and sets isolation level to READ COMMITTED:
Chapter 4 Working with Transactions 4-13

Starting a Named Transaction
EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

Isolation level always follows access mode. If the access mode is omitted, isolation
level is the first parameter to follow the transaction name.

READ COMMITTED supports mutually exclusive optional parameters,
RECORD_VERSION and NO RECORD_VERSION, which determine the READ
COMMITTED behavior when it encounters a row where the latest version of that row
is uncommitted:

• RECORD_VERSION specifies that the transaction immediately reads the latest
committed version of a row, even if a more recent uncommitted version also
resides on disk.

• NO RECORD_VERSION, the default, specifies that the transaction can only read
the latest version of a requested row. If the WAIT lock resolution option is also
specified, then the transaction waits until the latest version of a row is
committed or rolled back, and retries its read. If the NO WAIT option is
specified, the transaction returns an immediate deadlock error.

Because NO RECORD_VERSION is the default behavior, it need not be specified with
READ COMITTED. For example, the following statements are equivalent. They start
a named transaction, t1, for READ WRITE access and set isolation level to READ
COMMITTED NO RECORD_VERSION.

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

NO RECORD_VERSION;

RECORD_VERSION must always be specified when it is used. For example, the
following statement starts a named transaction, t1, for READ WRITE access and
sets isolation level to READ COMMITTED RECORD_VERSION:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

RECORD_VERSION;

Starting a transaction with
SNAPSHOT TABLE STABILITY isolation level
To start a SNAPSHOT TABLE STABILITY transaction, the isolation level must be
specified. For example, the following statement starts a named transaction, t1, for
READ WRITE access and sets isolation level to SNAPSHOT TABLE STABILITY:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE SNAPSHOT TABLE

STABILITY;

Isolation level always follows the optional access mode and lock resolution
parameters, if they are present.
4-14 Embedded SQL Guide

Starting a Named Transaction
Important Use SNAPSHOT TABLE STABILITY with care. In an environment where multiple
transactions share database access, SNAPSHOT TABLE STABILITY greatly increases
the likelihood of lock conflicts.

Isolation level interactions
To determine the possibility for lock conflicts between two transactions accessing
the same database, each transaction’s isolation level and access mode must be
considered. The following table summarizes possible combinations.

As this table illustrates, SNAPSHOT and READ COMMITTED transactions offer the
least chance for conflicts. For example, if t1 is a SNAPSHOT transaction with
READ WRITE access, and t2 is a READ COMMITTED transaction with READ WRITE
access, t1 and t2 only conflict when they attempt to update the same rows. If t1
and t2 have READ ONLY access, they never conflict with any other transaction.

A SNAPSHOT TABLE STABILITY transaction with READ WRITE access is guaranteed
that it alone can update tables, but it conflicts with all other simultaneous
transactions except for SNAPSHOT and READ COMMITTED transactions running in
READ ONLY mode. A SNAPSHOT TABLE STABILITY transaction with READ ONLY
access is compatible with any other read-only transaction, but conflicts with any
transaction that attempts to insert, update, or delete data.

Lock Resolution
The lock resolution parameter determines what happens when a transaction
encounters a lock conflict. There are two options:

• WAIT, the default, causes the transaction to wait until locked resources are
released. Once the locks are released, the transaction retries its operation.

• NO WAIT returns a lock conflict error without waiting for locks to be released.

Because WAIT is the default lock resolution, you don’t need to specify it in a SET
TRANSACTION statement. For example, the following statements are equivalent.
They both start a transaction, t1, for READ WRITE access, WAIT lock resolution, and
READ COMMITTED isolation level:

Table 4.6 Isolation level Interaction with SELECT and UPDATE

SNAPSHOT or READ
COMMITTED SNAPSHOT TABLE STABILITY

UPDATE
SELEC
T UPDATE SELECT

SNAPSHOT or
READ
COMMITTED

UPDATE Some simultaneous
updates may conflict

— Always conflicts Always conflicts

SELECT — — — —

SNAPSHOT
TABLE
STABILITY

UPDATE Always conflicts — Always conflicts Always conflicts

SELECT Always conflicts — Always conflicts —
Chapter 4 Working with Transactions 4-15

Starting a Named Transaction
EXEC SQL
SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED;

To use NO WAIT, the lock resolution parameter must be specified. For example, the
following statement starts the named transaction, t1, for READ WRITE access, NO
WAIT lock resolution, and SNAPSHOT isolation level:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE NO WAIT READ SNAPSHOT;

When lock resolution is specified, it follows the optional access mode, and
precedes the optional isolation level parameter.

Tip It is good programming practice to specify a transaction’s lock resolution, even
when it is WAIT. It makes an application’s source code easier to read and debug
because the program’s intentions are clearly spelled out.

RESERVING Clause
The optional RESERVING clause enables transactions to guarantee themselves
specific levels of access to a subset of available tables at the expense of other
simultaneous transactions. Reservation takes place at the start of the transaction
instead of only when data manipulation statements require a particular level of
access. RESERVING is only useful in an environment where simultaneous
transactions share database access. It has three main purposes:

• To prevent possible deadlocks and update conflicts that can occur if locks are
taken only when actually needed (the default behavior).

• To provide for dependency locking, the locking of tables that may be affected by
triggers and integrity constraints. While explicit dependency locking is not
required, it can assure that update conflicts do not occur because of indirect
table conflicts.

• To change the level of shared access for one or more individual tables in a
transaction. For example, a READ WRITE SNAPSHOT transaction may need
exclusive update rights for a single table, and could use the RESERVING clause
to guarantee itself sole write access to the table.

Important A single SET TRANSACTION statement can contain either a RESERVING or a USING
clause, but not both. Use the SET TRANSACTION syntax to reserve tables for a
transaction:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE| READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
RESERVING <reserving_clause>;
4-16 Embedded SQL Guide

Starting a Named Transaction
<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [,

<reserving_clause>]

Each table should only appear once in the RESERVING clause. Each table, or a list
of tables separated by commas, must be followed by a clause describing the type
of reservation requested. The following table lists these reservation options:

The following statement starts a SNAPSHOT transaction, t1, for READ WRITE access,
and reserves a single table for PROTECTED WRITE access:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT SNAPSHOT

RESERVING EMPLOYEE FOR PROTECTED WRITE;

The next statement starts a READ COMMITTED transaction, t1, for READ WRITE
access, and reserves two tables, one for SHARED WRITE, and another for
PROTECTED READ:

EXEC SQL
SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED

RESERVING EMPLOYEES FOR SHARED WRITE, EMP_PROJ
FOR PROTECTED READ;

SNAPSHOT and READ COMMITTED transactions use RESERVING to implement more
restrictive access to tables for other simultaneous transactions. SNAPSHOT TABLE
STABILITY transactions use RESERVING to reduce the likelihood of deadlock in
critical situations.

USING Clause
Every time a transaction is started, InterBase reserves system resources for each
database currently attached for program access. In a multi-transaction, multi-
database program, the USING clause can be used to preserve system resources by

Table 4.7 Table reservation options for the RESERVING clause

Reservation
option Purpose

PROTECTED
READ

Prevents other transactions from updating rows. All transactions can
select from the table.

PROTECTED
WRITE

Prevents other transactions from updating rows.
SNAPSHOT and READ COMMITTED transactions can select from the
table, but only this transaction can update rows.

SHARED READ Any transaction can select from this table. Any READ WRITE
transaction can update this table. This is the most liberal reservation
mode.

SHARED WRITE Any SNAPSHOT or READ COMMITTED READ WRITE transaction can
update this table. Other SNAPSHOT and READ COMMITTED
transactions can also select from this table.
Chapter 4 Working with Transactions 4-17

Using Transaction Names in Data Statements
restricting the number of open databases to which a transaction has access.
USING restricts a transaction’s access to tables to a listed subset of all open
databases using the following syntax:

EXEC SQL
SET TRANSACTION [NAME name]

[READ WRITE | READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]
USING dbhandle> [, dbhandle ...];

Important A single SET TRANSACTION statement can contain either a USING or a RESERVING
clause, but not both.

The following C program fragment opens three databases, test.ib, research.ib, and
employee.ib, assigning them to the database handles TEST, RESEARCH, and EMP,
respectively. Then it starts the default transaction and restricts its access to TEST
and EMP:

. . .
EXEC SQL

SET DATABASE ATLAS = 'test.ib';
EXEC SQL

SET DATABASE RESEARCH = 'research.ib';
EXEC SQL

SET DATABASE EMP = 'employee.ib';
EXEC SQL

CONNECT TEST, RESEARCH, EMP; /* Open all databases */
EXEC SQL

SET TRANSACTION USING TEST, EMP;
. . .

Using Transaction Names in Data Statements

Once named transactions are started, use their names in INSERT, UPDATE, DELETE,
and OPEN statements to specify which transaction controls the statement. For
example, the following C code fragment declares two transaction handles,
mytrans1, and mytrans2, initializes them to zero, starts the transactions, and then
uses the transaction names to qualify the data manipulation statements that follow:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *mytrans1, *mytrans2;
char city[26];

EXEC SQL
END DECLARE SECTION;

mytrans1 = 0L;
mytrans2 = 0L;
4-18 Embedded SQL Guide

Using Transaction Names in Data Statements
. . .
EXEC SQL

SET DATABASE ATLAS = 'atlas.ib';
EXEC SQL

CONNECT;
EXEC SQL

DECLARE CITYLIST CURSOR FOR
SELECT CITY FROM CITIES

WHERE COUNTRY = 'Mexico';
EXEC SQL

SET TRANSACTION NAME mytrans1;
EXEC SQL

SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;
. . .
printf('Mexican city to add to database: ');
gets(city);
EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES (CITY, COUNTRY)
VALUES :city, 'Mexico';

EXEC SQL
COMMIT mytrans1;

EXEC SQL
OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL
FETCH CITYLIST INTO :city;

while (!SQLCODE)
{

printf("%s\n", city);
EXEC SQL

FETCH CITYLIST INTO :city;
}
EXEC SQL

CLOSE CITYLIST;
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
. . .

As this example illustrates, a transaction name cannot appear in a DECLARE
CURSOR statement. To use a name with a cursor declaration, include the
transaction name in the cursor’s OPEN statement. The transaction name is not
required in subsequent FETCH and CLOSE statements for that cursor.

Note The DSQL EXECUTE and EXECUTE IMMEDIATE statements also support transaction
names.
Chapter 4 Working with Transactions 4-19

Ending a Transaction
For more information about using transaction names with data manipulation
statements, see “Working with Data.” For more information about transaction
names and the COMMIT statement, see “Using COMMIT” . For more information
about using transaction names with DSQL statements, see “Working with Multiple
Transactions in DSQL” .

Ending a Transaction

When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent
state. There are two statements that end transactions:

• COMMIT makes a transaction’s changes permanent in the database. It signals
that a transaction completed all its actions successfully.

• ROLLBACK undoes a transaction’s changes, returning the database to its
previous state, before the transaction started. ROLLBACK is typically used when
one or more errors occur that prevent a transaction from completing
successfully.

Both COMMIT and ROLLBACK close the record streams associated with the
transaction, reinitialize the transaction name to zero, and release system
resources allocated for the transaction. Freed system resources are available for
subsequent use by any application or program.

COMMIT and ROLLBACK have additional benefits. They clearly indicate program
logic and intention, make a program easier to understand, and most importantly,
assure that a transaction’s changes are handled as intended by the programmer.

ROLLBACK is frequently used inside error-handling routines to clean up
transactions when errors occur. It can also be used to roll back a partially
completed transaction prior to retrying it, and it can be used to restore a database
to its prior state if a program encounters an unrecoverable error.

Important If the program ends before a transaction ends, a transaction is automatically rolled
back, but databases are not closed. If a program ends without closing the
database, data loss or corruption is possible. Therefore, open databases should
always be closed by issuing explicit DISCONNECT, COMMIT RELEASE, or ROLLBACK
RELEASE statements.

For more information about DISCONNECT, COMMIT RELEASE, and ROLLBACK
RELEASE, see “Working with Databases.”

Using COMMIT

Use COMMIT to write transaction changes permanently to a database.
COMMIT closes the record streams associated with the transaction, resets the
transaction name to zero, and frees system resources assigned to the transaction
for other uses. The complete syntax for COMMIT is:
4-20 Embedded SQL Guide

Ending a Transaction
EXEC SQL
COMMIT [TRANSACTION name] [RETAIN [SNAPSHOT] | RELEASE

dbhandle
[, dbhandle ...]]

For example, the following C code fragment contains a complete transaction. It
gives all employees who have worked since December 31, 1992, a 4.3% cost-of-
living salary increase. If all qualified employee records are successfully updated,
the transaction is committed, and the changes are actually applied to the
database.

. . .
EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;
EXEC SQL

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.043
WHERE HIRE_DATE < '1-JAN-1993';

EXEC SQL
COMMIT;

. . .

By default, COMMIT affects only the default transaction, GDS__TRANS. To commit
another transaction, use its transaction name as a parameter to COMMIT.

Tip Even READ ONLY transactions that do not change a database should be ended with
a COMMIT rather than ROLLBACK. The database is not changed, but the overhead
required to start subsequent transactions is greatly reduced.

Specifying Transaction Names
To commit changes for transactions other than the default transaction, specify a
transaction name as a COMMIT parameter. For example, the following C code
fragment starts two transactions using names, and commits them:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
isc_tr_handle TR1, TR2;

EXEC SQL
END DECLARE SECTION;

TR1 = (isc_tr_handle) NULL;
TR2 = (isc_tr_handle) NULL;
. . .
EXEC SQL

SET TRANSACTION NAME TR1;
EXEC SQL

SET TRANSACTION NAME TR2;
. . .
/* do actual processsing here */
. . .
Chapter 4 Working with Transactions 4-21

Ending a Transaction
EXEC SQL
COMMIT TRANSACTION TR1;

EXEC SQL
COMMIT TRANSACTION TR2;

. . .
Important In multi-transaction programs, transaction names must always be specified for

COMMIT except when committing the default transaction.

Committing Without Freeing a Transaction
To write transaction changes to the database without releasing the current
transaction snapshot, use the RETAIN option with COMMIT. The COMMIT RETAIN
statement commits your work and opens a new transaction, preserving the old
transaction’s snapshot. In a busy multi-user environment, retaining the snapshot
speeds up processing and uses fewer system resources than closing and starting
a new transaction for each action. The disadvantage of using COMMIT RETAIN is
that you do not see the pending transactions of other users.

The syntax for the RETAIN option is as follows:

EXEC SQL
COMMIT [TRANSACTION name] RETAIN [SNAPSHOT];

Tip Developers who use tools such as Delphi use this feature by specifying “soft
commits” in the BDE configuration.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also
specified by the user. Each time a qualified row is updated, a COMMIT with the
RETAIN option is issued, preserving the current cursor status and system
resources.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], city[26], asciimult[10];
int multiplier;
long pop;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

EXEC SQL
DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION
FROM CITIES
WHERE COUNTRY = :country;

printf("Enter country with city populations needing
adjustment: ");

gets(country);
4-22 Embedded SQL Guide

Ending a Transaction
EXEC SQL
SET TRANSACTION;

EXEC SQL
OPEN CHANGEPOP;

EXEC SQL
FETCH CHANGEPOP INTO :city, :pop;

while(!SQLCODE)
{

printf("City: %s Population: %ld\n", city, pop);
printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier /

100)
WHERE CURRENT OF CHANGEPOP;

EXEC SQL
COMMIT RETAIN; /* commit changes, save current state

*/
EXEC SQL

FETCH CHANGEPOP INTO :city, :pop;
if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerror(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
}

Note If you execute a ROLLBACK after a COMMIT RETAIN, it rolls back only updates and
writes that occurred after the COMMIT RETAIN.

Important In multi-transaction programs, a transaction name must be specified for COMMIT
RETAIN, except when retaining the state of the default transaction. For more
information about transaction names, see “Naming Transactions” .
Chapter 4 Working with Transactions 4-23

Ending a Transaction
Using ROLLBACK

Use ROLLBACK to restore the database to its condition prior to the start of the
transaction. ROLLBACK also closes the record streams associated with the
transaction, resets the transaction name to zero, and frees system resources
assigned to the transaction for other uses. ROLLBACK typically appears in error-
handling routines. The syntax for ROLLBACK is:

EXEC SQL
ROLLBACK [TRANSACTION name] [RELEASE [dbhandle [, dbhandle

...]]];

For example, the following C code fragment contains a complete transaction that
gives all employees who have worked since December 31, 1992, a 4.3% cost-of-
living salary adjustment. If all qualified employee records are successfully updated,
the transaction is committed, and the changes are actually applied to the
database. If an error occurs, all changes made by the transaction are undone, and
the database is restored to its condition prior to the start of the transaction.

. . .
EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;
EXEC SQL

UPDATE EMPLOYEES
SET SALARY = SALARY * 1.043
WHERE HIRE_DATE < '1-JAN-1993';

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerror(SQLCODE, isc_$status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;
. . .

By default, ROLLBACK affects only the default transaction, GDS__TRANS. To roll
back other transactions, use their transaction names as parameters to
ROLLBACK.
4-24 Embedded SQL Guide

Working with Multiple Transactions
Working with Multiple Transactions

Because InterBase provides support for transaction names, a program can use as
many transactions at once as necessary to carry out its work. Each simultaneous
transaction in a program requires its own name. A transaction’s name
distinguishes it from other active transactions. The name can also be used in data
manipulation and transaction management statements to specify which
transaction controls the statement. For more information about declaring and using
transaction names, see “Starting a Named Transaction” .

There are four steps for using named transactions in a program:

1 Declare a unique host-language variable for each transaction name.

2 Initialize each transaction variable to zero.

3 Use SET TRANSACTION to start each transaction using an available transaction
name.

4 Use the transaction names as parameters in subsequent transaction
management and data manipulation statements that should be controlled by a
specified transaction.

The Default Transaction

In multi-transaction programs, it is good programming practice to supply a
transaction name for every transaction a program defines. One transaction in a
multi-transaction program can be the default transaction, GDS__TRANS. When the
default transaction is used in multi-transaction programs, it, too, should be started
explicitly and referenced by name in data manipulation statements.

If the transaction name is omitted from a transaction management or data
manipulation statement, InterBase assumes the statement affects the default
transaction. If the default transaction has not been explicitly started with a SET
TRANSACTION statement, gpre inserts a statement during preprocessing to start it.

Important DSQL programs must be preprocessed with the gpre -m switch. In this mode, gpre
does not generate the default transaction automatically, but instead reports an
error. DSQL programs require that all transactions be explicitly started.

Using Cursors

DECLARE CURSOR does not support transaction names. Instead, to associate a
named transaction with a cursor, include the transaction name as an optional
parameter in the cursor’s OPEN statement. A cursor can only be associated with a
single transaction. For example, the following statements declare a cursor, and
open it, associating it with the transaction, T1:

. . .
EXEC SQL
Chapter 4 Working with Transactions 4-25

Working with Multiple Transactions
DECLARE S CURSOR FOR
SELECT COUNTRY, CUST_NO, SUM(QTY_ORDERED)
FROM SALES
GROUP BY CUST_NO

WHERE COUNTRY = 'Mexico';
EXEC SQL

SET TRANSACTION T1 READ ONLY READ COMMITTED;
. . .
EXEC SQL

OPEN TRANSACTION T1 S;
. . .

An OPEN statement without the optional transaction name parameter operates
under control of the default transaction, GDS__TRANS.

Once a named transaction is associated with a cursor, subsequent cursor
statements automatically operate under control of that transaction. Therefore, it
does not support a transaction name parameter. For example, the following
statements illustrate a FETCH and CLOSE for the S cursor after it is associated with
the named transaction, t2:

. . .
EXEC SQL

OPEN TRANSACTION t2 S;
EXEC SQL

FETCH S INTO :country, :cust_no, :qty;
while (!SQLCODE)
{

printf("%s %d %d\n", country, cust_no, qty);
EXEC SQL

FETCH S INTO :country, :cust_no, :qty;
}
EXEC SQL

CLOSE S;
. . .
Multiple cursors can be controlled by a single transaction, or each transaction can
control a single cursor according to a program’s needs.

A Multi-transaction Example

The following C code illustrates the steps required to create a simple multi-
transaction program. It declares two transaction handles, mytrans1, and mytrans2,
initializes them to zero, starts the transactions, and then uses the transaction
names to qualify the data manipulation statements that follow. It also illustrates the
use of a cursor with a named transaction.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long *mytrans1 = 0L, *mytrans2 = 0L;
4-26 Embedded SQL Guide

Working with Multiple Transactions in DSQL
char city[26];
EXEC SQL

END DECLARE SECTION;
. . .
EXEC SQL

DECLARE CITYLIST CURSOR FOR
SELECT CITY FROM CITIES

WHERE COUNTRY = 'Mexico';
EXEC SQL

SET TRANSACTION NAME mytrans1;
EXEC SQL

SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;
. . .
printf("Mexican city to add to database: ");
gets(city);
EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES
VALUES :city, 'Mexico', NULL, NULL, NULL, NULL;

EXEC SQL
COMMIT mytrans1;

EXEC SQL
OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL
FETCH CITYLIST INTO :city;

while (!SQLCODE)
{

printf("%s\n", city);
EXEC SQL

FETCH CITYLIST INTO :city;
}
EXEC SQL

CLOSE CITYLIST;
EXEC SQL

COMMIT mytrans2;
EXEC SQL

DISCONNECT
. . .

Working with Multiple Transactions in DSQL

In InterBase, DSQL applications can also use multiple transactions, but with the
following limitations:

• Programs must be preprocessed with the gpre -m switch.

• Transaction names must be declared statically. They cannot be defined through
user-modified host variables at run time.
Chapter 4 Working with Transactions 4-27

Working with Multiple Transactions in DSQL
• Transaction names must be initialized to zero before appearing in DSQL
statements.

• All transactions must be started with explicit SET TRANSACTION
statements.

• No data definition language (DDL) can be used in the context of a named
transaction in an embedded program; DDL must always occur in the context of
the default transaction, GDS__TRANS.

• As long as a transaction name parameter is not specified with a SET
TRANSACTION statement, it can follow a PREPARE statement to modify the
behavior of a subsequently named transaction in an EXECUTE or EXECUTE
IMMEDIATE statement. This enables a user to modify transaction behaviors at
run time.

Transaction names are fixed for all InterBase programs during preprocessing, and
cannot be dynamically assigned. A user can still modify DSQL transaction
behavior at run time. It is up to the programmer to anticipate possible transaction
behavior modification and plan for it. The following section describes how users
can modify transaction behavior.

Modifying Transaction Behavior with “?”

The number and name of transactions available to a DSQL program is fixed when
the program is preprocessed with gpre, the InterBase preprocessor. The
programmer determines both the named transactions that control each DSQL
statement in a program, and the default behavior of those transactions. A user can
change a named transaction’s behavior at run time.

In DSQL programs, a user enters a SQL statement into a host-language string
variable, and then the host variable is processed in a PREPARE statement or
EXECUTE IMMEDIATE statement.

PREPARE

• Checks the statement in the variable for errors

• Loads the statement into an XSQLDA for a subsequent EXECUTE statement

EXECUTE IMMEDIATE

• Checks the statement for errors

• Loads the statement into the XSQLDA

• Executes the statement

Both EXECUTE and EXECUTE IMMEDIATE operate within the context of a
programmer-specified transaction, which can be a named transaction. If the
transaction name is omitted, these statements are controlled by the default
transaction, GDS__TRANS.
4-28 Embedded SQL Guide

Working with Multiple Transactions in DSQL
You can modify the transaction behavior for an EXECUTE and EXECUTE IMMEDIATE
statement by:

• Enabling a user to enter a SET TRANSACTION statement into a host variable

• Executing the SET TRANSACTION statement before the EXECUTE or EXECUTE
IMMEDIATE whose transaction context should be modified

In this context, a SET TRANSACTION statement changes the behavior of the next
named or default transaction until another SET TRANSACTION occurs.

The following C code fragment provides the user the option of specifying a new
transaction behavior, applies the behavior change, executes the next user
statement in the context of that changed transaction, then restores the
transaction’s original behavior.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char usertrans[512], query[1024];
char deftrans[] = {"SET TRANSACTION READ WRITE WAIT

SNAPSHOT"};
EXEC SQL

END DECLARE SECTION;
. . .
printf("\nEnter SQL statement: ");
gets(query);
printf("\nChange transaction behavior (Y/N)? ");
gets(usertrans);
if (usertrans[0] == "Y" || usertrans[0] == "y")
{

printf("\nEnter \"SET TRANSACTION\" and desired behavior:
");

gets(usertrans);
EXEC SQL

COMMIT usertrans;
EXEC SQL

EXECUTE IMMEDIATE usertrans;
}
else
{

EXEC SQL
EXECUTE IMMEDIATE deftrans;

}
EXEC SQL

EXECUTE IMMEDIATE query;
EXEC SQL

EXECUTE IMMEDIATE deftrans;
. . .

Important As this example illustrates, you must commit or roll back any previous transactions
before you can execute SET TRANSACTION.
Chapter 4 Working with Transactions 4-29

Working with Multiple Transactions in DSQL
4-30 Embedded SQL Guide

C h a p t e r

Chapter 5Working with
Data Definition Statements

This chapter discusses how to create, modify, and delete databases, tables, views,
and indexes in SQL applications. A database’s tables, views, and indexes make up
most of its underlying structure, or metadata.

Important The discussion in this chapter applies equally to dynamic SQL (DSQL)
applications, except that users enter DSQL data definition statements at run time,
and do not preface those statements with EXEC SQL.

The preferred method for creating, modifying, and deleting metadata is through the
InterBase interactive SQL tool, isql, but in some instances, it may be necessary or
desirable to embed some data definition capabilities in a SQL application. Both
SQL and DSQL applications can use the following subset of data definition
statements:

Table 5.1 Data definition statements supported for embedded applications

CREATE statement ALTER statement DROP statement

CREATE DATABASE ALTER DATABASE —

CREATE DOMAIN ALTER DOMAIN DROP DOMAIN

CREATE GENERATOR SET GENERATOR —

CREATE INDEX ALTER INDEX DROP INDEX

CREATE SHADOW ALTER SHADOW DROP SHADOW

CREATE TABLE ALTER TABLE DROP TABLE
Chapter 5 Working with Data Definition Statements 5-1

Creating Metadata
DSQL also supports creating, altering, and dropping stored procedures, triggers,
and exceptions. DSQL is especially powerful for data definition because it enables
users to enter any supported data definition statement at run time. For example,
isql itself is a DSQL application. For more information about using isql to define
stored procedures, triggers, and exceptions, see the Data Definition Guide. For a
complete discussion of DSQL programming, see “Using Dynamic SQL.”

Important Applications that mix data definition and data manipulation must be preprocessed
using the gpre -m switch. Such applications must explicitly start every transaction
with SET TRANSACTION.

Creating Metadata

SQL data definition statements are used in applications the sole purpose of which
is to create or modify databases or tables. Typically the expectation is that these
applications will be used only once by any given user, then discarded, or saved for
later modification by a database designer who can read the program code as a
record of a database’s structure. If data definition changes must be made, editing a
copy of existing code is easier than starting over.

The SQL CREATE statement is used to make new databases, domains, tables,
views, or indexes. A COMMIT statement must follow every CREATE so that
subsequent CREATE statements can use previously defined metadata upon which
they may rely. For example, domain definitions must be committed before the
domain can be referenced in subsequent table definitions.

Metadata Names

Name Length
Metadata names such as table, column, and domain names can be 68 bytes in
length: 67 bytes plus a NULL terminator. In earlier versions of InterBase, metadata
names were restricted to 32 bytes. Therefore older clients cannot access database
objects that have names longer than 32 bytes.

To enable clients to access the longer metadata names, you must set the version
field in the XSQLDA structure to SQLDA_CURRENT_VERSION, which is defined in
ibase.h. This version is configured to understand the longer names.

CREATE VIEW — DROP VIEW

DECLARE EXTERNAL — DROP EXTERNAL

DECLARE FILTER — DROP FILTER

Table 5.1 Data definition statements supported for embedded applications

CREATE statement ALTER statement DROP statement
5-2 Embedded SQL Guide

Creating Metadata
Delimited Identifiers
In InterBase dialect 1, object names are not case sensitive, cannot be keywords,
and cannot contain spaces or non-ASCII characters.

In dialect 3, object names that are enclosed in double quotes are delimited
identifiers. They are case sensitive, can be keywords, and can contain spaces and
non-ASCII characters. For example:

SELECT “CodAR” FROM MyTable

is different from:

SELECT “CODAR” FROM MyTable

This behavior conforms to ANSI SQL semantics for delimited identifiers.

Creating a Database

CREATE DATABASE establishes a new database and its associated system tables,
which describe the internal structure of the database. SQL programs can select
the data in most of these tables just as in any user-created table.

In its most elementary form, the syntax for CREATE DATABASE is:

EXEC SQL
CREATE DATABASE '<filespec>';

CREATE DATABASE must appear before any other CREATE statements. It requires
one parameter, the name of a database to create. For example, the following
statement creates a database named countries.ib:

EXEC SQL
CREATE DATABASE 'countries.ib';

Note The database name can include a full file specification, including both host or node
names, and a directory path to the location where the database file should be
created. For information about file specifications for a particular operating system,
see the operating system manuals.

Important Although InterBase enables access to remote databases, you should always
create a database directly on the machine where it is to reside.

Optional Parameters
There are optional parameters for CREATE DATABASE. For example, when an
application running on a client attempts to connect to an InterBase server in order
to create a database, it may be expected to provide USER and PASSWORD
parameters before the connection is established. Other parameters specify the
database page size, the number and size of multi-file databases, and the default
character set for the database.
Chapter 5 Working with Data Definition Statements 5-3

Creating Metadata
For a complete discussion of all CREATE DATABASE parameters, see the Data
Definition Guide. For the complete syntax of CREATE DATABASE, see Language
Reference Guide.

Important An application that creates a database must be preprocessed with the gpre -m
switch. It must also create at least one table. If a database is created without a
table, it cannot be successfully opened by another program. Applications that
perform both data definition and data manipulation must declare tables with
DECLARE TABLE before creating and populating them. For more information about
table creation, see “Creating a Table” .

Specifying a Default Character Set
A database’s default character set designation specifies the character set the
server uses to transliterate and store CHAR, VARCHAR, and text Blob data in the
database when no other character set information is provided. A default character
set should always be specified for a database when it is created with CREATE
DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of
CREATE DATABASE. For example, the following statement creates a database that
uses the ISO8859_1 character set:

EXEC SQL
CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET

ISO8859_1;

If you do not specify a character set, the character set defaults to NONE. Using
character set NONE means that there is no character set assumption for columns;
data is stored and retrieved just as you originally entered it. You can load any
character set into a column defined with NONE, but you cannot later move that data
into another column that has been defined with a different character set. In this
case, no transliteration is performed between the source and destination character
sets, and errors may occur during assignment.

For a complete description of the DEFAULT CHARACTER SET clause and a list of the
character sets supported by InterBase, see the Data Definition Guide.

Creating a Domain

CREATE DOMAIN creates a column definition that is global to the database, and that
can be used to define columns in subsequent CREATE TABLE statements. CREATE
DOMAIN is especially useful when many tables in a database contain identical
column definitions. For example, in an employee database, several tables might
define columns for employees’ first and last names.

At its simplest, the syntax for CREATE DOMAIN is:

EXEC SQL
CREATE DOMAIN name AS <datatype>;

The following statements create two domains, FIRSTNAME, and LASTNAME.
5-4 Embedded SQL Guide

Creating Metadata
EXEC SQL
CREATE DOMAIN FIRSTNAME AS VARCHAR(15);

EXEC SQL
CREATE DOMAIN LASTNAME AS VARCHAR(20);

EXEC SQL
COMMIT;

Once a domain is defined and committed, it can be used in CREATE TABLE
statements to define columns. For example, the following CREATE TABLE fragment
illustrates how the FIRSTNAME and LASTNAME domains can be used in place of
column definitions in the EMPLOYEE table definition.

EXEC SQL
CREATE TABLE EMPLOYEE
(

. . .
FIRST_NAME FIRSTNAME NOT NULL,
LAST_NAME LASTNAME NOT NULL;
. . .

);

A domain definition can also specify a default value, a NOT NULL attribute, a CHECK
constraint that limits inserts and updates to a range of values, a character set, and
a collation order.

For more information about creating domains and using them during table
creation, see the Data Definition Guide. For the complete syntax of CREATE
DOMAIN, see the Language Reference Guide.

Creating a Table

The CREATE TABLE statement defines a new database table and the columns and
integrity constraints within that table. Each column can include a character set
specification and a collation order specification. CREATE TABLE also automatically
imposes a default SQL security scheme on the table. The person who creates a
table becomes its owner. A table’s owner is assigned all privileges for it, including
the right to grant privileges to other users.

A table can be created only for a database that already exists. At its simplest, the
syntax for CREATE TABLE is as follows:

EXEC SQL
CREATE TABLE name (<col_def> | <table_constraint>

[, <col_def> | <table_constraint> ...]);

<col_def> defines a column using the following syntax:

<col> {<datatype> | COMPUTED [BY] (<expr>) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[<col_constraint>]
[COLLATE collation]
Chapter 5 Working with Data Definition Statements 5-5

Creating Metadata
col must be a column name unique within the table definition.

<datatype> specifies the SQL datatype to use for column entries. COMPUTED BY
can be used to define a column whose value is computed from an expression
when the column is accessed at run time.

<col_constraint> is an optional integrity constraint that applies only to the
associated column.

<table_constraint> is an optional integrity constraint that applies to an entire table.

Integrity constraints ensure that data entered in a table meets specific
requirements, to specify that data entered in a table or column is unique, or to
enforce referential integrity with other tables in the database.

A column definition can include a default value. Some examples:

stringfld VARCHAR(10) DEFAULT ‘abc’
integerfld INTEGER DEFAULT 1
numfld NUMERIC(15,4) DEFAULT 1.5
datefld1 DATE DEFAULT ‘2/01/2001’
datefld2 DATE DEFAULT ‘TODAY’
userfld VARCHAR(12) DEFAULT USER

The last two lines show special InterBase features: ‘TODAY’ defaults to the current
date, and USER is the user who is performing an insert to the column.

The following code fragment contains SQL statements that create a database,
employee.ib, and create a table, EMPLOYEE_PROJECT, with three columns,
EMP_NO, PROJ_ID, and DUTIES:

EXEC SQL
CREATE DATABASE 'employee.ib';

EXEC SQL
CREATE TABLE EMPLOYEE_PROJECT
(

EMP_NO SMALLINT NOT NULL,
PROJ_ID CHAR(5) NOT NULL,
DUTIES Blob SUB_TYPE 1 SEGMENT SIZE 240

);
EXEC SQL

COMMIT;

An application can create multiple tables, but duplicating an existing table name is
not permitted.

For more information about SQL datatypes and integrity constraints, see the Data
Definition Guide. For more information about CREATE TABLE syntax, see the
Language Reference Guide. For more information about changing or assigning
table privileges, see “Planning Security” in the Data Definition Guide.
5-6 Embedded SQL Guide

Creating Metadata
Creating a Computed Column
A computed column is one whose value is calculated when the column is
accessed at run time. The value can be derived from any valid SQL expression
that results in a single, non-array value. Computed columns are “virtual” in that
they do not correspond to data that is physically stored in the database. The
values are always generated during the SELECT query. They have to be generated
dynamically in case the values they are based on change.

To create a computed column, use the following column declaration syntax in
CREATE TABLE:

col COMPUTED [BY] (<expr>)

The expression can reference previously defined columns in the table. For
example, the following statement creates a computed column, FULL_NAME, by
concatenating two other columns, LAST_NAME, and FIRST_NAME:

EXEC SQL
CREATE TABLE EMPLOYEE
(

. . .
FIRST_NAME VARCHAR(10) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
. . .
FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME)

);

For more information about COMPUTED BY, see the Data Definition Guide.

Declaring and Creating a Table
In programs that mix data definition and data manipulation, the DECLARE TABLE
statement must be used to describe a table’s structure to the InterBase
preprocessor, gpre, before that table can be created. During preprocessing, if gpre
encounters a DECLARE TABLE statement, it stores the table’s description for later
reference. When gpre encounters a CREATE TABLE statement for the previously
declared table, it verifies that the column descriptions in the CREATE statement
match those in the DECLARE statement. If they do not match, gpre reports the
errors and cancels preprocessing so that the error can be fixed.

When used, DECLARE TABLE must come before the CREATE TABLE statement it
describes. For example, the following code fragment declares a table,
EMPLOYEE_PROJ, then creates it:

EXEC SQL
DECLARE EMPLOYEE_PROJECT TABLE
(

EMP_NO SMALLINT,
PROJ_ID CHAR(5),
DUTIES Blob(240, 1)

);
EXEC SQL
Chapter 5 Working with Data Definition Statements 5-7

Creating Metadata
CREATE TABLE EMPLOYEE_PROJECT
(

EMP_NO SMALLINT,
PROJ_ID CHAR(5),
DUTIES Blob(240, 1)

);
EXEC SQL

COMMIT;

For more information about DECLARE TABLE, see the Language Reference Guide.

Creating a View

A view is a virtual table that is based on a subset of one or more actual tables in a
database. Views are used to:

• Restrict user access to data by presenting only a subset of available data.

• Rearrange and present data from two or more tables in a manner especially
useful to the program.

Unlike a table, a view is not stored in the database as raw data. Instead, when a
view is created, the definition of the view is stored in the database. When a
program uses the view, InterBase reads the view definition and quickly generates
the output as if it were a table.

To make a view, use the following CREATE VIEW syntax:

EXEC SQL
CREATE VIEW name [(view_col [, view_col ...)] AS

<select> [WITH CHECK OPTION];

The name of the view, name, must be unique within the database.

To give each column displayed in the view its own name, independent of its
column name in an underlying table, enclose a list of view_col parameters in
parentheses. Each column of data returned by the view’s SELECT statement is
assigned sequentially to a corresponding view column name. If a list of view
column names is omitted, column names are assigned directly from the underlying
table.

Listing independent names for columns in a view ensures that the appearance of a
view does not change if its underlying table structures are modified.

Note A view column name must be provided for each column of data returned by the
view’s SELECT statement, or else no view column names should be specified.

The select clause is a standard SELECT statement that specifies the selection
criteria for rows to include in the view. A SELECT in a view cannot include an
ORDER BY clause. In DSQL, it cannot include a UNION clause.

The optional WITH CHECK OPTION restricts inserts, updates, and deletes in a view
that can be updated.
5-8 Embedded SQL Guide

Creating Metadata
To create a read-only view, a view’s creator must have SELECT privilege for the
table or tables underlying the view. To create a view for update requires ALL
privilege for the table or tables underlying the view. For more information about
SQL privileges, see “Planning Security” in the Data Definition Guide.

Creating a View for SELECT
Many views combine data from multiple tables or other views. A view based on
multiple tables or other views can be read, but not updated. For example, the
following statement creates a read-only view, PHONE_LIST, because it joins two
tables, EMPLOYEE, and DEPARTMENT:

EXEC SQL
CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

EXEC SQL
COMMIT;

Important Only a view’s creator initially has access to it. To assign read access to others, use
GRANT. For more information about GRANT, see “Planning Security” inthe Data
Definition Guide.

Creating a View for update
An updatable view is one that enables privileged users to insert, update, and
delete information in the view’s base table. To be updatable, a view must meet the
following conditions:

• It derives its columns from a single table or updatable view.

• It does not define a self-join of the base table.

• It does not reference columns derived from arithmetic expressions.

• The view’s SELECT statement does not contain:

• A WHERE clause that uses the DISTINCT predicate

• A HAVING clause

• Functions

• Nested queries

• Stored procedures

In the following view, HIGH_CITIES is an updatable view. It selects all cities in the
CITIES table with altitudes greater than or equal to a half mile.

EXEC SQL
CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES
WHERE ALTITUDE >= 2640;
Chapter 5 Working with Data Definition Statements 5-9

Creating Metadata
EXEC SQL
COMMIT;

Users who have INSERT and UPDATE privileges for this view can change rows in or
add new rows to the view’s underlying table, CITIES. They can even insert or
update rows that cannot be displayed by the HIGH_CITIES view. The following
INSERT adds a record for Santa Cruz, California, altitude 23 feet, to the CITIES
table:

EXEC SQL
INSERT INTO HIGH_CITIES (CITY, COUNTRY_NAME, ALTITUDE)
VALUES ('Santa Cruz', 'United States', '23');

To restrict inserts and updates through a view to only those rows that can be
selected by the view, use the WITH CHECK OPTION in the view definition. For
example, the following statement defines the view, HIGH_CITIES, to use the WITH
CHECK OPTION. Users with INSERT and UPDATE privileges will be able to enter rows
only for cities with altitudes greater than or equal to a half mile.

EXEC SQL
CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES
WHERE ALTITUDE > 2640 WITH CHECK OPTION;

Creating an Index

SQL provides CREATE INDEX for establishing user-defined database indexes. An
index, based on one or more columns in a table, is used to speed data retrieval for
queries that access those columns. The syntax for CREATE INDEX is:

EXEC SQL
CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index>

ON
table (col [, col ...]);

For example, the following statement defines an index, NAMEX, for the LAST_NAME
and FIRST_NAME columns in the EMPLOYEE table:

EXEC SQL
CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Note InterBase automatically generates system-level indexes when tables are defined
using UNIQUE and PRIMARY KEY constraints. For more information about
constraints, see the Data Definition Guide.

See the Language Reference Guide for more information about CREATE INDEX
syntax.

Preventing Duplicate Index Entries
To define an index that eliminates duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique index, PRODTYPEX, on
the PROJECT table:
5-10 Embedded SQL Guide

Creating Metadata
EXEC SQL
CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT,

PROJ_NAME);

Important After a unique index is defined, users cannot insert or update values in indexed
columns if those values already exist there. For unique indexes defined on multiple
columns, like PRODTYPEX in the previous example, the same value can be entered
within individual columns, but the combination of values entered in all columns
defined for the index must be unique.

Specifying Index Sort Order
By default, SQL stores an index in ascending order. To make a descending sort on
a column or group of columns more efficient, use the DESCENDING keyword to
define the index. For example, the following statement creates an index, CHANGEX,
based on the CHANGE_DATE column in the SALARY_HISTORY table:

EXEC SQL
CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY

(CHANGE_DATE);

Note To retrieve indexed data in descending order, use ORDER BY in the SELECT
statement to specify retrieval order.

Creating Generators

A generator is a monotonically increasing or decreasing numeric value that is
inserted in a field either directly by a SQL statement in an application or through a
trigger. Generators are often used to produce unique values to insert into a column
used as a primary key.

To create a generator for use in an application, use the following CREATE
GENERATOR syntax:

EXEC SQL
CREATE GENERATOR name;

The following statement creates a generator, EMP_NO_GEN, to specify a unique
employee number:

EXEC SQL
CREATE GENERATOR EMP_NO_GEN;

EXEC SQL
COMMIT;

Once a generator is created, the starting value for a generated number can be
specified with SET GENERATOR. To insert a generated number in a field, use the
InterBase library GEN_ID() function in an assignment statement. For more
information about GEN_ID(), CREATE GENERATOR, and SET GENERATOR, see the
Data Definition Guide.
Chapter 5 Working with Data Definition Statements 5-11

Dropping Metadata
Dropping Metadata

SQL supports several statements for deleting existing metadata:

• DROP TABLE, to delete a table from a database

• DROP VIEW, to delete a view definition from a database

• DROP INDEX, to delete a database index

• ALTER TABLE, to delete columns from a table

For more information about deleting columns with ALTER TABLE, see “Altering a
Table” .

Dropping an Index

To delete an index, use DROP INDEX. An index can only be dropped by its creator,
the SYSDBA, or a user with root privileges. If an index is in use when the drop is
attempted, the drop is postponed until the index is no longer in use. The syntax of
DROP INDEX is:

EXEC SQL
DROP INDEX name;

name is the name of the index to delete. For example, the following statement
drops the index, NEEDX:

EXEC SQL
DROP INDEX NEEDX;

EXEC SQL
COMMIT;

Deletion fails if the index is on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint. To drop an index on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint, first drop the constraints, the constrained columns, or the table.

For more information about DROP INDEX and dropping integrity constraints, see the
Data Definition Guide.

Dropping a View

To delete a view, use DROP VIEW. A view can only be dropped by its owner, the
SYSDBA, or a user with root privileges. If a view is in use when a drop is attempted,
the drop is postponed until the view is no longer in use. The syntax of DROP VIEW
is:

EXEC SQL
DROP VIEW name;

The following statement drops the EMPLOYEE_SALARY view:

EXEC SQL
5-12 Embedded SQL Guide

Altering Metadata
DROP VIEW EMPLOYEE_SALARY;
EXEC SQL

COMMIT;

Deleting a view fails if a view is used in another view, a trigger, or a computed
column. To delete a view that meets any of these conditions:

1 Delete the other view, trigger, or computed column.

2 Delete the view.

For more information about DROP VIEW, see the Data Definition Guide.

Dropping a Table

Use DROP TABLE to remove a table from a database. A table can only be dropped
by its owner, the SYSDBA, or a user with root privileges. If a table is in use when a
drop is attempted, the drop is postponed until the table is no longer in use. The
syntax of DROP TABLE is:

EXEC SQL
DROP TABLE name;

name is the name of the table to drop. For example, the following statement drops
the EMPLOYEE table:

EXEC SQL
DROP TABLE EMPLOYEE;

EXEC SQL
COMMIT;

Deleting a table fails if a table is used in a view, a trigger, or a computed column. A
table cannot be deleted if a UNIQUE or PRIMARY KEY integrity constraint is defined
for it, and the constraint is also referenced by a FOREIGN KEY in another table. To
drop the table, first drop the FOREIGN KEY constraints in the other table, then drop
the table.

Note Columns within a table can be dropped without dropping the rest of the table. For
more information, see “Dropping an Existing Column” .

For more information about DROP TABLE, see the Data Definition Guide.

Altering Metadata

Most changes to data definitions are made at the table level, and involve adding
new columns to a table, or dropping obsolete columns from it. SQL provides ALTER
TABLE to add new columns to a table and to drop existing columns. A single ALTER
TABLE can carry out a single operation, or both operations. Direct metadata
operations such as ALTER TABLE increment the metadata version. Any one table
(and its triggers) can be modified at most 255 times before you must back up and
restore the database.
Chapter 5 Working with Data Definition Statements 5-13

Altering Metadata
Making changes to views and indexes always requires two separate statements:

1 Drop the existing definition.

2 Create a new definition.

If current metadata cannot be dropped, replacement definitions cannot be added.
Dropping metadata can fail for the following reasons:

• The person attempting to drop metadata is not the metadata’s creator.

• SQL integrity constraints are defined for the metadata and referenced in other
metadata.

• The metadata is used in another view, trigger, or computed column.

For more information about dropping metadata, see “Dropping Metadata” .

Altering a Table

ALTER TABLE enables the following changes to an existing table:

• Adding new column definitions

• Adding new table constraints

• Dropping existing column definitions

• Dropping existing table constraints

• Changing column definitions by dropping existing definitions, and adding new
ones

• Changing existing table constraints by dropping existing definitions, and adding
new ones

• Modifying column names and datatypes

The simple syntax of ALTER TABLE is as follows:

EXEC SQL
ALTER TABLE name {ADD colname <datatype> [NOT NULL]
| ALTER [COLUMN] simple_column_name alter_rel_field
| DROP colname | ADD CONSTRAINT constraintname

tableconstraint
| DROP CONSTRAINT constraintname};

Note For information about adding, dropping, and modifying constraints at the table level,
see the Data Definition Guide.

For the complete syntax of ALTER TABLE, see the Language Reference Guide.

Adding a New Column to a Table
To add another column to an existing table, use ALTER TABLE. A table can only be
modified by its creator. The syntax for adding a column with ALTER TABLE is:
5-14 Embedded SQL Guide

Altering Metadata
EXEC SQL
ALTER TABLE name ADD colname <datatype> colconstraint

[, ADD colname datatype colconstraint ...];

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE
table:

EXEC SQL
ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

EXEC SQL
COMMIT;

This example makes use of a domain, EMPNO, to define a column. For more
information about domains, see the Data Definition Guide.

Multiple columns can be added to a table at the same time. Separate column
definitions with commas. For example, the following statement adds two columns,
EMP_NO, and FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed
column, a column that derives it values from calculations based on other columns:

EXEC SQL
ALTER TABLE EMPLOYEE

ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' ||

FIRST_NAME);
EXEC SQL

COMMIT;

This example creates a column using a value computed from two other columns
already defined for the EMPLOYEE table. For more information about creating
computed columns, see the Data Definition Guide.

New columns added to a table can be defined with integrity constraints. For more
information about adding columns with integrity constraints to a table, see the Data
Definition Guide.

Dropping an Existing Column
To delete a column definition and its data from a table, use ALTER TABLE. A column
can only be dropped by the owner of the table, the SYSDBA, or a user with root
privileges. If a table is in use when a column is dropped, the drop is postponed
until the table is no longer in use. The syntax for dropping a column with ALTER
TABLE is:

EXEC SQL
ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the
EMPLOYEE table:

EXEC SQL
ALTER TABLE EMPLOYEE DROP EMP_NO;

EXEC SQL
Chapter 5 Working with Data Definition Statements 5-15

Altering Metadata
COMMIT;

Multiple columns can be dropped with a single ALTER TABLE. The following
statement drops the EMP_NO and FULL_NAME columns from the EMPLOYEE table:

EXEC SQL
ALTER TABLE EMPLOYEE

DROP EMP_NO,
DROP FULL_NAME;

EXEC SQL
COMMIT;

Deleting a column fails if the column is part of a UNIQUE, PRIMARY KEY, or FOREIGN
KEY constraint. To drop the column, first drop the constraint, then the column.

Deleting a column also fails if the column is used by a CHECK constraint for another
column. To drop the column, first drop the CHECK constraint, then drop the column.

For more information about integrity constraints, see the Data Definition Guide.

Modifying a Column
An existing column definition can be modified using ALTER TABLE, but if data
already stored in that column is not preserved before making changes, it will be
lost.

Preserving data entered in a column and modifying the definition for a column, is a
five-step process:

1 Adding a new, temporary column to the table that mirrors the current metadata
of the column to be changed.

2 Copying the data from the column to be changed to the newly created
temporary column.

3 Modifying the column.

4 Copying data from the temporary column to the redefined column.

5 Dropping the temporary column.

An Example
Suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold a
datatype of CHAR(3), and suppose that the size of the column needs to be
increased by one. The following numbered sequence describes each step and
provides sample code:

1 First, create a temporary column to hold the data in OFFICE_NO during the
modification process:

EXEC SQL
ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

EXEC SQL
COMMIT;
5-16 Embedded SQL Guide

Altering Metadata
2 Move existing data from OFFICE_NO to TEMP_NO to preserve it:

EXEC SQL
UPDATE EMPLOYEE

SET TEMP_NO = OFFICE_NO;

3 Modify the new column definition for OFFICE_NO, specifying the datatype and
new size:

EXEC SQL
ALTER TABLE EMPLOYEE ALTER OFFICE_NO TYPE CHAR(4);

EXEC SQL
COMMIT;

4 Move the data from TEMP_NO to OFFICE_NO:

EXEC SQL
UPDATE EMPLOYEE

SET OFFICE_NO = TEMP_NO;

5 Finally, drop the TEMP_NO column:

EXEC SQL
ALTER TABLE DROP TEMP_NO;

EXEC SQL
COMMIT;

For more information about dropping column definitions, see “Dropping an
Existing Column” . For more information about adding column definitions, see
“Modifying a Column”.

The ALTER TABLE ALTER command allows you to change the column position and
name as well.

For example, the following statement moves a column, EMP_NO, from the third
position to the second position in the EMPLOYEE table:

ALTER TABLE EMPLOYEE ALTER EMP_NO POSITION 2;

You could also change the name of the EMP_NO column to EMP_NUM as in the
following example:

ALTER TABLE EMPLOYEE ALTER EMP_NO TO EMP_NUM;

Important Any changes to the field definitions may require the indexes to be rebuilt.

For the complete syntax of ALTER TABLE, see the Language Reference Guide.

Altering a View

To change the information provided by a view, follow these steps:

1 Drop the current view definition.

2 Create a new view definition and give it the same name as the dropped view.
Chapter 5 Working with Data Definition Statements 5-17

Altering Metadata
For example, the following view is defined to select employee salary information:

EXEC SQL
CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, LAST_NAME, CURRENCY, SALARY
FROM EMPLOYEE, COUNTRY
WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

Suppose the full name of each employee should be displayed instead of the last
name. First, drop the current view definition:

EXEC SQL
DROP EMPLOYEE_SALARY;

EXEC SQL
COMMIT;

Then create a new view definition that displays each employee’s full name:

EXEC SQL
CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, FULL_NAME, CURRENCY, SALARY
FROM EMPLOYEE, COUNTRY
WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

EXEC SQL
COMMIT;

Altering an Index

To change the definition of an index, follow these steps:

1 Use ALTER INDEX to make the current index inactive.

2 Drop the current index.

3 Create a new index and give it the same name as the dropped index.

An index is usually modified to change the combination of columns that are
indexed, to prevent or allow insertion of duplicate entries, or to specify index sort
order. For example, given the following definition of the NAMEX index:

EXEC SQL
CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Suppose there is an additional need to prevent duplicate entries with the UNIQUE
keyword. First, make the current index inactive, then drop it:

EXEC SQL
ALTER INDEX NAMEX INACTIVE;

EXEC SQL
DROP INDEX NAMEX;

EXEC SQL
COMMIT;
5-18 Embedded SQL Guide

Altering Metadata
Then create a new index, NAMEX, based on the previous definition, that also
includes the UNIQUE keyword:

EXEC SQL
CREATE UNIQUE INDEX NAMEX ON EMPLOYEE (LAST_NAME,

FIRST_NAME);
EXEC SQL

COMMIT

ALTER INDEX can be used directly to change an index’s sort order, or to add the
ability to handle unique or duplicate entries. For example, the following statement
changes the NAMEX index to permit duplicate entries:

EXEC SQL
ALTER INDEX NAMEX DUPLICATE;

Important Be careful when altering an index directly. For example, changing an index from
supporting duplicate entries to one that requires unique entries without disabling
the index and recreating it can reduce index performance.

For more information about dropping an index, see “Dropping an Index” . For
more information about creating an index, see “Creating an Index” .
Chapter 5 Working with Data Definition Statements 5-19

Altering Metadata
5-20 Embedded SQL Guide

C h a p t e r

Chapter 6Working with Data
The majority of SQL statements in an embedded program are devoted to reading
or modifying existing data, or adding new data to a database. This chapter
describes the types of data recognized by InterBase, and how to retrieve, modify,
add, or delete data in a database using SQL expressions and the following
statements.

SELECT statements query a database, that is, read or retrieve existing data from a
database. Variations of the SELECT statement make it possible to retrieve:

• A single row, or part of a row, from a table. This operation is referred to as a
singleton select.

• Multiple rows, or parts of rows, from a table using a SELECT within a DECLARE
CURSOR statement.

• Related rows, or parts of rows, from two or more tables into a virtual table, or
results table. This operation is referred to as a join.

• All rows, or parts of rows, from two or more tables into a virtual table. This
operation is referred to as a union.

• INSERT statements write new rows of data to a table.

• UPDATE statements modify existing rows of data in a table.

• DELETE statements remove existing rows of data from a table.

To learn how to use the SELECT statement to retrieve data, see “Understanding
Data Retrieval with SELECT” . For information about retrieving a single row with
SELECT, see “Selecting a Single Row” . For information about retrieving multiple
rows, see “Selecting Multiple Rows” .

For information about using INSERT to write new data to a table, see “Inserting
Data” . To modify data with UPDATE, see “Updating Data” . To remove data from a
table with DELETE, see “Deleting Data” .
Chapter 6 Working with Data 6-1

Supported Datatypes
Supported Datatypes

To query or write to a table, it is necessary to know the structure of the table, what
columns it contains, and what datatypes are defined for those columns. InterBase
supports ten fundamental datatypes, described in the following table:

Table 6.1 Datatypes supported by InterBase

Name Size Range/Precision Description

BLOB Variable • None
• Blob segment size is limited to

64K

• Dynamically sizable datatype
for storing data such as
graphics, text, and digitized
voice

• Basic structural unit is the
segment

• Blob sub-type describes Blob
contents

BOOLEAN 16 bits • TRUE
• FALSE
• UNKNOWN

• Represents truth values TRUE,
FALSE, and UNKNOWN

• Requires ODS 11 or higher,
any dialect

CHAR(n) n
character
s

• 1 to 32,767 bytes
• Character set character size

determines the maximum
number of characters that can fit
in 32K

• Fixed length CHAR or text
string type

• Alternate keyword:
CHARACTER

DATE 32 bits 1 Jan 100 a.d. to 29 Feb 32768
a.d.

ISC_DATE

DECIMAL (precision,
scale)

Variable
(16, 32, or
64 bits)

• precision = 0 to 18; specifies at
least precision digits of precision
to store

• scale = 0 to {value}; specifies
number of decimal places for
storage

• Scale must be less than or eqaul
to precision

• Number with a decimal point
scale digits from the right for
example: DECIMAL(10, 3)
holds numbers accurately in
the following format:
ppppppp.sss

DOUBLE PRECISION 64 bitsa 2.225 x 10–308 to 1.797 x 10308 IEEE double precision: 15 digits

FLOAT 32 bits 1.175 x 10–38 to 3.402 x 1038 IEEE single precision: 7 digits

INTEGER 32 bits –2,147,483,648 to 2,147,483,647 Signed long (longword)
6-2 Embedded SQL Guide

Supported Datatypes
The BLOB datatype can store large data objects of indeterminate and variable size,
such as bitmapped graphics images, vector drawings, sound files, chapter or
book-length documents, or any other kind of multimedia information. Because a
Blob can hold different kinds of information, it requires special processing for
reading and writing. For more information about Blob handling, see “Working with
Blob Data.”

The DATE, TIME, and TIMESTAMP datatypes may require conversion to and from
InterBase when entered or manipulated in a host-language program. For more
information about retrieving and writing dates, see “Working with Dates and
Times.”

InterBase also supports arrays of most datatypes. An array is a matrix of individual
items, all of any single InterBase datatype, except Blob, that can be handled either
as a single entity, or manipulated item by item. To learn more about the flexible
data access provided by arrays, see “Using Arrays.”

For a complete discussion of InterBase datatypes, see the Data Definition Guide.

Note InterBase looks for Booleans of the form “literal <relop> literal” that evaluate to
FALSE and returns a false Boolean inversion node to short-circuit data retrieval.

NUMERIC (precision,
scale)

Variable

(16, 32, or
64 bits)

• precision = 0 to 18; specifies
exactly precision digits of
precision to store

• scale = 0 to {value}; specifies
number of decimal places for
storage

• Scale must be less than or eqaul
to precision

• Number with a decimal point
scale digits from the right for
example: NUMERIC(10,3)
holds numbers accurately in
the following format:
ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767 Signed short (word)

TIME 32 bits 00:00:00.0000 to 23:59:59.9999 ISC_TIME

TIMESTAMP 64 bits 1 Jan 100 a.d. to 29 Feb 32768
a.d.

ISC_TIMESTAMP; contains both
date and time information

VARCHAR (n) n
character
s

• 1 to 32,765 bytes
• Character set character size

determines the maximum
number of characters that can fit
in 32K

• Variable length CHAR or text
string type

• Alternate keywords: CHAR
VARYING, CHARACTER
VARYING

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

Table 6.1 Datatypes supported by InterBase (continued)

Name Size Range/Precision Description
Chapter 6 Working with Data 6-3

Understanding SQL Expressions
Understanding SQL Expressions

All SQL data manipulation statements support SQL expressions, SQL syntax for
comparing and evaluating columns, constants, and host-language variables to
produce a single value.

In the SELECT statement, for example, the WHERE clause is used to specify a
search condition that determines if a row qualifies for retrieval. That search
condition is a SQL expression. DELETE and UPDATE also support search condition
expressions. Typically, when an expression is used as a search condition, the
expression evaluates to a Boolean value that is True, False, or Unknown.

SQL expressions can also appear in the INSERT statement VALUE clause and the
UPDATE statement SET clause to specify or calculate values to insert into a column.
When inserting or updating a numeric value via an expression, the expression is
usually arithmetic, such as multiplying one number by another to produce a new
number which is then inserted or updated in a column. When inserting or updating
a string value, the expression may concatenate, or combine, two strings to
produce a single string for insertion or updating.

The following table describes the elements that can be used in expressions:

Table 6.2 Elements of SQL expressions

Element Description

Column names Columns from specified tables, against which to search or
compare values, or from which to calculate values.

Host-language variables Program variables containing changeable values. Host-
language variables must be preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation operator ||, used to combine character strings.

Arithmetic operators +, –, *, and /, used to calculate and evaluate values.

Logical operators Keywords, NOT, AND, and OR, used within simple search
conditions, or to combine simple search conditions to make
complex searches. A logical operation evaluates to true or
false. Usually used only in search conditions.

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left
side of the operator to another on the right. A comparative
operation evaluates to true or false.

Other, more specialized comparison operators include ALL,
ANY, BETWEEN, CONTAINING, EXISTS, IN, IS [NOT] NULL,
LIKE, SINGULAR, SOME, and STARTING WITH. These
operators can evaluate to True, False, or Unknown. They
are usually used only in search conditions.
6-4 Embedded SQL Guide

Understanding SQL Expressions
Complex expressions can be constructed by combining simple expressions in
different ways. For example the following WHERE clause uses a column name,
three constants, three comparison operators, and a set of grouping parentheses to
retrieve only those rows for employees with salaries between $60,000 and
$120,000:

WHERE DEPARTMENT = 'Publications' AND
(SALARY > 60000 AND SALARY < 120000)

As another example, search conditions in WHERE clauses often contain nested
SELECT statements, or subqueries. In the following query, the WHERE clause
contains a subquery that uses the aggregate function, AVG(), to retrieve a list of all
departments with bigger than average salaries:

EXEC SQL
DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO
INTO :wellpaid
FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

COLLATE clause Comparisons of CHAR and VARCHAR values can
sometimes take advantage of a COLLATE clause to force
the way text values are compared.

Stored procedures Reusable SQL statement blocks that can receive and return
parameters, and that are stored as part of a database’s
metadata.

Subqueries SELECT statements, typically nested in WHERE clauses,
that return values to be compared with the result set of the
main SELECT statement.

Parentheses Used to group expressions into hierarchies; operations
inside parentheses are performed before operations
outside them. When parentheses are nested, the contents
of the innermost set is evaluated first and evaluation
proceeds outward.

Date literals String values that can be entered in quotes, that will be
interpreted as date values in SELECT, INSERT, and UPDATE
operations. Possible strings are ‘TODAY’, ‘NOW’,
‘YESTERDAY’, and ‘TOMORROW’.

The USER
pseudocolumn

References the name of the user who is currently logged in.
For example, USER can be used as a default in a column
definition or to enter the current user’s name in an INSERT.
When a user name is present in a table, it can be
referenced with USER in SELECT and DELETE statements.

Table 6.2 Elements of SQL expressions (continued)

Element Description
Chapter 6 Working with Data 6-5

Understanding SQL Expressions
For more information about using subqueries to specify search conditions, see
“Using Subqueries” . For more information about aggregate functions, see
“Retrieving Aggregate Column Information” .

Using the String Operator in Expressions

The string operator, ||, also referred to as a concatenation operator, enables a
single character string to be built from two or more character strings. Character
strings can be constants or values retrieved from a column. For example,

char strbuf[80];
. . .
EXEC SQL

SELECT LAST_NAME || ' is the manager of publications.'
INTO :strbuf
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = 5900 AND MNGR_NO = EMP_NO;

The string operator can also be used in INSERT or UPDATE statements:

EXEC SQL
INSERT INTO DEPARTMENT (MANAGER_NAME)

VALUES(:fname || :lname);

Using Arithmetic Operators in Expressions

To calculate numeric values in expressions, InterBase recognizes four arithmetic
operators listed in the following table:

Arithmetic operators are evaluated from left to right, except when ambiguities
arise. In these cases, InterBase evaluates operations according to the precedence
specified in the table (for example, multiplications are performed before divisions,
and divisions are performed before subtractions).

Arithmetic operations are always calculated before comparison and logical
operations. To change or force the order of evaluation, group operations in
parentheses. InterBase calculates operations within parentheses first. If
parentheses are nested, the equation in the innermost set is the first evaluated,
and the outermost set is evaluated last. For more information about precedence
and using parentheses for grouping, see “Determining Precedence of Operators”
.

Table 6.3 Arithmetic operators

Operator Purpose
Precedenc
e Operator Purpose Precedence

* Multiplication 1 + Addition 3

/ Division 2 – Subtraction 4
6-6 Embedded SQL Guide

Understanding SQL Expressions
The following example illustrates a WHERE clause search condition that uses an
arithmetic operator to combine the values from two columns, then uses a
comparison operator to determine if that value is greater than 10:

DECLARE RAINCITIES CURSOR FOR
SELECT CITYNAME, COUNTRYNAME

INTO :cityname, :countryname
FROM CITIES
WHERE JANUARY_RAIN + FEBRUARY_RAIN > 10;

Using Logical Operators in Expressions

Logical operators calculate a Boolean value, True, False, or Unknown, based on
comparing previously calculated simple search conditions immediately to the left
and right of the operator. InterBase recognizes three logical operators, NOT, AND,
and OR.

NOT reverses the search condition in which it appears, while AND and OR are used
to combine simple search conditions. For example, the following query returns any
employee whose last name is not “Smith”:

DECLARE NOSMITH CURSOR FOR
SELECT LAST_NAME

INTO :lname
FROM EMPLOYEE
WHERE NOT LNAME = 'Smith';

When AND appears between search conditions, both search conditions must be
true if a row is to be retrieved. The following query returns any employee whose
last name is neither “Smith” nor “Jones”:

DECLARE NO_SMITH_OR_JONES CURSOR FOR
SELECT LAST_NAME

INTO :lname
FROM EMPLOYEE
WHERE NOT LNAME = 'Smith' AND NOT LNAME = 'Jones';

OR stipulates that one search condition or the other must be true. For example,
the following query returns any employee named “Smith” or “Jones”:

DECLARE ALL_SMITH_JONES CURSOR FOR
SELECT LAST_NAME, FIRST_NAME

INTO :lname, :fname
FROM EMPLOYEE
WHERE LNAME = 'Smith' OR LNAME = 'Jones';

The order in which combined search conditions are evaluated is dictated by the
precedence of the operators that connect them. A NOT condition is evaluated
before AND, and AND is evaluated before OR. Parentheses can be used to change
the order of evaluation. For more information about precedence and using
parentheses for grouping, see “Determining Precedence of Operators” .
Chapter 6 Working with Data 6-7

Understanding SQL Expressions
Using Comparison Operators in Expressions

Comparison operators evaluate to a Boolean value: TRUE, FALSE, or UNKNOWN,
based on a test for a specific relationship between a value to the left of the
operator, and a value or range of values to the right of the operator. Values
compared must evaluate to the same datatype, unless the CAST() function is used
to translate one datatype to a different one for comparison. Values can be
columns, constants, or calculated values.

The following table lists operators that can be used in statements, describes how
they are used, and provides samples of their use:

Note Comparisons evaluate to UNKNOWN if a NULL value is encountered.

For more information about CAST(), see “Using CAST() for Datatype
Conversions” .

InterBase also supports comparison operators that compare a value on the left of
the operator to the results of a subquery to the right of the operator. The following
table lists these operators, and describes how they are used:

Table 6.4 Comparison operators

Operator Purpose

= Equals

< Less than

> Greater than

>= Greater than or equals

<= Less than or equals

!>, ~>, ^> Not greater than

!<, ~<, ^< Not less than

<>, != Not equal to

Table 6.5 InterBase comparison operators requiring subqueries

Operator Purpose

ALL Determines if a value is equal to all values returned by a
subquery
6-8 Embedded SQL Guide

Understanding SQL Expressions
For more information about using subqueries, see “Using Subqueries” .

Using BETWEEN
BETWEEN tests whether a value falls within a range of values. The complete syntax
for the BETWEEN operator is:

<value> [NOT] BETWEEN <value> AND <value>

For example, the following cursor declaration retrieves LAST_NAME and
FIRST_NAME columns for employees with salaries between $100,000 and
$250,000, inclusive:

EXEC SQL
DECLARE LARGE_SALARIES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE SALARY BETWEEN 100000 AND 250000;

Use NOT BETWEEN to test whether a value falls outside a range of values. For
example, the following cursor declaration retrieves the names of employees with
salaries less than $30,000 and greater than $150,000:

EXEC SQL
DECLARE EXTREME_SALARIES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE SALARY NOT BETWEEN 30000 AND 150000;

Using CONTAINING
CONTAINING tests to see if an ASCII string value contains a quoted ASCII string
supplied by the program. String comparisons are case-insensitive; “String”,
“STRING”, and “string” are equivalent values for CONTAINING. Note that for Dialect 3
databases and clients, the strings must be enclosed in single quotation marks. The
complete syntax for CONTAINING is:

<value> [NOT] CONTAINING '<string>'

For example, the following cursor declaration retrieves the names of all employees
whose last names contain the three-letter combination, “las” (and “LAS” or “Las”):

ANY and SOME Determines if a value is equal to any values returned by a
subquery

EXISTS Determines if a value exists in at least one value returned by a
subquery

SINGULAR Determines if a value exists in exactly one value returned by a
subquery

Table 6.5 InterBase comparison operators requiring subqueries (continued)

Operator Purpose
Chapter 6 Working with Data 6-9

Understanding SQL Expressions
EXEC SQL
DECLARE LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME CONTAINING 'las';

Use NOT CONTAINING to test for strings that exclude a specified value. For
example, the following cursor declaration retrieves the names of all employees
whose last names do not contain “las” (also “LAS” or “Las”):

EXEC SQL
DECLARE NOT_LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME NOT CONTAINING 'las';

Tip CONTAINING can be used to search a Blob segment by segment for an occurrence
of a quoted string.

Using IN
IN tests that a known value equals at least one value in a list of values. A list is a
set of values separated by commas and enclosed by parentheses. The values in
the list must be parenthesized and separated by commas. If the value being
compared to a list of values is NULL, IN returns Unknown.

The syntax for IN is:

<value> [NOT] IN (<value> [, <value> ...])

For example, the following cursor declaration retrieves the names of all employees
in the accounting, payroll, and human resources departments:

EXEC SQL
DECLARE ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP.DEPT_NO = DEP.DEPT_NO AND
DEPARTMENT IN ('Accounting', 'Payroll', 'Human

Resources')
GROUP BY DEPARTMENT;

Use NOT IN to test that a value does not occur in a set of specified values. For
example, the following cursor declaration retrieves the names of all employees not
in the accounting, payroll, and human resources departments:

EXEC SQL
DECLARE NOT_ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP.DEPT_NO = DEP.DEPT_NO AND
DEPARTMENT NOT IN ('Accounting', 'Payroll',

'Human Resources')
6-10 Embedded SQL Guide

Understanding SQL Expressions
GROUP BY DEPARTMENT;

IN can also be used to compare a value against the results of a subquery. For
example, the following cursor declaration retrieves all cities in Europe:

EXEC SQL
DECLARE NON_JFG_CITIES CURSOR FOR

SELECT C.COUNTRY, C.CITY, C.POPULATION
FROM CITIES C
WHERE C.COUNTRY NOT IN (SELECT O.COUNTRY FROM

COUNTRIES O
WHERE O.CONTINENT <> 'Europe')

GROUP BY C.COUNTRY;

For more information about subqueries, see “Using Subqueries” .

Using LIKE
LIKE is a case-sensitive operator that tests a string value against a string
containing wildcards, symbols that substitute for a single, variable character, or a
string of variable characters. LIKE recognizes two wildcard symbols:

• % (percent) substitutes for a string of zero or more characters.

• _ (underscore) substitutes for a single character.

The syntax for LIKE is:

<value> [NOT] LIKE <value> [ESCAPE 'symbol']

For example, this cursor retrieves information about any employee whose last
names contain the three letter combination “ton” (but not “Ton”):

EXEC SQL
DECLARE TON_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE
WHERE LAST_NAME LIKE '%ton%';

To test for a string that contains a percent or underscore character:

1 Precede the % or _ with another symbol (for example, @), in the quoted
comparison string.

2 Use the ESCAPE clause to identify the symbol (@, in this case) preceding % or _
as a literal symbol. A literal symbol tells InterBase that the next character should
be included as is in the search string.

For example, this cursor retrieves all table names in RDB$RELATIONS that have
underscores in their names:

EXEC SQL
DECLARE UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME
FROM RDB$RELATIONS
Chapter 6 Working with Data 6-11

Understanding SQL Expressions
WHERE RDB$RELATION_NAME LIKE '%@_%' ESCAPE '@';

Use NOT LIKE to retrieve rows that do not contain strings matching those
described. For example, the following cursor retrieves all table names in
RDB$RELATIONS that do not have underscores in their names:

EXEC SQL
DECLARE NOT_UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME NOT LIKE '%@_%' ESCAPE '@';

Using IS NULL
IS NULL tests for the absence of a value in a column. The complete syntax of the IS
NULL clause is:

<value> IS [NOT] NULL

For example, the following cursor retrieves the names of employees who do not
have phone extensions:

EXEC SQL
DECLARE MISSING_PHONE CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE PHONE_EXT IS NULL;

Use IS NOT NULL to test that a column contains a value. For example, the following
cursor retrieves the phone numbers of all employees that have phone extensions:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME, FIRST_NAME;

Using STARTING WITH
STARTING WITH is a case-sensitive operator that tests a string value to see if it
begins with a stipulated string of characters. To support international character set
conversions, STARTING WITH follows byte-matching rules for the specified collation
order. The complete syntax for STARTING WITH is:

<value> [NOT] STARTING WITH <value>

For example, the following cursor retrieves employee last names that start with
“To”:

EXEC SQL
DECLARE TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
6-12 Embedded SQL Guide

Understanding SQL Expressions
WHERE LAST_NAME STARTING WITH 'To';

Use NOT STARTING WITH to retrieve information for columns that do not begin with
the stipulated string. For example, the following cursor retrieves all employees
except those whose last names start with “To”:

EXEC SQL
DECLARE NOT_TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME NOT STARTING WITH 'To';

For more information about collation order and byte-matching rules, see the Data
Definition Guide.

Using ALL
ALL tests that a value is true when compared to every value in a list returned by a
subquery. The complete syntax for ALL is:

<value> <comparison_operator> ALL (<subquery>)

For example, the following cursor retrieves information about employees whose
salaries are larger than that of the vice president of channel marketing:

EXEC SQL
DECLARE MORE_THAN_VP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);

ALL returns Unknown if the subquery returns a NULL value. It can also return
Unknown if the value to be compared is NULL and the subquery returns any non-
NULL data. If the value is NULL and the subquery returns an empty set, ALL
evaluates to True.

For more information about subqueries, see “Using Subqueries” .

Using ANY and SOME
ANY and SOME test that a value is true if it matches any value in a list returned by a
subquery. The complete syntax for ANY is:

<value> <comparison_operator> ANY | SOME (<subquery>)

For example, the following cursor retrieves information about salaries that are
larger than at least one salary in the channel marketing department:

EXEC SQL
DECLARE MORE_CHANNEL CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);
Chapter 6 Working with Data 6-13

Understanding SQL Expressions
ANY and SOME return Unknown if the subquery returns a NULL value. They can
also return Unknown if the value to be compared is NULL and the subquery returns
any non-NULL data. If the value is NULL and the subquery returns an empty set,
ANY and SOME evaluate to False.

For more information about subqueries, see “Using Subqueries” .

Using EXISTS
EXISTS tests that for a given value there is at least one qualifying row meeting the
search condition specified in a subquery. To select all columns, the SELECT clause
in the subquery must use the * (asterisk). The complete syntax for EXISTS is:

[NOT] EXISTS (SELECT * FROM <tablelist> WHERE
<search_condition>)

The following cursor retrieves all countries with rivers:

EXEC SQL
DECLARE RIVER_COUNTRIES CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES C
WHERE EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

Use NOT EXISTS to retrieve rows that do not meet the qualifying condition specified
in the subquery. The following cursor retrieves all countries without rivers:

EXEC SQL
DECLARE NON_RIVER_COUNTRIES COUNTRIES FOR

SELECT COUNTRY
FROM COUNTRIES C
WHERE NOT EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

EXISTS always returns either True or False, even when handling NULL values.

For more information about subqueries, see “Using Subqueries” .

Using SINGULAR
SINGULAR tests that for a given value there is exactly one qualifying row meeting
the search condition specified in a subquery. To select all columns, the SELECT
clause in the subquery must use the * (asterisk). The complete syntax for
SINGULAR is:

[NOT] SINGULAR (SELECT * FROM <tablelist> WHERE
<search_condition>)

The following cursor retrieves all countries with a single capital:

EXEC SQL
DECLARE SINGLE_CAPITAL CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
6-14 Embedded SQL Guide

Understanding SQL Expressions
WHERE SINGULAR (SELECT * FROM CITIES CIT
WHERE CIT.CITY = COU.CAPITAL);

Use NOT SINGULAR to retrieve rows that do not meet the qualifying condition
specified in the subquery. For example, the following cursor retrieves all countries
with more than one capital:

EXEC SQL
DECLARE MULTI_CAPITAL CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
WHERE NOT SINGULAR (SELECT * FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

For more information about subqueries, see “Using Subqueries” .

Determining Precedence of Operators

The order in which operators and the values they affect are evaluated in a
statement is called precedence. There are two levels of precedence for SQL
operators:

• Precedence among operators of different types.

• Precedence among operators of the same type.

Precedence Among Operators

Among Operators of Different Types
The following table lists the evaluation order of different InterBase operator types,
from first evaluated (highest precedence) to last evaluated (lowest precedence):

Among Operators of the Same Type
When an expression contains several operators of the same type, those operators
are evaluated from left to right unless there is a conflict where two operators of the
same type affect the same values.

Table 6.6 Operator precedence by operator type

Operator type Precedence Explanation

String Highest Strings are always concatenated before all other
operations take place.

Mathematical fl Math is performed after string concatenation, but before
comparison and logical operations.

Comparison fl Comparison operations are evaluated after string
concatenation and math, but before logical operations.

Logical Lowest Logical operations are evaluated after all other
operations.
Chapter 6 Working with Data 6-15

Understanding SQL Expressions
For example, in the mathematical equation, 3 + 2 * 6, both the addition and
multiplication operators work with the same value, 2. Evaluated from left to right,
the equation evaluates to 30: 3+ 2 = 5; 5 * 6 = 30. InterBase follows standard
mathematical rules for evaluating mathematical expressions, that stipulate
multiplication is performed before addition: 2 *6 = 12; 3 + 12 = 15.

The following table lists the evaluation order for all mathematical operators, from
highest to lowest:

InterBase also follows rules for determining the order in which comparison
operators are evaluated when conflicts arise during normal left to right evaluation.
The next table describes the evaluation order for comparison operators, from
highest to lowest:

ALL, ANY, BETWEEN, CONTAINING, EXISTS, IN, LIKE, NULL, SINGULAR, SOME, and
STARTING WITH are evaluated after all listed comparison operators when they
conflict with other comparison operators during normal left to right evaluation.
When they conflict with one another they are evaluated strictly from left to right.

Table 6.7 Mathematical operator precedence

Operator Precedence Explanation

* Highest Multiplication is performed before all other mathematical
operations.

/ fl Division is performed before addition and subtraction.

+ fl Addition is performed before subtraction.

– Lowest Subtraction is performed after all other mathematical
operations.

Table 6.8 Comparison operator precedence

Operator Precedence Explanation

=, == Highest Equality operations are evaluated before all
other comparison operations.

<>, !=, ~=, ^= fl

> fl

< fl

>= fl

<= fl

!>, ~>, ^> fl

!<, ~<, ^< Lowest Not less than operations are evaluated after all
other comparison operations.
6-16 Embedded SQL Guide

Understanding SQL Expressions
When logical operators conflict during normal left to right processing, they, too, are
evaluated according to a hierarchy, detailed in the following table:

Changing Evaluation Order of Operators
To change the evaluation order of operations in an expression, use parentheses to
group operations that should be evaluated as a unit, or that should derive a single
value for use in other operations. For example, without parenthetical grouping, 3 +
2 * 6 evaluates to 15. To cause the addition to be performed before the
multiplication, use parentheses:

(3 + 2) * 6 = 30

Tip Always use parentheses to group operations in complex expressions, even when
default order of evaluation is desired. Explicitly grouped expressions are easier to
understand and debug.

Using CAST() for Datatype Conversions

Normally, only similar datatypes can be compared or evaluated in expressions.
The CAST() function can be used in expressions to translate one datatype into
another for comparison purposes. The syntax for CAST() is:

CAST (<value> | NULL AS datatype)

For example, in the following WHERE clause, CAST() is used to translate a CHAR
datatype, INTERVIEW_DATE, to a DATE datatype to compare against a DATE
datatype, HIRE_DATE:

WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

Table 6.9 Logical operator precedence

Operator Precedence Explanation

NOT Highest NOT operations are evaluated before all other logical
operations.

AND fl AND operations are evaluated after NOT operations, and
before OR operations.

OR Lowest OR operations are evaluated after all other logical
operations.
Chapter 6 Working with Data 6-17

Understanding SQL Expressions
CAST() can be used to compare columns with different datatypes in the same table,
or across tables. You can convert one datatype to another as shown in the
following table:

An error results if a given datatype cannot be converted into the datatype specified
in CAST().

When you cast a non-integer numeric datatype to an integer datatype, CAST()
behaves like Delphi’s ROUND(x), where x is rounded to the nearest whole number;
if x is exactly halfway between two whole numbers, the result is the number with
the greatest absolute magnitude. For example:

CAST(1.6 as INTEGER) = 2
CAST(-1.5 as INTEGER) = -2
CAST(-1.6 as INTEGER) = -2

Using UPPER() on Text Data

The UPPER() function can be used in SELECT, INSERT, UPDATE, or DELETE
operations to force character and Blob text data to uppercase. For example, an
application that prompts a user for a department name might want to ensure that
all department names are stored in uppercase to simplify data retrieval later. The
following code illustrates how UPPER() would be used in the INSERT statement to
guarantee a user’s entry is uppercase:

EXEC SQL
BEGIN DECLARE SECTION;

char response[26];
EXEC SQL

END DECLARE SECTION;
. . .
printf("Enter new department name: ");
response[0] = '\0';
gets(response);
if (response)

Table 6.10 Compatible datatypes for CAST()

From datatype class To datatype class

Numeric character, varying character, numeric

Character, varying character numeric, date, time, timestamp

Date character, varying character, timestamp

Time character, varying character, timestamp

Timestamp character, varying character, date, time

Blob, arrays --

Boolean character, varying character
6-18 Embedded SQL Guide

Understanding Data Retrieval with SELECT
EXEC SQL
INSERT INTO DEPARTMENT(DEPT_NO, DEPARTMENT)

VALUES(GEN_ID(GDEPT_NO, 1), UPPER(:response));
. . .

The next statement illustrates how UPPER() can be used in a SELECT statement to
affect both the appearance of values retrieved, and to affect its search condition:

EXEC SQL
SELECT DEPT_NO, UPPER(DEPARTMENT)

FROM DEPARTMENT
WHERE UPPER(DEPARTMENT) STARTING WITH 'A';

Understanding Data Retrieval with SELECT

The SELECT statement handles all queries in SQL. SELECT can retrieve one or
more rows from a table, and can return entire rows, or a subset of columns from
each row, often referred to as a projection. Optional SELECT syntax can be used to
specify search criteria that restrict the number of rows returned, to select rows with
unknown values, to select rows through a view, and to combine rows from two or
more tables.

At a minimum, every SELECT statement must:

• List which columns to retrieve from a table. The column list immediately follows
the SELECT keyword.

• Name the table to search in a FROM clause.

Singleton selects must also include both an INTO clause to specify the host
variables into which retrieved values should be stored, and a WHERE clause to
specify the search conditions that cause only a single row to be returned.

The following SELECT retrieves three columns from a table and stores the values in
three host-language variables:

EXEC SQL
SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname
FROM EMPLOYEE WHERE EMP_NO = 1888;

Tip Host variables must be declared in a program before they can be used in SQL
statements. For more information about declaring host variables, see “Application
Requirements.”
Chapter 6 Working with Data 6-19

Understanding Data Retrieval with SELECT
The following table lists all SELECT statement clauses, in the order that they are
used, and prescribes their use in singleton and multi-row selects:

Using each of these clauses with SELECT is described in the following sections,
after which using SELECT directly to return a single row, and using SELECT within a
DECLARE CURSOR statement to return multiple rows are described in detail. For a
complete overview of SELECT syntax, see the Language Reference Guide.

Table 6.11 SELECT statement clauses

Clause Purpose

SELECT Lists columns to retrieve.

INTO In a singleton SELECT, lists host variables for storing
retrieved columns.

FROM Identifies the tables to search for values.

WHERE Specifies the search conditions used to restrict retrieved
rows to a subset of all available rows. A WHERE clause can
contain its own SELECT statement, referred to as a
subquery.

GROUP BY Groups related rows based on common column values.
Used in conjunction with HAVING.

HAVING Restricts rows generated by GROUP BY to a subset of those
rows.

UNION Combines the results of two or more SELECT statements to
produce a single, dynamic table without duplicate rows.

PLAN Specifies the query plan that should be used by the query
optimizer instead of one it would normally choose.

ORDER BY Specifies the sort order of rows returned by a SELECT, either
ascending (ASC), the default, or descending (DESC).

ROWS <value>
[TO <upper_value>]
[BY <step_value>]
[PERCENT][WITH
TIES]

• value is the total number of rows to return if used by itself
• value is the starting row number to return if used with TO

• value is the percent if used with PERCENT

• upper_value is the last row to return
• If step_value = n, returns every nth row
• value PERCENT returns n% of the rows when value=n
• WITH TIES returns duplicate rows; must be used in

conjunction with ORDER BY

FOR UPDATE Specifies columns listed after the SELECT clause of a
DECLARE CURSOR statement that can be updated using a
WHERE CURRENT OF clause; multi-row SELECTs only.
6-20 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Listing Columns to Retrieve with SELECT

A list of columns to retrieve must always follow the SELECT keyword in a SELECT
statement. The SELECT keyword and its column list is called a SELECT clause.

Retrieving a List of Columns
To retrieve a subset of columns for a row of data, list each column by name, in the
order of desired retrieval, and separate each column name from the next by a
comma. Operations that retrieve a subset of columns are often called projections.

For example, the following SELECT retrieves three columns:

EXEC SQL
SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname
FROM EMPLOYEE WHERE EMP_NO = 2220;

Retrieving All Columns
To retrieve all columns of data, use an asterisk (*) instead of listing any columns by
name. For example, the following SELECT retrieves every column of data for a
single row in the EMPLOYEE table:

EXEC SQL
SELECT *

INTO :emp_no, :fname, :lname, :phone_ext, :hire,
:dept_no,

:job_code, :job_grade, :job_country, :salary,
:full_name

FROM EMPLOEE WHERE EMP_NO = 1888;

Important You must provide one host variable for each column returned by a query.

Eliminating Duplicate Columns with DISTINCT
In a query returning multiple rows, it may be desirable to eliminate duplicate
columns. For example, the following query, meant to determine if the EMPLOYEE
table contains employees with the last name, SMITH, might locate many such rows:

EXEC SQL
DECLARE SMITH CURSOR FOR

SELECT LAST_NAME
FROM EMPLOYEE
WHERE LAST_NAME = 'Smith';

To eliminate duplicate columns in such a query, use the DISTINCT keyword with
SELECT. For example, the following SELECT yields only a single instance of “Smith”:

EXEC SQL
DECLARE SMITH CURSOR FOR

SELECT DISTINCT LAST_NAME
FROM EMPLOYEE
Chapter 6 Working with Data 6-21

Understanding Data Retrieval with SELECT
WHERE LAST_NAME = 'Smith';

DISTINCT affects all columns listed in a SELECT statement.

Retrieving Aggregate Column Information
SELECT can include aggregate functions, functions that calculate or retrieve a
single, collective numeric value for a column or expression based on each
qualifying row in a query rather than retrieving each value separately. The following
table lists the aggregate functions supported by InterBase:

For example, the following query returns the average salary for all employees in
the EMPLOYEE table:

EXEC SQL
SELECT AVG(SALARY)

INTO :avg_sal
FROM EMPLOYEE;

The following SELECT returns the number of qualifying rows it encounters in the
EMPLOYEE table, both the maximum and minimum employee number of
employees in the table, and the total salary of all employees in the table:

EXEC SQL
SELECT COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)

INTO :counter, :maxno, :minno, :total_salary
FROM EMPLOYEE;

If a field value involved in an aggregate calculation is NULL or unknown, the entire
row is automatically excluded from the calculation. Automatic exclusion prevents
averages from being skewed by meaningless data.

Note Aggregate functions can also be used to calculate values for groups of rows. The
resulting value is called a group aggregate. For more information about using group
aggregates, see “Grouping Rows with GROUP BY” .

Table 6.12 Aggregate functions in SQL

Function Purpose

AVG() Calculates the average numeric value for a set of values.

MIN() Retrieves the minimum value in a set of values.

MAX() Retrieves the maximum value in a set of values.

SUM() Calculates the total of numeric values in a set of values.

COUNT() Calculates the number of rows that satisfy the query’s search
condition (specified in the WHERE clause).
6-22 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Multi-table SELECT Statements
When data is retrieved from multiple tables, views, and select procedures, the
same column name may appear in more than one table. In these cases, the
SELECT statement must contain enough information to distinguish like-named
columns from one another.

To distinguish column names in multiple tables, precede those columns with one of
the following qualifiers in the SELECT clause:

• The name of the table, followed by a period. For example,
EMPLOYEE.EMP_NO identifies a column named EMP_NO in the EMPLOYEE table.

• A table correlation name (alias) followed by a period. For example, if the
correlation name for the EMPLOYEE table is EMP, then EMP.EMP_NO identifies a
column named EMP_NO in the EMPLOYEES table.

Correlation names can be declared for tables, views, and select procedures in the
FROM clause of the SELECT statement. For more information about declaring
correlation names, and for examples of their use, see “Declaring and Using
Correlation Names” .

Specifying Transaction Names

InterBase enables a SQL application to run many simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement.

• Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE) specifies
a TRANSACTION clause that identifies the name of the transaction under which it
operates.

• SQL statements are not dynamic.

In SELECT, the TRANSACTION clause intervenes between the SELECT keyword and
the column list, as in the following syntax fragment:

SELECT TRANSACTION name <col> [, <col> ...]

The TRANSACTION clause is optional in single-transaction programs or in programs
where only one transaction is open at a time. It must be used in a multi-transaction
program. For example, the following SELECT is controlled by the transaction, T1:

EXEC SQL
SELECT TRANSACTION T1:

COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)
INTO :counter, :maxno, :minno, :total_salary
FROM EMPLOYEE;

For a complete discussion of transaction handling and naming, see “Working with
Transactions.”
Chapter 6 Working with Data 6-23

Understanding Data Retrieval with SELECT
Specifying Host Variables with INTO

A singleton select returns data to a list of host-language variables specified by an
INTO clause in the SELECT statement. The INTO clause immediately follows the list
of table columns from which data is to be extracted. Each host variable in the list
must be preceded by a colon (:) and separated from the next by a comma.

The host-language variables in the INTO clause must already have been declared
before they can be used. The number, order, and datatype of host-language
variables must correspond to the number, order, and datatype of the columns
retrieved. Otherwise, overflow or data conversion errors may occur.

For example, the following C program fragment declares three host variables,
lname, fname, and salary. Two, lname, and fname, are declared as character
arrays; salary is declared as a long integer. The SELECT statement specifies that
three columns of data are to be retrieved, while the INTO clause specifies the host
variables into which the data should be read.

. . .
EXEC SQL

BEGIN DECLARE SECTION;
long salary;
char lname[20], fname[15];

EXEC SQL
END DECLARE SECTION;

. . .
EXEC SQL

SELECT LAST_NAME, FIRST_NAME, SALARY
INTO :lanem, :fname, :salary
FROM EMPLOYEE
WHERE LNAME = 'Smith';

. . .

Note In a multi-row select, the INTO clause is part of the FETCH statement, not the SELECT
statement. For more information about the INTO clause in FETCH, see “Fetching
Rows with a Cursor” .

Listing Tables to Search with FROM

The FROM clause is required in a SELECT statement. It identifies the tables, views,
or select procedures from which data is to be retrieved. The complete syntax of the
FROM clause is:

FROM table | view | procedure [alias] [, table | view |
procedure [alias] ...]

There must be at least one table, view, or select procedure name following the
FROM keyword. When retrieving data from multiple sources, each source must be
listed, assigned an alias, and separated from the next with a comma. For more
information about select procedures, see “Working with Stored Procedures.”
6-24 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Listing a Single Table or View
The FROM clause in the following SELECT specifies a single table, EMPLOYEE, from
which to retrieve data:

EXEC SQL
SELECT LAST_NAME, FIRST_NAME, SALARY

INTO :lanem, :fname, :salary
FROM EMPLOYEE
WHERE LNAME = 'Smith';

Use the same INTO clause syntax to specify a view or select procedure as the
source for data retrieval instead of a table. For example, the following SELECT
specifies a select procedure, MVIEW, from which to retrieve data. MVIEW returns
information for all managers whose last names begin with the letter “M,” and the
WHERE clause narrows the rows returned to a single row where the DEPT_NO
column is 430:

EXEC SQL
SELECT DEPT_NO, LAST_NAME, FIRST_NAME, SALARY

INTO :lname, :fname, :salary
FROM MVIEW
WHERE DEPT_NO = 430;

For more information about select procedures, see “Working with
Stored Procedures.”

Listing Multiple Tables
To retrieve data from multiple tables, views, or select procedures, include all
sources in the FROM clause, separating sources from one another by commas.

There are two different possibilities to consider when working with multiple data
sources:

1 The name of each referenced column is unique across all tables.

2 The names of one or more referenced columns exist in two or more tables.

In the first case, just use the column names themselves to reference the columns.
For example, the following query returns data from two tables, DEPARTMENT, and
EMPLOYEE:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME, EMP_NO

INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = 'Publications' AND MNGR_NO = EMP_NO;

In the second case, column names that occur in two or more tables must be
distinguished from one another by preceding each column name with its table
name and a period in the SELECT clause. For example, if an EMP_NO column exists
in both the DEPARTMENT and EMPLOYEE then the previous query must be recast as
follows:
Chapter 6 Working with Data 6-25

Understanding Data Retrieval with SELECT
EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO
INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = 'Publications' AND

DEPARTMENT.EMP_NO = EMPLOYEE.EMP_NO;

For more information about the SELECT clause, see “Listing Columns to Retrieve
with SELECT” .

Important For queries involving joins, column names can be qualified by correlation names,
brief alternate names, or aliases, that are assigned to each table in a FROM clause
and substituted for them in other SELECT statement clauses when qualifying
column names. Even when joins are not involved, assigning and using correlation
names can reduce the length of complex queries.

Declaring and Using Correlation Names
A correlation name, or alias, is a temporary variable that represents a table name.
It can contain up to 31 alphanumeric characters, dollar signs ($), and underscores
(_), but must always start with an alphabetic character. Using brief correlation
names reduces typing of long queries. Correlation names must be substituted for
actual table names in joins, and can be substituted for them in complex queries.

A correlation name is associated with a table in the FROM clause; it replaces table
names to qualify column names everywhere else in the statement. For example, to
associate the correlation name, DEPT with the DEPARTMENT table, and EMP, with
the EMPLOYEES table, a FROM clause might appear as:

FROM DEPARTMENT DEPT, EMPLOYEE EMP

Like an actual table name, a correlation name is used to qualify column names
wherever they appear in a SELECT statement. For example, the following query
employs the correlation names, DEPT, and EMP, previously described:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO
INTO :dept_name, :dept_no, :lname, :fname, :empno
FROM DEPARTMENT DEPT, EMPLOYEE EMP
WHERE DEPT_NO = 'Publications' AND DEPT.EMP_NO =

EMP.EMP_NO;

For more information about the SELECT clause, see “Listing Columns to Retrieve
with SELECT” .

Restricting Row Retrieval with WHERE

In a query, the WHERE clause specifies the data a row must (or must not) contain to
be retrieved.
6-26 Embedded SQL Guide

Understanding Data Retrieval with SELECT
In singleton selects, where a query must only return one row, WHERE is mandatory
unless a select procedure specified in the FROM clause returns only one row itself.

In SELECT statements within DECLARE CURSOR statements, the WHERE clause is
optional. If the WHERE clause is omitted, a query returns all rows in the table. To
retrieve a subset of rows in a table, a cursor declaration must include a WHERE
clause.

The simple syntax for WHERE is:

WHERE <search_condition>

For example, the following simple WHERE clause tests a row to see if the
DEPARTMENT column is “Publications”:

WHERE DEPARTMENT = 'Publications'

What is a Search Condition?
Because the WHERE clause specifies the type of data a query is searching for it is
often called a search condition. A query examines each row in a table to see if it
meets the criteria specified in the search condition. If it does, the row qualifies for
retrieval.

When a row is compared to a search condition, one of three values is returned:

• True: A row meets the conditions specified in the WHERE clause.

• False: A row fails to meet the conditions specified in the WHERE clause.

• Unknown: A column tested in the WHERE clause contains an unknown value that
could not be evaluated because of a NULL comparison.

Most search conditions, no matter how complex, evaluate to True or False. An
expression that evaluates to True or False—like the search condition in the WHERE
clause—is called a boolean expression.

Structure of a Search Condition
A typical simple search condition compares a value in one column against a
constant or a value in another column. For example, the following WHERE clause
tests a row to see if a field equals a hard-coded constant:

WHERE DEPARTMENT = 'Publications'

This search condition has three elements: a column name, a comparison operator
(the equal sign), and a constant. Most search conditions are more complex than
this. They involve additional elements and combinations of simple search
conditions. The following table describes expression elements that can be used in
search conditions:
Chapter 6 Working with Data 6-27

Understanding Data Retrieval with SELECT
Table 6.13 Elements of WHERE clause SEARCH conditions

Element Description

Column names Columns from tables listed in the FROM clause, against
which to search or compare values.

Host-language variables Program variables containing changeable values. When
used in a SELECT, host-language variables must be
preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation operators ||, used to combine character strings.

Arithmetic operators +, –, *, and /, used to calculate and evaluate search condition
values.

Logical operators Keywords, NOT, AND, and OR, used within simple search
conditions, or to combine simple search conditions to make
complex searches. A logical operation evaluates to true or
false.

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left
side of the operator to another on the right. A comparative
operation evaluates to True or False.

Other, more specialized comparison operators include ALL,
ANY, BETWEEN, CONTAINING, EXISTS, IN, IS, LIKE, NULL,
SINGULAR, SOME, and STARTING WITH. These operators can
evaluate to True, False, or Unknown.

COLLATE clause Comparisons of CHAR and VARCHAR values can sometimes
take advantage of a COLLATE clause to force the way text
values are compared.

Stored procedures Reusable SQL statement blocks that can receive and return
parameters, and that are stored as part of a database’s
metadata. For more information about stored procedures in
queries, see “Working with Stored Procedures.”

Subqueries A SELECT statement nested within the WHERE clause to
return or calculate values against which rows searched by
the main SELECT statement are compared. For more
information about subqueries, see “Using Subqueries” .

Parentheses Group related parts of search conditions which should be
processed separately to produce a single value which is then
used to evaluate the search condition. Parenthetical
expressions can be nested.
6-28 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Complex search conditions can be constructed by combining simple search
conditions in different ways. For example, the following WHERE clause uses a
column name, three constants, three comparison operators, and a set of grouping
parentheses to retrieve only those rows for employees with salaries between
$60,000 and $120,000:

WHERE DEPARTMENT = 'Publications' AND
(SALARY > 60000 AND SALARY < 120000)

Search conditions in WHERE clauses often contain nested SELECT statements, or
subqueries. For example, in the following query, the WHERE clause contains a
subquery that uses the aggregate function, AVG(), to retrieve a list of all
departments with bigger-than-average salaries:

EXEC SQL
DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO
INTO :wellpaid
FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

For a general discussion of building search conditions from SQL expressions, see
“Understanding SQL Expressions” . For more information about using subqueries
to specify search conditions, see “Using Subqueries” . For more information
about aggregate functions, see “Retrieving Aggregate Column Information” .

Collation Order in Comparisons
When CHAR or VARCHAR values are compared in a WHERE clause, it can be
necessary to specify a collation order for the comparisons if the values being
compared use different collation orders.

To specify the collation order to use for a value during a comparison, include a
COLLATE clause after the value. For example, in the following WHERE clause
fragment from an embedded application, the value to the left of the comparison
operator is forced to be compared using a specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For more information about collation order and a list of collations available to
InterBase, see the Data Definition Guide.

Sorting Rows with ORDER BY

By default, a query retrieves rows in the exact order it finds them in a table, and
because internal table storage is unordered, retrieval, too, is likely to be
unordered. To specify the order in which rows are returned by a query, use the
optional ORDER BY clause at the end of a SELECT statement.
Chapter 6 Working with Data 6-29

Understanding Data Retrieval with SELECT
ORDER BY retrieves rows based on a column list. Every column in the ORDER BY
clause must also appear somewhere in the SELECT clause at the start of the
statement. Each column can optionally be ordered in ascending order (ASC, the
default), or descending order (DESC). The complete syntax of ORDER BY is:

ORDER BY col [COLLATE collation] [ASC | DESC]
[,col [COLLATE collation] [ASC | DESC] ...];

For example, the following cursor declaration orders output based on the
LAST_NAME column. Because DESC is specified in the ORDER BY clause,
employees are retrieved from Z to A:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME DESC, FIRST_NAME;

ORDER BY with multiple columns
If more than one column is specified in an ORDER BY clause, rows are first
arranged by the values in the first column. Then rows that contain the same first-
column value are arranged according to the values in the second column, and so
on. Each ORDER BY column can include its own sort order specification.

Important In multi-column sorts, after a sort order is specified, it applies to all subsequent
columns until another sort order is specified, as in the previous example. This
attribute is sometimes called sticky sort order. For example, the following cursor
declaration orders retrieval by LAST_NAME in descending order, then refines it
alphabetically within LAST_NAME groups by FIRST_NAME in ascending order:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT IS NOT NULL
ORDER BY LAST_NAME DESC, FIRST_NAME ASC;

Collation Order in an ORDER BY Clause
When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be
necessary to specify a collation order for the ordering, especially if columns used
for ordering use different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause,
include a COLLATE clause after the column name. For example, in the following
ORDER BY clause, a different collation order for each of two columns is specified:

. . .
ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_FR;
6-30 Embedded SQL Guide

Understanding Data Retrieval with SELECT
For more information about collation order and a list of available collations in
InterBase, see the Data Definition Guide.

Grouping Rows with GROUP BY

The optional GROUP BY clause enables a query to return summary information
about groups of rows that share column values instead of returning each qualifying
row. The complete syntax of GROUP BY is:

GROUP BY col [COLLATE collation] [, col [COLLATE collation]
...]

For example, consider two cursor declarations. The first declaration returns the
names of all employees each department, and arranges retrieval in ascending
alphabetic order by department and employee name.

EXEC SQL
DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;

In contrast, the next cursor illustrates the use of aggregate functions with GROUP
BY to return results known as group aggregates. It returns the average salary of all
employees in each department. The GROUP BY clause assures that average
salaries are calculated and retrieved based on department names, while the
ORDER BY clause arranges retrieved rows alphabetically by department name.

EXEC SQL
DECLARE AVG_DEPT_SAL CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
GROUP BY DEPARTMENT
ORDER BY DEPARTMENT;

Collation Order in a GROUP BY Clause
When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be
necessary to specify a collation order for the grouping, especially if columns used
for grouping use different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause,
include a COLLATE clause after the column name. For example, in the following
GROUP BY clause, the collation order for two columns is specified:

. . .
GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For more information about collation order and a list of collation orders available in
InterBase, see the Data Definition Guide.
Chapter 6 Working with Data 6-31

Understanding Data Retrieval with SELECT
Limitations of GROUP BY
When using GROUP BY, be aware of the following limitations:

• Each column name that appears in a GROUP BY clause must also be specified in
the SELECT clause.

• GROUP BY cannot specify a column whose values are derived from a
mathematical, aggregate, or user-defined function.

• GROUP BY cannot be used in SELECT statements that:

• Contain an INTO clause (singleton selects).

• Use a subquery with a FROM clause which references a view whose definition
contains a GROUP BY or HAVING clause.

• For each SELECT clause in a query, including subqueries, there can only be one
GROUP BY clause.

Restricting Grouped Rows with HAVING

Just as a WHERE clause reduces the number of rows returned by a SELECT clause,
the HAVING clause can be used to reduce the number of rows returned by a GROUP
BY clause. The syntax of HAVING is:

HAVING <search_condition>

HAVING uses search conditions that are like the search conditions that can appear
in the WHERE clause, but with the following restrictions:

• Each search condition usually corresponds to an aggregate function used in the
SELECT clause.

• The FROM clause of a subquery appearing in a HAVING clause cannot name any
table or view specified in the main query’s FROM clause.

• A correlated subquery cannot be used in a HAVING clause.

For example, the following cursor declaration returns the average salary for all
employees in each department. The GROUP BY clause assures that average
salaries are calculated and retrieved based on department names. The HAVING
clause restricts retrieval to those groups where the average salary is greater than
60,000, while the ORDER BY clause arranges retrieved rows alphabetically by
department name.

EXEC SQL
DECLARE SIXTY_THOU CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
GROUP BY DEPARTMENT
HAVING AVG(SALARY) > 60000
ORDER BY DEPARTMENT;
6-32 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Note HAVING can also be used without GROUP BY. In this case, all rows retrieved by a
SELECT are treated as a single group, and each column named in the SELECT
clause is normally operated on by an aggregate function.

For more information about search conditions, see “Restricting Row Retrieval
with WHERE” . For more information about subqueries, see “Using Subqueries” .

Limiting Result Sets with ROWS

The ROWS clause permits you to acquire a portion of the result set by specifying a
number of rows, a range of rows, or a percent of rows. You can also see only every
nth row and you can use the WITH TIES keyword to see duplicate rows. ROWS is
most often used in conjunction with ORDER BY.

The complete syntax of the ROWS clause is:

ROWS <value> [TO <upper_value>] [BY
<step_value>][PERCENT][WITH TIES]

The ROWS clause subsets the number of rows from the result set of a table
expression. This feature is useful in contexts where results must be returned in
sequential chunks, and is therefore of interest to Web developers who need to
parcel pieces of a larger result set from the Web server to a client browser. This
type of Web application has a stateless interface with the database server and
cannot gradually scroll the full result set via a cursor or download the entire result
set into a cached dataset on the client. Rather the same SQL query is iteratively
submitted to the database server but with a ROWS clause to specify which
numbered rows from the full result set should be returned.

The ROWS clause has several optional elements that produce a variety of results,
listed in Table 6.14.

Table 6.14 Forms of the ROWS clause

Expression Returns

ROWS n Returns the first n rows of the result set, or n percent if used
with PERCENT

TOWS m TO n Returns rows m through n, inclusive or the mth to nth percent

ROWS n BY p Returns every pth row of the first n rows
Chapter 6 Working with Data 6-33

Understanding Data Retrieval with SELECT
Appending Tables with UNION

Sometimes two or more tables in a database are identically structured, or have
columns that contain similar data. Where table structures overlap, information from
those tables can be combined to produce a single results table that returns a
projection for every qualifying row in both tables. The UNION clause retrieves all
rows from each table, appends one table to the end of another, and eliminates
duplicate rows.

Unions are commonly used to perform aggregate operations on tables.

The syntax for UNION is:

UNION SELECT col [, col ...] | * FROM <tableref> [,
<tableref> ...]

For example, three tables, CITIES, COUNTRIES, and NATIONAL_PARKS, each contain
the names of cities. Assuming triggers have not been created that ensure that a
city entered in one table is also entered in the others to which it also applies, UNION
can be used to retrieve the names of all cities that appear in any of these tables.

EXEC SQL
DECLARE ALLCITIES CURSOR FOR

SELECT CIT.CITY FROM CITIES CIT
UNION SELECT COU.CAPITAL FROM COUNTRIES COU
UNION SELECT N.PARKCITY FROM NATIONAL_PARKS N;

Tip If two or more tables share entirely identical structures—similarly named columns,
identical datatypes, and similar data values in each column—UNION can return all
rows for each table by substituting an asterisk (*) for specific column names in the
SELECT clauses of the UNION.

ROWS m TO n
BY p

Returns every pth row of rows m though n

ROWS n
PERCENT

• Returns the first n percent of the result set
• You can substitute any legal “ROWS” syntax for the

“ROWS n” portion of this example; PERCENT applies to all
values given for ROWS

ORDER BY …
ROWS n WITH

TIES

• WITH TIES returns additional duplicate rows when the last
value in the ordered sequence is the same as values in
subsequent rows of the result set; must be used in
conjunction with ORDER BY

• When a number of rows is specified, duplicate rows
returned with TIES count as a single row

• You can substitute any legal “ROWS” syntax for the “ROWS
n” portion of this example

Table 6.14 Forms of the ROWS clause

Expression Returns
6-34 Embedded SQL Guide

Understanding Data Retrieval with SELECT
Specifying a Query Plan with PLAN

To process a SELECT statement, InterBase uses an internal algorithm, called the
query optimizer, to determine the most efficient plan for retrieving data. The most
efficient retrieval plan also results in the fastest retrieval time. Occasionally the
optimizer may choose a plan that is less efficient. For example, when the number
of rows in a table grows sufficiently large, or when many duplicate rows are
inserted or deleted from indexed columns in a table, but the index’s selectivity is
not recomputed, the optimizer might choose a less efficient plan.

For these occasions, SELECT provided an optional PLAN clause that enables a
knowledgeable programmer to specify a retrieval plan. A query plan is built around
the availability of indexes, the way indexes are joined or merged, and a chosen
access method.

To specify a query plan, use the following PLAN syntax:

PLAN <plan_expr>
<plan_expr> =
[JOIN | [SORT] MERGE] (<plan_item> | <plan_expr>
[, <plan_item> | <plan_expr> ...])
<plan_item> = {table | alias}
NATURAL | INDEX (<index> [, <index> ...]) | ORDER <index>

The PLAN syntax enables specifying a single table, or a join of two or more tables
in a single pass. Plan expressions can be nested in parentheses to specify any
combination of joins.

During retrieval, information from different tables is joined to speed retrieval. If
indexes are defined for the information to be joined, then these indexes are used
to perform a join. The optional JOIN keyword can be used to document this type of
operation. When no indexes exist for the information to join, retrieval speed can be
improved by specifying SORT MERGE instead of JOIN.

A plan_item is the name of a table to search for data. If a table is used more than
once in a query, aliases must be used to distinguish them in the PLAN clause. Part
of the plan_item specification indicates the way that rows should be accessed. The
following choices are possible:

• NATURAL, the default order, specifies that rows are accessed sequentially in no
defined order. For unindexed items, this is the only option.

• INDEX specifies that one or more indexes should be used to access items. All
indexes to be used must be specified. If any Boolean or join terms remain after
all indexes are used, they will be evaluated without benefit of an index. If any
indexes are specified that cannot be used, an error is returned.

• ORDER specifies that items are to be sorted based on a specified index.
Chapter 6 Working with Data 6-35

Selecting a Single Row
Selecting a Single Row

An operation that retrieves a single row of data is called a singleton select. To
retrieve a single row from a table, to retrieve a column defined with a unique index,
or to select an aggregate value like COUNT() or AVG() from a table, use the following
SELECT statement syntax:

SELECT <col> [, <col> ...]
INTO :variable [, :variable ...]
FROM table
WHERE <search_condition>;

The mandatory INTO clause specifies the host variables where retrieved data is
copied for use in the program. Each host variable’s name must be preceded by a
colon (:). For each column retrieved, there must be one host variable of a
corresponding datatype. Columns are retrieved in the order they are listed in the
SELECT clause, and are copied into host variables in the order the variables are
listed in the INTO clause.

The WHERE clause must specify a search condition that guarantees that only one
row is retrieved. If the WHERE clause does not reduce the number of rows returned
to a single row, the SELECT fails.

Important To select data from a table, a user must have SELECT privilege for a table, or a
stored procedure invoked by the user’s application must have SELECT privileges
for the table.

In the following example, the SELECT retrieves information from the
DEPARTMENT table for the Publications department:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET, LOCATION,

PHONE_NO
INTO :deptname, :dept_no, :manager, :budget, :location,

:phone
FROM DEPARTMENT
WHERE DEPARTMENT = 'Publications';

When SQL retrieves the specified row, it copies the value in DEPARTMENT to the
host variable, deptname, copies the value in DEPT_NO to :dept_no, copies the
value in HEAD_DEPT to :manager, and so on.

Selecting Multiple Rows

Most queries specify search conditions that retrieve more than one row. For
example, a query that asks to see all employees in a company that make more
than $60,000 can retrieve many employees.
6-36 Embedded SQL Guide

Selecting Multiple Rows
Because host variables can only hold a single column value at a time, a query that
returns multiple rows must build a temporary table in memory, called a results
table, from which rows can then be extracted and processed, one at a time, in
sequential order. SQL keeps track of the next row to process in the results table by
establishing a pointer to it, called a cursor.

Important In dynamic SQL (DSQL), the process for creating a query and retrieving data is
somewhat different. For more information about multi-row selection in DSQL, see
“Selecting Multiple Rows in DSQL” .

To retrieve multiple rows into a results table, establish a cursor into the table, and
process individual rows in the table, SQL provides the following sequence of
statements:

1 DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

2 OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

3 FETCH retrieves a single row at a time from the results table into host variables
for program processing.

4 CLOSE releases system resources when all rows are retrieved.

Important To select data from a table, a user must have SELECT privilege for a table, or a
stored procedure invoked by the user’s application must have SELECT privilege for
it.

Declaring a Cursor

To declare a cursor and specify rows of data to retrieve, use the DECLARE
CURSOR statement. DECLARE CURSOR is a descriptive, non-executable statement.
InterBase uses the information in the statement to prepare system resources for
the cursor when it is opened, but does not actually perform the query. Because
DECLARE CURSOR is non-executable, SQLCODE is not assigned when this
statement is used.

The syntax for DECLARE CURSOR is:

DECLARE cursorname CURSOR FOR
SELECT <col> [, <col> ...]

FROM table [, <table> ...]
WHERE <search_condition>
[GROUP BY col [, col ...]]
[HAVING <search_condition>]
[ORDER BY col [ASC | DESC] [, col ...] [ASC | DESC]

| FOR UPDATE OF col [, col ...]];

cursorname is used in subsequent OPEN, FETCH, and CLOSE statements to identify
the active cursor.
Chapter 6 Working with Data 6-37

Selecting Multiple Rows
With the following exceptions, the SELECT statement inside a DECLARE
CURSOR is similar to a stand-alone SELECT:

• A SELECT in a DECLARE CURSOR cannot include an INTO clause.

• A SELECT in a DECLARE CURSOR can optionally include either an ORDER BY
clause or a FOR UPDATE clause.

For example, the following statement declares a cursor:

EXEC SQL
DECLARE TO_BE_HIRED CURSOR FOR

SELECT D.DEPARTMENT, D.LOCATION, P.DEPARTMENT
FROM DEPARTMENT D, DEPARTMENT P
WHERE D.MNGR_NO IS NULL

AND D.HEAD_DEPT = P.DEPT_NO;

Updating Through Cursors
In many applications, data retrieval and update may be interdependent. DECLARE
CURSOR supports an optional FOR UPDATE clause that optionally lists columns in
retrieved rows that can be modified. For example, the following statement declares
such a cursor:

EXEC SQL
DECLARE H CURSOR FOR

SELECT CUST_NO
FROM CUSTOMER
WHERE ON_HOLD = '*'
FOR UPDATE OF ON_HOLD;

If a column list after FOR UPDATE is omitted, all columns retrieved for each row may
be updated. For example, the following query enables updating for two columns:

EXEC SQL
DECLARE H CURSOR FOR

SELECT CUST_NAME CUST_NO
FROM CUSTOMER
WHERE ON_HOLD = '*';

For more information about updating columns through a cursor, see “Updating
Multiple Rows” .

Opening a Cursor

Before data selected by a cursor can be accessed, the cursor must be opened with
the OPEN statement. OPEN activates the cursor and builds a results table. It builds
the results table based on the selection criteria specified in the DECLARE CURSOR
statement. The rows in the results table comprise the active set of the cursor.

For example, the following statement opens a previously declared cursor called
DEPT_EMP:
6-38 Embedded SQL Guide

Selecting Multiple Rows
EXEC SQL
OPEN DEPT_EMP;

When InterBase executes the OPEN statement, the cursor is positioned at the start
of the first row in the results table.

Fetching Rows with a Cursor

Once a cursor is opened, rows can be retrieved, one at a time, from the results
table by using the FETCH statement. FETCH:

1 Retrieves the next available row from the results table.

2 Copies those rows into the host variables specified in the INTO clause of the
FETCH statement.

3 Advances the cursor to the start of the next available row or sets
SQLCODE to 100, indicating the cursor is at the end of the results table and there
are no more rows to retrieve.

The complete syntax of the FETCH statement in SQL is:

FETCH <cursorname> INTO :variable [[INDICATOR] :variable]
[, :variable [[INDICATOR] :variable>] ...];

Important In dynamic SQL (DSQL) multi-row select processing, a different FETCH syntax is
used. For more information about retrieving multiple rows in DSQL, see “Fetching
Rows with a DSQL Cursor” .

For example, the following statement retrieves a row from the results table for the
DEPT_EMP cursor, and copies its column values into the host-language variables,
deptname, lname, and fname:

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

To process each row in a results table in the same manner, enclose the FETCH
statement in a host-language looping construct. For example, the following C code
fetches and prints each row defined for the DEPT_EMP cursor:

. . .
EXEC SQL

FETCH DEPT_EMP
INTO :deptname, :lname, :fname;

while (!SQLCODE)
{

printf("%s %s works in the %s department.\n", fname,
lname, deptname);

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;
}

Chapter 6 Working with Data 6-39

Selecting Multiple Rows
EXEC SQL
CLOSE DEPT_EMP;

. . .

Every FETCH statement should be tested to see if the end of the active set is
reached. The previous example operates in the context of a while loop that
continues processing as long as SQLCODE is zero. If SQLCODE is 100, it indicates
that there are no more rows to retrieve. If SQLCODE is less than zero, it indicates
that an error occurred.

Retrieving Indicator Status
Any column can have a NULL value, except those defined with the NOT NULL or
UNIQUE integrity constraints. Rather than store a value for the column, InterBase
sets a flag indicating the column has no assigned value.

To determine if a value returned for a column is NULL, follow each variable named
in the INTO clause with the INDICATOR keyword and the name of a short integer
variable, called an indicator variable, where InterBase should store the status of
the NULL value flag for the column. If the value retrieved is:

• NULL, the indicator variable is set to –1.

• Not NULL, the indicator parameter is set to 0.

For example, the following C code declares three host-language variables,
department, manager, and missing_manager, then retrieves column values into
department, manager, and a status flag for the column retrieved into manager,
missing_manager, with a FETCH from a previously declared cursor, GETCITY:

. . .
char department[26];
char manager[36];
short missing_manager;
. . .
FETCH GETCITY INTO :department, :manager INDICATOR
:missing_manager;

The optional INDICATOR keyword can be omitted:

FETCH GETCITY INTO :department, :manager :missing_manager;

Often, the space between the variable that receives the actual contents of a
column and the variable that holds the status of the NULL value flag is also omitted:

FETCH GETCITY INTO :department, :manager:missing_manager;

Note While InterBase enforces the SQL requirement that the number of host variables in
a FETCH must equal the number of columns specified in DECLARE CURSOR, indicator
variables in a FETCH statement are not counted toward the column count.
6-40 Embedded SQL Guide

Selecting Multiple Rows
Refetching Rows with a Cursor
The only supported cursor movement is forward in sequential order through the
active set.

To revisit previously fetched rows, close the cursor and then reopen it with another
OPEN statement. For example, the following statements close the DEPT_EMP
cursor, then recreate it, effectively repositioning the cursor at the start of the
DEPT_EMP results table:

EXEC SQL
CLOSE DEPT_EMP;

EXEC SQL
OPEN DEPT_EMP;

Closing the Cursor

When the end of a cursor’s active set is reached, a cursor should be closed to free
up system resources. To close a cursor, use the CLOSE statement. For example,
the following statement closes the DEPT_EMP cursor:

EXEC SQL
CLOSE DEPT_EMP;

Programs can check for the end of the active set by examining SQLCODE, which is
set to 100 to indicate there are no more rows to retrieve.

A Complete Cursor Example

The following program declares a cursor, opens the cursor, and then loops through
the cursor’s active set, fetching and printing values. The program closes the cursor
when all processing is finished or an error occurs.

#include <stdio.h>
EXEC SQL

BEGIN DECLARE SECTION;
char deptname[26];
char lname[16];
char fname[11];

EXEC SQL
END DECLARE SECTION;

main ()
{

EXEC SQL
WHENEVER SQLERROR GO TO abend;

EXEC SQL
DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPT_NO = E.DEPT_NO
Chapter 6 Working with Data 6-41

Selecting Multiple Rows
ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;
EXEC SQL

OPEN DEPT_EMP;
EXEC SQL

FETCH DEPT_EMP
INTO :deptname, :lname, :fname;

while (!SQLCODE)
{

printf("%s %s works in the %s department.\n",fname,
lname, deptname);

EXEC SQL
FETCH DEPT_EMP

INTO :deptname, :lname, :fname;
}
EXEC SQL

CLOSE DEPT_EMP;
exit();

abend:
if (SQLCODE)
{

isc_print_sqlerror();
EXEC SQL

ROLLBACK;
EXEC SQL

CLOSE_DEPT_EMP;
EXEC SQL

DISCONNECT ALL;
exit(1)

}
else
{

EXEC SQL
COMMIT;

EXEC SQL
DISCONNECT ALL;

exit()
}

}

Selecting Rows with NULL Values

Any column can have NULL values, except those defined with the NOT NULL or
UNIQUE integrity constraints. Rather than store a value for the column, InterBase
sets a flag indicating the column has no assigned value.
6-42 Embedded SQL Guide

Selecting Multiple Rows
Use IS NULL in a WHERE clause search condition to query for NULL values. For
example, some rows in the DEPARTMENT table do not have a value for the
BUDGET column. Departments with no stored budget have the NULL value flag set
for that column. The following cursor declaration retrieves rows for departments
without budgets for possible update:

EXEC SQL
DECLARE NO_BUDGET CURSOR FOR

SELECT DEPARTMENT, BUDGET
FROM DEPARTMENT
WHERE BUDGET IS NULL
FOR UPDATE OF BUDGET;

Note To determine if a column has a NULL value, use an indicator variable. For more
information about indicator variables, see “Retrieving Indicator Status” .

A direct query on a column containing a NULL value returns zero for numbers,
blanks for characters, and 17 November 1858 for dates. For example, the
following cursor declaration retrieves all department budgets, even those with
NULL values, which are reported as zero:

EXEC SQL
DECLARE ALL_BUDGETS CURSOR FOR

SELECT DEPARTMENT, BUDGET
FROM DEPARTMENT
ORDER BY BUDGET DESCENDING;

Limitations on NULL Values
Because InterBase treats NULL values as non-values, the following limitations on
NULL values in queries should be noted:

• Rows with NULL values are sorted after all other rows.

• NULL values are skipped by all aggregate operations, except for COUNT(*).

• NULL values cannot be elicited by a negated test in a search condition.

• NULL values cannot satisfy a join condition.

NULL values can be tested in comparisons. If a value on either side of a
comparison operator is NULL, the result of the comparison is Unknown.

For the Boolean operators (NOT, AND, and OR), the following considerations are
made:

• NULL values with NOT always returns Unknown.

• NULL values with AND return Unknown unless one operand for AND is false. In
this latter case, False is returned.

• NULL values with OR return Unknown unless one operand for OR is true. In this
latter case, True is returned.
Chapter 6 Working with Data 6-43

Selecting Multiple Rows in DSQL
For information about defining alternate NULL values, see the Data Definition
Guide.

Selecting Rows Through a View

To select a subset of rows available through a view, substitute the name of the
view for a table name in the FROM clause of a SELECT. For example, the following
cursor produces a list of employee phone numbers based on the PHONE_VIEW
view:

EXEC SQL
DECLARE PHONE_LIST CURSOR FOR

SELECT FIRST_NAME, LAST_NAME, PHONE_EXT
FROM PHONE_VIEW
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

A view can be a join. Views can also be used in joins, themselves, in place of
tables. For more information about views in joins, see “Joining Tables” .

Selecting Multiple Rows in DSQL

In DSQL users are usually permitted to specify queries at run time. To
accommodate any type of query the user supplies, DSQL requires the use of
extended SQL descriptor areas (XSQLDAs) where you prepare and describe a
query’s input and output. For queries returning multiple rows, DSQL supports
variations of the DECLARE CURSOR, OPEN, and FETCH statements that make use of
the XSQLDA.

To retrieve multiple rows into a results table, establish a cursor into the table, and
process individual rows in the table. DSQL provides the following sequence of
statements:

1 PREPARE establishes the user-defined query specification in the XSQLDA
structure used for output.

2 DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

3 OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

4 FETCH retrieves a single row at a time from the results table for program
processing.

5 CLOSE releases system resources when all rows are retrieved.
6-44 Embedded SQL Guide

Selecting Multiple Rows in DSQL
The following three sections describe how to declare a DSQL cursor, how to open
it, and how to fetch rows using the cursor. For more information about creating and
filling XSQLDA structures, and preparing DSQL queries with PREPARE, see “Using
Dynamic SQL.”For more information about closing a cursor, see “Closing the
Cursor” .

Declaring a DSQL Cursor

DSQL must declare a cursor based on a user-defined SELECT statement. Usually,
DSQL programs:

• Prompt the user for a query (SELECT).

• Store the query in a host-language variable.

• Issue a PREPARE statement that uses the host-language variable to describe the
query results in an XSQLDA.

• Declare a cursor using the query alias.

The complete syntax for DECLARE CURSOR in DSQL is:

DECLARE cursorname CURSOR FOR queryname;

For example, the following C code fragment declares a string variable,
querystring, to hold the user-defined query, gets a query from the user and stores it
in querystring, uses querystring to PREPARE a query called QUERY, then declares a
cursor, C, that uses QUERY:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char querystring [512];
XSQLDA *InputSqlda, *OutputSqlda;

EXEC SQL
END DECLARE SECTION;

. . .
printf("Enter query: "); /* prompt for query from user */
gets(querystring); /* get the string, store in querystring
*/
. . .
EXEC SQL

PREPARE QUERY INTO OutputSqlda FROM :querystring;
. . .
EXEC SQL

DECLARE C CURSOR FOR QUERY;

For more information about creating and filling XSQLDA structures, and preparing
DSQL queries with PREPARE, see “Using Dynamic SQL.”
Chapter 6 Working with Data 6-45

Joining Tables
Opening a DSQL Cursor

The OPEN statement in DSQL establishes a results table from the input parameters
specified in a previously declared and populated XSQLDA. A cursor must be
opened before data can be retrieved. The syntax for a DSQL OPEN is:

OPEN cursorname USING DESCRIPTOR sqldaname;

For example, the following statement opens the cursor, C, using the XSQLDA,
InputSqlda:

EXEC SQL
OPEN C USING DESCRIPTOR InputSqlda;

Fetching Rows with a DSQL Cursor

DSQL uses the FETCH statement to retrieve rows from a results table. The rows
are retrieved according to specifications provided in a previously established and
populated extended SQL descriptor area (XSQLDA) that describes the user’s
request. The syntax for the DSQL FETCH statement is:

FETCH cursorname USING DESCRIPTOR descriptorname;

For example, the following C code fragment declares XSQLDA structures for input
and output, and illustrates how the output structure is used in a FETCH statement:

. . .
XSQLDA *InputSqlda, *OutputSqlda;
. . .
EXEC SQL

FETCH C USING DESCRIPTOR OutputSqlda;
. . .

For more information about creating and filling XSQLDA structures, and preparing
DSQL queries with PREPARE, see “Using Dynamic SQL.”

Joining Tables

Joins enable retrieval of data from two or more tables in a database with a single
SELECT. The tables from which data is to be extracted are listed in the FROM
clause. Optional syntax in the FROM clause can reduce the number of rows
returned, and additional WHERE clause syntax can further reduce the number of
rows returned.

From the information in a SELECT that describes a join, InterBase builds a table
that contains the results of the join operation, the results table, sometimes also
called a dynamic or virtual table.

InterBase supports two types of joins:
6-46 Embedded SQL Guide

Joining Tables
• Inner joins link rows in tables based on specified join conditions, and return only
those rows that match the join conditions. There are three types of inner joins:

• Equi-joins link rows based on common values or equality relationships in the
join columns.

• Joins that link rows based on comparisons other than equality in the join
columns. There is not an officially recognized name for these types of joins,
but for simplicity’s sake they may be categorized as comparative joins, or
non-equi-joins.

• Reflexive or self-joins, compare values within a column of a single table.

• Outer joins link rows in tables based on specified join conditions and return both
rows that match the join conditions, and all other rows from one or more tables
even if they do not match the join condition.

The most commonly used joins are inner joins, because they both restrict the data
returned, and show a clear relationship between two or more tables. Outer joins,
however, are useful for viewing joined rows against a background of rows that do
not meet the join conditions.

Choosing Join Columns

How do you choose which columns to join? At a minimum, they must be of
compatible datatypes and of similar content. You cannot, for example, join a CHAR
column to an INTEGER column. A common and reliable criterion is to join the
foreign key of one table to its referenced primary key. Often, joins are made
between identical columns in two tables. For example, you might join the Job and
Employee tables on their respective job_code columns.

INTEGER, DECIMAL, NUMERIC, and FLOAT datatypes can be compared to one
another because they are all numbers. String values, like CHAR and VARCHAR, can
only be compared to other string values unless they contain ASCII values that are
all numbers. The CAST() function can be used to force translation of one InterBase
datatype to another for comparisons. For more information about CAST(), see
“Using CAST() for Datatype Conversions” .

Important If a joined column contains a NULL value for a given row, InterBase does not
include that row in the results table unless performing an outer join.

Using Inner Joins

InterBase supports two methods for creating inner joins. For portability and
compatibility with existing SQL applications, InterBase continues to support the old
SQL method for specifying joins. In older versions of SQL, there is no explicit join
language. An inner join is specified by listing tables to join in the FROM clause of a
SELECT, and the columns to compare in the WHERE clause.
Chapter 6 Working with Data 6-47

Joining Tables
For example, the following join returns the department name, manager number,
and salary for any manager whose salary accounts for one third or more of the
total salaries of employees in that department.

EXEC SQL
DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MNGR_NO, E.SALARY
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.MNGR_NO = E.EMP_NO

AND E.SALARY*2 >= (SELECT SUM(S.SALARY) FROM
EMPLOYEE S

WHERE D.DEPT_NO = S.DEPT_NO)
ORDER BY D.DEPARTMENT;

InterBase also implements new, explicit join syntax based on SQL-92:

SELECT col [, col ...] | *
FROM <tablerefleft> [INNER] JOIN <tablerefright>

[ON <searchcondition>]
[WHERE <searchcondition>];

The join is explicitly declared in the FROM clause using the JOIN keyword. The table
reference appearing to the left of the JOIN keyword is called the left table, while the
table to the right of the JOIN is called the right table. The conditions of the join—the
columns from each table—are stated in the ON clause. The WHERE clause contains
search conditions that limit the number of rows returned. For example, using the
new join syntax, the previously described query can be rewritten as:

EXEC SQL
DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MNGR_NO, E.SALARY
 FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.MNGR_NO = E.EMP_NO
WHERE E.SALARY*2 > (SELECT SUM(S.SALARY) FROM EMPLOYEE

S
WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;

The new join syntax offers several advantages. An explicit join declaration makes
the intention of the program clear when reading its source code.

The ON clause contains join conditions. The WHERE clause can contains conditions
that restrict which rows are returned.

The FROM clause also permits the use of table references, which can be used to
construct joins between three or more tables. For more information about nested
joins, see “Using Nested Joins” .

Creating Equi-joins
An inner join that matches values in join columns is called an equi-join. Equi-joins
are among the most common join operations. The ON clause in an equi-join always
takes the form:
6-48 Embedded SQL Guide

Joining Tables
ON t1.column = t2.column

For example, the following join returns a list of cities around the world if the capital
cities also appear in the CITIES table, and also returns the populations of those
cities:

EXEC SQL
DECLARE CAPPOP CURSOR FOR

SELECT COU.NAME, COU.CAPITAL, CIT.POPULATION
FROM COUNTRIES COU JOIN CITIES CIT ON CIT.NAME =

COU.CAPITAL
WHERE COU.CAPITAL NOT NULL
ORDER BY COU.NAME;

In this example, the ON clause specifies that the CITIES table must contain a city
name that matches a capital name in the COUNTRIES table if a row is to be
returned. Note that the WHERE clause restricts rows retrieved from the COUNTRIES
table to those where the CAPITAL column contains a value.

Joins Based on Comparison Operators
Inner joins can compare values in join columns using other comparison operators
besides the equality operator. For example, a join might be based on a column in
one table having a value less than the value in a column in another table. The ON
clause in a comparison join always takes the form:

ON t1.column <operator> t2.column

where operator is a valid comparison operator. For a list of valid comparison
operators, see “Using Comparison Operators in Expressions” .

For example, the following join returns information about provinces in Canada that
are larger than the state of Alaska in the United States:

EXEC SQL
DECLARE BIGPROVINCE CURSOR FOR

SELECT S.STATE_NAME, S.AREA, P.PROVINCE_NAME, P.AREA
FROM STATES S JOIN PROVINCE P ON P.AREA > S.AREA AND

P.COUNTRY = 'Canada'
WHERE S.STATE_NAME = 'Alaska';

In this example, the first comparison operator in the ON clause tests to see if the
area of a province is greater than the area of any state (the WHERE clause restricts
final output to display only information for provinces that are larger in area than the
state of Alaska).

Creating Self-joins
A self-join is an inner join where a table is joined to itself to correlate columns of
data. For example, the RIVERS table lists rivers by name, and, for each river, lists
the river into which it flows. Not all rivers, of course, flow into other rivers. To
discover which rivers flow into other rivers, and what their names are, the RIVERS
table must be joined to itself:
Chapter 6 Working with Data 6-49

Joining Tables
EXEC SQL
DECLARE RIVERSTORIVERS CURSOR FOR

SELECT R1.RIVER, R2.RIVER
FROM RIVERS R1 JOIN RIVERS R2 ON R2.OUTFLOW = R1.RIVER
ORDER BY R1.RIVER, R2.SOURCE;

As this example illustrates, when a table is joined to itself, each invocation of the
table must be assigned a unique correlation name (R1 and R2 are correlation
names in the example). For more information about assigning and using
correlation names, see “Declaring and Using Correlation Names” .

Using Outer Joins

Outer joins produce a results table that contains columns from every row in one
table, and a subset of rows from another table. Actually, one type of outer join
returns all rows from each table, but this type of join is used less frequently than
other types. Outer join syntax is very similar to that of inner joins:

SELECT col [, col ...] | *
FROM <tablerefleft> {LEFT | RIGHT | FULL} [OUTER] JOIN

<tablerefright> [ON <searchcondition>]
[WHERE <searchcondition>];

Outer join syntax requires that you specify the type of join to perform. There are
three possibilities:

• A left outer join retrieves all rows from the left table in a join, and retrieves any
rows from the right table that match the search condition specified in the ON
clause.

• A right outer join retrieves all rows from the right table in a join, and retrieves
any rows from the left table that match the search condition specified in the ON
clause.

• A full outer join retrieves all rows from both the left and right tables in a join
regardless of the search condition specified in the ON clause.

Outer joins are useful for comparing a subset of data to the background of all data
from which it is retrieved. For example, when listing those countries which contain
the sources of rivers, it may be interesting to see those countries which are not the
sources of rivers as well.

Using a Left Outer Join
The left outer join is more commonly used than other types of outer joins. The
following left outer join retrieves those countries that contain the sources of rivers,
and identifies those countries that do not have NULL values in the R.RIVERS
column:

EXEC SQL
DECLARE RIVSOURCE CURSOR FOR

SELECT C.COUNTRY, R.RIVER
6-50 Embedded SQL Guide

Joining Tables
FROM COUNTRIES C LEFT JOIN RIVERS R ON R.SOURCE =
C.COUNTRY

ORDER BY C.COUNTRY;

The ON clause enables join search conditions to be expressed in the FROM
clause. The search condition that follows the ON clause is the only place where
retrieval of rows can be restricted based on columns appearing in the right table.
The WHERE clause can be used to further restrict rows based solely on columns in
the left (outer) table.

Using a Right Outer Join
A right outer join retrieves all rows from the right table in a join, and only those
rows from the left table that match the search condition specified in the ON clause.
The following right outer join retrieves a list of rivers and their countries of origin,
but also reports those countries that are not the source of any river:

EXEC SQL
DECLARE RIVSOURCE CURSOR FOR

SELECT R.RIVER, C.COUNTRY
FROM RIVERS.R RIGHT JOIN COUNTRIES C ON C.COUNTRY =

R.SOURCE
ORDER BY C.COUNTRY;

Tip Most right outer joins can be rewritten as left outer joins by reversing the order in
which tables are listed.

Using a Full Outer Join
A full outer join returns all selected columns that do not contain NULL values from
each table in the FROM clause without regard to search conditions. It is useful to
consolidate similar data from disparate tables.

For example, several tables in a database may contain city names. Assuming
triggers have not been created that ensure that a city entered in one table is also
entered in the others to which it also applies, one of the only ways to see a list of
all cities in the database is to use full outer joins. The following example uses two
full outer joins to retrieve the name of every city listed in three tables, COUNTRIES,
CITIES, and NATIONAL_PARKS:

EXEC SQL
DECLARE ALLCITIES CURSOR FOR

SELECT DISTINCT CIT.CITY, COU.CAPITAL, N.PARKCITY
FROM (CITIES CIT FULL JOIN COUNTRIES COU) FULL

JOIN NATIONAL_PARKS N;

This example uses a nested full outer join to process all rows from the CITIES and
COUNTRIES tables. The result table produced by that operation is then used as the
left table of the full outer join with the NATIONAL_PARKS table. For more information
about using nested joins, see “Using Nested Joins” .
Chapter 6 Working with Data 6-51

Using Subqueries
Note In most databases where tables share similar or related information, triggers are
usually created to ensure that all tables are updated with shared information. For
more information about triggers, see the Data Definition Guide.

Sort/Merge Optimization for Outer Joins
The Sort/Merge option for the outer joins algorithm recognizes outer and inner
streams of an outer join and matches an outer row with a null-valued inner row
when there is no matching row in the inner stream.

For full outer joins, the outer and inner streams are swapped after producing
matching and null-matched rows for the first stream. The first stream becomes the
inner stream and what was the second stream becomes the outer stream. These
rows are then left outer joined and only those rows in which the outer stream is
matched with nulls are produced. The matching rows on the join terms are filtered
out because they were produced before the two streams were swapped during the
first pass.

Using Nested Joins

The SELECT statement FROM clause can be used to specify any combination of
available tables or table references, parenthetical, nested joins whose results
tables are created and then processed as if they were actual tables stored in the
database. Table references are flexible and powerful, enabling the succinct
creation of complex joins in a single location in a SELECT.

For example, the following statement contains a parenthetical outer join that
creates a results table with the names of every city in the CITIES table even if the
city is not associated with a country in the COUNTRIES table. The results table is
then processed as the left table of an inner join that returns only those cities that
have professional sports teams of any kind, the name of the team, and the sport
the team plays.

DECLARE SPORTSCITIES CURSOR FOR
SELECT COU.COUNTRY, C.CITY, T.TEAM, T.SPORT

FROM (CITIES CIT LEFT JOIN COUNTRIES COU ON COU.COUNTRY
=

CIT.COUNTRY) INNER JOIN TEAMS T ON T.CITY = C.CITY
ORDER BY COU.COUNTRY;

For more information about left joins, see “Using Outer Joins” .

Using Subqueries

A subquery is a parenthetical SELECT statement nested inside the WHERE clause
of another SELECT statement, where it functions as a search condition to restrict
the number of rows returned by the outer, or parent, query. A subquery can refer to
the same table or tables as its parent query, or to other tables.
6-52 Embedded SQL Guide

Using Subqueries
The elementary syntax for a subquery is:

SELECT [DISTINCT] col [, col ...]
FROM <tableref> [, <tableref> ...]

WHERE {expression {[NOT] IN | comparison_operator}
| [NOT] EXISTS} (SELECT [DISTINCT] col [, col ...]

FROM <tableref> [, <tableref> ...]
WHERE <search_condition>);

Because a subquery is a search condition, it is usually evaluated before its parent
query, which then uses the result to determine whether or not a row qualifies for
retrieval. The only exception is the correlated subquery, where the parent query
provides values for the subquery to evaluate. For more information about
correlated subqueries, see “Correlated Subqueries” .

A subquery determines the search condition for a parent’s WHERE clause in one of
the following ways:

• Produces a list of values for evaluation by an IN operator in the parent query’s
WHERE clause, or where a comparison operator is modified by the ALL, ANY, or
SOME operators.

• Returns a single value for use with a comparison operator.

• Tests whether or not data meets conditions specified by an EXISTS operator in
the parent query’s WHERE clause.

Subqueries can be nested within other subqueries as search conditions,
establishing a chain of parent/child queries.

Simple Subqueries

A subquery is especially useful for extracting data from a single table when a self-
join is inadequate. For example, it is impossible to retrieve a list of those countries
with a larger than average area by joining the COUNTRIES table to itself. A
subquery, however, can easily return that information.

EXEC SQL
DECLARE LARGECOUNTRIES CURSOR FOR

SELECT COUNTRY, AREA
FROM COUNTRIES
WHERE AREA > (SELECT AVG(AREA) FROM COUNTRIES);
ORDER BY AREA;

In this example, both the query and subquery refer to the same table. Queries and
subqueries can refer to different tables, too. For example, the following query
refers to the CITIES table, and includes a subquery that refers to the COUNTRIES
table:

EXEC SQL
DECLARE EUROCAPPOP CURSOR FOR

SELECT CIT.CITY, CIT.POPULATION
Chapter 6 Working with Data 6-53

Using Subqueries
FROM CITIES CIT
WHERE CIT.CITY IN (SELECT COU.CAPITAL FROM COUNTRIES

COU
WHERE COU.CONTINENT = 'Europe')

ORDER BY CIT.CITY;

This example uses correlation names to distinguish between tables even though
the query and subquery reference separate tables. Correlation names are only
necessary when both a query and subquery refer to the same tables and those
tables share column names, but it is good programming practice to use them. For
more information about using correlation names, see “Declaring and Using
Correlation Names” .

Correlated Subqueries

A correlated subquery is a subquery that depends on its parent query for the
values it evaluates. Because each row evaluated by the parent query is potentially
different, the subquery is executed once for each row presented to it by the parent
query.

For example, the following query lists each country for which there are three or
more cities stored in the CITIES table. For each row in the COUNTRIES table, a
country name is retrieved in the parent query, then used in the comparison
operation in the subquery’s WHERE clause to verify if a city in the CITIES table
should be counted by the COUNT() function. If COUNT() exceeds 2 for a row, the row
is retrieved.

EXEC SQL
DECLARE TRICITIES CURSOR FOR

SELECT COUNTRY
FROM COUNTRIES COU
WHERE 3 <= (SELECT COUNT (*)

FROM CITIES CIT
WHERE CIT.CITY = COU.CAPITAL);

Simple and correlated subqueries can be nested and mixed to build complex
queries. For example, the following query retrieves the country name, capital city,
and largest city of countries whose areas are larger than the average area of
countries that have at least one city within 30 meters of sea level:

EXEC SQL
DECLARE SEACOUNTRIES CURSOR FOR

SELECT CO1.COUNTRY, C01.CAPITAL, CI1.CITY
FROM COUNTRIES C01, CITIES CI1
WHERE CO1.COUNTRY = CI1.COUNTRY AND CI1.POPULATION =
(SELECT MAX(CI2.POPULATION)

FROM CITIES CI2 WHERE CI2.COUNTRY = CI1.COUNTRY)
AND CO1.AREA >

(SELECT AVG (CO2.AREA)
FROM COUNTRIES C02 WHERE EXISTS
6-54 Embedded SQL Guide

Inserting Data
(SELECT *
FROM CITIES CI3 WHERE CI3.COUNTRY = CO2.COUNTRY
AND CI3.ALTITUDE <= 30));

When a table is separately searched by queries and subqueries, as in this
example, each invocation of the table must establish a separate correlation name
for the table. Using correlation names is the only method to assure that column
references are associated with appropriate instances of their tables. For more
information about correlation names, see “Declaring and Using Correlation
Names” .

Indexed Optimization of Correlated Subqueries in UPDATE
Statements
An indexed retrieval is now used to fetch rows from the correlated subquery in the
UPDATE statement if there is an appropriate index defined. Utilize an indexed
access path for correlated subqueries in UPDATE statements as in the following
code example:

UPDATE A SET A.C1 = (SELECT B.C1 FROM B WHERE B.C2 = A.C2)

Where index is B.C2, InterBase will use index to retrieve the matching row in table
B where B.C2 = A.C2, since the row in the outer table A has already been fetched.

Inserting Data

New rows of data are added to one table at a time with the INSERT statement. To
insert data, a user or stored procedure must have INSERT privilege for a table.

The INSERT statement enables data insertion from two different sources:

• A VALUES clause that contains a list of values to add, either through hard-coded
values, or host-language variables.

• A SELECT statement that retrieves values from one table to add to another.

The syntax of INSERT is as follows:

INSERT [TRANSACTION name] INTO table [(col [, col ...])]
{VALUES (<val>[:ind] [, <val>[:ind] ...])

| SELECT <clause>};

The list of columns into which to insert values is optional in DSQL applications. If it
is omitted, then values are inserted into a table’s columns according to the order in
which the columns were created. If there are more columns than values, the
remaining columns are filled with zeros.
Chapter 6 Working with Data 6-55

Inserting Data
Using VALUES to Insert Columns

Use the VALUES clause to add a row of specific values to a table, or to add values
entered by a user at run time. The list of values that follows the keyword can come
from either from host-language variables, or from hard-coded assignments.

For example, the following statement adds a new row to the DEPARTMENT table
using hard-coded value assignments:

EXEC SQL
INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (7734, 'Marketing');

Because the DEPARTMENT table contains additional columns not specified in the
INSERT, NULL values are assigned to the missing fields.

The following C code example prompts a user for information to add to the
DEPARTMENT table, and inserts those values from host variables:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char department[26], dept_no[16];
int dept_num;

EXEC SQL
END DECLARE SECTION;

. . .
printf("Enter name of department: ");
gets(department);
printf("\nEnter department number: ");
dept_num = atoi(gets(dept_no));
EXEC SQL

INSERT INTO COUNTRIES (DEPT_NO, DEPARTMENT)
VALUES (:dept_num, :department);

When host variables are used in the values list, they must be preceded by colons
(:) so that SQL can distinguish them from table column names.

Using SELECT to Insert Columns

To insert values from one table into another row in the same table or into a row in
another table, use a SELECT statement to specify a list of insertion values. For
example, the following INSERT statement copies DEPARTMENT and BUDGET
information about the publications department from the OLDDEPT table to the
DEPARTMENT table. It also illustrates how values can be hard-coded into a SELECT
statement to substitute actual column data.

EXEC SQL
INSERT INTO DEPARTMENTS (DEPT_NO, DEPARTMENT, BUDGET)

SELECT DEPT_NO, 'Publications', BUDGET
FROM OLDDEPT
6-56 Embedded SQL Guide

Inserting Data
WHERE DEPARTMENT = 'Documentation';

The assignments in the SELECT can include arithmetic operations. For example,
suppose an application keeps track of employees by using an employee number.
When a new employee is hired, the following statement inserts a new employee
row into the EMPLOYEE table, and assigns a new employee number to the row by
using a SELECT statement to find the current maximum employee number and
adding one to it. It also reads values for LAST_NAME and FIRST_NAME from the host
variables, lastname, and firstname.

EXEC SQL
INSERT INTO EMPLOYEE (EMP_NO, LAST_NAME, FIRST_NAME)

SELECT (MAX(EMP_NO) + 1, :lastname, :firstname)
FROM EMPLOYEE;

Inserting Rows with NULL Column Values

Sometimes when a new row is added to a table, values are not necessary or
available for all its columns. In these cases, a NULL value should be assigned to
those columns when the row is inserted. There are three ways to assign a NULL
value to a column on insertion:

• Ignore the column.

• Assign a NULL value to the column. This is standard SQL practice.

• Use indicator variables.

Ignoring a Column
A NULL value is assigned to any column that is not explicitly specified in an INTO
clause. When InterBase encounters an unreferenced column during insertion, it
sets a flag for the column indicating that its value is unknown. For example, the
DEPARTMENT table contains several columns, among them HEAD_DEPT, MNGR_NO,
and BUDGET. The following INSERT does not provide values for these columns:

EXEC SQL
INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (:newdept_no, :newdept_name);

Because HEAD_DEPT, MNGR_NO, and BUDGET are not specified, InterBase sets the
NULL value flag for each of these columns.

Note If a column is added to an existing table, InterBase sets a NULL value flag for all
existing rows in the table.

Assigning a NULL Value to a Column
When a specific value is not provided for a column on insertion, it is standard SQL
practice to assign a NULL value to that column. In InterBase a column is set to NULL
by specifying NULL for the column in the INSERT statement.
Chapter 6 Working with Data 6-57

Inserting Data
For example, the following statement stores a row into the DEPARTMENT table,
assigns the values of host variables to some columns, and assigns a NULL value to
other columns:

EXEC SQL
INSERT INTO DEPARTMENT

(DEPT_NO, DEPARTMENT, HEAD_DEPT, MNGR_NO, BUDGET,
LOCATION, PHONE_NO)

VALUES (:dept_no, :dept_name, NULL, NULL, 1500000, NULL,
NULL);

Using Indicator Variables
Another method for trapping and assigning NULL values—through indicator
variables—is necessary in applications that prompt users for data, where users
can choose not to enter values. By default, when InterBase stores new data, it
stores zeroes for NULL numeric data, and spaces for NULL character data. Because
zeroes and spaces may be valid data, it becomes impossible to distinguish missing
data in the new row from actual zeroes and spaces.

To trap missing data with indicator variables, and store NULL value flags, follow
these steps:

1 Declare a host-language variable to use as an indicator variable.

2 Test a value entered by the user and set the indicator variable to one of the
following values:

3 Associate the indicator variable with the host variable in the INSERT statement
using the following syntax:

INSERT INTO table (<col> [, <col> ...])
VALUES (:variable [INDICATOR] :indicator

[, :variable [INDICATOR] :indicator ...]);

Note The INDICATOR keyword is optional.

For example, the following C code fragment prompts the user for the name of a
department, the department number, and a budget for the department. It tests that
the user has entered a budget. If not, it sets the indicator variable, bi, to –1.
Otherwise, it sets bi to 0. Finally, the program INSERTS the information into the
DEPARTMENT table. If the indicator variable is –1, then no actual data is stored in
the BUDGET column, but a flag is set for the column indicating that the value is
NULL

. . .
EXEC SQL

0 The host-language variable contains data.

–1 The host-language variable does not contain
data.
6-58 Embedded SQL Guide

Inserting Data
BEGIN DECLARE SECTION;
short bi; /* indicator variable declaration */
char department[26], dept_no_ascii[26],

budget_ascii[26];
long num_val; /* host variable for inserting budget */
short dept_no;

EXEC SQL
END DECLARE SECTION;

. . .
printf("Enter new department name: ");
gets(cidepartment);
printf("\nEnter department number: ");
gets(dept_no_ascii);
printf("\nEnter department’s budget: ");
gets(budget_ascii);
if (budget_ascii = "")
{

bi = -1; num_val = 0;
}
else
{

bi = 0;
num_val = atoi(budget_ascii);

}
dept_no = atoi(dept_no_ascii);
EXEC SQL

INSERT INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)
VALUES (:department, :dept_no, :num_val INDICATOR :bi);

. . .

Indicator status can also be determined for data retrieved from a table. For
information about trapping NULL values retrieved from a table, see “Retrieving
Indicator Status” .

Inserting Data Through a View

New rows can be inserted through a view if the following conditions are met:

• The view is updatable. For a complete discussion of updatable views, see the
Data Definition Guide.

• The view is created using the WITH CHECK OPTION.

• A user or stored procedure has INSERT privilege for the view.

Values can only be inserted through a view for those columns named in the view.
InterBase stores NULL values for unreferenced columns. For example, suppose
the view, PART_DEPT, is defined as follows:

EXEC SQL
CREATE VIEW PART_DEPT
Chapter 6 Working with Data 6-59

Inserting Data
(DEPARTMENT, DEPT_NO, BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT
WHERE DEPT_NO NOT NULL AND BUDGET > 50000

WITH CHECK OPTION;

Because PART_DEPT references a single table, DEPARTMENT, new data can be
inserted for the DEPARTMENT, DEPT_NO, and BUDGET columns. The WITH CHECK
OPTION assures that all values entered through the view fall within ranges of
values that can be selected by this view. For example, the following statement
inserts a new row for the Publications department through the PART_DEPT view:

EXEC SQL
INSERT INTO PART_DEPT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES ('Publications', '7735', 1500000);

InterBase inserts NULL values for all other columns in the DEPARTMENT table that
are not available directly through the view.

For information about creating a view, see “Working with
Data Definition Statements.” For the complete syntax of CREATE VIEW, see the
Language Reference Guide.

Note See “Working with Triggers” in the Data Definition Guide for tips on using triggers
to update non-updatable views.

Specifying Transaction Names in an INSERT

InterBase enables a SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement. For a
complete discussion of transaction handling and naming, see “Working with
Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE,
OPEN, FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the
name of the transaction under which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support user-
specified transaction names.

With INSERT, the TRANSACTION clause intervenes between the INSERT keyword
and the list of columns to insert, as in the following syntax fragment:

INSERT TRANSACTION name INTO table (col [, col ...])

The TRANSACTION clause is optional in single-transaction programs. It must be
used in a multi-transaction program unless a statement operates under control of
the default transaction, GDS__TRANS. For example, the following INSERT is
controlled by the transaction, T1:

EXEC SQL
6-60 Embedded SQL Guide

Updating Data
INSERT TRANSACTION T1 INTO DEPARTMENT (DEPARTMENT,
DEPT_NO, BUDGET)

VALUES (:deptname, :deptno, :budget INDICATOR :bi);

Updating Data

To change values for existing rows of data in a table, use the UPDATE statement. To
update a table, a user or procedure must have UPDATE privilege for it. The syntax
of UPDATE is:

UPDATE [TRANSACTION name] table
SET col = <assignment> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cursorname
[ORDER BY <order_list>]
[ROWS <value> [TO <upper_value>] [BY

<step_value>][PERCENT][WITH TIES]];

UPDATE changes values for columns specified in the SET clause; columns not
listed in the SET clause are not changed. A single UPDATE statement can be used
to modify any number of rows in a table. For example, the following statement
modifies a single row:

EXEC SQL
UPDATE DEPARTMENT

SET DEPARTMENT = 'Publications'
WHERE DEPARTMENT = 'Documentation';

The WHERE clause in this example targets a single row for update. If the same
change should be propagated to a number of rows in a table, the WHERE clause
can be more general. For example, to change all occurrences of “Documentation”
to “Publications” for all departments in the DEPARTMENT table where DEPARTMENT
equals “Documentation,” the UPDATE statement would be as follows:

EXEC SQL
UPDATE DEPARTMENT

SET DEPARTMENT = 'Publications'
WHERE DEPARTMENT = 'Documentation';

Using UPDATE to make the same modification to a number of rows is sometimes
called a mass update, or a searched update.

The WHERE clause in an UPDATE statement can contain a subquery that references
one or more other tables. For a complete discussion of subqueries, see “Using
Subqueries” .

Updating Multiple Rows

There are two basic methods for modifying rows:
Chapter 6 Working with Data 6-61

Updating Data
• The searched update method, where the same changes are applied to a number
of rows, is most useful for automated updating of rows without a cursor.

• The positioned update method, where rows are retrieved through a cursor and
updated row by row, is most useful for enabling users to enter different changes
for each row retrieved.

A searched update is easier to program than a positioned update, but also more
limited in what it can accomplish.

Using a Searched Update
Use a searched update to make the same changes to a number of rows. The
UPDATE SET clause specifies the actual changes that are to be made to columns
for each row that matches the search condition specified in the WHERE clause.
Values to set can be specified as constants or variables.

For example, the following C code fragment prompts for a country name and a
percentage change in population, then updates all cities in that country with the
new population:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], asciimult[10];
int multiplier;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

printf("Enter country with city populations needing
adjustment: ");

gets(country);
printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier / 100)
WHERE COUNTRY = :country;

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK RELEASE;
}
else
{

EXEC SQL
6-62 Embedded SQL Guide

Updating Data
COMMIT RELEASE;
}

}

Important Searched updates cannot be performed on arrays of datatypes.

Using a Positioned Update
Use cursors to select rows for update when prompting users for changes on a row-
by-row basis, and displaying pre- or post-modification values between row
updates. Updating through a cursor is a seven-step process:

1 Declare host-language variables needed for the update operation.

2 Declare a cursor describing the rows to retrieve for update, and include the FOR
UPDATE clause in DSQL. For more information about declaring and using
cursors, see “Selecting Multiple Rows” .

3 Open the cursor.

4 Fetch a row.

5 Display current values and prompt for new values.

6 Update the currently selected row using the WHERE CURRENT OF clause.

7 Repeat steps 3 to 7 until all selected rows are updated.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also
specified by the user:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26], asciimult[10];
int multiplier;

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

EXEC SQL
DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION
FROM CITIES
WHERE COUNTRY = :country;

printf("Enter country with city populations needing
adjustment: ");

gets(country);
EXEC SQL

OPEN CHANGEPOP;
EXEC SQL
Chapter 6 Working with Data 6-63

Updating Data
FETCH CHANGEPOP INTO :country;
while(!SQLCODE)
{

printf("\nPercent change (100%% to -100%%:");
gets(asciimult);
multiplier = atoi(asciimult);
EXEC SQL

UPDATE CITIES
SET POPULATION = POPULATION * (1 + :multiplier /

100)
WHERE CURRENT OF CHANGEPOP;

EXEC SQL
FETCH CHANGEPOP INTO :country;

if (SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK RELEASE;
exit(1);

}
}
EXEC SQL

COMMIT RELEASE;
}

Important Using FOR UPDATE with a cursor causes rows to be fetched from the database one
at a time. If FOR UPDATE is omitted, rows are fetched in batches.

NULLing Columns with UPDATE

To set a column’s value to NULL during update, specify a NULL value for the column
in the SET clause. For example, the following UPDATE sets the budget of all
departments without managers to NULL:

EXEC SQL
UPDATE DEPARTMENT

SET BUDGET = NULL
WHERE MNGR_NO = NULL;

Updating Through a View

Existing rows can be updated through a view if the following conditions are met:

• The view is updatable. For a complete discussion of updatable views, see the
Data Definition Guide.

• The view is created using the WITH CHECK OPTION.

• A user or stored procedure has UPDATE privilege for the view.
6-64 Embedded SQL Guide

Updating Data
Values can only be updated through a view for those columns named in the view.
For example, suppose the view, PART_DEPT, is defined as follows:

EXEC SQL
CREATE VIEW PART_DEPT

(DEPARTMENT, NUMBER, BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT
WITH CHECK OPTION;

Because PART_DEPT references a single table, data can be updated for the
columns named in the view. The WITH CHECK OPTION assures that all values
entered through the view fall within ranges prescribed for each column when the
DEPARTMENT table was created. For example, the following statement updates the
budget of the Publications department through the PART_DEPT view:

EXEC SQL
UPDATE PART_DEPT

SET BUDGET = 2505700
WHERE DEPARTMENT = 'Publications';

For information about creating a view, see “Working with
Data Definition Statements.” For the complete syntax of CREATE VIEW, see the
Language Reference Guide.

Note See “Working with Triggers” in the Data Definition Guide for tips on using triggers
to update non-updatable views.

Specifying Transaction Names in UPDATE

InterBase enables a SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement. For a
complete discussion of transaction handling and naming, see “Working with
Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE,
OPEN, FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the
name of the transaction under which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support multiple
simultaneous transactions.

In UPDATE, the TRANSACTION clause intervenes between the UPDATE keyword and
the name of the table to update, as in the following syntax:

UPDATE [TRANSACTION name] table
SET col = <assignment> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cursorname;
Chapter 6 Working with Data 6-65

Deleting Data
The TRANSACTION clause must be used in multi-transaction programs, but is
optional in single-transaction programs or in programs where only one transaction
is open at a time. For example, the following UPDATE is controlled by the
transaction, T1:

EXEC SQL
UPDATE TRANSACTION T1 DEPARTMENT

SET BUDGET = 2505700
WHERE DEPARTMENT = 'Publications';

Deleting Data

To remove rows of data from a table, use the DELETE statement. To delete rows a
user or procedure must have DELETE privilege for the table.

The syntax of DELETE is:

DELETE [TRANSACTION name] FROM table
WHERE <search_condition> | WHERE CURRENT OF cursorname
[ORDER BY <order_list>]
[ROWS <value> [TO <upper_value>] [BY

<step_value>][PERCENT][WITH TIES]];

DELETE irretrievably removes entire rows from the table specified in the FROM
clause, regardless of each column’s datatype.

A single DELETE can be used to remove any number of rows in a table. For
example, the following statement removes the single row containing “Channel
Marketing” from the DEPARTMENT table:

EXEC SQL
DELETE FROM DEPARTMENT

WHERE DEPARTMENT = 'Channel Marketing';

The WHERE clause in this example targets a single row for update. If the same
deletion criteria apply to a number of rows in a table, the WHERE clause can be
more general. For example, to remove all rows from the DEPARTMENT table with
BUDGET values < $1,000,000, the DELETE statement would be as follows:

EXEC SQL
DELETE FROM DEPARTMENT

WHERE BUDGET < 1000000;

Using DELETE to remove a number of rows is sometimes called a mass delete.

The WHERE clause in a DELETE statement can contain a subquery that references
one or more other tables. For a discussion of subqueries, see “Using Subqueries”
.

6-66 Embedded SQL Guide

Deleting Data
Deleting Multiple Rows

There are two methods for modifying rows:

• The searched delete method, where the same deletion condition applies to a
number of rows, is most useful for automated removal of rows.

• The positioned delete method, where rows are retrieved through a cursor and
deleted row by row, is most useful for enabling users to choose which rows that
meet certain conditions should be removed.

A searched delete is easier to program than a positioned delete, but less flexible.

Using a Searched Delete
Use a searched delete to remove a number of rows that match a condition
specified in the WHERE clause. For example, the following C code fragment
prompts for a country name, then deletes all rows that have cities in that country:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char country[26];

EXEC SQL
END DECLARE SECTION;

. . .
main ()
{

printf("Enter country with cities to delete: ");
gets(country);
EXEC SQL

DELETE FROM CITIES
WHERE COUNTRY = :country;

if(SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK RELEASE;
}
else
{

EXEC SQL
COMMIT RELEASE;

}
}

Using a Positioned Delete
Use cursors to select rows for deletion when users should decide deletion on a
row-by-row basis, and displaying pre- or post-modification values between row
updates. Updating through a cursor is a seven-step process:
Chapter 6 Working with Data 6-67

Deleting Data
1 Declare host-language variables needed for the delete operation.

2 Declare a cursor describing the rows to retrieve for possible deletion, and
include the FOR UPDATE clause. For more information about declaring and using
cursors, see “Selecting Multiple Rows” .

3 Open the cursor.

4 Fetch a row.

5 Display current values and prompt for permission to delete.

6 Delete the currently selected row using the WHERE CURRENT OF clause to
specify the name of the cursor.

7 Repeat steps 3 to 7 until all selected rows are deleted.

For example, the following C code deletes rows in the CITIES table that are in North
America only if a user types Y when prompted:

. . .
EXEC SQL

BEGIN DECLARE SECTION;
char cityname[26];

EXEC SQL
END DECLARE SECTION;

char response[5];
. . .
main ()
{

EXEC SQL
DECLARE DELETECITY CURSOR FOR

SELECT CITY,
FROM CITIES
WHERE CONTINENT = 'North America';

EXEC SQL
OPEN DELETECITY;

while (!SQLCODE)
{

EXEC SQL
FETCH DELETECITY INTO :cityname;

if (SQLCODE)
{

if (SQLCODE == 100)
{

printf('Deletions complete.');
EXEC SQL

COMMIT;
EXEC SQL

CLOSE DELETECITY;
EXEC SQL

DISCONNECT ALL:
6-68 Embedded SQL Guide

Deleting Data
}
isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1);

}
printf("\nDelete %s (Y/N)?", cityname);
gets(response);
if(response[0] == 'Y' || response == 'y')
{

EXEC SQL
DELETE FROM CITIES
WHERE CURRENT OF DELETECITY;

if(SQLCODE && (SQLCODE != 100))
{

isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}

}

Deleting Through a View

You can delete entire rows through a view if the following conditions are met:

• The view is updatable. For a complete discussion of updatable views, see the
Data Definition Guide.

• A user or stored procedure has DELETE privilege for the view.

For example, the following statement deletes all departments with budgets under
$1,000,000, from the DEPARTMENT table through the PART_DEPT view:

EXEC SQL
DELETE FROM PART_DEPT

WHERE BUDGET < 1000000;

For information about creating a view, see “Working with
Data Definition Statements.” For CREATE VIEW syntax, see the Language
Reference Guide.

Note See “Working with Triggers” in the Data Definition Guide for tips on using triggers
to delete through non-updatable views.
Chapter 6 Working with Data 6-69

Deleting Data
Specifying Transaction Names in a DELETE

InterBase enables a SQL application to run simultaneous transactions if:

• Each transaction is first named with a SET TRANSACTION statement. For a
complete discussion of transaction handling and naming, see “Working with
Transactions.”

• Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE,
OPEN, FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the
name of the transaction under which it operates.

• SQL statements are not dynamic (DSQL). DSQL does not support multiple
simultaneous transactions.

For DELETE, the TRANSACTION clause intervenes between the DELETE keyword
and the FROM clause specifying the table from which to delete:

DELETE TRANSACTION name FROM table ...

The TRANSACTION clause is optional in single-transaction programs or in programs
where only one transaction is open at a time. It must be used in a multi-transaction
program. For example, the following DELETE is controlled by the transaction, T1:

EXEC SQL
DELETE TRANSACTION T1 FROM PART_DEPT

WHERE BUDGET < 1000000;
6-70 Embedded SQL Guide

C h a p t e r

Chapter 7Working with Dates and
Times

Most host languages do not support the DATE, TIME, and TIMESTAMP datatypes.
Instead, they treat dates as strings or structures. InterBase supports DATE and
TIME datatypes that are stored as single long integers, and a TIMESTAMP datatype
that is stored in tables as two long integers. An InterBase DATE datatype includes
information about year, month, and day of the month, the TIME datatype includes
information about time, and the TIMESTAMP datatype is a combination of the two.

This chapter discusses how to SELECT, INSERT, and UPDATE dates from tables in
SQL applications using the following isc call interface routines:

• isc_decode_sql_date() converts the InterBase internal date format to the C time
structure

• isc_encode_sql_date() converts the C time structure to the internal InterBase
date format

• isc_decode_sql_time() converts the InterBase internal time format to the C time
structure

• isc_encode_sql_time() converts the C time structure to the internal InterBase
time format

• isc_decode_timestamp() converts the InterBase internal timestamp format to
the C time structure; this was formerly isc_decode_date()

• isc_encode_timestamp() converts the C time structure to the InterBase internal
timestamp format; this was formerly isc_encode_date()

See the API Guide for a description of each of these functions.
Chapter 7 Working with Dates and Times 7-1

Querying the Database for Current Date and Time Information
This chapter also discusses how to use the CAST() function to translate DATE, TIME,
and TIMESTAMP datatypes into each other or into CHAR datatypes and back again,
and how to use the DATE literals (YESTERDAY, TOMORROW, NOW, and TODAY) when
selecting and inserting dates.

Querying the Database for Current Date and Time
Information

InterBase provides predefined SQL functional operators for obtaining current date
and time values, and an EXTRACT() function for obtaining individually the value of
each part of a date or time value.

Getting the Current Date and Time

The CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP functional
operators return date and time values based upon the moment of execution of a
SQL statement using the server’s clock and time zone. For a single SQL
statement, the same value is used for each evaluation of CURRENT_DATE,
CURRENT_TIME, and CURRENT_TIMESTAMP within that statement. This means that if
multiple rows are updated, as in the following statement, each data row will have
the same value in the aTime column:

UPDATE aTable SET aTime = CURRENT_TIME;

Similarly, if row buffering occurs in a fetch via the remote protocol, then the value
of CURRENT_TIME is based on the time of the OPEN of the cursor from the database
engine, and not on the time of delivery to the client.

You can specify CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP as the
default clause for a domain or column definition.

Extracting Date and Time Information

The EXTRACT() function extracts date and time information from databases.
EXTRACT() has the following syntax:

EXTRACT (part FROM value)

The value passed to the EXTRACT() expression must be DATE, TIME, or TIMESTAMP.
Extracting a part that doesn’t exist in a datatype results in an error. For example:

EXTRACT (TIME FROM aTime)

would be successful, while a statement such as:

EXTRACT (YEAR from aTIME)

would fail.
7-2 Embedded SQL Guide

Selecting Dates and Times
The datatype of EXTRACT() expressions depends on the specific part being
extracted:

Selecting Dates and Times

To select a date and time (timestamp) from a table, and convert it to a form usable
in a C language program, follow these steps:

1 Create a host variable for a C time structure. Most C and C++ compilers provide
a typedef declaration, struct tm, for the C time structure in the time.h header file.
The following C code includes that header file, and declares a variable of type
struct tm:

#include <time.h>;
. . .
struct tm hire_time;
. . .

To create host-language time structures in languages other than C and C++,
see the host-language reference manual.

2 Create a host variable of type ISC_TIMESTAMP. For example, the host-variable
declaration might look like this:

ISC_TIMESTAMP hire_date;

The ISC_TIMESTAMP structure is automatically declared for programs when they are
preprocessed with gpre, but the programmer must declare actual host-language
variables of type ISC_TIMESTAMP.

3 Retrieve a timestamp from a table into the ISC_TIMESTAMP variable. For
example,

Table 7.1 Extracting date and time information

Extract
Part

Resulting
datatype Representing

YEAR SMALLINT Year, range 0-5400

MONTH SMALLINT Month, range 1-12

DAY SMALLINT Day, range 1-31

HOUR SMALLINT Hour, range 1-23

MINUTE SMALLINT Minute, range 1-59

SECOND DECIMAL(6,4) Second, range 0-59.9999

WEEKDAY SMALLINT Day of the week, range 0-6
(0 = Sunday, 1 = Monday, and so on)

YEARDAY SMALLINT Day of the year, range 1-366
Chapter 7 Working with Dates and Times 7-3

Formatting Dates for Input
EXEC SQL
SELECT LAST_NAME, FIRST_NAME, DATE_OF_HIRE

INTO :lname, :fname, :hire_date
FROM EMPLOYEE
WHERE LAST_NAME = 'Smith' AND FIRST_NAME = 'Margaret';

Convert the isc_timestamp variable into a numeric UNIX format with the InterBase
function, isc_decode_timestamp(). This function is automatically declared for programs
when they are preprocessed with gpre. isc_decode_timestamp() requires two
parameters: the address of the isc_timestamp host-language variable, and the address of
the struct tm host-language variable. For example, the following code fragment coverts
hire_date to hire_time:

isc_decode_timestamp(&hire_date, &hire_time);

Formatting Dates for Input

Dates for input as datatype DATE can have any of the following forms:

• YYYYpMMpDD

• MMpDDpYYYY

• DDpMMpYYYY

• YYpMMpDD

• MMpDDpYY

• DDpMMpYY

where:

• DD = one- or two-digit day

• MM = one- or two-digit month, or a three-letter month abbreviation, or the full
English month name (case does not matter)

• YY = last two digits of a year

• YYYY = four-digit year

• p = any ASCII punctuation character; extra whitespace (tabs or spaces) is
ignored

These restrictions apply:

• In Year-Month-Day forms, the year must always be four digits.

• In Month-Day-Year forms, the year can be either two digits or four digits. If you
enter a date with only two digits for the year, InterBase uses its “sliding window”
algorithm to assign a century to the year. See the string_to_datetime() routine
description below for more information.
7-4 Embedded SQL Guide

Formatting Dates for Input
• If you use an all-numeric form in which the year comes last, and you use a
period as a separator, InterBase assumes the form is Day-Month-Year. For
example, ‘12.04.2002’ is interpreted to mean “April 12, 2002,” but ‘12-04-02’
means December 4, 2002.”

From the InterBase engine string_to_datetime() routine:

* String must be formed using ASCII characters only.
* Conversion routine can handle the following input formats
* “now” current date and time
* “today” Today’s date0:0:0.0 time
* “tomorrow”Tomorrow’s date0:0:0.0 time
* “Yesterday”Yesterday’s date0:0:0.0 time
* YYYY-MM-DD [HH:[Min:[SS.[Thou]]]]]
* MM:DD[:YY [HH:[Min:[SS.[Thou]]]]]
* DD:MM[:YY [HH:[Min:[SS.[Thou]]]]]
* Where:
* DD = 1..31(Day of month)
* YY = 00..99 2-digit years are converted to the nearest
year
* in a 50-year range. Eg: if this is 1996:
* 96 ==> 1996
* 97 ==> 1997
* ...
* 00 ==> 2000
* 01 ==> 2001
* ...
* 44 ==> 2044
* 45 ==> 2045
* 46 ==> 1946
* 47 ==> 1947
* ...
* 95 ==> 1995
* If the current year is 1997, then 46 is converted
* to 2046 (etc.)
* = 100.. 5200
* MM = 1 .. 12 (Month of year)
* = “JANUARY”...(etc.)
* HH = 0...23 (Hour of day)
* Min = 0...59 (Minute of hour)
* SS = 0...59 (Second of minute - LEAP second not supported)
* Thou = 0...9999 (Fraction of second)
* HH, Min, SS, Thou default to 0 if missing.
* YY defaults to current year if missing.
* Note: ANY punctuation can be used instead of : (eg: / -
etc)
* Using . (period) in either of the first two separation
* points will cause the date to be parsed in European DMY
* format.
* Arbitrary whitespace (space or TAB) can occur between
Chapter 7 Working with Dates and Times 7-5

Inserting Dates and Times
* components.

Inserting Dates and Times

To insert a date and time (timestamp) in a table, it must be converted from the
host-language format into InterBase format, and then stored. To perform the
conversion and insertion in a C program, follow these steps:

1 Create a host variable for a C time structure. Most C and C++ compilers provide
a typedef declaration, struct tm, for the C time structure in the time.h header file.
The following C code includes that header file, and declares a struct tm variable,
hire_time:

#include <time.h>;
. . .
struct tm hire_time;
. . .

To create host-language time structures in languages other than C and C++,
see the host-language reference manual.

2 Create a host variable of type ISC_TIMESTAMP, for use by InterBase. For
example, the host-variable declaration might look like this:

ISC_TIMESTAMP mydate;

The ISC_TIMESTAMP structure is automatically declared for programs when they
are preprocessed with gpre, but the programmer must declare actual host-
language variables of type ISC_TIMESTAMP.

3 Put date information into hire_time.

4 Use the InterBase isc_encode_timestamp() function to convert the information
in hire_time into InterBase internal format and store that formatted information
in the ISC_TIMESTAMP host variable (hire_date in the example). This function is
automatically declared for programs when they are preprocessed with gpre.
isc_encode_timestamp() requires two parameters, the address of the UNIX time
structure, and the address of the ISC_TIMESTAMP host-language variable.

For example, the following code converts hire_time to hire_date:

isc_encode_timestamp(&hire_time, &hire_date);

5 Insert the date into a table. For example,

EXEC SQL
INSERT INTO EMPLOYEE (EMP_NO, DEPARTMENT, DATE_OF_HIRE)

VALUES (:emp_no, :deptname, :hire_date);
7-6 Embedded SQL Guide

Updating Dates and Times
Updating Dates and Times

To update a DATE, TIME, or TIMESTAMP datatype in a table, you must convert it from
the host-language format into InterBase format, and then store it. To convert a host
variable into InterBase format, see “Formatting Dates for Input”. The actual
update is performed using an UPDATE statement. For example,

EXEC SQL
UPDATE EMPLOYEE
SET DATE_OF_HIRE = :hire_date
WHERE DATE_OF_HIRE < '1 JAN 1994'

Using CAST() to Convert Dates and Times

You can use the built-in CAST() function in SELECT statements to translate between
date and time datatypes and character-based datatypes, for example:

• DATE, TIME, or TIMESTAMP datatype into a CHAR datatype

The character datatype must be at least 24 characters in length You can, however,
cast a TIMESTAMP to a DATE and then cast the DATE to a CHAR of less than 24
characters. For example:

SELECT CAST (CAST (timestamp_col AS DATE) AS CHAR(10)) FROM
table1;

• CHAR datatype into a DATE, TIME, or TIMESTAMP datatype

• DATE or TIME datatype into a TIMESTAMP datatype

• TIMESTAMP datatype into a DATE or TIME datatype

You cannot cast a date or time datatype to or from BLOB, SMALLINT, INTEGER,
FLOAT, DOUBLE PRECISION, NUMERIC, or DECIMAL datatypes.

Typically, CAST() is used in the WHERE clause to compare different datatypes. The
syntax for CAST() is:

CAST (<value> AS <datatype>)

In the following WHERE clause, CAST() is translates a CHAR datatype,
INTERVIEW_DATE, to a DATE datatype to compare against a DATE datatype,
HIRE_DATE:

… WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST() translates a DATE datatype into a CHAR datatype:

… WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

CAST() also can be used to compare columns with different datatypes in the same
table, or across tables.
Chapter 7 Working with Dates and Times 7-7

Using CAST() to Convert Dates and Times
The following two sections show the possible conversions to and from datetime
(DATE, TIME, and TIMESTAMP) datatypes and other SQL datatypes.

For more information about CAST(), see “Working with Data.”

Casting from SQL Datatypes to Date and Time
Datatypes

The following table shows the SQL datatypes from which the DATE, TIME, and
TIMESTAMP datatypes can be cast.

Table 7.2 Casting from SQL datatypes to datetime datatypes

CAST datatype below
TO datatype at right TIMESTAMP DATE TIME

SMALLINT
INTEGER
FLOAT
DOUBLE PRECISION
NUMERIC
DECIMAL

Error Error Error

VARCHAR(n)
CHAR(n)
CSTRING(n)

Succeeds it the string is
in the following format:

YYYY-MM-DD
HH:MM:SS.thou

Succeeds it the string is
in the following format:

YYYY-MM-DD

Succeeds it the string is
in the following format:

HH:MM:SS.thou

BLOB Error Error Error

TIMESTAMP Always succeeds Succeeds: date portion
of TIMESTAMP

Succeeds: time portion
of TIMESTAMP

DATE Succeeds: time portion
of TIMESTAMP set to
0:0:0.0000

Always succeeds Error

TIME Succeeds: date portion
of TIMESTAMP set to the
base-0 date (17
November, 1858)

Error Always succeeds
7-8 Embedded SQL Guide

Using CAST() to Convert Dates and Times
Casting from Date and Time Datatypes to Other SQL
Datatypes

The following table shows the SQL datatypes into which the DATE, TIME, and
TIMESTAMP datatypes can be cast.

Casting DATE to a string results in YYYY-MM-DD where “MM” is a two-digit
month. If the result does not fit in the string variable, a string truncation exception
is raised.

Casting a string to a date permits strings of the form:

‘yyy-mm-dd’‘yyyy/mm/dd’‘yyyy mm dd
‘yyyy:mm:dd’‘yyyy.mm.dd’

In all of the forms above, you can substitute a month name or three-letter
abbreviation in English for the two-digit numeric month. However, the order must
always be four-digit year, then moth, then day.

Table 7.3 Casting from datetime datatypes to other SQL datatypes

CAST datatype at
right
TO datatype below TIMESTAMP DATE TIME

SMALLINT
INTEGER
FLOAT
DOUBLE PRECISION
NUMERIC
DECIMAL

Error Error Error

VARCHAR(n)
CHAR(n)
CSTRING(n)

Succeeds if n is 24
characters or more;
resulting string is in
format:

YYYY-MM-DD
HH:MM:SS.thou

Succeeds if n is 10
characters or more;
resulting string is in
format:

YYYY-MM-DD

Succeeds if n is 10
characters or more;
resulting string is in
format:

HH:MM:SS.thou

BLOB Error Error Error

TIMESTAMP Always succeeds Succeeds: time portion
set to 0:0:0.0000

Succeeds: date portion
set to 17 November,
1858

DATE Succeeds: date portion
of TIMESTAMP is the
result

Always succeeds Error

TIME Succeeds: time portion
of TIMESTAMP is the
result

Error Always succeeds
Chapter 7 Working with Dates and Times 7-9

Using Date Literals
The following forms are also acceptable:

‘mm-dd-yy’‘mm-dd-yyyy’‘mm/dd/yy’‘mm/dd/yyyy’
‘mm dd yy’‘mm dd yyyy’‘mm:dd:yy’‘mm:dd:yyyy’
‘dd.mm.yy’‘dd.mm.yyyy’

If you enter a date with only two digits for the year, InterBase uses its “sliding
window” algorithm to assign a century to the years.

If you write out the month in English or use a three-character English abbreviation,
you can enter either the month or the day first. In the following examples, “xxx”
stands for either a whole month name or a three-letter abbreviation. All of the
following forms are acceptable:

‘dd-xxx-yy’‘dd-xxx-yyyy’‘xxx-dd-yy’‘xxx-dd-yyyy’
‘dd xxx yy’‘dd xxx yyyy’‘xxx dd yy’‘xxx dd yyyy’
‘dd:xxx:yy’‘dd:xxx:yyyy’‘xxx:dd:yy’‘xxx:dd:yyyy’

For example, the following INSERT statements all insert the date “January 22,
1943”:

INSERT INTO t1 VALUES (‘1943-01-22’);
INSERT INTO t1 VALUES (‘01/22/1943’);
INSERT INTO t1 VALUES (‘22.01.1943’);
INSERT INTO t1 VALUES (‘jan 22 1943’);

The following statement enters the date “January 22, 2043”:

INSERT INTO t1 VALUES (‘01/22/43’);

Using Date Literals

InterBase supports the following date literals: 'NOW', ‘TODAY’, 'YESTERDAY', and
'TOMORROW'. Date literals are string values, entered between single quotation
marks, that can be interpreted as date values for EXTRACT, SELECT, INSERT, and
UPDATE operations. 'NOW' is a date literal that combines today’s date and time in
InterBase format. 'TODAY' is today’s date with time information set to zero.
Similarly, 'YESTERDAY' and 'TOMORROW' are the expected dates with the time
information set to zero.

In EXTRACT and SELECT, 'TODAY' and 'NOW' can be used in the search condition of
a WHERE clause to restrict the data retrieved:

EXEC SQL
SELECT * FROM CROSS_RATE WHERE UPDATE_DATE = 'NOW';

In INSERT and UPDATE, 'TODAY' and 'NOW' can be used to enter date and time
values instead of relying on isc calls to convert C dates to InterBase dates:

EXEC SQL
INSERT INTO CROSS_RATE VALUES(:from, :to, :rate, 'NOW');

EXEC SQL
7-10 Embedded SQL Guide

Adding and Subtracting Date and Time Datatypes
UPDATE CROSS_RATE
SET CONV_RATE = 1.75,
SET UPDATE_DATE = 'TODAY'
WHERE FROM_CURRENCY = 'POUND' AND TO_CURRENCT = 'DOLLAR'

AND UPDATE_DATE < 'TODAY';

Adding and Subtracting Date and Time Datatypes

The following table shows the result of adding and subtracting DATE, TIME,
TIMESTAMP, and numeric values. “Numeric value” refers to any value that can be
cast as an exact numeric value by the database engine (for example, INTEGER,
DECIMAL, or NUMERIC).

Table 7.4 Adding and subtracting date/time datatypes

Operand1 Operator Operand2 Result

DATE + DATE Error

DATE + TIME TIMESTAMP (concatenation)

DATE + TIMESTAMP Error

DATE + Numeric
value

DATE + number of days; fractional part
ignored

TIME + DATE TIMESTAMP (concatenation)

TIME + TIME Error

TIME + TIMESTAMP Error

TIME + Numeric
value

TIME + number of seconds; 24-hour
modulo arithmetic

TIMESTAMP + DATE Error

TIMESTAMP + TIME Error

TIMESTAMP + TIMESTAMP Error

TIMESTAMP + Numeric
value

TIMESTAMP; DATE + number of days;
TIME + fraction of day converted to
seconds

DATE - DATE DECIMAL(9,0) representing number of
days

DATE - TIME Error

DATE - TIMESTAMP Error
Chapter 7 Working with Dates and Times 7-11

Comparing Dates and Times
Comparing Dates and Times

Date and time values can be converted implicitly. For example, in the following
comparison:

Table1.SomeDateField <= ‘12/31/1999’

InterBase automatically converts the string literal ‘12/31/1999’ to a DATE type
for the comparison operation.

However, sometimes values do not need to be implicitly converted for an
expression to make sense. For example:

‘31.5.2000’ < ‘1.6.2000’

is false because the result of comparing these two strings alphabetically is false. A
string comparison of these values is valid, so InterBase does not implicitly convert
them to dates, even though they “look” like dates. On the other hand:

CAST(‘31.5.2000’ AS DATE) < CAST(‘1.6.2000’ AS DATE)

is true, because the result of comparing the dates corresponding to these two
strings is true. See “Implicit type conversions” in the Data Definition Guide for
more information.

DATE - Numeric
value

DATE= number of days; fractional part
ignored

TIME - DATE Error

TIME - TIME DECIMAL(9,4) representing number of
seconds

TIME - TIMESTAMP Error

TIME - Numeric
value

TIME - number of seconds: 24-hour
modulo arithmetic

TIMESTAMP - DATE Error

TIMESTAMP - TIME Error

TIMESTAMP - TIMESTAMP DECIMAL(18,9) representing days and
fraction of day

TIMESTAMP - Numeric
value

TIMESTAMP: DATE - number of days;
TIME - fraction of day converted to
seconds

Table 7.4 Adding and subtracting date/time datatypes (continued)

Operand1 Operator Operand2 Result
7-12 Embedded SQL Guide

Using Date and Time Datatypes with Aggregate Functions
Using Date and Time Datatypes with Aggregate
Functions

You can use the date and time datatypes with the MIN(), MAX(), COUNT() functions,
the DISTINCT argument to those functions, and the GROUP BY argument to the
SELECT() function. An attempt to use SUM() or AVG() with date or time datatypes
returns an error.
Chapter 7 Working with Dates and Times 7-13

Using Date and Time Datatypes with Aggregate Functions
7-14 Embedded SQL Guide

C h a p t e r

Chapter 8Working with Blob Data
This chapter describes the BLOB datatype and its sub-types, how to store Blobs,
how to access them with SQL, DSQL, and API calls, and how to filter Blobs. It also
includes information on writing Blob filters.

What is a Blob?

A Blob is a dynamically sizable datatype that has no specified size and encoding.
You can use a Blob to store large amounts of data of various types, including:

• Bitmapped images

• Vector drawings

• Sounds, video segments, and other multimedia information

• Text and data, including book-length documents

Data stored in the Blob datatype can be manipulated in most of the same ways as
data stored in any other datatype. InterBase stores Blob data inside the database,
in contrast to similar other systems that store pointers to non-database files. For
each Blob, there is a unique identification handle in the appropriate table to point to
the database location of the Blob. By maintaining the Blob data within the
database, InterBase improves data management and access.

The combination of true database management of Blob data and support for a
variety of datatypes makes InterBase Blob support ideal for transaction-intensive
multimedia applications. For example, InterBase is an excellent platform for
interactive kiosk applications that might provide hundreds or thousands of product
descriptions, photographs, and video clips, in addition to point-of-sale and order
processing capabilities.
Chapter 8 Working with Blob Data 8-1

How are Blob Data Stored?
How are Blob Data Stored?

Blob is the InterBase datatype that represents various objects, such as bitmapped
images, sound, video, and text. Before you store these items in the database, you
create or manage them as platform- or product-specific files or data structures,
such as:

• TIFF, PICT, BMP, WMF, GEM, TARGA or other bitmapped or vector-graphic files.

• MIDI or WAV sound files.

• Audio Video Interleaved format (.AVI) or QuickTime video files.

• ASCII, MIF, DOC, RTF, WPx or other text files.

• CAD files.

You must load these files from memory into the database programmatically, as you
do any other host-language data items or records you intend to store in InterBase.

Blob Sub-types

Although you manage Blob data in the same way as other datatypes, InterBase
provides more flexible datatyping rules for Blob data. Because there are many
native datatypes that you can define as Blob data, InterBase treats them
somewhat generically and allows you to define your own datatype, known as a
subtype. Also, InterBase provides seven standard sub-types with which you can
characterize Blob data:

You can specify user-defined sub-types as negative numbers between –1 and
 –32,678. Positive integers are reserved for InterBase sub-types.

Table 8.1 Blob sub-types defined by InterBase

Blob sub-
type Description

0 Unstructured, generally applied to binary data or data of an
indeterminate type

1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly
8-2 Embedded SQL Guide

How are Blob Data Stored?
For example, the following statement defines three Blob columns: Blob1 with sub-
type 0 (the default), Blob2 with sub-type 1 (TEXT), and Blob3 with user-defined
subt-ype –1:

EXEC SQL CREATE TABLE TABLE2
(

BLOB1 BLOB,
BLOB2 BLOB SUB_TYPE 1,
BLOB3 BLOB SUB_TYPE -1

);

To specify both a default segment length and a sub-type when creating a Blob
column, use the SEGMENT SIZE option after the SUB_TYPE option. For example:

EXEC SQL CREATE TABLE TABLE2
(

BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100;
);

The only rule InterBase enforces over these user-defined sub-types is that, when
converting a Blob from one sub-type to another, those sub-types must be
compatible. InterBase does not otherwise enforce sub-type integrity.

Blob Database Storage

Because Blob data are typically large, variably-sized objects of binary or text data,
InterBase stores them most efficiently using a method of segmentation. It would be
an inefficient use of disk space to store each Blob as one contiguous mass.
Instead, InterBase stores each Blob in segments that are indexed by a handle that
InterBase generates when you create the Blob. This handle is known as the Blob
ID and is a quadword (64-bit) containing a unique combination of table identifier
and Blob identifier.

The Blob ID for each Blob is stored in its appropriate field in the table record. The
Blob ID points to the first segment of the Blob, or to a page of pointers, each of
which points to a segment of one or more Blob fields. You can retrieve the Blob ID
by executing a SELECT statement that specifies the Blob as the target, as in the
following example:

EXEC SQL
DECLARE BLOBDESC CURSOR FOR

SELECT GUIDEBOOK
FROM TOURISM
WHERE STATE = 'CA';

You define Blob columns the same way you define non-Blob columns.

The following SQL code creates a table with a Blob column called PROJ_DESC. It
sets the sub-type parameter to 1, which denotes a TEXT Blob, and sets the
segment size to 80 bytes:

CREATE TABLE PROJECT
Chapter 8 Working with Blob Data 8-3

How are Blob Data Stored?
(
PROJ_ID PROJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,
PROJ_DESC BLOB SUB_TYPE 1 SEGMENT SIZE 80,
TEAM_LEADER EMPNO,
PRODUCT PRODTYPE,
...

);

The following diagram shows the relationship between a Blob column containing a
Blob ID and the Blob data referenced by the Blob ID:

Figure 8.1 Relationship of a Blob ID to Blob segments in a database

Rather than store Blob data directly in the table, InterBase stores a Blob ID in each
row of the table. The Blob ID, a unique number, points to the first segment of the
Blob data that is stored elsewhere in the database, in a series of segments. When
an application creates a Blob, it must write data to that Blob one segment at a time.
Similarly, when an application reads of Blob, it reads a segment at a time. Because
most Blob data are large objects, most Blob management is performed with loops
in the application code.

Blob Segment Length

When you define a Blob in a table, you specify the expected size of Blob segments
that are to be written to the column in the Blob definition statement. The segment
length you define for a Blob column specifies the maximum number of bytes that
an application is expected to write to or read from any Blob in the column. The
default segment length is 80. For example, the following column declaration
creates a Blob with a segment length of 120:

EXEC SQL CREATE TABLE TABLE2
(

Blob1 Blob SEGMENT SIZE 120;
);

InterBase uses the segment length setting to determine the size of an internal
buffer to which it writes Blob segment data. Normally, you should not attempt to
write segments larger than the segment length you defined in the table; doing so
may result in a buffer overflow and possible memory corruption.

Blob ID ……

Blob
column

Table row

Blob data segment segment segment …
8-4 Embedded SQL Guide

Accessing Blob Data with SQL
Specifying a segment size of n guarantees that no more than n number of bytes
are read or written in a single Blob operation. With some types of operations, for
instance, with SELECT, INSERT, and UPDATE operations, you can read or write Blob
segments of varying length.

In the following example of an INSERT CURSOR statement, specify the segment
length in a host language variable, segment_length, as follows:

EXEC SQL
INSERT CURSOR BCINS VALUES (:write_segment_buffer

INDICATOR :segment_length);

For more information about the syntax of the INSERT CURSOR statement, see
Language Reference Guide.

Overriding Segment Length

You can override the segment length setting by including the MAXIMUM_SEGMENT
option in a DECLARE CURSOR statement. For example, the following Blob INSERT
cursor declaration overrides the segment length that was defined for the field,
Blob2, increasing it to 1024:

EXEC SQL
DECLARE BCINS CURSOR FOR INSERT Blob Blob2 INTO TABLE 2
MAXIMUM_SEGMENT 1024;

Note By overriding the segment length setting, you affect only the segment size for the
cursor, not for the column, or for other cursors. Other cursors using the same Blob
column maintain the original segment size that was defined in the column definition,
or can specify their own overrides.

The segment length setting does not affect InterBase system performance.
Choose the segment length most convenient for the specific application. The
largest possible segment length is 65,535 bytes (64K).

Accessing Blob Data with SQL

InterBase supports SELECT, INSERT, UPDATE, and DELETE operations on Blob data.
The following sections contain brief discussions of example programs. These
programs illustrate how to perform standard SQL operations on Blob data.

Selecting Blob Data

The following example program selects Blob data from the GUIDEBOOK column of
the TOURISM table:

1 Declare host-language variables to store the Blob ID, the Blob segment data,
and the length of segment data:

EXEC SQL
Chapter 8 Working with Blob Data 8-5

Accessing Blob Data with SQL
BEGIN DECLARE SECTION;
BASED ON TOURISM.GUIDEBOOK blob_id;
BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;
BASED ON TOURISM.STATE state;
unsigned short blob_seg_len;

EXEC SQL
END DECLARE SECTION;

The BASED ON … SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a Blob segment during a FETCH
operation. For more information about the BASED ON statement, see the
Language Reference Guide.

2 Declare a table cursor to select the desired Blob column, in this case the
GUIDEBOOK column:

EXEC SQL
DECLARE TC CURSOR FOR

SELECT STATE, GUIDEBOOK
FROM TOURISM
WHERE STATE = 'CA';

3 Declare a Blob read cursor. A Blob read cursor is a special cursor used for
reading Blob segments:

EXEC SQL
DECLARE BC CURSOR FOR
READ Blob GUIDEBOOK
FROM TOURISM;

The segment length of the GUIDEBOOK Blob column is defined as 60, so Blob
cursor, BC, reads a maximum of 60 bytes at a time.

To override the segment length specified in the database schema for
GUIDEBOOK, use the MAXIMUM_SEGMENT option. For example, the following
code restricts each Blob read operation to a maximum of 40 bytes, and
SQLCODE is set to 101 to indicate when only a portion of a segment has been
read:

EXEC SQL
DECLARE BC CURSOR FOR
READ Blob GUIDEBOOK
FROM TOURISM
MAXIMUM_SEGMENT 40;

No matter what the segment length setting is, only one segment is read at a
time.

4 Open the table cursor and fetch a row of data containing a Blob:

EXEC SQL
OPEN TC;

EXEC SQL
8-6 Embedded SQL Guide

Accessing Blob Data with SQL
FETCH TC INTO :state, :blob_id;

The FETCH statement fetches the STATE and GUIDEBOOK columns into host
variables state and blob_id, respectively.

5 Open the Blob read cursor using the Blob ID stored in the blob_id variable, and
fetch the first segment of Blob data:

EXEC SQL
OPEN BC USING :blob_id;

EXEC SQL
FETCH BC INTO :blob_segment_buf:blob_seg_len;

When the FETCH operation completes, blob_segment_buf contains the first
segment of the Blob, and blob_seg_len contains the segment’s length, which is
the number of bytes copied into blob_segment_buf.

6 Fetch the remaining segments in a loop. SQLCODE should be checked each time
a fetch is performed. An error code of 100 indicates that all of the Blob data has
been fetched. An error code of 101 indicates that the segment contains
additional data:

while (SQLCODE != 100 || SQLCODE == 101)
{

printf("%*.*s", blob_seg_len, blob_seg_len,
blob_segment_buf);

EXEC SQL
FETCH BC INTO :blob_segment_buf:blob_seg_len;

}

InterBase produces an error code of 101 when the length of the segment buffer
is less than the length of a particular segment.

For example, if the length of the segment buffer is 40 and the length of a
particular segment is 60, the first FETCH produces an error code of 101
indicating that data remains in the segment. The second FETCH reads the
remaining 20 bytes of data, and produces a SQLCODE of 0, indicating that the
next segment is ready to be read, or 100 if this was the last segment in the Blob.

7 Close the Blob read cursor:

EXEC SQL
CLOSE BC;

8 Close the table cursor:

EXEC SQL
CLOSE TC;

Inserting Blob Data

The following program inserts Blob data into the GUIDEBOOK column of the
TOURISM table:
Chapter 8 Working with Blob Data 8-7

Accessing Blob Data with SQL
1 Declare host-language variables to store the Blob ID, Blob segment data, and
the length of segment data:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TOURISM.GUIDEBOOK blob_id;
BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;
BASED ON TOURISM.STATE state;
unsigned short blob_seg_len;

EXEC SQL
END DECLARE SECTION;

• The BASED ON … SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a Blob segment during a
FETCH operation. For more information about the BASED ON directive, see the
Language Reference Guide.

2 Declare a Blob insert cursor:

EXEC SQL
DECLARE BC CURSOR FOR INSERT Blob GUIDEBOOK INTO

TOURISM;

3 Open the Blob insert cursor and specify the host variable in which to store the
Blob ID:

EXEC SQL
OPEN BC INTO :blob_id;

4 Store the segment data in the segment buffer, blob_segment_buf, calculate the
length of the segment data, and use an INSERT CURSOR statement to write the
segment:

sprintf(blob_segment_buf, 'Exploring Napa County back
roads');

blob_segment_len = strlen(blob_segment_buf);

EXEC SQL
INSERT CURSOR BC VALUES

(:blob_segment_buf:blob_segment_len);

Repeat these steps in a loop until you have written all Blob segments.

5 Close the Blob insert cursor:

EXEC SQL
CLOSE BC;

6 Use an INSERT statement to insert a new row containing the Blob into the
TOURISM table:

EXEC SQL
INSERT INTO TOURISM (STATE,GUIDEBOOK) VALUES

('CA',:blob_id);
8-8 Embedded SQL Guide

Accessing Blob Data with SQL
7 Commit the changes to the database:

EXEC SQL
COMMIT;

Updating Blob Data

You cannot update a Blob directly. You must create a new Blob, read the old Blob
data into a buffer where you can edit or modify it, then write the modified data to
the new Blob.

Create a new Blob by following these steps:

1 Declare a Blob insert cursor:

EXEC SQL
DECLARE BC CURSOR FOR INSERT BLOB GUIDEBOOK INTO

TOURISM;

2 Open the Blob insert cursor and specify the host variable in which to store the
Blob ID:

EXEC SQL
OPEN BC INTO :blob_id;

3 Store the old Blob segment data in the segment buffer blob_segment_buf,
calculate the length of the segment data, perform any modifications to the data,
and use an INSERT CURSOR statement to write the segment:

/* Programmatically read the first/next segment of the old
Blob

* segment data into blob_segment_buf; */
EXEC SQL

INSERT CURSOR BC VALUES
(:blob_segment_buf:blob_segment_len);

Repeat these steps in a loop until you have written all Blob segments.

4 Close the Blob insert cursor:

EXEC SQL
CLOSE BC;

5 When you have completed creating the new Blob, issue an UPDATE statement to
replace the old Blob in the table with the new one, as in the following example:

EXEC SQL UPDATE TOURISM
SET

GUIDEBOOK = :blob_id;
WHERE CURRENT OF TC;

Note The TC table cursor points to a target row established by declaring the cursor and
then fetching the row to update.
Chapter 8 Working with Blob Data 8-9

Accessing Blob Data with SQL
To modify a text Blob using this technique, you might read an existing Blob field
into a host-language buffer, modify the data, then write the modified buffer over the
existing field data with an UPDATE statement.

Deleting Blob Data

There are two methods for deleting a Blob. The first is to delete the row containing
the Blob. The second is to update the row and set the Blob column to NULL or to
the Blob ID of a different Blob (for example, the new Blob created to update the
data of an existing Blob).

The following statement deletes current Blob data in the GUIDEBOOK column of the
TOURISM table by setting it to NULL:

EXEC SQL UPDATE TOURISM
SET

GUIDEBOOK = NULL;
WHERE CURRENT OF TC;

Blob data is not immediately deleted when DELETE is specified. The actual delete
operation occurs when InterBase performs version cleanup. The following code
fragment illustrates how to recover space after deleting a Blob:

EXEC SQL
UPDATE TABLE SET Blob_COLUMN = NULL WHERE ROW = :myrow;

EXEC SQL
COMMIT;

/* wait for all active transactions to finish */
/* force a sweep of the database */

When InterBase performs garbage collection on old versions of a record, it verifies
whether or not recent versions of the record reference the Blob ID. If the record
does not reference the Blob ID, InterBase cleans up the Blob.

The Blob garbage collection process is as follows: if a record contains a Blob ID,
InterBase determines which type of Blob storage has been used. If the Blob is on a
page, the line index indicator is released. If the Blob is on a page by itself, that
page is marked as free in the page indicator. If the Blob is on a series of pages,
InterBase reads the Blob index and frees all the pages. None of this requires
retrieving the Blob itself.
8-10 Embedded SQL Guide

Accessing Blob Data with API Calls
Accessing Blob Data with API Calls

In addition to accessing Blob data using SQL as described in this chapter, the
InterBase API provides routines for accessing Blob data. The following API calls
are provided for accessing and managing Blob data:

isc_blob_default_desc2(), isc_blob_gen_bpb2(), isc_blob_lookup_desc2(), and
isc_blob_set_desc2(), support long metadata names of length METADATALENGTH.
The older calls, such as isc_blob_default_desc() support only metadata names of
32 bytes or less.

For details on using the API calls to access Blob data, see the API Guide.

Filtering Blob Data

An understanding of Blob sub-types is particularly important when working with
Blob filters. A Blob filter is a routine that translates Blob data from one sub-type to
another. InterBase includes a set of special internal Blob filters that convert from
sub-type 0 to sub-type 1 (TEXT), and from sub-type 1 (TEXT) to sub-type 0. In

Table 8.2 API Blob calls

Function Description

isc_blob_default_desc
2()

Loads a Blob descriptor data structure with default
information about a Blob.

isc_blob_gen_bpb2() Generates a Blob parameter buffer (BPB) from source and
target Blob descriptors to allow dynamic access to Blob
sub-type and character set information.

isc_blob_info() Returns information about an open Blob.

isc_blob_lookup_desc
2()

Looks up and stores into a Blob descriptor the sub-type,
character set, and segment size of a Blob.

isc_blob_set_desc2() Sets the fields of a Blob descriptor to values specified in
parameters to isc_blob_set_desc().

isc_cancel_blob() Discards a Blob and frees internal storage.

isc_close_blob() Closes an open Blob.

isc_create_blob2() Creates a context for storing a Blob, opens the Blob for
write access, and optionally specifies a filter to be used to
translate the Blob data from one sub=type to another.

isc_get_segment() Reads a segment from an open Blob.

isc_open_blob2() Opens an existing Blob for retrieval and optional filtering.

isc_put_segment() Writes a Blob segment.
Chapter 8 Working with Blob Data 8-11

Filtering Blob Data
addition to using these standard filters, you can write your own external filters to
provide special data translation. For example, you might develop a filter to
translate bitmapped images from one format to another.

Using the Standard InterBase Text Filters

The standard InterBase filters convert Blob data of sub-type 0, or any InterBase
system type, to sub-type 1 (TEXT).

When a text filter is being used to read data from a Blob column, it modifies the
standard InterBase behavior for supplying segments. Regardless of the actual
nature of the segments in the Blob column, the text filter enforces the rule that
segments must end with a newline character (\n).

The text filter returns all the characters up to and including the first newline as the
first segment, the next characters up to and including the second newline as the
second segment, and so on.

Tip To convert any non-text sub-type to TEXT, declare its FROM sub-type as sub-type 0
and its TO sub-type as sub-type 1.

Using an External Blob Filter

Unlike the standard InterBase filters that convert between sub-type 0 and sub-type
1, an external Blob filter is generally part of a library of routines you create and link
to your application.

To use an external filter, you must first write it, compile and link it, then declare it to
the database that contains the Blob data you want processed.

Declaring an External Filter to the Database
To declare an external filter to a database, use the DECLARE FILTER statement. For
example, the following statement declares the filter, SAMPLE:

EXEC SQL
DECLARE FILTER SAMPLE

INPUT_TYPE -1 OUTPUT_TYPE -2
ENTRY_POINT 'FilterFunction'
MODULE_NAME 'filter.dll';

In the example, the filter’s input sub-type is defined as -1 and its output sub-type
as -2. In this example, INPUT_TYPE specifies lowercase text and OUTPUT_TYPE
specifies uppercase text. The purpose of filter, SAMPLE, therefore, is to translate
Blob data from lowercase text to uppercase text.

The ENTRY_POINT and MODULE_NAME parameters specify the external routine that
InterBase calls when the filter is invoked. The MODULE_NAME parameter specifies
filter.dll, the dynamic link library containing the filter’s executable code. The
8-12 Embedded SQL Guide

Filtering Blob Data
ENTRY_POINT parameter specifies the entry point into the DLL. The example
shows only a simple file name. It is good practice to specify a fully-qualified path
name, since users of your application need to load the file.

Using a Filter to Read and Write Blob Data
The following illustration shows the default behavior of the SAMPLE filter that
translates from lowercase text to uppercase text.

Figure 8.2 Filtering from lowercase to uppercase

Similarly, when reading data, the SAMPLE filter can easily read Blob data of sub-
type -2, and translate it to data of sub-type -1.

Figure 8.3 Filtering from uppercase to lowercase

Invoking a Filter in an Application
To invoke a filter in an application, use the FILTER option when declaring a Blob
cursor. Then, when the application performs operations using the cursor, InterBase
automatically invokes the filter.

For example, the following INSERT cursor definition specifies that the filter, SAMPLE,
is to be used in any operations involving the cursor, BCINS1:

EXEC SQL
DECLARE BCINS1 CURSOR FOR

INSERT Blob Blob1 INTO TABLE1
FILTER FROM -1 TO -2;

When InterBase processes this declaration, it searches a list of filters defined in
the current database for a filter with matching FROM and TO sub-types. If such a
filter exists, InterBase invokes it during Blob operations that use the cursor,
BCINS1. If InterBase cannot locate a filter with matching FROM and TO sub-types, it
returns an error to the application.

Application

abcdef

Blob

ABCDEF

Filter

SAMPLE

Blob

ABCDEF

Application

abcdef

Filter

SAMPLE
Chapter 8 Working with Blob Data 8-13

Writing an External Blob Filter
Writing an External Blob Filter

If you choose to write your own filters, you must have a detailed understanding of
the datatypes you plan to translate. As mentioned elsewhere in this chapter,
InterBase does not do strict datatype checking on Blob data, but does enforce the
rule that Blob source and target sub-types must be compatible. Maintaining and
enforcing this compatibility is your responsibility.

Filter Types

Filters can be divided into two types: filters that convert data one segment at a
time, and filters that convert data many segments at a time.

The first type of filter reads a segment of data, converts it, and supplies it to the
application a segment at a time.

The second type of filter might read all the data and do all the conversion when the
Blob read cursor is first opened, and then simulate supplying data a segment at a
time to the application.

If timing is an issue for your application, you should carefully consider these two
types of filters and which might better serve your purpose.

Read-only and Write-only Filters

Some filters support only reading from or only writing to a Blob, but not both
operations. If you attempt to use a Blob filter for an operation that it does not
support, InterBase returns an error to the application.

Defining the Filter Function

When writing your filter, you must include an entry point, known as a filter function,
in the declaration section of the program. InterBase calls the filter function when
your application performs a Blob access operation. All communication between
InterBase and the filter is through the filter function. The filter function itself may
call other functions that comprise the filter executable.
8-14 Embedded SQL Guide

Writing an External Blob Filter
Figure 8.4 Filter interaction with an application and a database

Declare the name of the filter function and the name of the filter executable with
the ENTRY_POINT and MODULE_NAME parameters of the DECLARE FILTER
statement.

A filter function must have the following declaration calling sequence:

filter_function_name(short action, isc_blob_ctl control);

The parameter, action, is one of eight possible action macro definitions and the
parameter, control, is an instance of the isc_blob_ctl Blob control structure, defined
in the InterBase header file ibase.h. These parameters are discussed later in this
chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#include <ibase.h>

#define SUCCESS 0
#define FAILURE 1

ISC_STATUS jpeg_filter(short action, isc_blob_ctl control)
{

ISC_STATUS status = SUCCESS;

switch (action)
{
case isc_blob_filter_open:

. . .
break;

case isc_blob_filter_get_segment:
. . .
break;

case isc_blob_filter_create:
. . .
break;

case isc_blob_filter_put_segment:
. . .
break;

InterBase

APPLICATION

FILTER
Chapter 8 Working with Blob Data 8-15

Writing an External Blob Filter
case isc_blob_filter_close:
. . .
break;

case isc_blob_filter_alloc:
. . .
break;

case isc_blob_filter_free:
. . .
break;

case isc_blob_filter_seek:
. . .
break;

default:
status = isc_uns_ext /* unsupported action value */
. . .
break;

}
return status;
}

InterBase passes one of eight possible actions to the filter function, jpeg_filter(), by
way of the action parameter, and also passes an instance of the Blob control
structure, isc_blob_ctl, by way of the parameter control.

The ellipses (…) in the previous listing represent code that performs some
operations based on each action, or event, that is listed in the case statement.
Each action is a particular event invoked by a database operation the application
might perform. For more information, see “Programming Filter Function Actions”.

The isc_blob_ctl Blob control structure provides the fundamental data exchange
between InterBase and the filter. For more information on the Blob control
structure, see “Defining the Blob Control Structure”.

Defining the Blob Control Structure
The Blob control structure, isc_blob_ctl, provides the fundamental method of data
exchange between InterBase and a filter. The declaration for the isc_blob_ctl
control structure is in the InterBase include file, ibase.h.

The isc_blob_ctl structure is used in two ways:

1 When the application performs a Blob access operation, InterBase calls the
filter function and passes it an instance of isc_blob_ctl.

2 Internal filter functions can pass an instance of isc_blob_ctl to internal InterBase
access routines.

In either case, the purpose of certain isc_blob_ctl fields depends on the action
being performed.
8-16 Embedded SQL Guide

Writing an External Blob Filter
For example, when an application attempts a Blob INSERT, InterBase passes an
isc_blob_filter_put_segment action to the filter function. The filter function passes
an instance of the control structure to InterBase. The ctl_buffer of the structure
contains the segment data to be written, as specified by the application in its Blob
INSERT statement. Because the buffer contains information to pass into the filter
function, it is called an in field. The filter function should include instructions in the
case statement under the isc_blob_filter_put_segment case for performing the
write to the database.

In a different case, for instance when an application attempts a FETCH operation,
the case of an isc_blob_filter_get_segment action should include instructions for
filling ctl_buffer with segment data from the database to return to the application. In
this case, because the buffer is used for filter function output, it is called an out
field.

The following table describes each of the fields in the isc_blob_ctl Blob control
structure, and whether they are used for filter function input (in), or output (out).

Table 8.3 isc_blob_ctl structure field descriptions

Field name Description

(*ctl_source)() Pointer to the internal InterBase Blob access routine. (in)

*ctl_source_handle Pointer to an instance of isc_blob_ctl to be passed to the internal
InterBase Blob access routine. (in)

ctl_to_sub_type Target sub-type. Information field. Provided to support multi-purpose
filters that can perform more than one kind of translation. This field
and the next one enable such a filter to decide which translation to
perform. (in)

ctl_from_sub_type Source sub-type. Information field. Provided to support multi-purpose
filters that can perform more than one kind of translation. This field
and the previous one enable such a filter to decide which translation
to perform. (in)

ctl_buffer_length For isc_blob_filter_put_segment, field is an in field that contains the
length of the segment data contained in ctl_buffer.

For isc_blob_filter_get_segment, field is an in field set to the size of
the buffer pointed to by ctl_buffer, which is used to store the retrieved
Blob data.

ctl_segment_length Length of the current segment. This field is not used for
isc_blob_filter_put_segment.

For isc_blob_filter_get_segment, the field is an OUT field set to the
size of the retrieved segment (or partial segment, in the case when
the buffer length ctl_buffer_length is less than the actual segment
length).

ctl_bpb_length Length of the Blob parameter buffer. Reserved for future
enhancement.
Chapter 8 Working with Blob Data 8-17

Writing an External Blob Filter
Setting control structure information field values
The isc_blob_ctl structure contains three fields that store information about the
Blob currently being accessed: ctl_max_segment, ctl_number_segments, and
ctl_total_length.

You should attempt to maintain correct values for these fields in the filter function,
whenever possible. Depending on the purpose of the filter, maintaining correct
values for the fields is not always possible. For example, a filter that compresses
data on a segment-by-segment basis cannot determine the size of
ctl_max_segment until it processes all segments.

These fields are informational only. InterBase does not use the values of these
fields in internal processing.

Programming Filter Function Actions
When an application performs a Blob access operation, InterBase passes a
corresponding action message to the filter function by way of the action parameter.
There are eight possible actions, each of which results from a particular access
operation. The following list of action macro definitions are declared in the ibase.h
file:

#define isc_blob_filter_open 0
#define isc_blob_filter_get_segment 1

*ctl_bpb Pointer to a Blob parameter buffer. Reserved for future
enhancement.

*ctl_buffer Pointer to a segment buffer. For isc_blob_filter_put_segment, field is
an in field that contains the segment data.

For isc_blob_filter_get_segment, the field is an OUT field the filter
function fills with segment data for return to the application.

ctl_max_segment Length of longest segment in the Blob. Initial value is 0. The filter
function sets this field. This field is informational only.

ctl_number_segmen
ts

Total number of segments in the Blob. Initial value is 0. The filter
function sets this field. This field is informational only.

ctl_total_length Total length of the Blob. Initial value is 0. The filter function sets this
field. This field is informational only.

*ctl_status Pointer to the InterBase status vector. (OUT)

ctl_data[8] 8-element array of application-specific data. Use this field to store
resource pointers, such as memory pointers and file handles created
by the isc_blob_filter_open handler, for example. Then, the next time
the filter function is called, the resource pointers will be available for
use. (IN/OUT)

Table 8.3 isc_blob_ctl structure field descriptions (continued)

Field name Description
8-18 Embedded SQL Guide

Writing an External Blob Filter
#define isc_blob_filter_close 2
#define isc_blob_filter_create 3
#define isc_blob_filter_put_segment 4
#define isc_blob_filter_alloc 5
#define isc_blob_filter_free 6
#define isc_blob_filter_seek 7

The following table describes the Blob access operation that corresponds to each
action:

Table 8.4 Blob access operations

Action Invoked when … Use to …

isc_blob_filter_open Application opens a Blob
READ cursor

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The
value of the status variable becomes the filter
function’s return value.

isc_blob_filter_get_segme
nt

Application executes a
Blob FETCH statement

Set the ctl_buffer and ctl_segment_length
fields of the Blob control structure to contain a
segment’s worth of translated data on the
return of the filter function.

Perform the data translation if the filter
processes the Blob segment-by-segment.

Set the status variable. The value of the
status variable becomes the filter function’s
return value.

isc_blob_filter_close Application closes a Blob
cursor

Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.

isc_blob_filter_create Application opens a Blob
INSERT cursor

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The
value of the status variable becomes the filter
function’s return value.
Chapter 8 Working with Blob Data 8-19

Writing an External Blob Filter
Tip Store resource pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, in the ctl_data field of the isc_blob_ctl Blob control
structure. Then, the next time the filter function is called, the resource pointers are
still available.

Testing the Function Return Value
The filter function must return an integer indicating the status of the operation it
performed. You can have the function return any InterBase status value returned
by an internal InterBase routine.

isc_blob_filter_put_segme
nt

Application executes a
Blob INSERT statement

Perform the data translation on the segment
data passed in through the Blob control
structure.

Write the segment data to the database. If the
translation process changes the segment
length, the new value must be reflected in the
values passed to the writing function.

Set the status variable. The value of the
status variable becomes the filter function’s
return value.

isc_blob_filter_alloc InterBase initializes filter
processing; not a result of
a particular application
action

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The
value of the status variable becomes the filter
function’s return value.

isc_blob_filter_free InterBase ends filter
processing; not a result of
a particular application
action

Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.

isc_blob_filter_seek Reserved for internal filter
use; not used by external
filters

Table 8.4 Blob access operations (continued)

Action Invoked when … Use to …
8-20 Embedded SQL Guide

Writing an External Blob Filter
In some filter applications, a filter function has to supply status values directly. The
following table lists status values that apply particularly to Blob processing:

For more information about InterBase status values, see Language Reference
Guide.

Table 8.5 Blob filter status values

Macro
constant Value Meaning

SUCCESS 0 Indicates the filter action has been handled successfully.
On a Blob read (isc_blob_filter_get_segment) operation,
indicates that the entire segment has been read.

FAILURE 1 Indicates an unsuccessful operation. In most cases, a
status more specific to the error is returned.

isc_uns_ext See ibase.h Indicates that the attempted action is unsupported by the
filter. For example, a read-only filter would return
isc_uns_ext for an isc_blob_filter_put_segment action.

isc_segment See ibase.h During a Blob read operation, indicates that the supplied
buffer is not large enough to contain the remaining bytes
in the current segment. In this case, only ctl_buffer_length
bytes are copied, and the remainder of the segment must
be obtained through additional
isc_blob_filter_get_segment calls.

isc_segstr_eof See ibase.h During a Blob read operation, indicates that the end of the
Blob has been reached; there are no additional segments
remaining to be read.
Chapter 8 Working with Blob Data 8-21

Writing an External Blob Filter
8-22 Embedded SQL Guide

C h a p t e r

Chapter 9Using Arrays
InterBase supports arrays of most datatypes. Using an array enables multiple data
items to be stored in a single column. InterBase can treat an array as a single unit,
or as a series of separate units, called slices. Using an array is appropriate when:

• The data items naturally form a set of the same datatype

• The entire set of data items in a single database column must be represented
and controlled as a unit, as opposed to storing each item in a separate column

• Each item must also be identified and accessed individually

The data items in an array are called array elements. An array can contain
elements of any InterBase datatype except BLOB. It cannot be an array of arrays,
although InterBase does support multidimensional arrays. All of the elements of an
array must be of the same datatype.

Creating Arrays

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining
an array column is just like defining any other column, except that you must also
specify the array dimensions.

Array indexes range from –231 to +231–1.

The following statement defines a regular character column and a single-
dimension, character array column containing four elements:

EXEC SQL
CREATE TABLE TABLE1
(

NAME CHAR(10),
CHAR_ARR CHAR(10)[4]
Chapter 9 Using Arrays 9-1

Creating Arrays
);

Array dimensions are always enclosed in square brackets following a column’s
datatype specification.

For a complete discussion of CREATE TABLE and array syntax, see Language
Reference Guide.

Multi-dimensional Arrays

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three integer array columns with two,
three, and six dimensions, respectively:

EXEC SQL
CREATE TABLE TABLE1

(
INT_ARR2 INTEGER[4,5]
INT_ARR3 INTEGER[4,5,6]
INT_ARR6 INTEGER[4,5,6,7,8,9]

);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for a
total of 20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARR6
allocates 60,480 elements.

Important InterBase stores multi-dimensional arrays in row-major order. Some host
languages, such as FORTRAN, expect arrays to be in column-major order. In these
cases, care must be taken to translate element ordering correctly between
InterBase and the host language.

Specifying Subscript Ranges

In InterBase, array dimensions have a specific range of upper and lower
boundaries, called subscripts. In many cases, the subscript range is implicit: the
first element of the array is element 1, the second element 2, and the last is
element n. For example, the following statement creates a table with a column that
is an array of four integers:

EXEC SQL
CREATE TABLE TABLE1

(
INT_ARR INTEGER[4]

);

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be
explicitly defined when an array column is created. For example, C programmers,
familiar with arrays that start with a lower subscript boundary of zero, may want to
create array columns with a lower boundary of zero as well.
9-2 Embedded SQL Guide

Accessing Arrays
To specify array subscripts for an array dimension, both the lower and upper
boundaries of the dimension must be specified using the following syntax:

lower:upper

For example, the following statement creates a table with a single-dimension array
column of four elements where the lower boundary is 0 and the upper boundary is
3:

EXEC SQL
CREATE TABLE TABLE1

(
INT_ARR INTEGER[0:3]

);

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate
each dimension’s set of subscripts from the next with commas. For example, the
following statement creates a table with a two-dimensional array column where
each dimension has four elements with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLE1

(
INT_ARR INTEGER[0:3, 0:3]

);

Accessing Arrays

InterBase can perform operations on an entire array, effectively treating it as a
single element, or it can operate on an array slice, a subset of array elements. An
array slice can consist of a single element, or a set of many contiguous elements.

InterBase supports the following data manipulation operations on arrays:

• Selecting data from an array

• Inserting data into an array

• Updating data in an array slice

• Selecting data from an array slice

• Evaluating an array element in a search condition

A user-defined function (UDF) can only reference a single array element.

The following array operations are not supported:

• Referencing array dimensions dynamically in DSQL

• Inserting data into an array slice
Chapter 9 Using Arrays 9-3

Accessing Arrays
• Setting individual array elements to NULL

• Using the aggregate functions, MIN(), MAX(), SUM(), AVG(), and COUNT() with
arrays

• Referencing arrays in the GROUP BY clause of a SELECT

• Creating views that select from array slices

Selecting Data from an Array

To select data from an array, perform the following steps:

1 Declare a host-language array variable of the correct size to hold the array data.
For example, the following statements create three such variables:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;
BASED ON TABLE1.INT_ARR int_arr;
BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL
END DECLARE SECTION;

2 Declare a cursor that specifies the array columns to select. For example,

EXEC SQL
DECLARE TC1 CURSOR FOR

SELECT NAME, CHAR_ARR[], INT_ARR[]
FROM TABLE1;

Be sure to include brackets ([]) after the array column name to select the array
data. If the brackets are left out, InterBase reads the array ID for the column,
instead of the array data.

The ability to read the array ID, which is actually a Blob ID, is included only to
support applications that access array data using InterBase API calls.

3 Open the cursor, and fetch data:

EXEC SQL
OPEN TC1;
EXEC SQL
FETCH TC1 INTO :name, :char_arr, :int_arr;

Note It is not necessary to use a cursor to select array data. For example, a singleton
SELECT might be appropriate, too.

When selecting array data, keep in mind that InterBase stores elements in row-
major order. For example, in a 2-dimensional array, with 2 rows and 3 columns, all
3 elements in row 1 are returned, then all three elements in row two.
9-4 Embedded SQL Guide

Accessing Arrays
Inserting Data into an Array

INSERT can be used to insert data into an array column. The data to insert must
exactly fill the entire array, or an error can occur.

To insert data into an array, follow these steps:

1 Declare a host-language variable to hold the array data. Use the BASED ON
clause as a handy way of declaring array variables capable of holding data to
insert into the entire array. For example, the following statements create three
such variables:

EXEC SQL
BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;
BASED ON TABLE1.INT_ARR int_arr;
BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL
END DECLARE SECTION;

2 Load the host-language variables with data.

3 Use INSERT to write the arrays. For example,

EXEC SQL
INSERT INTO TABLE1 (NAME, CHAR_ARR, INT_ARR, FLOAT_ARR)
VALUES ('Sample', :char_arr, :int_arr, :float_arr);

4 Commit the changes:

EXEC SQL
COMMIT;

Important When inserting data into an array column, provide data to fill all array elements, or
the results will be unpredictable.

Selecting from an Array Slice

The SELECT statement supports syntax for retrieving contiguous ranges of
elements from arrays. These ranges are referred to as array slices. Array slices to
retrieve are specified in square brackets ([]) following a column name containing
an array. The number inside the brackets indicates the elements to retrieve. For a
one-dimensional array, this is a single number. For example, the following
statement selects the second element in a one-dimensional array:

EXEC SQL
SELECT JOB_TITLE[2]

INTO :title
FROM EMPLOYEE
WHERE LAST_NAME = :lname;
Chapter 9 Using Arrays 9-5

Accessing Arrays
To retrieve a subset of several contiguous elements from a one-dimensional array,
specify both the first and last elements of the range to retrieve, separating the
values with a colon. The syntax is as follows:

[lower_bound:upper_bound]
For example, the following statement retrieves a subset of three elements from a
one-dimensional array:

EXEC SQL
SELECT JOB_TITLE[2:4]

INTO :title
FROM EMPLOYEE
WHERE LAST_NAME = :lname;

For multi-dimensional arrays, the lower and upper values for each dimension must
be specified, separated from one another by commas, using the following syntax:

[lower:upper, lower:upper [, lower:upper ...]]
Note In this syntax, the bold brackets must be included.

For example, the following statement retrieves two rows of three elements each:

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT INT_ARR[1:2,1:3]
FROM TABLE1

Because InterBase stores array data in row-major order, the first range of values
between the brackets specifies the subset of rows to retrieve. The second range of
values specifies which elements in each row to retrieve.

To select data from an array slice, perform the following steps:

1 Declare a host-language variable large enough to hold the array slice data
retrieved. For example,

EXEC SQL
BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10)
datatype */

long int_slice[2][3];
EXEC SQL

END DECLARE SECTION;

The first variable, char_slice, is intended to store a single element from the
CHAR_ARR column. The second example, int_slice, is intended to store a six-
element slice from the INT_ARR integer column.

2 Declare a cursor that specifies the array slices to read. For example,

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]
FROM TABLE1
9-6 Embedded SQL Guide

Accessing Arrays
3 Open the cursor, and the fetch data:

EXEC SQL
OPEN TC2;
EXEC SQL
FETCH TC2 INTO :char_slice, :int_slice;

Updating Data in an Array Slice

A subset of elements in an array can be updated with a cursor. To perform an
update, follow these steps:

1 Declare a host-language variable to hold the array slice data. For example,

EXEC SQL
BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10)
datatype */

long int_slice[2][3];
EXEC SQL

END DECLARE SECTION;

The first variable, char_slice, is intended to hold a single element of the
CHAR_ARR array column defined in the programming example in the previous
section. The second example, int_slice, is intended to hold a six-element slice
of the INT_ARR integer array column.

2 Select the row that contains the array data to modify. For example, the following
cursor declaration selects data from the INT_ARRAY and CHAR_ARRAY columns:

EXEC SQL
DECLARE TC1 CURSOR FOR

SELECT CHAR_ARRAY[1], INT_ARRAY[1:2,1:3] FROM TABLE1;
EXEC SQL

OPEN TC1;
EXEC SQL

FETCH TC1 INTO :char_slice, :int_slice;

This example fetches the data currently stored in the specified slices of
CHAR_ARRAY and INT_ARRAY, and stores it into the char_slice and int_slice host-
language variables, respectively.

3 Load the host-language variables with new or updated data.

4 Execute an UPDATE statement to insert data into the array slices. For example,
the following statements put data into parts of CHAR_ARRAY and INT_ARRAY,
assuming char_slice and int_slice contain information to insert into the table:

EXEC SQL
UPDATE TABLE1

SET
CHAR_ARR[1] = :char_slice,
INT_ARR[1:2,1:3] = :int_slice
Chapter 9 Using Arrays 9-7

Accessing Arrays
WHERE CURRENT OF TC1;

5 Commit the changes:

EXEC SQL
COMMIT;

The following fragment of the output from this example illustrates the contents of
the columns, CHAR_ARR and INT_ARR after this operation.

Testing a Value in a Search Condition

A single array element’s value can be evaluated in the search condition of a
WHERE clause. For example,

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]
FROM TABLE1
WHERE SMALLINT_ARR[1,1,1] = 111;

Important You cannot evaluate multi-element array slices.

Using Host Variables in Array Subscripts

Integer host variables can be used as array subscripts. For example, the following
cursor declaration uses host variables, getval, and testval, in array subscripts:

EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[:getval:1,1:3]
FROM TABLE1
WHERE FLOAT_ARR[:testval,1,1] = 111.0;

Using Arithmetic Expressions with Arrays

Arithmetic expressions involving arrays can be used only in search conditions. For
example, the following code fetches a row of array data at a time that meets the
search criterion:

char_arr values:
 [0]:string0 [1]:NewString [2]:string2 [3]:string3

int_arr values:
 [0][0]:0 [0][1]:1 [0][2]:2 [0][3]:3
 [1][0]:10 [1][1]:999 [1][2]:999 [1][3]:999
 [2][0]:20 [2][1]:999 [2][2]:999 [2][3]:999
 [3][0]:30 [3][1]:31 [3][2]:32 [3][3]:33

updated values
9-8 Embedded SQL Guide

Accessing Arrays
for (i = 1; i < 100 && SQLCODE == 0; i++)
{

EXEC SQL
SELECT ARR[:i] INTO :array_var
FROM TABLE1
WHERE ARR1[:j + 1] = 5;

process_array(array_var);
}

Chapter 9 Using Arrays 9-9

Accessing Arrays
9-10 Embedded SQL Guide

C h a p t e r

Chapter 10Working with
Stored Procedures

A stored procedure is a self-contained set of extended SQL statements stored in a
database as part of its metadata.

Applications can interact with stored procedures in the following ways:

• They can pass parameters to and receive return values from stored procedures.

• They can invoke stored procedures directly to perform a task.

• They can substitute an appropriate stored procedure for a table or view in a
SELECT statement.

The advantages of using stored procedures are:

• Applications can share code. A common piece of SQL code written once and
stored in the database can be used in any application that accesses the
database, including the new InterBase interactive SQL tool, isql.

• Modular design. Stored procedures can be shared among applications,
eliminating duplicate code, and reducing the size of applications.

• Streamlined maintenance. When a procedure is updated, the changes are
automatically reflected in all applications that use it without the need to
recompile and relink them.

• Improved performance, especially for remote client access. Stored procedures
are executed by the server, not the client.

This chapter describes how to call and execute stored procedures in applications
once they are written. For information on how to create a stored procedure, see
the Data Definition Guide.
Chapter 10 Working with Stored Procedures 10-1

Using Stored Procedures
Using Stored Procedures

There are two types of procedures that can be called from an application:

• Select procedures that an application can use in place of a table or view in a
SELECT statement. A select procedure must return one or more values, or an
error results.

• Executable procedures that an application can call directly, with the EXECUTE
PROCEDURE statement. An executable procedure may or may not return values
to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same
syntax. The difference is in how the procedure is written and how it is intended to
be used. Select procedures always return zero or more rows, so that to the calling
program they appear as a table or view. Executable procedures are simply
routines invoked by the calling program that can return only a single set of values.

In fact, a single procedure conceivably can be used as a select procedure or an
executable procedure, but this is not recommended. In general a procedure is
written specifically to be used in a SELECT statement (a select procedure) or to be
used in an EXECUTE PROCEDURE statement (an executable procedure). For more
information on creating stored procedures, see the Data Definition Guide.

Procedures and Transactions

Procedures operate within the context of a transaction in the program that uses
them. If procedures are used in a transaction, and the transaction is rolled back,
then any actions performed by the procedures are also rolled back. Similarly, a
procedure’s actions are not final until its controlling transaction is committed.

Security for Procedures

When an application calls a stored procedure, the person running the application
must have EXECUTE privilege on the stored procedure. An extension to the GRANT
statement enables assignment of EXECUTE privilege, and an extension to the
REVOKE statement enables removal of the privilege. For more information about
granting privileges to users, see the Data Definition Guide.

In addition, if the stored procedure accesses objects in the database, one of two
things must be true: either the user running the application or the called stored
procedure must have the appropriate permissions on the accessed objects. The
GRANT statement assigns privileges to procedures, and REVOKE eliminates
privileges.
10-2 Embedded SQL Guide

Using Select Procedures
Using Select Procedures

A select procedure is used in place of a table or view in a SELECT statement and
can return zero or more rows. A select procedure must return one or more output
parameters, or an error results. If returned values are not specified, NULL values
are returned by default.

The advantages of select procedures over tables or views are:

• They can take input parameters that can affect the output produced.

• They can contain control statements, local variables, and data manipulation
statements, offering great flexibility to the user.

Input parameters are passed to a select procedure in a comma-delimited list in
parentheses following the procedure name.

The following isql script defines the procedure, GET_EMP_PROJ, which returns
EMP_PROJ, the project numbers assigned to an employee, when passed the
employee number, EMP_NO, as the input parameter:

CREATE PROCEDURE GET_EMP_PROJ (emp_no SMALLINT)
RETURNS (emp_proj SMALLINT) AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :emp_no
INTO :emp_proj

DO
SUSPEND;

END ;

The following statement retrieves PROJ_ID from the above procedure, passing the
host variable, number, as input:

SELECT PROJ_ID FROM GET_EMP_PROJ (:number);

Calling a Select Procedure

To use a select procedure in place of a table or view name in an application, use
the procedure name anywhere a table or view name is appropriate. Supply any
input parameters required in a comma-delimited list in parentheses following the
procedure name.

EXEC SQL
SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)
ORDER BY PROJ_ID;

Important InterBase does not support creating a view by calling a select procedure.
Chapter 10 Working with Stored Procedures 10-3

Using Executable Procedures
Using a Select Procedure with Cursors

A select procedure can also be used in a cursor declaration. For example, the
following code declares a cursor named PROJECTS, using the GET_EMP_PROJ
procedure in place of a table:

EXEC SQL
DECLARE PROJECTS CURSOR FOR
SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)

ORDER BY PROJ_ID;

The following application C code with embedded SQL then uses the PROJECTS
cursor to print project numbers to standard output:

EXEC SQL
OPEN PROJECTS

/* Print employee projects. */
while (SQLCODE == 0)
{

EXEC SQL
FETCH PROJECTS INTO :proj_id :nullind;

if (SQLCODE == 100)
break;

if (nullind == 0)
printf("\t%s\n", proj_id);

}

Using Executable Procedures

An executable procedure is called directly by an application, and often performs a
task common to applications using the same database. Executable procedures
can receive input parameters from the calling program, and can optionally return a
single row to the calling program.

Input parameters pass to an executable procedure in a comma-delimited list
following the procedure name.

Note Executable procedures cannot return multiple rows.

Executing a Procedure

To execute a procedure in an application, use the following syntax:

EXEC SQL
EXECUTE PROCEDURE name [:param [[INDICATOR]:indicator]]

[, :param [[INDICATOR]:indicator] ...]
[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator]...]];
10-4 Embedded SQL Guide

Using Executable Procedures
When an executable procedure uses input parameters, the parameters can be
literal values (such as 7 or “Fred”), or host variables. If a procedure returns output
parameters, host variables must be supplied in the RETURNING_VALUES clause to
hold the values returned.

For example, the following statement demonstrates how the executable
procedure, DEPT_BUDGET, is called with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The following statement also calls the same procedure using a host variable
instead of a literal as the input parameter:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES

:sumb;

Indicator Variables
Both input parameters and return values can have associated indicator variables
for tracking NULL values. You must use indicator variables to indicate unknown or
NULL values of return parameters. The INDICATOR keyword is optional. An indicator
variable that is less than zero indicates that the parameter is unknown or NULL. An
indicator variable that is 0 indicates that the associated parameter contains a non-
NULL value. For more information about indicator variables, see “Working with
Data.”

Executing a Procedure in a DSQL Application

To execute a stored procedure in a dynamic SQL (DSQL) application follow these
steps:

1 Use a PREPARE statement to parse and prepare the procedure call for execution
using the following syntax:

EXEC SQL
PREPARE sql_statement_name FROM :var | '<statement>';

2 Set up an input XSQLDA using the following syntax:

EXEC SQL
DESCRIBE INPUT sql_statement_name INTO SQL DESCRIPTOR

input_xsqlda;

3 Use DESCRIBE OUTPUT to set up an output XSQLDA using the following syntax:

EXEC SQL
DESCRIBE OUTPUT sql_statement_name INTO SQL DESCRIPTOR

output_xsqlda;

Setting up an output XSQLDA is only necessary for procedures that return values.

4 Execute the statement using the following syntax:
Chapter 10 Working with Stored Procedures 10-5

Using Executable Procedures
EXEC SQL
EXECUTE statement USING SQL DESCRIPTOR input_xsqlda

INTO DESCRIPTOR output_xsqlda;

Input parameters to stored procedures can be passed as run-time values by
substituting a question mark (?) for each value. For example, the following DSQL
statements prepare and execute the ADD_EMP_PROJ procedure:

. . .
strcpy(uquery, "EXECUTE PROCEDURE ADD_EMP_PROJ ?, ?");
. . .
EXEC SQL

PREPARE QUERY FROM :uquery;
EXEC SQL

DESCRIBE INPUT QUERY INTO SQL DESCRIPTOR input_xsqlda;
EXEC SQL

DESCRIBE OUTPUT QUERY INTO SQL DESCRIPTOR output_xsqlda;
EXEC SQL

EXECUTE QUERY USING SQL DESCRIPTOR input_xsqlda INTO SQL
DESCRIPTOR

output_xsqlda;
. . .
10-6 Embedded SQL Guide

C h a p t e r

Chapter 11Working with Events
This chapter describes the InterBase event mechanism and how to write
applications that register interest in and respond to events. The event mechanism
enables applications to respond to actions and database changes made by other,
concurrently running applications without the need for those applications to
communicate directly with one another, and without incurring the expense of CPU
time required for periodic polling to determine if an event has occurred.

Understanding the Event Mechanism

In InterBase, an event is a message passed by a trigger or a stored procedure to
the InterBase event manager to announce the occurrence of a specified condition
or action, usually a database change such as an INSERT, UPDATE, or DELETE.
Events are passed by triggers or stored procedures only when the transaction
under which they occur is committed.

The event manager maintains a list of events posted to it by triggers and stored
procedures. It also maintains a list of applications that have registered an interest
in events. Each time a new event is posted to it, the event manager notifies
interested applications that the event has occurred.

Applications can respond to specific events that might be posted by a trigger or
stored procedure by:

1 Indicating an interest in the events to the event manager.

2 Waiting for event notification.

3 Determining which event occurred (if an application is waiting for more than one
event to occur).

The InterBase event mechanism, then, consists of three parts:
Chapter 11 Working with Events 11-1

Signaling Event Occurrences
• A trigger or stored procedure that posts an event to the event manager.

• The event manager that maintains an event queue and notifies applications
when an event occurs.

• An application that registers interest in the event and waits for it to occur.

A second application that uses the event-posting stored procedure (or that fires the
trigger) causes the event manager to notify the waiting application so that it can
resume processing.

Signaling Event Occurrences

A trigger or stored procedure must signal the occurrence of an event, usually a
database change such as an INSERT, UPDATE, or DELETE, by using the
POST_EVENT statement. POST_EVENT alerts the event manager to the occurrence
of an event after a transaction is committed. At that time, the event manager
passes the information to registered applications.

A trigger or stored procedure that posts an event is sometimes called an event
alerter. For example, the following isql script creates a trigger that posts an event
to the event manager whenever any application inserts data in a table:

CREATE TRIGGER POST_NEW_ORDER FOR SALES
ACTIVE
AFTER INSERT
POSITION 0
AS

BEGIN
POST_EVENT 'new_order';

END ;

Event names have no character size restrictions.

Note POST_EVENT is a stored procedure and trigger language extension, available only
within stored procedures and triggers.

For a complete discussion of writing a trigger or stored procedure as an event
alerter, see the Data Definition Guide.

Registering Interest in Events

An application must register a request to be notified about a particular event with
the InterBase event manager before waiting for the event to occur. To register
interest in an event, use the EVENT INIT statement. EVENT INIT requires two
arguments:

• An application-specific request handle to pass to the event manager.
11-2 Embedded SQL Guide

Registering Interest in Multiple Events
• A list of events to be notified about, enclosed in parentheses.

The application-specific request handle is used by the application in a subsequent
EVENT WAIT statement to indicate a readiness to receive event notification. The
request handle is used by the event manager to determine where to send
notification about particular events to wake up a sleeping application so that it can
respond to them.

The list of event names in parentheses must match event names posted by
triggers or stored procedures, or notification cannot occur.

To register interest in a single event, use the following EVENT INIT syntax:

EXEC SQL
EVENT INIT request_name (event_name);

event_name can be unlimited in character size, and can be passed as a constant
string in quotes, or as a host-language variable.

For example, the following application code creates a request named
RESPOND_NEW that registers interest in the “new_order” event:

EXEC SQL
EVENT INIT RESPOND_NEW ('new_order');

The next example illustrates how RESPOND_NEW might be initialized using a host-
language variable, myevent, to specify the name of an event:

EXEC SQL
EVENT INIT RESPOND_NEW (:myevent);

After an application registers interest in an event, it is not notified about an event
until it first pauses execution with EVENT WAIT. For more information about waiting
for events, see “Waiting for Events with EVENT WAIT”.

Note As an alternative to registering interest in an event and waiting for the event to
occur, applications can use an InterBase API call to register interest in an event,
and identify an asynchronous trap (AST) function to receive event notification. This
method enables an application to continue other processing instead of waiting for
an event to occur. For more information about programming events with the
InterBase API, see the API Guide.

Registering Interest in Multiple Events

Often, an application may be interested in several different events even though it
can only wait on a single request handle at a time. EVENT INIT enables an
application to specify a list of event names in parentheses, using the following
syntax:

EXEC SQL
EVENT INIT request_name (event_name [event_name ...]);
Chapter 11 Working with Events 11-3

Waiting for Events with EVENT WAIT
Each event_name can be up to 15 characters in size, and should correspond to
event names posted by triggers or stored procedures, or notification may never
occur. For example, the following application code creates a request named
RESPOND_MANY that registers interest in three events, “new_order,”
“change_order,” and “cancel_order”:

EXEC SQL
EVENT INIT RESPOND_MANY ('new_order', 'change_order',

'cancel_order');

Note An application can also register interest in multiple events by using a separate
EVENT INIT statement with a unique request handle for a single event or groups of
events, but it can only wait on one request handle at a time.

Waiting for Events with EVENT WAIT

Even after an application registers interest in an event, it does not receive
notification about that event. Before it can receive notification, it must use the
EVENT WAIT statement to indicate its readiness to the event manager, and to
suspend its processing until notification occurs.

To signal the event manager and suspend an application’s processing, use the
following EVENT WAIT statement syntax:

EXEC SQL
EVENT WAIT request_name;

request_name must be the name of a request handle declared in a previous
EVENT INIT statement.

The following statements register interest in an event, and wait for event
notification:

EXEC SQL
EVENT INIT RESPOND_NEW ('new_order');

EXEC SQL
EVENT WAIT RESPOND_NEW;

Once EVENT WAIT is executed, application processing stops until the event
manager sends a notification message to the application.

Note An application can contain more than one EVENT WAIT statement, but all processing
stops when the first statement is encountered. Each time processing restarts, it
stops when it encounters the next EVENT WAIT statement.

If one event occurs while an application is processing another, the event manager
sends notification the next time the application returns to a wait state.
11-4 Embedded SQL Guide

Responding to Events
Responding to Events

When event notification occurs, a suspended application resumes normal
processing at the next statement following EVENT WAIT.

If an application has registered interest in more than one event with a single EVENT
INIT call, then the application must determine which event occurred by examining
the event array, isc_event[]. The event array is automatically created for an
application during preprocessing. Each element in the array corresponds to an
event name passed as an argument to EVENT INIT. The value of each element is
the number of times that event occurred since execution of the last EVENT WAIT
statement with the same request handle.

In the following code, an application registers interest in three events, then
suspends operation pending event notification:

EXEC SQL
EVENT INIT RESPOND_MANY ('new_order', 'change_order',

'cancel_order');
EXEC SQL

EVENT WAIT RESPOND_MANY;

When any of the “new_order,” “change_order,” or “cancel_order” events are
posted and their controlling transactions commit, the event manager notifies the
application and processing resumes. The following code illustrates how an
application might test which event occurred:

for (i = 0; i < 3; i++)
{

if (isc_$event[i] > 0)
{

/* this event occurred, so process it */
. . .

}
}

Chapter 11 Working with Events 11-5

Responding to Events
11-6 Embedded SQL Guide

C h a p t e r

Chapter 12Error Handling and
Recovery

All SQL applications should include mechanisms for trapping, responding to, and
recovering from run-time errors, the errors that can occur when someone uses an
application. This chapter describes both standard, portable SQL methods for
handling errors, and additional error handling specific to InterBase.

Standard Error Handling

Every time a SQL statement is executed, it returns a status indicator in the
SQLCODE variable, which is declared automatically for SQL programs during
preprocessing with gpre. The following table summarizes possible SQLCODE
values and their meanings:

To trap and respond to run-time errors, SQLCODE should be checked after each
SQL operation. There are three ways to examine SQLCODE and respond to errors:

• Use WHENEVER statements to automate checking SQLCODE and handle errors
when they occur.

Table 12.1 Possible SQLCODE values

Value Meaning

0 Success

1–99 Warning or informational message

100 End of file (no more data)

< 0 Error. Statement failed to complete
Chapter 12 Error Handling and Recovery 12-1

Standard Error Handling
• Test SQLCODE directly after individual SQL statements.

• Use a judicious combination of WHENEVER statements and direct testing.

Each method has advantages and disadvantages, described fully in the remainder
of this chapter.

WHENEVER Statements

The WHENEVER statement enables all SQL errors to be handled with a minimum of
coding. WHENEVER statements specify error-handling code that a program should
execute when SQLCODE indicates errors, warnings, or end-of-file. The syntax of
WHENEVER is:

EXEC SQL
WHENEVER {SQLERROR | SQLWARNING | NOT FOUND}
 {GOTO label | CONTINUE};

After WHENEVER appears in a program, all subsequent SQL statements
automatically jump to the specified code location identified by label when the
appropriate error or warning occurs.

Because they affect all subsequent statements, WHENEVER statements are usually
embedded near the start of a program. For example, the first statement in the
following C code’s main() function is a WHENEVER that traps SQL errors:

main()
{

EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit;

. . .
Error Exit:

if (SQLCODE)
{

print_error();
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
. . .
print_error()
{

printf("Database error, SQLCODE = %d\n", SQLCODE);
}

Up to three WHENEVER statements can be active at any time:

• WHENEVER SQLERROR is activated when SQLCODE is less than zero, indicating
that a statement failed.
12-2 Embedded SQL Guide

Standard Error Handling
• WHENEVER SQLWARNING is activated when SQLCODE contains a value from 1 to
99, inclusive, indicating that while a statement executed, there is some question
about the way it succeeded.

• WHENEVER NOT FOUND is activated when SQLCODE is 100, indicating that end-
of-file was reached during a FETCH or SELECT.

Omitting a statement for a particular condition means it is not trapped, even if it
occurs. For example, if WHENEVER NOT FOUND is left out of a program, then when
a FETCH or SELECT encounters the end-of-file, SQLCODE is set to 100, but program
execution continues as if no error condition has occurred.

Error conditions also can be overlooked by using the CONTINUE statement inside
a WHENEVER statement:

. . .
EXEC SQL

WHENEVER SQLWARNING
CONTINUE;

. . .
This code traps SQLCODE warning values, but ignores them. Ordinarily, warnings
should be investigated, not ignored.

Important Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to
disable error handling temporarily. Otherwise, there is a possibility of an infinite
loop; should another error occur in the handler itself, the routine will call itself
again.

Scope of WHENEVER Statements
WHENEVER only affects all subsequent SQL statements in the module, or source
code file, where it is defined. In programs with multiple source code files, each
module must define its own WHENEVER statements.

Changing Error-handling Routines
To switch to another error-handling routine for a particular error condition, embed
another WHENEVER statement in the program at the point where error handling
should be changed. The new assignment overrides any previous assignment, and
remains in effect until overridden itself. For example, the following program
fragment sets an initial jump point for SQLERROR conditions to ErrorExit1, then
resets it to ErrorExit2:

EXEC SQL
WHENEVER SQLERROR

GOTO ErrorExit1;
. . .
EXEC SQL

WHENEVER SQLERROR
GOTO ErrorExit2;

. . .
Chapter 12 Error Handling and Recovery 12-3

Standard Error Handling
Limitations of WHENEVER Statements
There are two limitations to WHENEVER. It:

• Traps errors indiscriminately. For example, WHENEVER SQLERROR traps both
missing databases and data entry that violates a CHECK constraint, and jumps
to a single error-handling routine. While a missing database is a severe error
that may require action outside the context of the current program, invalid data
entry may be the result of a typing mistake that could be fixed by reentering the
data.

• Does not easily enable a program to resume processing at the point where the
error occurred. For example, a single WHENEVER SQLERROR can trap data entry
that violates a CHECK constraint at several points in a program, but jumps to a
single error-handling routine. It might be helpful to allow the user to reenter data
in these cases, but the error routine cannot determine where to jump to resume
program processing.

Error-handling routines can be very sophisticated. For example, in C or C++, a
routine might use a large CASE statement to examine SQLCODE directly and
respond differently to different values. Even so, creating a sophisticated routine
that can resume processing at the point where an error occurred is difficult. To
resume processing after error recovery, consider testing SQLCODE directly after
each SQL statement, or consider using a combination of error-handling methods.

Testing SQLCODE Directly

A program can test SQLCODE directly after each SQL statement instead of relying
on WHENEVER to trap and handle all errors. The main advantage to testing
SQLCODE directly is that custom error-handling routines can be designed for
particular situations.

For example, the following C code fragment checks if SQLCODE is not zero after a
SELECT statement completes. If so, an error has occurred, so the statements
inside the if clause are executed. These statements test SQLCODE for two specific
values,
–1, and 100, handling each differently. If SQLCODE is set to any other error value, a
generic error message is displayed and the program is ended gracefully.

EXEC SQL
SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

if (SQLCODE)
{

if (SQLCODE == –1)
printf("too many records found\n");

else if (SQLCODE == 100)
printf("no records found\n");

else
{

12-4 Embedded SQL Guide

Standard Error Handling
printf("Database error, SQLCODE = %d\n", SQLCODE);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

}
}
printf("found city named %s\n", city);
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;

The disadvantage to checking SQLCODE directly is that it requires many lines of
extra code just to see if an error occurred. On the other hand, it enables errors to
be handled with function calls, as the following C code illustrates:

EXEC SQL
SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

switch (SQLCODE)
{

case 0:
break; /* NO ERROR */

case –1
ErrorTooMany();
break;

case 100:
ErrorNotFound();
break;

default:
ErrorExit(); /* Handle all other errors */
break;

}
. . .

Using function calls for error handling enables programs to resume execution if
errors can be corrected.

Combining Error-handling Techniques

Error handling in many programs can benefit from combining WHENEVER with
direct checking of SQLCODE. A program might include generic WHENEVER
statements for handling most SQL error conditions, but for critical operations,
WHENEVER statements might be temporarily overridden to enable direct checking
of SQLCODE.

For example, the following C code:
Chapter 12 Error Handling and Recovery 12-5

Standard Error Handling
• Sets up generic error handling with three WHENEVER statements.

• Overrides the WHENEVER SQLERROR statement to force program continuation
using the CONTINUE clause.

• Checks SQLCODE directly.

• Overrides WHENEVER SQLERROR again to reset it.

main()
{

EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit; /* trap all errors

*/
EXEC SQL

WHENEVER SQLWARNING GOTO WarningExit; /* trap warnings
*/

EXEC SQL
WHENEVER NOT FOUND GOTO AllDone; /* trap end of file

*/
. . .

EXEC SQL
WHENEVER SQLERROR CONTINUE; /* prevent trapping of

errors */
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

switch (SQLCODE)
{

case 0:
break; /* NO ERROR */

case –1
ErrorTooMany();
break;

case 100:
ErrorNotFound();
break;

default:
ErrorExitFunction(); /* Handle all other errors */
break;

}
EXEC SQL

WHENEVER SQLERROR GOTO ErrorExit; /* reset to trap all
errors */

. . .
}

Guidelines for Error Handling

The following guidelines apply to all error-handling routines in a program.
12-6 Embedded SQL Guide

Additional InterBase Error Handling
Using SQL and Host-language Statements
All SQL statements and InterBase functions can be used in error-handling
routines, except for CONNECT.

Any host-language statements and functions can appear in an error-handling
routine without restriction.

Important Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to
disable error-handling temporarily. Otherwise, there is a possibility of an infinite
loop; should another error occur in the handler itself, the routine will call itself
again.

Nesting Error-handling Routines
Although error-handling routines can be nested or called recursively, this practice
is not recommended unless the program preserves the original contents of
SQLCODE and the InterBase error status array.

Handling Unexpected and Unrecoverable Errors
Even if an error-handling routine catches and handles recoverable errors, it should
always contain statements to handle unexpected or unrecoverable errors.

The following code handles unrecoverable errors:

. . .
isc_print_sqlerr(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT;
exit(1);

Portability
For portability among different SQL implementations, SQL programs should limit
error handling to WHENEVER statements or direct examination of SQLCODE values.

InterBase internal error recognition occurs at a finer level of granularity than
SQLCODE representation permits. A single SQLCODE value can represent many
different internal InterBase errors. Where portability is not an issue, it may be
desirable to perform additional InterBase error handling. The remainder of this
chapter explains how to use these additional features.

Additional InterBase Error Handling

The same SQLCODE value can be returned by multiple InterBase errors. For
example, the SQLCODE value, –901, is generated in response to many different
InterBase errors. When portability to other vendors’ SQL implementations is not
required, SQL programs can sometimes examine the InterBase error status array,
isc_status, for more specific error information.
Chapter 12 Error Handling and Recovery 12-7

Additional InterBase Error Handling
isc_status is an array of twenty elements of type ISC_STATUS. It is declared
automatically for programs when they are preprocessed with gpre. Two kinds of
InterBase error information are reported in the status array:

• InterBase error message components.

• InterBase error numbers.

As long as the current SQLCODE value is not –1, 0, or 100, error-handling routines
that examine the error status array can do any of the following:

• Display SQL and InterBase error messages.

• Capture SQL and InterBase error messages to a storage buffer for further
manipulation.

• Trap for and respond to particular InterBase error codes.

The InterBase error status array is usually examined only after trapping errors with
WHENEVER or testing SQLCODE directly.

Displaying Error Messages

If SQLCODE is less than –1, additional InterBase error information can be displayed
using the InterBase isc_print_sqlerror() function inside an error-handling routine.
During preprocessing with gpre, this function is automatically declared for
InterBase applications.

isc_print_sqlerror() displays the SQLCODE value, a related SQL error message,
and any InterBase error messages in the status array. It requires two parameters:
SQLCODE, and a pointer to the error status array, isc_status.

For example, when an error occurs, the following code displays the value of
SQLCODE, displays a corresponding SQL error message, then displays additional
InterBase error message information if possible:

. . .
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

if(SQLCODE)
{

isc_print_sqlerror(SQLCODE, isc_status);
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1);

}
. . .
12-8 Embedded SQL Guide

Additional InterBase Error Handling
Important Some windowing systems do not encourage or permit direct screen writes. Do not
use isc_print_sqlerror() when developing applications for these environments.
Instead, use isc_sql_interprete() and isc_interprete() to capture messages to a
buffer for display.

Capturing SQL Error Messages

Instead of displaying SQL error messages, an application can capture the text of
those messages in a buffer by using isc_sql_interprete(). Capture messages in a
buffer when applications:

• Run under windowing systems that do not permit direct writing to the screen.

• Store a record of all error messages in a log file.

• Manipulate or format error messages for display.

Given SQLCODE, a pointer to a storage buffer, and the maximum size of the buffer
in bytes, isc_sql_interprete() builds a SQL error message string, and puts the
formatted string in the buffer where it can be manipulated. A buffer size of 256
bytes is large enough to hold any SQL error message.

For example, the following code stores a SQL error message in err_buf, then
writes err_buf to a log file:

. . .
char err_buf[256]; /* error message buffer for
isc_sql_interprete() */
FILE *efile=NULL; /* code fragment assumes pointer to an
open file */
. . .
EXEC SQL

SELECT CITY INTO :city FROM STATES
WHERE STATE = :stat:statind;

if (SQLCODE)
{

isc_sql_interprete(SQLCODE, err_buf, sizeof(err_buf));
if(efile==NULL) efile=fopen("errors", "w");
fprintf(efile, "%s\n", err_buf); /* write buffer to log

file */
EXEC SQL

ROLLBACK; /* undo database changes */
EXEC SQL

DISCONNECT ALL; /* close open databases */
exit(1); /* exit with error flag set */

}
. . .
Chapter 12 Error Handling and Recovery 12-9

Additional InterBase Error Handling
isc_sql_interprete() retrieves and formats a single message corresponding to a
given SQLCODE. When SQLCODE is less than –1, more specific InterBase error
information is available. It, too, can be retrieved, formatted, and stored in a buffer
by using the isc_interprete() function.

Capturing InterBase Error Messages

The text of InterBase error messages can be captured in a buffer by using
isc_interprete(). Capture messages in a buffer when applications:

• Run under windowing systems that do not permit direct writing to the screen.

• Store a record of all error messages in a log file.

• Manipulate or format error messages for display.

Important isc_interprete() should not be used unless SQLCODE is less than –1 because the
contents of isc_status may not contain reliable error information in these cases.

Given both the location of a storage buffer previously allocated by the program,
and a pointer to the start of the status array, isc_interprete() builds an error
message string from the information in the status array, and puts the formatted
string in the buffer where it can be manipulated. It also advances the status array
pointer to the start of the next cluster of available error information.

isc_interprete() retrieves and formats a single error message each time it is called.
When an error occurs in an InterBase program, however, the status array may
contain more than one error message. To retrieve all relevant error messages,
error-handling routines should repeatedly call isc_interprete() until it returns no
more messages.

Because isc_interprete() modifies the pointer to the status array that it receives, do
not pass isc_status directly to it. Instead, declare a pointer to isc_status, then pass
the pointer to isc_interprete().

The following C code fragment illustrates how InterBase error messages can be
captured to a log file, and demonstrates the proper declaration of a string buffer
and pointer to isc_status. It assumes the log file is properly declared and opened
before control is passed to the error-handling routine. It also demonstrates how to
set the pointer to the start of the status array in the error-handling routine before
isc_interprete() is first called.

. . .
#include "ibase.h";
. . .
main()
{
char msg[512];
ISC_STATUS *vector;
FILE *efile; /* code fragment assumes pointer to an open
file */
. . .
12-10 Embedded SQL Guide

Additional InterBase Error Handling
if (SQLCODE < –1)
ErrorExit();

}
. . .

ErrorExit()
{

vector = isc_status; /* (re)set to start of status vector
*/

isc_interprete(msg, &vector); /* retrieve first mesage */
fprintf(efile, "%s\n", msg); /* write buffer to log file

*/
msg[0] = '-'; /* append leading hyphen to secondary

messages */
while (isc_interprete(msg + 1, &vector)) /* more?*/

fprintf(efile, "%s\n", msg); /* if so, write it to log
*/

fclose(efile); /* close log prior to quitting program */
EXEC SQL

ROLLBACK;
EXEC SQL

DISCONNECT ALL;
exit(1); /* quit program with an 'abnormal termination'

code */
}
. . .

In this example, the error-handling routine performs the following tasks:

• Sets the error array pointer to the starting address of the status vector,
isc_status.

• Calls isc_interprete() a single time to retrieve the first error message from the
status vector.

• Writes the first message to a log file.

• Makes repeated calls to isc_interprete() within a WHILE loop to retrieve any
additional messages. If additional messages are retrieved, they are also written
to the log file.

• Rolls back the transaction.

• Closes the database and releases system resources.

Handling InterBase Error Codes

Whenever SQLCODE is less than –1, the error status array, isc_status, may contain
detailed error information specific to InterBase, including error codes, numbers
that uniquely identify each error. With care, error-handling routines can trap for and
respond to specific codes.
Chapter 12 Error Handling and Recovery 12-11

Additional InterBase Error Handling
To trap and handle InterBase error codes in an error-handling routine, follow these
steps:

1 Check SQLCODE to be sure it is less than –1.

2 Check that the first element of the status array is set to isc_arg_gds, indicating
that an InterBase error code is available. In C programs, the first element of the
status array is isc_status[0].

Do not attempt to handle errors reported in the status array if the first status
array element contains a value other than 1.

3 If SQLCODE is less than –1 and the first element in isc_status is set to
isc_arg_gds, use the actual InterBase error code in the second element of
isc_status to branch to an appropriate routine for that error.

Tip InterBase error codes are mapped to mnemonic definitions (for example,
isc_arg_gds) that can be used in code to make it easier to read, understand, and
maintain. Definitions for all InterBase error codes can be found in the ibase.h file.

The following C code fragment illustrates an error-handling routine that:

• Displays error messages with isc_print_sqlerror().

• Illustrates how to parse for and handle six specific InterBase errors which might
be corrected upon roll back, data entry, and retry.

• Uses mnemonic definitions for InterBase error numbers.

. . .
int c, jval, retry_flag = 0;
jmp_buf jumper;
. . .
main()
{

. . .
jval = setjmp(jumper);
if (retry_flag)

ROLLBACK;
. . .

}
int ErrorHandler(void)
{

retry_flag = 0; /* reset to 0, no retry */
isc_print_sqlerror(SQLCODE, isc_status); /* display

errors */
if (SQLCODE < –1)
{

if (isc_status[0] == isc_arg_gds)
{

switch (isc_status[1])
{

case isc_convert_error:
12-12 Embedded SQL Guide

Additional InterBase Error Handling
case isc_deadlock:
case isc_integ_fail:
case isc_lock_conflict:
case isc_no_dup:
case isc_not_valid:

printf("\n Do you want to try again? (Y/N)");
c = getchar();
if (c == 'Y' || c == 'y')
{

retry_flag = 1; /* set flag to retry */
longjmp(jumper, 1);

}
break;

case isc_end_arg: /* there really isn’t an error
*/

retry_flag = 1; /* set flag to retry */
longjump(jumper, 1);
break;

default: /* we can’t handle everything, so abort
*/

break;
}

}
}

EXEC SQL
ROLLBACK;

EXEC SQL
DISCONNECT ALL;

exit(1);
}

Chapter 12 Error Handling and Recovery 12-13

Additional InterBase Error Handling
12-14 Embedded SQL Guide

C h a p t e r

Chapter 13Using Dynamic SQL
This chapter describes how to write dynamic SQL applications, applications that
elicit or build SQL statements for execution at run time.

In many database applications, the programmer specifies exactly which SQL
statements to execute against a particular database. When the application is
compiled, these statements become fixed. In some database applications, it is
useful to build and execute statements from text string fragments or from strings
elicited from the user at run time. These applications require the capability to
create and execute SQL statements dynamically at run time. Dynamic SQL
(DSQL) provides this capability. For example, the InterBase isql utility is a DSQL
application.

Overview of the DSQL Programming Process

Building and executing DSQL statements involves the following general steps:

• Embedding SQL statements that support DSQL processing in an application.

• Using host-language facilities, such as datatypes and macros, to provide input
and output areas for passing statements and parameters at run time.

• Programming methods that use these statements and facilities to process SQL
statements at run time.

These steps are described in detail throughout this chapter.
Chapter 13 Using Dynamic SQL 13-1

DSQL Limitations
DSQL Limitations

Although DSQL offers many advantages, it also has the following limitations:

• Access to one database at a time.

• Dynamic transaction processing is not permitted; all named transactions must
be declared at compile time.

• Dynamic access to Blob and array data is not supported; Blob and array data
can be accessed, but only through standard, statically processed SQL
statements, or through low-level API calls.

• Database creation is restricted to CREATE DATABASE statements executed within
the context of EXECUTE IMMEDIATE.

For more information about handling transactions in DSQL applications, see
“Handling Transactions”. For more information about working with Blob data in
DSQL, see “Processing Blob Data”. For more information about handling array
data in DSQL, see “Processing Array Data”. For more information about dynamic
creation of databases, see “Creating a Database”.

Accessing Databases

Using standard SQL syntax, a DSQL application can only use one database
handle per source file module, and can, therefore, only be connected to a single
database at a time. Database handles must be declared and initialized when an
application is preprocessed with gpre. For example, the following code creates a
single handle, db1, and initializes it to zero:

#include "ibase.h"
isc_db_handle db1;
. . .
db1 = 0L;

After a database handle is declared and initialized, it can be assigned dynamically
to a database at run time as follows:

char dbname[129];
. . .
prompt_user("Name of database to open: ");
gets(dbname);
EXEC SQL

SET DATABASE db1 = :dbname;
EXEC SQL

CONNECT db1;
. . .

The database accessed by DSQL statements is always the last database handle
mentioned in a SET DATABASE command. A database handle can be used to
connect to different databases as long as a previously connected database is first
13-2 Embedded SQL Guide

DSQL Limitations
disconnected with DISCONNECT. DISCONNECT automatically sets database handles
to NULL. The following statements disconnect from a database, zero the database
handle, and connect to a new database:

EXEC SQL
DISCONNECT db1;

EXEC SQL
SET DATABASE db1 = 'employee.ib';

EXEC SQL
CONNECT db1;

To access more than one database using DSQL, create a separate source file
module for each database, and use low-level API calls to attach to the databases
and access data. For more information about accessing databases with API calls,
see the API Guide. For more information about SQL database statements, see
“Working with Databases.”

Handling Transactions

InterBase requires that all transaction names be declared when an application is
preprocessed with gpre. Once fixed at precompile time, transaction handles
cannot be changed at run time, nor can new handles be declared dynamically at
run time.

SQL statements such as PREPARE, DESCRIBE, EXECUTE, and EXECUTE IMMEDIATE,
can be coded at precompile time to include an optional TRANSACTION clause
specifying which transaction controls statement execution. The following code
declares, initializes, and uses a transaction handle in a statement that processes a
run-time DSQL statement:

#include "ibase.h"
isc_tr_handle t1;
. . .
t1 = 0L;
EXEC SQL

SET TRANSACTION NAME t1;
EXEC SQL

PREPARE TRANSACTION t1 Q FROM :sql_buf;

DSQL statements that are processed with PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE cannot use a TRANSACTION clause, even if it is permitted in
standard, embedded SQL.

The SET TRANSACTION statement cannot be prepared, but it can be processed with
EXECUTE IMMEDIATE if:

1 Previous transactions are first committed or rolled back.

2 The transaction handle is set to NULL.

For example, the following statements commit the previous default transaction,
then start a new one with EXECUTE IMMEDIATE:
Chapter 13 Using Dynamic SQL 13-3

Writing a DSQL Application
EXEC SQL
COMMIT;

/* set default transaction name to NULL */
gds__trans = NULL;
EXEC SQL

EXECUTE IMMEDIATE 'SET TRANSACTION READ ONLY';

Creating a Database

To create a new database in a DSQL application:

1 Disconnect from any currently attached databases. Disconnecting from a
database automatically sets its database handle to NULL.

2 Build the CREATE DATABASE statement to process.

3 Execute the statement with EXECUTE IMMEDIATE.

For example, the following statements disconnect from any currently connected
databases, and create a new database. Any existing database handles are set to
NULL, so that they can be used to connect to the new database in future DSQL
statements.

char *str = "CREATE DATABASE \"new_emp.ib\"";
. . .
EXEC SQL

DISCONNECT ALL;
EXEC SQL

EXECUTE IMMEDIATE :str;

Processing Blob Data

DSQL does not directly support Blob processing. Blob cursors are not supported in
DSQL. DSQL applications can use API calls to process Blob data. For more
information about Blob API calls, see the API Guide.

Processing Array Data

DSQL does not directly support array processing. DSQL applications can use API
calls to process array data. For more information about array API calls, see the API
Guide.

Writing a DSQL Application

Write a DSQL application when any of the following are not known until run time:

• The text of the SQL statement

• The number of host variables
13-4 Embedded SQL Guide

Writing a DSQL Application
• The datatypes of host variables

• References to database objects

Writing a DSQL application is usually more complex than programming with
regular SQL because for most DSQL operations, the application needs explicitly to
allocate and process an extended SQL descriptor area (XSQLDA) data structure to
pass data to and from the database.

To use DSQL to process a SQL statement, follow these basic steps:

1 Determine if DSQL can process the SQL statement.

2 Represent the SQL statement as a character string in the application.

3 If necessary, allocate one or more XSQLDAs for input parameters and return
values.

4 Use an appropriate DSQL programming method to process the SQL statement.

SQL Statements that DSQL Can Process

DSQL can process most but not all SQL statements. The following table lists SQL
statement that are available to DSQL:

ALTER DATABASE ALTER DOMAIN ALTER EXCEPTION

ALTER INDEX ALTER PROCEDURE ALTER TABLE

ALTER TRIGGER COMMIT CONNECT

CREATE DATABASE CREATE DOMAIN CREATE EXCEPTION

CREATE GENERATOR CREATE INDEX CREATE PROCEDURE

CREATE ROLE CREATE SHADOW CREATE TABLE

CREATE TRIGGER CREATE VIEW DECLARE EXTERNAL FUNCTION

DECLARE FILTER DELETE DROP DATABASE

DROP DOMAIN DROP EXCEPTION DROP EXTERNAL FUNCTION

DROP FILTER DROP INDEX DROP PROCEDURE

DROP ROLE DROP SHADOW DROP TABLE

DROP TRIGGER DROP VIEW EXECUTE PROCEDURE

GRANT INSERT INSERT CURSOR (BLOB)

REVOKE ROLLBACK SELECT

SET GENERATOR UPDATE
Chapter 13 Using Dynamic SQL 13-5

Writing a DSQL Application
The following ESQL statements cannot be processed by DSQL: CLOSE, DECLARE,
CURSOR, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE, FETCH, OPEN, PREPARE.

The following ISQL commands cannot be processed by DSQL: BLOBDUMP, EDIT,
EXIT, HELP, INPUT, OUTPUT, QUIT, SET, SET AUTODDL, SET BLOBDISPLAY, SET COUNT,
SET ECHO, SET LIST, SET NAMES, SET PLAN, SET STATS, SET TERM, SET TIME, SHELL,
SHOW CHECK, SHOW DATABASE, SHOW DOMAINS, SHOW EXCEPTIONS, SHOW
FILTERS, SHOW FUNCTIONS, SHOW GENERATORS, SHOW GRANT, SHOW INDEX,
SHOW PROCEDURES, SHOW SYSTEM, SHOW TABLES, SHOW TRIGGERS, SHOW
VERSION, SHOW VIEWS.

SQL Character Strings

Within a DSQL application, a SQL statement can come from different sources. It
can come directly from a user who enters a statement at a prompt, as does isql. Or
it can be generated by the application in response to user interaction. Whatever
the source of the SQL statement it must be represented as a SQL statement
string, a character string that is passed to DSQL for processing.

Because SQL statement strings are C character strings that are processed directly
by DSQL, they cannot begin with the EXEC SQL prefix or end with a semicolon (;).
The semicolon is, of course, the appropriate terminator for the C string declaration
itself. For example, the following host-language variable declaration is a valid SQL
statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

Value Parameters in Statement Strings

SQL statement strings often include value parameters, expressions that evaluate
to a single numeric or character value. Parameters can be used anywhere in
statement strings where SQL expects a value that is not the name of a database
object.

A value parameter in a statement string can be passed as a constant, or passed as
a placeholder at run time. For example, the following statement string passes 256
as a constant:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

It is also possible to build strings at run time from a combination of constants. This
method is useful for statements where the variable is not a true constant, or it is a
table or column name, and where the statement is executed only once in the
application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = ?";
13-6 Embedded SQL Guide

Understanding the XSQLDA
When DSQL processes a statement containing a placeholder, it replaces the
question mark with a value supplied in the XSQLDA. Use placeholders in
statements that are prepared once, but executed many times with different
parameter values.

Replaceable value parameters are often used to supply values in WHERE clause
comparisons and in the UPDATE statement SET clause.

Understanding the XSQLDA

All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAs). The XSQLDA structure definition can be found in the ibase.h header file
in the InterBase include directory. Applications declare instances of the XSQLDA for
use.

The XSQLDA is a host-language data structure that DSQL uses to transport data to
or from a database when processing a SQL statement string. There are two types
of XSQLDAs: input descriptors and output descriptors. Both input and output
descriptors are implemented using the XSQLDA structure.

One field in the XSQLDA, the XSQLVAR, is especially important, because one
XSQLVAR must be defined for each input parameter or column returned. Like the
XSQLDA, the XSQLVAR is a structure defined in ibase.h in the InterBase include
directory.

Applications do not declare instances of the XSQLVAR ahead of time, but must,
instead, dynamically allocate storage for the proper number of XSQLVAR structures
required for each DSQL statement before it is executed, then deallocate it, as
appropriate, after statement execution.

The following figure illustrates the relationship between the XSQLDA and the
XSQLVAR:
Chapter 13 Using Dynamic SQL 13-7

Understanding the XSQLDA
Figure 13.1XSQLDA and XSQLVAR relationship

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR
structure for each input parameter. An output XSQLDA also consists of one
XSQLDA structure and one XSQLVAR structure for each data item returned by the
statement. An XSQLDA and its associated XSQLVAR structures are allocated as a
single block of contiguous memory.

Single instance of XSQLDA

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqln

short sqld

XSQLVAR sqlvar[1]

Array of n instances of XSQLVAR

1st instance n th instance

short sqltype short sqltype

short sqlscale short sqlscale

short sqlprecision short sqlprecision

short sqlsubtype short sqlsubtype

short sqllen short sqllen

char *sqldata char *sqldata

short *sqlind short *sqlind

short sqlname_length short sqlname_length

char sqlname[METADATALENGTH] char sqlname[METADATALENGTH]

short relname_length short relname_length

char relname[METADATALENGTH] char relname[METADATALENGTH]

short ownname_length short ownname_length

char ownname[METADATALENGTH] char ownname[METADATALENGTH]

short aliasname_length short aliasname_length

char aliasname[METADATALENGTH] char aliasname[METADATALENGTH]
13-8 Embedded SQL Guide

Understanding the XSQLDA
The PREPARE and DESCRIBE statements can be used to determine the proper
number of XSQLVAR structures to allocate, and the XSQLDA_LENGTH macro can be
used to allocate the proper amount of space. For more information about the
XSQLDA_LENGTH macro, see page 13-11.

XSQLDA Field Descriptions

The following table describes the fields that comprise the XSQLDA structure:

XSQLVAR Field Descriptions

The following table describes the fields that comprise the XSQLVAR structure:

Table 13.1 XSQLDA field descriptions

Field definition Description

short version Indicates the version of the XSQLDA structure. Set this to
SQLDA_CURRENT_VERSION, which is defined in ibase.h.

char sqldaid[8] Reserved for future use.

ISC_LONG sqldabc Reserved for future use.

short sqln Indicates the number of elements in the sqlvar array. Set by the
application. Whenever the application allocates storage for a
descriptor, it should set this field.

short sqld Indicates the number of parameters (for an input XSQLDA), or the
number of select-list items (for an output XSQLDA). Set by InterBase
during a DESCRIBE or PREPARE.

For an input descriptor, a sqld of 0 indicates that the SQL statement
has no parameters. For an output descriptor, a sqld of 0 indicates
that the SQL statement is not a SELECT statement.

XSQLVAR sqlvar The array of XSQLVAR structures. The number of elements in the
array is specified in the sqln field.

Table 13.2 XSQLVAR field descriptions

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list
items; set by InterBase during PREPARE or DESCRIBE.

short sqlscale Provides scale, specified as a negative number, for
exact numeric datatypes (DECIMAL, NUMERIC); set by
InterBase during PREPARE or DESCRIBE.

short sqlprecision Provides precision for the exact numeric datatypes
(DECIMAL, NUMERIC); Set by InterBase during
PREPARE or DESCRIBE.
Chapter 13 Using Dynamic SQL 13-9

Understanding the XSQLDA
short sqlsubtype Specifies the subtype for Blob data; set by InterBase
during PREPARE or DESCRIBE.

short sqllen Indicates the maximum size, in bytes, of data in the
sqldata field; set by InterBase during PREPARE or
DESCRIBE.

char *sqldata For input descriptors, specifies either the address of a
select-list item or a parameter; set by the application.

For output descriptors, contains a value for a select-
list item; set by InterBase.

short *sqlind On input, specifies the address of an indicator
variable; set by an application.

On output, specifies the address of column indicator
value for a select-list item following a FETCH.

A value of 0 indicates that the column is not NULL, a
value of –1 indicates the column is NULL; set by
InterBase.

short sqlname_length Specifies the length, in bytes, of the data in field,
sqlname; set by InterBase during DESCRIBE OUTPUT.

char
sqlname[METADATALENGTH]

Contains the name of the column.

Not null (\0) terminated; set by InterBase during
DESCRIBE OUTPUT.

short relname_length Specifies the length, in bytes, of the data in field,
relname; set by InterBase during DESCRIBE OUTPUT.

char
relname[METADATALENGTH]

Contains the name of the table.

Not null (\0) terminated; set by InterBase during
DESCRIBE OUTPUT.

short ownname_length Specifies the length, in bytes, of the data in field,
ownname; set by InterBase during DESCRIBE
OUTPUT.

char
ownname[METADATALENGTH]

Contains the owner name of the table.

Not null (\0) terminated; set by InterBase during
DESCRIBE OUTPUT.

short aliasname_length Specifies the length, in bytes, of the data in field,
aliasname; set by InterBase during DESCRIBE
OUTPUT.

char
aliasname[METADATALENGTH]

Contains the alias name of the column; if no alias
exists, contains the column name.

Not null (\0) terminated; set by InterBase during
DESCRIBE OUTPUT.

Table 13.2 XSQLVAR field descriptions (continued)

Field definition Description
13-10 Embedded SQL Guide

Understanding the XSQLDA
Input Descriptors

Input descriptors process SQL statement strings that contain parameters. Before
an application can execute a statement with parameters, it must supply values for
them. The application indicates the number of parameters passed in the XSQLDA
sqld field, then describes each parameter in a separate XSQLVAR structure. For
example, the following statement string contains two parameters, so an application
must set sqld to 2, and describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION
= ?";

When the statement is executed, the first XSQLVAR supplies information about the
BUDGET value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL Programming
Methods” on page 13-17.

Output Descriptors

Output descriptors return values from an executed query to an application. The
sqld field of the XSQLDA indicates how many values were returned. Each value is
stored in a separate XSQLVAR structure. The XSQLDA sqlvar field points to the first
of these XSQLVAR structures. The following statement string requires an output
descriptor:

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

For information about retrieving information from an output descriptor, see “DSQL
Programming Methods”.

Using the XSQLDA_LENGTH Macro

The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the number
of bytes that must be allocated for an input or output XSQLDA. XSQLDA_LENGTH is
defined as follows:

#define XSQLDA_LENGTH (n) (sizeof (XSQLDA) + (n - 1) *
sizeof(XSQLVAR))

n is the number of parameters in a statement string, or the number of select-list
items returned from a query. For example, the following C statement uses the
XSQLDA_LENGTH macro to specify how much memory to allocate for an XSQLDA
with 5 parameters or return items:

XSQLDA *my_xsqlda;
. . .
my_xsqlda = (XSQLDA *) malloc(XSQLDA_LENGTH(5));
. . .
Chapter 13 Using Dynamic SQL 13-11

Understanding the XSQLDA
For more information about using the XSQLDA_LENGTH macro, see “DSQL
Programming Methods”.

SQL Datatype Macro Constants

InterBase defines a set of macro constants to represent SQL datatypes and NULL
status information in an XSQLVAR. An application should use these macro
constants to specify the datatype of parameters and to determine the datatypes of
select-list items in a SQL statement. The following table lists each SQL datatype,
its corresponding macro constant expression, C datatype or InterBase typedef,
and whether or not the sqlind field is used to indicate a parameter or variable that
contains NULL or unknown data:

Table 13.3 SQL datatypes, macro expressions, and C datatypes

SQL
datatype Macro expression C datatype or typedef

sqlind
used?

ARRAY SQL_ARRAY No

ARRAY SQL_ARRAY + 1 ISC_QUAD Yes

BLOB SQL_BLOB ISC_QUAD No

BLOB SQL_BLOB + 1 ISC_QUAD Yes

BOOLEAN SQL_BOOLEAN signed short No

BOOLEAN SQL_BOOLEAN + 1 signed short Yes

CHAR SQL_TEXT char[] No

CHAR SQL_TEXT + 1 char[] Yes

DATE SQL_DATE ISC_DATE No

DATE SQL_DATE + 1 ISC_DATE Yes

DECIMAL SQL_LONG,
SQL_DOUBLE, or
SQL_INT64

long, double, or ISC_INT64 No

DECIMAL SQL_LONG + 1,
SQL_DOUBLE+ 1, or
SQL_INT64 + 1

long, double, or ISC_INT64 Yes

DOUBLE
PRECISION

SQL_DOUBLE double No

DOUBLE
PRECISION

SQL_DOUBLE + 1 double Yes

INTEGER SQL_LONG long No

INTEGER SQL_LONG + 1 long Yes
13-12 Embedded SQL Guide

Understanding the XSQLDA
Note DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER,
DOUBLE PRECISION, or 64-bit integer datatypes. If precision is set on the integral
type sqltypes SMALLINT, INTEGER, and 64-bit integers then the sqlsubtype will
contain information if it is a DECIMAL or NUMERIC field.

• if sqlsubtype is 1, it is NUMERIC

• if sqlsubtype is 2, it is DECIMAL.

The datatype information for a parameter or select-list item is contained in the
sqltype field of the XSQLVAR structure. The value contained in the sqltype field
provides two pieces of information:

• The datatype of the parameter or select-list item.

FLOAT SQL_FLOAT float No

FLOAT SQL_FLOAT + 1 float Yes

NUMERIC SQL_SHORT, SQL_LONG,
SQL_DOUBLE, or
SQL_INT64

short, long, double, or
ISC_INT64

No

NUMERIC SQL_SHORT + 1,
SQL_LONG + 1,
SQL_DOUBLE + 1, or
SQL_INT64 + 1

short, long, double, or
ISC_INT64

Yes

SMALLINT SQL_SHORT short No

SMALLINT SQL_SHORT + 1 short Yes

TIME SQL_TIME ISC_TIME No

TIME SQL_TIME + 1 ISC_TIME Yes

TIMESTAMP SQL_TIMESTAMP ISC_TIMESTAMP No

TIMESTAMP SQL_TIMESTAMP +1 ISC_TIMESTAMP Yes

VARCHAR SQL_VARYING First 2 bytes: short
containing
the length of the character
string.
Remaining bytes: char[]

No

VARCHAR SQL_VARYING + 1 First 2 bytes: short
containing
the length of the character
string.
Remaining bytes: char[]

Yes

Table 13.3 SQL datatypes, macro expressions, and C datatypes (continued)

SQL
datatype Macro expression C datatype or typedef

sqlind
used?
Chapter 13 Using Dynamic SQL 13-13

Understanding the XSQLDA
• Whether sqlind is used to indicate NULL values. If sqlind is used, its value
specifies whether the parameter or select-list item is NULL (–1), or not NULL (0).

For example, if the sqltype field equals SQL_TEXT, the parameter or select-list item
is a CHAR that does not use sqlind to check for a NULL value (because, in theory,
NULL values are not allowed for it). If sqltype equals SQL_TEXT + 1, then sqlind can
be checked to see if the parameter or select-list item is NULL.

Tip The C language expression, sqltype & 1, provides a useful test of whether a
parameter or select-list item can contain a NULL. The expression evaluates to 0 if
the parameter or select-list item cannot contain a NULL, and 1 if the parameter or
select-list item can contain a NULL. The following code fragment demonstrates how
to use the expression:

if (sqltype & 1 == 0)
{
 /* parameter or select-list item that CANNOT contain a NULL
*/
}
else
{
 /* parameter or select-list item CAN contain a NULL */
}

By default, both PREPARE INTO and DESCRIBE return a macro expression of type +
1, so the sqlind should always be examined for NULL values with these statements.

Handling Varying String Datatypes

VARCHAR, CHARACTER VARYING, and NCHAR VARYING datatypes require careful
handling in DSQL. The first two bytes of these datatypes contain string length
information, while the remainder of the data contains the actual bytes of string data
to process.

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these datatypes to fixed length using SQL macro
expressions. For more information about forcing variable-length data to fixed
length for processing, see “Coercing Datatypes”.

Applications can, instead, detect and process variable-length data directly. To do
so, they must extract the first two bytes from the string to determine the byte-length
of the string itself, then read the string, byte-by-byte, into a null-terminated buffer.

NUMERIC and DECIMAL Datatypes

DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER,
DOUBLE PRECISION, or 64-bit integer datatypes, depending on the precision and
scale defined for a column definition that uses these types. To determine how a
13-14 Embedded SQL Guide

Understanding the XSQLDA
DECIMAL or NUMERIC value is actually stored in the database, use isql to examine
the column definition in the table. If NUMERIC is reported, then data is actually
being stored as a 64-bit integer.

When a DECIMAL or NUMERIC value is stored as a SMALLINT or INTEGER, the value
is stored as a whole number. During retrieval in DSQL, the sqlscale field of the
XSQLVAR is set to a negative number that indicates the factor of ten by which the
whole number (returned in sqldata), must be divided in order to produce the
correct NUMERIC or DECIMAL value with its fractional part. If sqlscale is –1, then the
number must be divided by 10, if it is –2, then the number must be divided by 100,
–3 by 1,000, and so forth.

Coercing Datatypes

Sometimes when processing DSQL input parameters and select-list items, it is
desirable or necessary to translate one datatype to another. This process is
referred to as datatype coercion. For example, datatype coercion is often used
when parameters or select-list items are of type VARCHAR. The first two bytes of
VARCHAR data contain string length information, while the remainder of the data is
the string to process. By coercing the data from SQL_VARYING to SQL_TEXT, data
processing can be simplified.

Coercion can only be from one compatible datatype to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

Coercing Character Datatypes
To coerce SQL_VARYING datatypes to SQL_TEXT datatypes, change the sqltype field
in the parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro
datatype constant. For example, the following statement assumes that var is a
pointer to an XSQLVAR structure, and that it contains a SQL_VARYING datatype to
convert to SQL_TEXT:

var->sqltype = SQL_TEXT;

After coercing a character datatype, provide proper storage space for it. The
XSQLVAR field, sqllen, contains information about the size of the uncoerced data.
Set the XSQLVAR sqldata field to the address of the data.

Coercing Numeric Datatypes
To coerce one numeric datatype to another, change the sqltype field in the
parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro
datatype constant. For example, the following statement assumes that var is a
pointer to an XSQLVAR structure, and that it contains a SQL_SHORT datatype to
convert to SQL_LONG:

var->sqltype = SQL_LONG;
Important Do not coerce a larger datatype to a smaller one. Data can be lost in such a

translation.
Chapter 13 Using Dynamic SQL 13-15

Understanding the XSQLDA
Setting a NULL Indicator
If a parameter or select-list item can contain a NULL value, the sqlind field is used
to indicate its NULL status. Appropriate storage space must be allocated for sqlind
before values can be stored there.

On insertion, set sqlind to –1 to indicate that NULL values are legal. Otherwise set
sqlind to 0.

On selection, a sqlind of –1 indicates a field contains a NULL value. Other values
indicate a field contains non-NULL data.

Aligning Numerical Data

Ordinarily, when a variable with a numeric datatype is created, the compiler will
ensure that the variable is stored at a properly aligned address, but when numeric
data is stored in a dynamically allocated buffer space, such as can be pointed to by
the XSQLDA and XSQLVAR structures, the programmer must take precautions to
ensure that the storage space is properly aligned.

Certain platforms, in particular those with RISC processors, require that numeric
data in dynamically allocated storage structures be aligned properly in memory.
Alignment is dependent both on datatype and platform.

For example, a short integer on a Sun SPARCstation must be located at an address
divisible by 2, while a long on the same platform must be located at an address
divisible by 4. In most cases, a data item is properly aligned if the address of its
starting byte is divisible by the correct alignment number. Consult specific system
and compiler documentation for alignment requirements.

A useful rule of thumb is that the size of a datatype is always a valid alignment
number for the datatype. For a given type T, if size of (T) equals n, then addresses
divisible by n are correctly aligned for T. The following macro expression can be
used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))

where ptr is a pointer to char.

The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;
next_aligned = ALIGN(buffer_pointer, sizeof(T));
13-16 Embedded SQL Guide

DSQL Programming Methods
DSQL Programming Methods

There are four possible DSQL programming methods for handling a SQL
statement string. The best method for processing a string depends on the type of
SQL statement in the string, and whether or not it contains placeholders for
parameters. The following decision table explains how to determine the
appropriate processing method for a given string.

Method 1: Non-query Statements Without
Parameters

There are two ways to process a SQL statement string containing a non-query
statement without placeholder parameters:

• Use EXECUTE IMMEDIATE to prepare and execute the string a single time.

• Use PREPARE to parse the statement for execution and assign it a name, then
use EXECUTE to carry out the statement’s actions as many times as required in
an application.

Using EXECUTE IMMEDIATE
1 To execute a statement string a single time, use EXECUTE IMMEDIATE:

2 Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates a SQL
statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET *
1.05";

3 Parse and execute the statement string using EXECUTE IMMEDIATE:

EXEC SQL
EXECUTE IMMEDIATE :str;

Note EXECUTE IMMEDIATE also accepts string literals. For example,

EXEC SQL
EXECUTE IMMEDIATE
'UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05';

Table 13.4 SQL statement strings and recommended processing methods

Is it a
query?

Does it have
placeholders?

Processing method
to use

No No Method 1

No Yes Method 2

Yes No Method 3

Yes Yes Method 4
Chapter 13 Using Dynamic SQL 13-17

DSQL Programming Methods
Using PREPARE and EXECUTE
To execute a statement string several times, use PREPARE and EXECUTE:

1 Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates a SQL
statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET *
1.05";

2 Parse and name the statement string with PREPARE. The name is used in
subsequent calls to EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the parsed statement string.

3 Execute the named statement string using EXECUTE. For example, the following
statement executes a statement string named SQL_STMT:

EXEC SQL
EXECUTE SQL_STMT;

Note PREPARE also accepts string literals. For example,

EXEC SQL
PREPARE SQL_STMT FROM
'UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05';

Once a statement string is prepared, it can be executed as many times as
required in an application.

Method 2: Non-query Statements with Parameters

There are two steps to processing a SQL statement string containing a non-query
statement with placeholder parameters:

1 Creating an input XSQLDA to process a statement string’s parameters.

2 Preparing and executing the statement string with its parameters.

Creating the Input XSQLDA
Placeholder parameters are replaced with actual data before a prepared SQL
statement string is executed. Because those parameters are unknown when the
statement string is created, an input XSQLDA must be created to supply parameter
values at execute time. To prepare the XSQLDA, follow these steps:

1 Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;
13-18 Embedded SQL Guide

DSQL Programming Methods
2 Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3 Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_sqlda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));
In this statement space for 10 XSQLVAR structures is allocated, allowing the
XSQLDA to accommodate up to 10 parameters.

4 Set the version field of the XSQLDA to SQLDA_CURRENT_VERSION, and set the
sqln field to indicate the number of XSQLVAR structures allocated:

in_sqlda_version = SQLDA_CURRENT_VERSION;
in_sqlda->sqln = 10;

Preparing and Executing a Statement String with Parameters
After an XSQLDA is created for holding a statement string’s parameters, the
statement string can be created and prepared. Local variables corresponding to
the placeholder parameters in the string must be assigned to their corresponding
sqldata fields in the XSQLVAR structures.

To prepare and execute a non-query statement string with parameters, follow
these steps:

1 Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates a SQL
statement string with placeholder parameters:

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION =
?";

This statement string contains two parameters: a value to be assigned to the
BUDGET field and a value to be assigned to the LOCATION field.

2 Parse and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3 Use DESCRIBE INPUT to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

EXEC SQL
DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;
Chapter 13 Using Dynamic SQL 13-19

DSQL Programming Methods
4 Compare the value of the sqln field of the XSQLDA to the value of the sqld field to
make sure enough XSQLVARs are allocated to hold information about each
parameter. sqln should be at least as large as sqln. If not, free the storage
previously allocated to the input descriptor, reallocate storage to reflect the
number of parameters specified by sqld, reset sqln and version, then execute
DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)
{

n = in_sqlda->sqld;
free(in_sqlda);
in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
in_sqlda->sqln = n;
in_sqlda->version = SQLDA_CURRENT_VERSION;
EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;
}

5 Process each XSQLVAR parameter structure in the XSQLDA. Processing a
parameter structure involves up to four steps:

• Coercing a parameter’s datatype (optional).

• Allocating local storage for the data pointed to by the sqldata field of the
XSQLVAR. This step is only required if space for local variables is not allocated
until run time. The following example illustrates dynamic allocation of local
variable storage space.

• Providing a value for the parameter consistent with its datatype (required).

• Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each
XSQLVAR structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++,
var++)

{
/* Process each XSQLVAR parameter structure here.
The parameter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop NULL flag for now */
switch(dtype)
{

case SQL_VARYING: /* coerce to SQL_TEXT */
var->sqltype = SQL_TEXT;
/* Allocate local variable storage. */
var->sqldata = (char *)malloc(sizeof(char)*var-

>sqllen);
. . .
break;

case SQL_TEXT:
13-20 Embedded SQL Guide

DSQL Programming Methods
var->sqldata = (char *)malloc(sizeof(char)*var-
>sqllen);

/* Provide a value for the parameter. */
. . .
break;

case SQL_LONG:
var->sqldata = (char *)malloc(sizeof(long));
/* Provide a value for the parameter. */
*(long *)(var->sqldata) = 17;
break;

. . .
} /* End of switch statement. */
if (var->sqltype & 1)
{

/* Allocate variable to hold NULL status. */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* End of for loop. */

For more information about datatype coercion and NULL indicators, see
“Coercing Datatypes”.

6 Execute the named statement string with EXECUTE. Reference the parameters
in the input XSQLDA with the USING SQL DESCRIPTOR clause. For example, the
following statement executes a statement string named SQL_STMT:

EXEC SQL
EXECUTE SQL_STMT USING SQL DESCRIPTOR in_sqlda;

Re-executing the Statement String
Once a non-query statement string with parameters is prepared, it can be
executed as often as required in an application. Before each subsequent
execution, the input XSQLDA can be supplied with new parameter and NULL
indicator data.

To supply new parameter and NULL indicator data for a prepared statement,
repeat steps 3–5 of “Preparing and Executing a Statement String with
Parameters,” in this chapter.

Method 3: Query Statements Without Parameters

There are three steps to processing a SQL query statement string without
parameters:

1 Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

2 Preparing the statement string.

3 Using a cursor to execute the statement and retrieve select-list items from the
output XSQLDA.
Chapter 13 Using Dynamic SQL 13-21

DSQL Programming Methods
Preparing the Output XSQLDA
Most queries return one or more rows of data, referred to as a select-list. Because
the number and kind of items returned are unknown when a statement string is
created, an output XSQLDA must be created to store select-list items that are
returned at run time. To prepare the XSQLDA, follow these steps:

1 Declare a variable to hold the XSQLDA needed to store the column data for each
row that will be fetched. For example, the following declaration creates an
XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2 Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3 Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling the
XSQLDA to accommodate up to 10 select-list items.

4 Set the version field of the XSQLDA to SQLDA_CURRENT_VERSION, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_CURRENT_VERSION;
out_sqlda->sqln = 10;

Preparing a Query Statement String
After an XSQLDA is created for holding the items returned by a query statement
string, the statement string can be created, prepared, and described. When a
statement string is executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1 Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates a SQL
statement string that performs a query:

char *str = "SELECT * FROM CUSTOMER";

The statement appears to have only one select-list item (*). The asterisk is a
wildcard symbol that stands for all of the columns in the table, so the actual
number of items returned equals the number of columns in the table.

2 Parse and name the statement string with PREPARE. The name is used in
subsequent calls to statements such as DESCRIBE and EXECUTE:
13-22 Embedded SQL Guide

DSQL Programming Methods
EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3 Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL
DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

4 Compare the sqln field of the XSQLDA to the sqld field to determine if the output
descriptor can accommodate the number of select-list items specified in the
statement. If not, free the storage previously allocated to the output descriptor,
reallocate storage to reflect the number of select-list items specified by sqld,
reset sqln and version, then execute DESCRIBE OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)
{

n = out_sqlda->sqld;
free(out_sqlda);
out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
out_sqlda->sqln = n;
out_sqlda->version = SQLDA_CURRENT_VERSION;
EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR
out_sqlda;

}

5 Set up an XSQLVAR structure for each item returned. Setting up an item structure
involves the following steps:

• Coercing an item’s datatype (optional).

• Allocating local storage for the data pointed to by the sqldata field of the
XSQLVAR. This step is only required if space for local variables is not allocated
until run time. The following example illustrates dynamic allocation of local
variable storage space.

• Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each
XSQLVAR structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld;
i++, var++)

{
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

case SQL_VARYING:
var->sqltype = SQL_TEXT;
Chapter 13 Using Dynamic SQL 13-23

DSQL Programming Methods
var->sqldata = (char *)malloc(sizeof(char)*var-
>sqllen + 2);

break;
case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var-
>sqllen);

break;
case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));
break;
. . .
/* process remaining types */

} /* end of switch statements */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* end of for loop */

For more information about datatype coercion and NULL indicators, see
“Coercing Datatypes”.

Executing a Statement String Within the Context of a Cursor
To retrieve select-list items from a prepared statement string, the string must be
executed within the context of a cursor. All cursor declarations in InterBase are
fixed, embedded statements inserted into the application before it is compiled.
DSQL application developers must anticipate the need for cursors when writing the
application and declare them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to
process each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of
select-list items, follow these steps:

1 Declare a cursor for the statement string. For example, the following statement
declares a cursor, DYN_CURSOR, for the SQL statement string, SQL_STMT:

EXEC SQL
DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2 Open the cursor:

EXEC SQL
OPEN DYN_CURSOR;

Opening the cursor causes the statement string to be executed, and an active
set of rows to be retrieved. For more information about cursors and active sets,
see “Working with Data.”
13-24 Embedded SQL Guide

DSQL Programming Methods
3 Fetch one row at a time and process the select-list items (columns) it contains.
For example, the following loops retrieve one row at a time from DYN_CURSOR
and process each item in the retrieved row with an application-specific function
(here called process_column()):

while (SQLCODE == 0)
{

EXEC SQL
FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)
break;

for (i = 0; i < out_sqlda->sqld; i++)
{

process_column(out_sqlda->sqlvar[i]);
}

}

The process_column() function mentioned in this example processes each
returned select-list item. The following skeleton code illustrates how such a
function can be set up:

void process_column(XSQLVAR *var)
{

/* test for NULL value */
if ((var->sqltype & 1) && (*(var->sqlind) = -1))
{

/* process the NULL value here */
}
else
{

/* process the data instead */
}

. . .
}

4 When all the rows are fetched, close the cursor:

EXEC SQL
CLOSE DYN_CURSOR;

Re-executing a Query Statement String
Once a query statement string without parameters is prepared, it can be executed
as often as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2–4 of “Executing a
Statement String Within the Context of a Cursor,” in this chapter.

Method 4: Query Statements with Parameters

There are four steps to processing a SQL query statement string with placeholder
parameters:
Chapter 13 Using Dynamic SQL 13-25

DSQL Programming Methods
1 Preparing an input XSQLDA to process a statement string’s parameters.

2 Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

3 Preparing the statement string and its parameters.

4 Using a cursor to execute the statement using input parameter values from an
input XSQLDA, and to retrieve select-list items from the output XSQLDA.

Preparing the Input XSQLDA
Placeholder parameters are replaced with actual data before a prepared SQL
statement string is executed. Because those parameters are unknown when the
statement string is created, an input XSQLDA must be created to supply parameter
values at run time. To prepare the XSQLDA, follow these steps:

1 Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

2 Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3 Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_slqda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement, space for 10 XSQLVAR structures is allocated, allowing the
XSQLDA to accommodate up to 10 input parameters. Once structures are
allocated, assign values to the sqldata field in each XSQLVAR.

4 Set the version field of the XSQLDA to SQLDA_CURRENT_VERSION, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_CURRENT_VERSION;
in_sqlda->sqln = 10;

Preparing the Output XSQLDA
Because the number and kind of items returned are unknown when a statement
string is executed, an output XSQLDA must be created to store select-list items that
are returned at run time. To prepare the XSQLDA, follow these steps:

1 Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;
13-26 Embedded SQL Guide

DSQL Programming Methods
2 Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3 Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling the
XSQLDA to accommodate up to 10 select-list items.

4 Set the version field of the XSQLDA to SQLDA_CURRENT_VERSION, and set the
sqln field of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_CURRENT_VERSION;
out_sqlda->sqln = 10;

Preparing a Query Statement String with Parameters
After an input and an output XSQLDA are created for holding a statement string’s
parameters, and the select-list items returned when the statement is executed, the
statement string can be created and prepared. When a statement string is
prepared, InterBase replaces the placeholder parameters in the string with
information about the actual parameters used. The information about the
parameters must be assigned to the input XSQLDA (and perhaps adjusted) before
the statement can be executed. When the statement string is executed, InterBase
stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1 Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates a SQL
statement string with placeholder parameters:

char *str = "SELECT * FROM DEPARTMENT WHERE BUDGET = ?,
LOCATION = ?";

This statement string contains two parameters: a value to be assigned to the
BUDGET field and a value to be assigned to the LOCATION field.

2 Prepare and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3 Use DESCRIBE INPUT to fill the input XSQLDA with information about the
parameters contained in the SQL statement:
Chapter 13 Using Dynamic SQL 13-27

DSQL Programming Methods
EXEC SQL
DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

4 Compare the sqln field of the XSQLDA to the sqld field to determine if the input
descriptor can accommodate the number of parameters contained in the
statement. If not, free the storage previously allocated to the input descriptor,
reallocate storage to reflect the number of parameters specified by sqld, reset
sqln and version, then execute DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)
{

n = in_sqlda->sqld;
free(in_sqlda);
in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
in_sqlda->sqln = n;
in_sqlda->version = SQLDA_CURRENT_VERSION;
EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;
}

5 Process each XSQLVAR parameter structure in the input XSQLDA. Processing a
parameter structure involves up to four steps:

• Coercing a parameter’s datatype (optional).

• Allocating local storage for the data pointed to by the sqldata field of the
XSQLVAR. This step is only required if space for local variables is not allocated
until run time. The following example illustrates dynamic allocation of local
variable storage space.

• Providing a value for the parameter consistent with its datatype (required).

• Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code
example illustrates these steps, looping through each XSQLVAR structure in the
in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++,
var++)

{
/* Process each XSQLVAR parameter structure here.
The parameter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

case SQL_VARYING: /* coerce to SQL_TEXT */
var->sqltype = SQL_TEXT;
/* allocate proper storage */
var->sqldata = (char *)malloc(sizeof(char)*var-

>sqllen);
13-28 Embedded SQL Guide

DSQL Programming Methods
/* provide a value for the parameter. See case
SQL_LONG */

. . .
break;

case SQL_TEXT:
var->sqldata = (char *)malloc(sizeof(char)*var-

>sqllen);
/* provide a value for the parameter. See case

SQL_LONG */
. . .
break;

case SQL_LONG:
var->sqldata = (char *)malloc(sizeof(long));
/* provide a value for the parameter */
*(long *)(var->sqldata) = 17;
break;

. . .
} /* end of switch statement */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* end of for loop */

For more information about datatype coercion and NULL indicators, see
“Coercing Datatypes”.

6 Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL
DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

7 Compare the sqln field of the XSQLDA to the sqld field to determine if the output
descriptor can accommodate the number of select-list items specified in the
statement. If not, free the storage previously allocated to the output descriptor,
reallocate storage to reflect the number of select-list items specified by sqld,
reset sqln and version, and execute DESCRIBE OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)
{

n = out_sqlda->sqld;
free(out_sqlda);
out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));
out_sqlda->sqln = n;
out_sqlda->version = SQLDA_CURRENT_VERSION;
EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR
out_sqlda;

}

Chapter 13 Using Dynamic SQL 13-29

DSQL Programming Methods
8 Set up an XSQLVAR structure for each item returned. Setting up an item structure
involves the following steps:

• Coercing an item’s datatype (optional).

• Allocating local storage for the data pointed to by the sqldata field of the
XSQLVAR. This step is only required if space for local variables is not allocated
until run time. The following example illustrates dynamic allocation of local
variable storage space.

• Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each
XSQLVAR structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld;
i++, var++)

{
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{

case SQL_VARYING:
var->sqltype = SQL_TEXT;

break;
case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var-
>sqllen);

break;
case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));
break;
/* process remaining types */

} /* end of switch statements */
if (sqltype & 1)
{

/* allocate variable to hold NULL status */
var->sqlind = (short *)malloc(sizeof(short));

}
} /* end of for loop */

For more information about datatype coercion and NULL indicators, see
“Coercing Datatypes”.

Executing a Query Statement String Within the Context of a
Cursor
To retrieve select-list items from a statement string, the string must be executed
within the context of a cursor. All cursor declarations in InterBase are fixed,
embedded statements inserted into the application before it is compiled. DSQL
application developers must anticipate the need for cursors when writing the
application and declare them ahead of time.
13-30 Embedded SQL Guide

DSQL Programming Methods
A looping construct is used to fetch a single row at a time from the cursor and to
process each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of
select-list items, follow these steps:

1 Declare a cursor for the statement string. For example, the following statement
declares a cursor, DYN_CURSOR, for the prepared SQL statement string,
SQL_STMT:

EXEC SQL
DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2 Open the cursor, specifying the input descriptor:

EXEC SQL
OPEN DYN_CURSOR USING SQL DESCRIPTOR in_sqlda;

Opening the cursor causes the statement string to be executed, and an active
set of rows to be retrieved. For more information about cursors and active sets,
see “Working with Data.”

3 Fetch one row at a time and process the select-list items (columns) it contains.
For example, the following loops retrieve one row at a time from DYN_CURSOR
and process each item in the retrieved row with an application-specific function
(here called process_column()):

while (SQLCODE == 0)
{

EXEC SQL
FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)
break;

for (i = 0; i < out_sqlda->sqld; i++)
{

process_column(out_sqlda->sqlvar[i]);
}

}

4 When all the rows are fetched, close the cursor:

EXEC SQL
CLOSE DYN_CURSOR;

Re-executing a Query Statement String with Parameters
Once a query statement string with parameters is prepared, it can be used as often
as required in an application. Before each subsequent use, the input XSQLDA can
be supplied with new parameter and NULL indicator data. The cursor must be
closed and reopened before processing can occur.

To provide new parameters to the input XSQLDA, follow steps 3–5 of “Preparing a
Query Statement String with Parameters,” in this chapter.
Chapter 13 Using Dynamic SQL 13-31

DSQL Programming Methods
To provide new information to the output XSQLDA, follow steps 6–8 of “Preparing a
Query Statement String with Parameters,” in this chapter.

To reopen a cursor and process select-list items, repeat steps 2–4 of “Executing a
Query Statement String Within the Context of a Cursor,” in this chapter.
13-32 Embedded SQL Guide

C h a p t e r

Chapter 14Preprocessing,
Compiling, and Linking

This chapter describes how to preprocess a program by using gpre, and how to
compile and link it for execution.

The gpre preprocessor is included when you purchase a server license. It is
certified only on C/C++, although it works with a number of other languages.

Preprocessing

After coding a SQL or dynamic SQL (DSQL) program, the program must be
preprocessed with gpre before it can be compiled. gpre translates SQL and DSQL
commands into statements the host-language compiler accepts by generating
InterBase library function calls. gpre translates SQL and DSQL database variables
into ones the host-language compiler accepts and declares these variables in
host-language format. gpre also declares certain variables and data structures
required by SQL, such as the SQLCODE variable and the extended SQL
descriptor area (XSQLDA) used by DSQL.

Using gpre

The syntax for gpre is:

gpre [-language] [-options] infile [outfile]

The infile argument specifies the name of the input file.

The optional outfile argument specifies the name of the output file. If no file is
specified, gpre sends its output to a file with the same name as the input file, with
an extension depending on the language of the input file.
Chapter 14 Preprocessing, Compiling, and Linking 14-1

Preprocessing
gpre has switches that allow you to specify the language of the source program
and a number of other options. You can place the switches either before or after
the input and output file specification. Each switch must include at least a hyphen
preceded by a space and a unique character specifying the switch.

Language Switches
The language switch specifies the language of the source program. C and C++ are
languages available on all platforms. The switches are shown in the following
table:

In addition, some platforms support other languages if an additional InterBase
license for the language is purchased. The following table lists the available
languages and the corresponding switches:

For example, to preprocess a C program called census.e, type:

gpre -c census.e

Table 14.1 gpre language switches available on all platforms

Switch Language

-c C

-cxx C++

Table 14.2 Additional gpre language switches

Switch Language

-al[sys] Ada (Alsys)

-a[da] Ada (VERDIX, VMS, Telesoft)

-ansi ANSI-85 COBOL

-co[bol] COBOL

-f[ortran] FORTRAN

-pa[scal] Pascal
14-2 Embedded SQL Guide

Preprocessing
Option Switches
The option switches specify preprocessing options. The following table describes
the available switches:

Table 14.3 gpre option switches

Switch Description

-charset name Determines the active character set at compile time,
where name is the character set name.

-d[atabase] filename Declares a database for programs. filename is the file
name of the database to access. Use this option if a
program contains SQL statements and does not attach to
the database itself. Do not use this option if the program
includes a database declaration.

-d_float VAX/VMS only. Specifies that double-precision data will
be passed from the application in D_FLOAT format and
stored in the database in G_FLOAT format. Data
comparisons within the database will be performed in
G_FLOAT format. Data returned to the application from
the database will be in D_FLOAT format.

-e[ither_case] Enables gpre to recognize both uppercase and lowercase.
Use the -either_case switch whenever SQL keywords
appear in code in lowercase letters. If case is mixed, and
this switch is not used, gpre cannot process the input file.
This switch is not
necessary with languages other than C, since they are
case-insensitive.

-m[anual] Suppresses the automatic generation of transactions. Use
the
-m switch for SQL programs that perform their own
transaction handling, and for all DSQL programs that
must, by definition, explicitly control their own
transactions.

-n[o_lines] Suppresses line numbers for C programs.

-o[utput] Directs gpre’s output to standard output, rather than to a
file.

-password password Specifies password, the database password, if the
program connects to a database that requires one.

-r[aw] Prints BLR as raw numbers, rather than as their
mnemonic equivalents. This option cam be useful for
making the gpre output file smaller; however, it will be
unreadable.

-sql_dialect Sets the SQL dialect. Valid values are 1, 2, and 3.
Chapter 14 Preprocessing, Compiling, and Linking 14-3

Preprocessing
For sites with the appropriate license and are using a language other than C,
additional gpre options can be specified, as described in the following table:

Examples
The following command preprocesses a C program in a file named appl1.e. The
output file will be appl1.c. Since no database is specified, the source code must
connect to the database.

gpre -c appl1

The following command is the same as the previous, except that it does not
assume the source code opens a database, instead, explicitly declaring the
database, mydb.ib:

gpre -c appl1 -d mydb.ib

Setting gpre Client Dialect

By default, gpre takes on the dialect of the database to which it is connected. This
enables gpre to parse older source files without modification. You can set gpre to
operate as a client in a different dialect in these ways:

Start gpre with option -sql_dialect n, where n is 1, 2, or 3:

gpre -sql_dialect n

Specify dialect within the source, for example:

EXEC SQL
SET SQL DIALECT n

-user username Specifies username, the database user name, if the
program connects to a database that requires one.

-x handle Gives the database handle identified with the -database
option an external declaration. This option directs the
program to pick up a global declaration from another
linked module. Use only if the -d switch is also used.

-z Prints the version number of gpre and the version number
of all declared databases. These databases can be
declared either in the program or with the -database
switch.

Table 14.4 Language-specific gpre option switches

Switch Description

-h[andles] pkg Specifies, pkg, an Ada handles package.

Table 14.3 gpre option switches (continued)

Switch Description
14-4 Embedded SQL Guide

Preprocessing
gpre dialect precedence is as follows:

• lowest - dialect of an attached database

• middle - dialect specified on the command line

• highest - dialect specified in the source

Using a File Extension to Specify Language

In addition to using a language switch to specify the host language, it is also
possible to indicate the host language with the file-name extension of the source
file. The following table lists the file-name extensions for each language that gpre
supports and the default extension of the output file:

For example, to preprocess a COBOL program called census.ecob, type:

gpre census_report.ecob

This generates an output file called census.cob.

When specifying a file-name extension, it is possible to specify a language switch
as well:

gpre -cob census.ecob

Specifying the Source File

Because both the language switch and the filename extension are optional, gpre
can encounter three different situations:

• A language switch and input file with no extension

• No language switch, but an input file with extension

• Neither a language switch, nor a file extension

Table 14.5 File extensions for language specification

Language
Input file
extension

Default output file
extension

Ada (VERDIX) ea a

Ada (Alsys, Telesoft) eada ada

C e c

C++ exx cxx

COBOL ecob cob

FORTRAN ef f

Pascal epas pas
Chapter 14 Preprocessing, Compiling, and Linking 14-5

Preprocessing
This section describes gpre’s behavior in each of these cases.

Language Switch and No Input File Extension
If gpre encounters a language switch, but the specified input file has no extension,
it does the following:

1 It looks for the input file without an extension. If gpre finds the file, it processes it
and generates an output file with the appropriate extension.

If gpre does not find the input file, it looks for the file with the extension that
corresponds to the indicated language. If it finds such a file, it generates an output file
with the appropriate extension.

2 If gpre cannot find either the named file or the named file with the appropriate
extension, it returns the following error:

gpre: can’t open filename or filename.extension

filename is the file specified in the gpre command. extension is the language-specific
file extension for the specified program.

An Example
Suppose the following command is issued:

gpre -c census

gpre performs the following sequence of actions:

1 It looks for a file called census without an extension. If it finds the file, it
processes it and generates census.c.

2 If it cannot find census, it looks for a file called census.e. If it finds census.e, it
processes the file and generates census.c.

3 If it cannot find census or census.e, it returns this error:

gpre: can’t open census or census.e

An Input File with Extension by No Language Switch
If a language switch is not specified, but the input file includes a file-name
extension, gpre looks for the specified file and assumes the language is indicated
by the extension.

For example, suppose the following command is processed:

gpre census.e

gpre looks for a file called census.e. If gpre finds this file, it processes it as a C
program and generates an output file called census.c. If gpre does not find this file,
it returns the following error:

gpre: can’t open census.e
14-6 Embedded SQL Guide

Compiling and Linking
Neither a Language Switch Nor a File Extension
If gpre finds neither a language extension nor a filename extension, it looks for a
file in the following order:

1 filename.e (C)

2 filename.epas (Pascal)

3 filename.ef (FORTRAN)

4 filename.ecob (COBOL)

5 filename.ea (VERDIX Ada)

6 filename.eada (Alsys, and Telesoft Ada)

If gpre finds such a file, it generates an output file with the appropriate extension. If
gpre does not find the file, it returns the following error:

gpre: can’t find filename with any known extension. Giving
up.

Compiling and Linking

After preprocessing a program, it must be compiled and linked. Compiling creates
an object module from the preprocessed source file. Use a host-language compiler
to compile the program. The linking process resolves external references and
creates an executable object. Use the tools available on a given platform to link a
program’s object module to other object modules and libraries, based on the
platform, operating system and host language used.

These steps apply whether the code is output from the gpre embedded SQL
preprocessor, or the code was created using the InterBase API. Link applications
only with the shared GDS library.

Microsoft Windows

If possible, use an IDE to create a project for your applications on Windows,
instead of using command-line compilation.

C++ Builder
bcc32 -a4 -tWM -tWC -I<InterBase_home>\SDK\include
application.c

-eapplication.exe <InterBase_home>\SDK\lib\gds32.lib

C and C++ Microsoft Visual C++
cl -W3 -G4 -Gd -MD -I<InterBase_home>\SDK\include
application.c

<InterBase_home>\SDK\lib\gds32_ms.lib /Feapplication.exe
Chapter 14 Preprocessing, Compiling, and Linking 14-7

Compiling and Linking
Solaris

C SPARCWorks 4.2
cc -mt -w -I/usr/interbase/include -c application.c
cc -mt application.o -o application -lgdsmt

-lsocket -lthread -lsnl -ldl

C++ SPARCWorks 4.2
CC -mt -w -I/usr/interbase/include -c application.C
CC -mt application.o -o application -lgdsmt

-lsocket -lthread -lsnl -ldl

Compiling an Ada Program

Before compiling an Ada program, be sure the Ada library contains the package
InterBase.ada (or InterBase.a for VERDIX Ada). This package is in the InterBase
include directory.

To use the programs in the InterBase examples directory, use the package
basic_io.ada (or basic_io.a for VERDIX Ada), also located in the examples
directory.

Linking on UNIX

On Unix platforms, programs can be linked to the following libraries:

• A library that uses pipes, obtained with the -lgds option. This library yields faster
links and smaller images. It also lets your application work with new versions of
InterBase automatically when they are installed.

• A library that does not use pipes, obtained with the -lgds_b option. This library
has faster execution, but binds an application to a specific version of InterBase.
When installing a new version of InterBase, programs must be relinked to use
the new features or databases created with that version.

Under SunOS-4, programs can be linked to a shareable library by using the
-lgdslib option. This creates a dynamic link at run time and yields smaller images
with the execution speed of the full library. This option also provides the ability to
upgrade InterBase versions automatically.

For specific information about linking options for InterBase on a particular platform,
consult the online readme in the InterBase directory.
14-8 Embedded SQL Guide

Compiling and Linking
Chapter 14 Preprocessing, Compiling, and Linking 14-9

Compiling and Linking
14-10 Embedded SQL Guide

Index
Symbols
[] (brackets), arrays 2, 4–5
* (asterisk), in code 21
* operator 6
/ operator 6
+ operator 6
|| operator 6
– operator 6

A
access mode parameter 9

default transactions 3
access privileges See security
accessing

arrays 3–9
Blob data 11
data 5, 10, 13

actions See events
active database 11
Ada programs 8
adding

See also inserting
columns 15

addition operator (+) 6
aggregate functions 22

arrays and 4
NULL values 22

alerter (events) 2
aliases

database 2
tables 26

ALIGN macro 16
ALL keyword 13
ALL operator 8, 13
allocating memory 12
ALTER INDEX 18–19
ALTER TABLE 14–17

ADD option 15
DROP option 15

altering
column definitions 16
metadata 13–19
views 14, 17

AND operator 7
ANY operator 9, 13
API calls for Blob data 11
appending tables 34
applications 1

See also DSQL applications

building 4
event handling 1–5
porting 2, 7
preprocessing See gpre

arithmetic expressions 8
arithmetic functions See aggregate functions
arithmetic operators 6–7

precedence 6, 16
array elements 5

defined 1
evaluating 8
porting 2
retrieving 5

array IDs 4
array slices 5–7

adding data 3
defined 3
updating data 7

arrays 3
See also error status array
accessing 3–9
aggregate functions 4
creating 1–3
cursors 4, 7
DSQL applications and 3
inserting data 5
multi-dimensional 2, 6
referencing 4
search conditions 8
selecting data 4–7
storing data 1
subscripts 2–3, 8
UDFs and 3
updating 7
views and 4

ASC keyword 30
ascending sort order 11, 30
asterisk (*), in code 21
attaching to databases 6, 6

multiple 3, 8–11
averages 22

B
BASED ON 3–4

arrays and 5
basic_io.a 8
basic_io.ada 8
BEGIN DECLARE SECTION 3
BETWEEN operator 9

NOT operator and 9
binary large objects See Blob
Blob API functions 11
Blob data 5–21
I n d e x i-i

deleting 10
filtering 11–21
inserting 7–9
selecting 5–7
storing 2–3
updating 9–10

BLOB datatype
description 2
processing 3

Blob filter function 14
action macro definitions 18–20
return values 20–21

Blob filters 11–21
external 12

declaring 12
writing 14

invoking 13
text 12
types 14

Blob segments 3–5
Blob subtypes 2
Boolean expressions 27

evaluating 7
Borland C/C++ See C language
brackets ([]), arrays 2, 4–5
buffers

database cache 12–13
byte-matching rules 12

C
C language

character variables 3
host terminator 7
host-language variables 2–5

cache buffers 12–13
CACHE keyword 12
calculations 6, 22
case-insensitive comparisons 9
case-sensitive comparisons 11–12
CAST() 17, 7
CHAR datatype

converting to DATE 7
description 2

CHAR VARYING keyword 3
CHARACTER keyword 2
character sets

converting 12
default 4
NONE 4
specifying 6, 4

character strings
comparing 9, 11–12
literal file names 8–9

CHARACTER VARYING keyword 3
closing

databases 8, 3, 14–15
multiple 3

transactions 7–8
coercing datatypes 15
COLLATE clause 28
collation orders

GROUP BY clause 31
ORDER BY clause 30
WHERE clause 29

column names
qualifying 23
views 8

column-major order 2
columns

adding 15
altering 16
computed 7, 15
creating 5
defining

views 8
dropping 15
selecting 21–23

eliminating duplicates 21
sorting by 30
using domains 4
values, returning 22

COMMIT 8, 15, 1, 20–23
multiple databases 3

comparison operators 8–15
NULL values and 8, 14
precedence 16
subqueries 8, 11–15

COMPILETIME keyword 4
compiling

programs 7–8
computed columns

creating 7, 15
defined 7

concatenation operator (||) 6
CONNECT 6, 1, 6–13

ALL option 13
CACHE option 12
error handling 11
multiple databases 8–11
omitting 6
SET DATABASE and 7

constraints 5, 12–15
See also specific constraints
optional 6

CONTAINING operator 9
NOT operator and 10

conversion functions 17–19, 7
I n d e x i-ii

converting
datatypes 17
date and time datatypes 8
dates 1–11
international character sets 12

CREATE DATABASE 3–4
in DSQL 4
specifying character sets 4

CREATE DOMAIN 4–5
arrays 1

CREATE GENERATOR 11
CREATE INDEX 10–11

DESCENDING option 11
UNIQUE option 10

CREATE PROCEDURE 2
CREATE TABLE 5–8

arrays 1
multiple tables 6

CREATE VIEW 8–10
WITH CHECK OPTION 10

creating
arrays 1–3
columns 5
computed columns 7, 15
integrity constraints 5
metadata 2–11

CURRENT_DATE 2
CURRENT_TIME 2
CURRENT_TIMESTAMP 2
cursors 37

arrays 4, 7
multiple transaction programs 25
select procedures 4

D
data 1

accessing 5, 10, 13
DSQL applications 5, 11
host-language variables and 2

changes
committing See COMMIT
rolling back See ROLLBACK

defining 1
protecting See security
retrieving

optimizing 35, 1
selecting 10, 4, 19

multiple tables 23, 25
storing 1

data structures
host-language 4

database cache buffers 12–13
database handles 5, 2, 7

DSQL applications 9, 11
global 5
multiple databases 2–4, 9
naming 2
scope 5
transactions and 2, 13

database specification parameter 1, 8
databases

attaching to 6, 6
multiple 3, 8–11

closing 8, 3, 14–15
creating 3–4
declaring multiple 5–6, 2–5
DSQL and attaching 2
initializing 5–7
naming 7
opening 1, 6, 8
remote 3

datatypes 2–3
coercing 15
compatible 18
converting 17
DSQL applications 14–16
macro constants 12–14

DATE datatype
converting 7–8
description 2, 1

date literals 5, 10
dates

converting 1–12
formatting 4
inserting 6
selecting 3–4
selecting from tables 1
updating 7

DECIMAL datatype 2
declarations, changing scope 5
DECLARE CURSOR 25
DECLARE TABLE 7
declaring

Blob filters 12
host-language variables 2–5
multiple databases 5–6, 2–5
one database only 6, 1
SQLCODE variable 7
transaction names 6
XSQLDAs 9–10

default character set 4
default transactions

access mode parameter 3
default behavior 3
DSQL applications 4
isolation level parameter 3
lock resolution parameter 3
I n d e x i-iii

rolling back 8
starting 2–4

deleting See dropping
delimited identifiers 3
DESC keyword 30
DESCENDING keyword 11
descending sort order 11, 30
detaching from databases 3, 14
dialect 4
directories

specifying 2
dirty reads 11
DISCONNECT 9, 14

multiple databases 3, 14
DISTINCT keyword 21
division operator (/) 6
domains

creating 4–5
DOUBLE PRECISION datatype 2
DROP INDEX 12
DROP TABLE 13
DROP VIEW 12
dropping

columns 15
metadata 12–13

DSQL
CREATE DATABASE 4
limitations 2
macro constants 12–14
programming methods 17–32
requirements 9–10

DSQL applications 1, 1
accessing data 5, 11
arrays and 3
attaching to databases 2
creating databases 4
data definition statements 1
database handles 9, 11
datatypes 14–16
default transactions 4
executing stored procedures 5
multiple transactions 27
porting 2
preprocessing 12, 3, 1
programming requirements 9–12
SQL statements, embedded 11
transaction names 9–12
transactions 10
writing 5
XSQLDAs 7–16

DSQL limitations 10–12
DSQL statements 1
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
END DECLARE SECTION 3
error codes and messages 7, 11

capturing 9–11
displaying 8

error status array 7, 11
error-handling routines 11, 1, 7

changing 3
disabling 7
guidelines 6–7
nesting 7
testing SQLCODE directly 4–5
WHENEVER and 2–5

errors 7
run-time

recovering from 1
trapping 2, 4, 11
unexpected 7
user-defined See exceptions

ESCAPE keyword 11
EVENT INIT 2

multiple events 3
EVENT WAIT 4
events 1–5

See also triggers
alerter 2
defined 1
manager 1
multiple 3–5
notifying applications 2–3
posting 2
responding to 5

executable objects 7
executable procedures 2, 4–6

DSQL 5
input parameters 4–6

EXECUTE 9, 12
EXECUTE IMMEDIATE 9, 12, 28
EXECUTE PROCEDURE 4
EXISTS operator 9, 14

NOT operator and 14
expression-based columns See computed columns
expressions 27

evaluating 7
extended SQL descriptor areas See XSQLDAs
EXTERN keyword 5
EXTRACT() 2

F
file names, specifying 8–9
files

See also specific files
I n d e x i-iv

source, specifying 5
FLOAT datatype 2
FOR UPDATE

in select statements 20
FROM

in select statements 20
FROM keyword 24–26
functions

aggregate 22
conversion 17–19, 7
error-handling 7
numeric 11
user-defined See UDFs

G
GEN_ID() 11
generators

creating 11
defined 11

global column definitions 4
global database handles 5
gpre 12, 28, 1–7

client dialect, specifying 4
command-line options 3–4
databases, specifying 4
DSQL applications 3
handling transactions 3
language options 2

file names vs. 5–7
-m switch 3, 2
programming requirements 1
specifying source files 5
-sqlda old switch 10
syntax 1

group aggregates 31
GROUP BY

in select statements 20
grouping rows 31

restrictions 32

H
hard-coded strings

file names 8–9
HAVING

in select statements 20
HAVING keyword 32
header files See ibase.h
host languages 7

data structures 4
host-language variables 8

arrays 8
declaring 2–5
specifying 24

hosts, specifying 2

I
I/O See input, output
ibase.h 10, 12
identifiers 2

database handles 2
databases 7
views 8

IN operator 10
NOT operator and 10

INDEX keyword 35
indexes

altering 14, 18–19
creating 10–11
dropping 12
preventing duplicate entries 10
primary keys 11
sort order 11

changing 19
system-defined 10
unique 10

INDICATOR keyword 5
indicator variables 5

NULL values 5
initializing

databases 5–7
transaction names 6

input parameters 3–6
See also stored procedures

INSERT 18
arrays 5
statement 4

inserting
See also adding
Blob data 7–9
dates 6

INTEGER datatype 3
integrity constraints 5

See also specific type
optional 6

Interactive SQL See isql
interbase.a 8
interbase.ada 8
international character sets 12
INTO

in select statements 20
INTO keyword 24, 36
IS NULL operator 12

NOT operator and 12
isc_blob_ctl 16

field descriptions 17
isc_blob_default_desc() 11
I n d e x i-v

isc_blob_gen_bpb() 11
isc_blob_info() 11
isc_blob_lookup_desc() 11
isc_blob_set_desc() 11
isc_cancel_blob() 11
isc_close_blob() 11
isc_create_blob2() 11
isc_decode_date() 4
isc_decode_sql_date() 1
isc_decode_sql_time() 1
isc_decode_timestamp() 1
isc_encode_date() 6
isc_encode_sql_date() 1
isc_encode_sql_time() 1
isc_encode_timestamp() 1
isc_get_segment() 11
isc_interprete() 9–11
isc_open_blob2() 11
isc_put_segment() 11
ISC_QUAD structure 3–6
isc_sql_interprete() 9–10
isc_status 7, 11
ISC_TIMESTAMP 3
isolation level parameter 1, 8–9

default transactions 3

J
JOIN keyword 35
joins 26

K
key constraints See FOREIGN KEY constraints;

PRIMARY KEY constraints
keys

primary 11

L
language options (gpre) 2

file names vs. 5–7
libraries

dynamic link See DLLs
Unix platforms 8

LIKE operator 11
NOT operator and 12

limbo transactions 7
linking

programs 7–8
literal strings, file names 8–9
literal symbols 11
lock resolution parameter 1, 8, 15

default transactions 3
logical operators 7

precedence 7, 17
loops See repetitive statements
lost updates 11

M
-m switch 3
macro constants 12–14
mathematical operators 6–7

precedence 6, 16
maximum values 22
memory

allocating 12
metadata 1

altering 13–19
creating 2–11
dropping 12–13

failing 14
name length 2

Microsoft C/C++ See C language
minimum values 22
modifying See altering;updating
modules

object 7
multi-column sorts 30
multi-dimensional arrays

creating 2
selecting data 6

multi-module programs 5
multiple databases

attaching to 3, 8–11
closing 3
database handles 2–4, 9
declaring 5–6, 2–5
detaching 3, 14
opening 8
transactions 13

multiple tables
creating 6
selecting data 23, 25

multiple transactions 23
DSQL applications 27
running ??–29

multiplication operator (*) 6
multi-row selects 24, 36–44

N
named transactions 2, 18

starting 4–5
names

column 8, 23
qualifying 2–3, 13

in SELECT statements 23
specifying at run time 8
I n d e x i-vi

naming
database handles 2
databases 7
metadata name length 2
transactions 5–7
views 8

NATURAL keyword 35
NO RECORD_VERSION 8
NO WAIT 8, 16
NONE character set option 4
non-reproducible reads 11
NOT operator 7

BETWEEN operator and 9
CONTAINING operator and 10
EXISTS operator and 14
IN operator and 10
IS NULL operator and 12
LIKE operator and 12
SINGULAR operator and 15
STARTING WITH operator and 13

NOW 5
NOW date literal 10
NULL values

aggregate functions 22
arrays and 4
comparisons 8, 14
indicator variables 5

numbers
generating 11

NUMERIC datatype 3
converting to DATE 7

numeric function 11
numeric values See values

O
object modules 7
opening

databases 1, 6, 8
multiple 8

operators
arithmetic 6–7
comparison 8–15
concatenation 6
logical 7
precedence 15–17

changing 17
string 6

optimizing
data retrieval 35, 1

OR operator 7
ORDER BY

in select statements 20
ORDER keyword 35

order of evaluation (operators) 15–17
changing 17

output parameters
See also stored procedures

P
parameters

access mode 3, 9
database specification 1, 8, 17
isolation level 1, 3, 8–9
lock resolution 1, 3, 8, 15
table reservation 1, 8, 17
unknown 5

phantom rows 11
PLAN

in select statements 20
PLAN keyword 35
porting

applications 2, 7
arrays 2

POST_EVENT 2
precedence of operators 15–17

changing 17
PREPARE 9, 28
preprocessor See gpre
PRIMARY KEY constraints 10
primary keys 11
privileges See security
procedures See stored procedures
programming

DSQL applications 9–12
gpre 1

programs, compiling and linking 7–8
projection (defined) 19
PROTECTED READ 17
PROTECTED WRITE 17
protecting data See security

Q
qualify (defined) 2, 13
queries 10, 19

See also SQL
eliminating duplicate columns 21
grouping rows 31
multi-column sorts 30
restricting row selection 26, 32
search conditions 4–15, 27–29

arrays and 8
combining simple 7
reversing 7

selecting multiple rows 24, 36–44
selecting single rows 36
sorting rows 29
I n d e x i-vii

specific tables 24–26
with joins 26, 35

query optimizer 35

R
READ COMMITTED 8, 10, 12
read-only views 9
RECORD_VERSION 8
remote databases 3
RESERVING clause 8, 16

table reservation options 17
result tables 37

See also joins
ROLLBACK 8, 15, 1, 20, 24

multiple databases 3
rollbacks 8
routines 2

See also error-handling routines
row-major order 2
rows

counting 22
grouping 31

restrictions 32
selecting 26

multiple 24, 36–44
single 36

sorting 29
run-time errors

recovering from 1
RUNTIME keyword 4

S
scope

changing 5
database handles 5
WHENEVER 3

search conditions (queries) 4–15, 27–29
arrays and 8
combining simple 7
reversing 7

SELECT 4–15, 19–36, 3
arrays 4–7
CREATE VIEW and 8–9
DISTINCT option 21
FROM clause 24–26
GROUP BY clause 31–32

collation order 31
HAVING clause 32
in select statements 20
INTO option 24, 36
list of clauses 20
ORDER BY clause 29

collation order 30

PLAN clause 35
TRANSACTION option 23
WHERE clause 4–18, 26–29, 36

ALL operator 13
ANY operator 13
BETWEEN operator 9
CAST option 17, 7
collation order 29
CONTAINING operator 10
EXISTS operator 14
IN operator 10
IS NULL operator 12
LIKE operator 11
SINGULAR operator 14
SOME operator 13
STARTING WITH operator 12

select procedures 2–4
calling 3
cursors 4
input parameters 3
selecting 24
tables vs. 3
views vs. 3

SELECT statements
as subqueries 5
singleton SELECTs 19, 24, 36

selecting
Blob data 5–7
columns 21–23
data 10, 4, 19

See also SELECT
dates 3–4
multiple rows 24, 36–44
single rows 36
views 24

SET DATABASE 5–6, 1
COMPILETIME option 4
CONNECT and 7
DSQL applications 11
EXTERN option 5
multiple databases and 3, 9
omitting 6, 9
RUNTIME option 4
STATIC option 5

SET NAMES 1
SET TRANSACTION 1, 3, 7–18

access mode parameter 1
parameters 8
syntax 8

SHARED READ 17
SHARED WRITE 17
singleton SELECTs 19, 24

defined 36
SINGULAR operator 9, 14
I n d e x i-viii

NOT operator and 15
SMALLINT datatype 3
SNAPSHOT 8, 10, 12
SNAPSHOT TABLE STABILITY 8, 10, 15
SOME operator 9, 13
SORT MERGE keywords 35
sort order

ascending 11, 30
descending 11, 30
indexes 11, 19
queries 30
sticky 30

sorting
multiple columns 30
rows 29

source files 5
specifying

character sets 6, 4
directories 2
file names 8–9
host-language variables 24
hosts 2

SQL dialect 4
SQL statements

DSQL applications 11
strings 6

SQLCODE variable
declaring 7
examining 1
return values 1, 7, 11

displaying 8
testing 4–5

SQLDAs 10
porting applications and 2

starting default transactions 2–4
STARTING WITH operator 12

NOT operator and 13
statements

See also DSQL statements; SQL statements
data definition 1
data structures and 4
embedded 7, 1
error-handling 7
transaction management 1–2

STATIC keyword 5
status array See error status array
sticky sort order 30
stored procedures 1–1

defined 1
return values 2, 5
values 2, 5
XSQLDAs and 5

string operator (||) 6
subqueries

comparison operators 8, 11–15
defined 52

subscripts (arrays) 2–3, 8
subtraction operator (-) 6
SunOS-4 platforms 8
system tables 3
system-defined indexes 10

T
table names

aliases 26
duplicating 6
identical 2–3, 13

table reservation parameter 1, 8
tables

altering 14–17
appending with UNION 34
creating 5–8

multiple 6
declaring 7
dropping 13
qualifying 2–3, 13
querying specific 24–26
select procedures vs. 3

TIME datatype 3
converting 7–8

time structures 3
time.h 3
times

converting 12
inserting 6
selecting from tables 1
updating 7

TIMESTAMP datatype 3
converting 7–8

TODAY 5
TODAY date literal 10
TOMORROW 5
totals, calculating 22
TRANSACTION keyword 23
transaction management statements 1–2
transaction names 4, 3

declaring 6
DSQL applications 9–12
initializing 6
multi-table SELECTs 23

transactions 2
accessing data 13
closing 7–8
committing 8
database handles and 2, 13
default 2–4

rolling back 8
I n d e x i-ix

DSQL applications 10
ending 20
multiple databases 13
named 2, 18

starting 4–5
naming 5–7
rolling back 8
running multiple ??–29, 23
unnamed 8

trapping
errors 2, 4, 11

triggers 1

U
UDFs

arrays and 3
unexpected errors 7
UNION

appending tables 34
in SELECT statements 20

unique indexes 11
UNIQUE keyword 10
unique values 11
Unix platforms 8
unknown values, testing for 12
unrecoverable errors 7
updatable views 9
UPDATE

arrays 7
data 61
dates and times 7
statement 4

update side effects 11
updating

See also altering
updating Blob data 9–10
UPPER() 18
user-defined functions See UDFs
USING clause 8, 17

V
values

See also NULL values
comparing 8
manipulating 6
matching 10, 13
maximum 22
minimum 22
selecting 22
stored procedures 2, 5
unique 11
unknown, testing for 12

VARCHAR datatype 3
variables

host-language 8
arrays 8
declaring 2–5
specifying 24

indicator 5
views 8

altering 14, 17
arrays and 4
creating 8–10
defining columns 8
dropping 12
naming 8
read-only 9
select procedures vs. 3
selecting 24
updatable 9

virtual tables 8

W
WAIT 8, 15
WHENEVER 2–5

embedding 3
limitations 4
scope 3

WHERE
in select statements 20

WHERE clause
in an UPDATE statement 61

WHERE clause See SELECT
WHERE keyword 26
wildcards in string comparisons 11
writing external Blob filters 14

X
XSQLDA_LENGTH macro 11
XSQLDAs 7–16

declaring 9–10
fields 9
input descriptors 11
output descriptors 11
porting applications and 2
stored procedures and 5
structures 10

XSQLVAR structure 7
fields 9

Y
YESTERDAY 5
I n d e x i-x

	Contents
	Tables
	Figures
	Using the Embedded SQL Guide
	Who Should Use this Guide
	Topics Covered in this Guide

	Application Requirements
	Requirements for All Applications
	Porting Considerations for SQL
	Porting Considerations for DSQL
	Declaring Host Variables
	Section Declarations
	Using BASED ON to Declare Variables
	Host-language Data Structures

	Declaring and Initializing Databases
	Using SET DATABASE
	Using CONNECT
	Working with a Single Database

	SQL Statements
	Error Handling and Recovery
	Closing Transactions
	Accepting Changes
	Undoing Changes

	Closing Databases
	DSQL Requirements
	Declaring an XSQLDA

	DSQL Limitations
	Using Database Handles
	Using the Active Database
	Using Transaction Names

	Preprocessing Programs

	Working with Databases
	Declaring a Database
	Declaring Multiple Databases
	Using Handles for Table Names
	Using Handles with Operations

	Preprocessing and Run Time Databases
	Using the COMPILETIME Clause
	Using the RUNTIME Clause

	Controlling SET DATABASE Scope

	Specifying a Connection Character Set
	Opening a Database
	Using simple CONNECT Statements
	Using a Database Handle
	Using Strings or host-language Variables
	Using a Hard-coded Database Names

	Additional CONNECT Syntax
	Attaching to Multiple Databases
	Handling CONNECT Errors
	Setting Database Cache Buffers
	Setting Individual Database Buffers
	Specifying Buffers for All Databases

	Accessing an Open Database
	Differentiating Table Names
	Closing a Database
	With DISCONNECT
	With COMMIT and ROLLBACK

	Working with Transactions
	Starting the Default Transaction
	Starting Without SET TRANSACTION
	Starting With SET TRANSACTION

	Starting a Named Transaction
	Naming Transactions
	Declaring Transaction Names
	Initializing Transaction Names

	Specifying SET TRANSACTION Behavior
	Access Mode
	Isolation Level
	Lock Resolution
	RESERVING Clause
	USING Clause

	Using Transaction Names in Data Statements
	Ending a Transaction
	Using COMMIT
	Specifying Transaction Names
	Committing Without Freeing a Transaction

	Using ROLLBACK

	Working with Multiple Transactions
	The Default Transaction
	Using Cursors
	A Multi-transaction Example

	Working with Multiple Transactions in DSQL
	Modifying Transaction Behavior with “?”

	Working with Data Definition Statements
	Creating Metadata
	Metadata Names
	Name Length
	Delimited Identifiers

	Creating a Database
	Optional Parameters
	Specifying a Default Character Set

	Creating a Domain
	Creating a Table
	Creating a Computed Column
	Declaring and Creating a Table

	Creating a View
	Creating a View for SELECT
	Creating a View for update

	Creating an Index
	Preventing Duplicate Index Entries
	Specifying Index Sort Order

	Creating Generators

	Dropping Metadata
	Dropping an Index
	Dropping a View
	Dropping a Table

	Altering Metadata
	Altering a Table
	Adding a New Column to a Table
	Dropping an Existing Column
	Modifying a Column

	Altering a View
	Altering an Index

	Working with Data
	Supported Datatypes
	Understanding SQL Expressions
	Using the String Operator in Expressions
	Using Arithmetic Operators in Expressions
	Using Logical Operators in Expressions
	Using Comparison Operators in Expressions
	Using BETWEEN
	Using CONTAINING
	Using IN
	Using LIKE
	Using IS NULL
	Using STARTING WITH
	Using ALL
	Using ANY and SOME
	Using EXISTS
	Using SINGULAR

	Determining Precedence of Operators
	Precedence Among Operators
	Changing Evaluation Order of Operators

	Using CAST() for Datatype Conversions
	Using UPPER() on Text Data

	Understanding Data Retrieval with SELECT
	Listing Columns to Retrieve with SELECT
	Retrieving a List of Columns
	Retrieving All Columns
	Eliminating Duplicate Columns with DISTINCT
	Retrieving Aggregate Column Information
	Multi-table SELECT Statements

	Specifying Transaction Names
	Specifying Host Variables with INTO
	Listing Tables to Search with FROM
	Listing a Single Table or View
	Listing Multiple Tables
	Declaring and Using Correlation Names

	Restricting Row Retrieval with WHERE
	What is a Search Condition?
	Structure of a Search Condition
	Collation Order in Comparisons

	Sorting Rows with ORDER BY
	ORDER BY with multiple columns
	Collation Order in an ORDER BY Clause

	Grouping Rows with GROUP BY
	Collation Order in a GROUP BY Clause
	Limitations of GROUP BY

	Restricting Grouped Rows with HAVING
	Limiting Result Sets with ROWS
	Appending Tables with UNION
	Specifying a Query Plan with PLAN

	Selecting a Single Row
	Selecting Multiple Rows
	Declaring a Cursor
	Updating Through Cursors

	Opening a Cursor
	Fetching Rows with a Cursor
	Retrieving Indicator Status
	Refetching Rows with a Cursor

	Closing the Cursor
	A Complete Cursor Example
	Selecting Rows with NULL Values
	Limitations on NULL Values

	Selecting Rows Through a View

	Selecting Multiple Rows in DSQL
	Declaring a DSQL Cursor
	Opening a DSQL Cursor
	Fetching Rows with a DSQL Cursor

	Joining Tables
	Choosing Join Columns
	Using Inner Joins
	Creating Equi-joins
	Joins Based on Comparison Operators
	Creating Self-joins

	Using Outer Joins
	Using a Left Outer Join
	Using a Right Outer Join
	Using a Full Outer Join
	Sort/Merge Optimization for Outer Joins

	Using Nested Joins

	Using Subqueries
	Simple Subqueries
	Correlated Subqueries
	Indexed Optimization of Correlated Subqueries in UPDATE Statements

	Inserting Data
	Using VALUES to Insert Columns
	Using SELECT to Insert Columns
	Inserting Rows with NULL Column Values
	Ignoring a Column
	Assigning a NULL Value to a Column
	Using Indicator Variables

	Inserting Data Through a View
	Specifying Transaction Names in an INSERT

	Updating Data
	Updating Multiple Rows
	Using a Searched Update
	Using a Positioned Update

	NULLing Columns with UPDATE
	Updating Through a View
	Specifying Transaction Names in UPDATE

	Deleting Data
	Deleting Multiple Rows
	Using a Searched Delete
	Using a Positioned Delete

	Deleting Through a View
	Specifying Transaction Names in a DELETE

	Working with Dates and Times
	Querying the Database for Current Date and Time Information
	Getting the Current Date and Time
	Extracting Date and Time Information

	Selecting Dates and Times
	Formatting Dates for Input
	Inserting Dates and Times
	Updating Dates and Times
	Using CAST() to Convert Dates and Times
	Casting from SQL Datatypes to Date and Time Datatypes
	Casting from Date and Time Datatypes to Other SQL Datatypes

	Using Date Literals
	Adding and Subtracting Date and Time Datatypes
	Comparing Dates and Times
	Using Date and Time Datatypes with Aggregate Functions

	Working with Blob Data
	What is a Blob?
	How are Blob Data Stored?
	Blob Sub-types
	Blob Database Storage
	Blob Segment Length
	Overriding Segment Length

	Accessing Blob Data with SQL
	Selecting Blob Data
	Inserting Blob Data
	Updating Blob Data
	Deleting Blob Data

	Accessing Blob Data with API Calls
	Filtering Blob Data
	Using the Standard InterBase Text Filters
	Using an External Blob Filter
	Declaring an External Filter to the Database
	Using a Filter to Read and Write Blob Data
	Invoking a Filter in an Application

	Writing an External Blob Filter
	Filter Types
	Read-only and Write-only Filters
	Defining the Filter Function
	Defining the Blob Control Structure
	Programming Filter Function Actions
	Testing the Function Return Value

	Using Arrays
	Creating Arrays
	Multi-dimensional Arrays
	Specifying Subscript Ranges

	Accessing Arrays
	Selecting Data from an Array
	Inserting Data into an Array
	Selecting from an Array Slice
	Updating Data in an Array Slice
	Testing a Value in a Search Condition
	Using Host Variables in Array Subscripts
	Using Arithmetic Expressions with Arrays

	Working with Stored Procedures
	Using Stored Procedures
	Procedures and Transactions
	Security for Procedures

	Using Select Procedures
	Calling a Select Procedure
	Using a Select Procedure with Cursors

	Using Executable Procedures
	Executing a Procedure
	Indicator Variables

	Executing a Procedure in a DSQL Application

	Working with Events
	Understanding the Event Mechanism
	Signaling Event Occurrences
	Registering Interest in Events
	Registering Interest in Multiple Events
	Waiting for Events with EVENT WAIT
	Responding to Events

	Error Handling and Recovery
	Standard Error Handling
	WHENEVER Statements
	Testing SQLCODE Directly
	Combining Error-handling Techniques
	Guidelines for Error Handling

	Additional InterBase Error Handling
	Displaying Error Messages
	Capturing SQL Error Messages
	Capturing InterBase Error Messages
	Handling InterBase Error Codes

	Using Dynamic SQL
	Overview of the DSQL Programming Process
	DSQL Limitations
	Accessing Databases
	Handling Transactions
	Creating a Database
	Processing Blob Data
	Processing Array Data

	Writing a DSQL Application
	SQL Statements that DSQL Can Process
	SQL Character Strings
	Value Parameters in Statement Strings

	Understanding the XSQLDA
	XSQLDA Field Descriptions
	XSQLVAR Field Descriptions
	Input Descriptors
	Output Descriptors
	Using the XSQLDA_LENGTH Macro
	SQL Datatype Macro Constants
	Handling Varying String Datatypes
	NUMERIC and DECIMAL Datatypes
	Coercing Datatypes
	Coercing Character Datatypes
	Coercing Numeric Datatypes
	Setting a NULL Indicator

	Aligning Numerical Data

	DSQL Programming Methods
	Method 1: Non-query Statements Without Parameters
	Using EXECUTE IMMEDIATE
	Using PREPARE and EXECUTE

	Method 2: Non-query Statements with Parameters
	Creating the Input XSQLDA
	Preparing and Executing a Statement String with Parameters
	Re-executing the Statement String

	Method 3: Query Statements Without Parameters
	Preparing the Output XSQLDA
	Preparing a Query Statement String
	Executing a Statement String Within the Context of a Cursor
	Re-executing a Query Statement String

	Method 4: Query Statements with Parameters
	Preparing the Input XSQLDA
	Preparing the Output XSQLDA
	Preparing a Query Statement String with Parameters
	Executing a Query Statement String Within the Context of a Cursor
	Re-executing a Query Statement String with Parameters

	Preprocessing, Compiling, and Linking
	Preprocessing
	Using gpre
	Language Switches
	Option Switches
	Examples

	Setting gpre Client Dialect
	Using a File Extension to Specify Language
	Specifying the Source File
	Language Switch and No Input File Extension
	An Input File with Extension by No Language Switch
	Neither a Language Switch Nor a File Extension

	Compiling and Linking
	Microsoft Windows
	C++ Builder
	C and C++ Microsoft Visual C++

	Solaris
	C SPARCWorks 4.2
	C++ SPARCWorks 4.2

	Compiling an Ada Program
	Linking on UNIX

	Index

