
InterBase 2020
Update 5

Developer's Guide

© 2023 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies
logos, and all other Embarcadero Technologies product or service names are trademarks or
registered trademarks of Embarcadero Technologies, Inc. All other trademarks are property
of their respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers. Embarcadero enables developers to design systems right, build them faster
and run them better, regardless of their platform or programming language. Ninety of the
Fortune 100 and an active community of more than three million users worldwide rely on
Embarcadero products to increase productivity, reduce costs and accelerate innovation.
The company's flagship tools include: Embarcadero® RAD Studio™, Delphi®, C++Builder®,
JBuilder®, and the IoT Award winning InterBase®. Founded in 1993, Embarcadero is
headquartered in Austin, with offices located around the world. Embarcadero is online at
www.embarcadero.com.

October, 2023

. 7

. 7

. 7

. 8

. 14

. 15

. 16

. 17

. 20

. 21

. 34

. 35

. 35

. 41

. 46

. 48

. 50

. 52

. 52

. 55

. 55

. 58

. 60

. 66

. 67

. 70

. 81

. 83

. 98

. 101

. 105

. 109

. 109

. 111

. 112

Table of Contents

Using the InterBase Developer’s Guide

Client/Server Concepts

Definition of a Client
The InterBase Client Library
Definition of a Server
Application Development

Programming Applications with RAD Studio

Optimizing the InterBase SQL Links Driver
Working with TQuery
Using Generators with ODBC

Programming with JDBC

Installing InterClient Classes into JBuilder
Programming with InterClient
Developing InterClient Programs
Troubleshooting InterClient Programs
Deploying InterClient Programs
InterClient/JDBC Compliance Specifications
InterClient Data Source Properties for InterBase
InterClient Scrollability
Batch Updates
Implementation of Blob, Clob, and Other Related API's

Programming Applications with ODBC

Overview of ODBC
Configuring and Using ODBC Data Sources

Working with UDFs and Blob Filters

UDF Overview
Writing a Function Module
Compiling and Linking a Function Module
Declaring a UDF to a Database
Calling a UDF
Writing a Blob UDF
The InterBase UDF Library
Declaring Blob Filters

Designing Database Applications

Using InterBase Databases
Database Architecture
Designing the User Interface

Building Multi-tiered Applications

Understanding Databases and Datasets
Scaling Up to a Three-tiered Application
Creating Multi-tiered Applications

Introduction to IBX

Connecting to Databases (Developer's Guide)

Persistent and Temporary Database Components
Controlling Connections

. 114

. 118

. 119

. 122

. 123

. 126

. 132

. 134

. 135

. 136

. 138

. 140

. 141

. 141

. 149

. 159

. 159

. 161

. 164

. 165

. 165

. 170

. 170

. 170

. 170

. 171

. 173

. 174

. 174

. 174

. 175

. 178

. 181

. 183

. 183

. 183

. 184

. 185

. 185

. 187

. 187

. 187

. 188

. 189

. 189

Requesting Information about an Attachment

Importing and Exporting Data

Exporting and Importing Raw Data
Exporting and Importing Delimited Data

Working with InterBase Services

Overview of the InterBase Service Components
Setting Database Properties Using InterBase Services
Backing up and Restoring Databases
Performing Database Maintenance
Requesting Database and Server Status Reports
Using the Log Service
Configuring Users
Displaying Server Properties

Programming with Database Events

Setting up Event Alerts

Working with Cached Updates

Deciding When to Use Cached Updates
Using Cached Updates
Using Update Objects to Update a Dataset
Updating a Read-only Dataset
Controlling the Update Process
Handling Cached Update Errors

Understanding Datasets

What is TDataSet?
Opening and Closing Datasets
Determining and Setting Dataset States
Navigating Datasets
Searching Datasets
Modifying Dataset Data
Using Dataset Events
Using Dataset Cached Updates

Working with Queries

Queries for desktop developers
Queries for server developers
When to use TIBDataSet, TIBQuery, and TIBSQL
Using a query component: an overview
Specifying the SQL statement to execute
Setting parameters
Executing a query
Preparing a query
Unpreparing a query to release resources
Improving query performance
Working with result sets

Working with Tables

Using table components
Setting up a table component
Controlling read/write access to a table
Searching for records
Sorting records
Specifying fields with IndexFieldNames
Working with a subset of data
Deleting all records in a table

. 189

. 189

. 189

. 191

. 191

. 195

. 196

. 202

. 206

. 207

. 208

. 210

Deleting a table
Renaming a table
Creating a table
Synchronizing tables linked to the same database table
Creating master/detail forms

Working with Stored Procedures

When Should You use Stored Procedures?
Using a Stored Procedure
Understanding Stored Procedure Parameters
Viewing Parameter Information at Design Time

Debugging with SQL Monitor

Building a Simple Monitoring Application

Writing Installation Wizards

Installing
Defining the Uninstall Component

Using the InterBase Developer’s Guide

The InterBase Developer's Guide focuses on the needs of developers who use the the
development tools: Delphi, C++Builder, and JBuilder. It assumes a general familiarity with
SQL, data definition, data manipulation, and programming practice.

Note:
For additional information and support on Embarcadero’s products, please refer to the
Embarcadero web site at http://www.embarcadero.com.

Using the InterBase Developer’s Guide

6

http://www.embarcadero.com

Client/Server Concepts

This chapter describes the architecture of client/server systems using InterBase. The
chapter covers topics including the definition of an InterBase client and server, and options
for application development.

1. Definition of a Client

An InterBase client is an application, typically written in C, C++, Delphi or Java, that accesses
data in an InterBase database.

In the more general case, an InterBase client is any application process that uses the
InterBase client library, directly or via a middleware interface, to establish a communication
channel to an InterBase server. The connection can be local if the application executes on
the same node as the InterBase server, or remote if the application must use a network to
connect to the InterBase server.

InterBase is designed to allow clients to access an InterBase server on a platform and
operating system different from the client’s platform and operating system.

2. The InterBase Client Library

The InterBase client library provides functions that developers of client applications use to
initiate connections to a server and to programmatically perform database operations. The
library uses the client network interface of the operating system to communicate with one
or more InterBase servers, and implements a special InterBase client/server application
protocol on top of a network protocol (see “Network protocols” in the Operations Guide).

The client library provides a set of high-level functions in the form of an Application
Programmer’s Interface (API) for communication with an InterBase server. All client
applications or middleware must use this API to access InterBase databases. The API Guide
provides reference documentation and guidelines for using the API to develop high-
performance applications.

3. Definition of a Server

The InterBase server is a software process that executes on the node that hosts the storage
space for databases. The server process is the only process on any node that can perform
direct I/O to the database files.

Clients send to the server process requests to perform actions on the database, including:

Search the database based on criteria
Collate, sort and tabulate data
Return sets of data
Modify data values
Insert new data into the database
Remove data from the database
Create new databases or data structures
Execute procedural code on the server
Send messages to other clients currently connected

The server process is fully network-enabled; it services connection requests that originate
on another node. The server process implements the same InterBase application protocol
that the client uses.

•
•
•
•
•
•
•
•
•

Client/Server Concepts

7

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

Many clients can remain connected to the multi-threaded server process simultaneously.
The server regulates access to individual data records within the database, and enforces
exclusive access to records when clients request to modify the data in the records.

4. Application Development

Once you create and populate a database, you can access the information through an
application. If you use one of Embarcadero’s client tools, you can access information
through your existing application. You can also design and implement a new application by
embedding SQL statements, or API calls in an application written in a programming
language such as C or C++.

4.1. Client Tools Applications

Client tools such as Delphi and C++Builder can access InterBase databases using Database
Express (DBX). Server query reporting is built into the client tool providing Windows
application support. This enables you to build sophisticated, user-friendly database
applications with minimal programming effort.

4.1.1. InterBase Express (IBX) for Delphi and C++Builder

InterBase Express (IBX) for Delphi and C++Builder

IBX is a library of components that allows Delphi and C++Builder programmers to access
InterBase features.The version of IBX that ships with Delphi and C++Builder does not access
the latest InterBase features. An enhanced version of IBX ships with InterBase.

4.1.2. dbExpress (DBX)

dbExpress (DBX)

dbExpress is a set of database drivers that provide fast access to a variety of SQL database
servers. For each supported type of database, dbExpress provides a driver that adapts the
server-specific software to a set of uniform dbExpress interfaces. When you deploy a
database application that uses dbExpress, you need only include a dll (the server-specific
driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets, which are designed for
quick lightweight access to database information, with minimal overhead. Unidirectional
datasets can only retrieve a unidirectional cursor. They do not buffer data in memory, which
makes them faster and less resource-intensive than other types of dataset. However,
because there are no buffered records, unidirectional datasets are also less flexible than
other datasets. For example, the only supported navigation methods are the First and Next
methods. Most others raise exceptions. Some, such as the methods involved in bookmark
support, simply do nothing.

There is no built-in support for editing because editing requires a buffer to hold the edits.
The CanModify property is always False, so attempts to put the dataset into edit mode
always fail. You can, however, use unidirectional datasets to update data using an SQL
UPDATE command or provide conventional editing support by using a dbExpress-enabled
client dataset or connecting the dataset to a client dataset.

There is no support for filters, because filters work with multiple records, which requires
buffering. If you try to filter a unidirectional dataset, it raises an exception. Instead, all limits
on what data appears must be imposed using the SQL command that defines the data for
the dataset.

Client/Server Concepts

8

There is no support for lookup fields, which require buffering to hold multiple records
containing lookup values. If you define a lookup field on a unidirectional dataset, it does not
work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data. They
are the fastest data access mechanism, and very simple to use and deploy.

4.1.3. ADO.NET Provider for InterBase (64-bit)

Note:
This page describes the old ADO.NET driver, For information and instructions on the new
driver refer to the new ADO.NET Driver documentation.

RADStudio now has 64-bit drivers for dbExpress (since RADStudio XE2) which means you
can use the 64-bit Ado.NET driver. The existing 32-bit installer of Ado.NET driver has been
modified and incorporates the 64-bit assemblies into the same installer. This installer is
intelligent enough to install the required assemblies on the target OS platform (32-bit
assemblies for 32-bit OS, 32 and 64 assemblies on 64-bit OS).

ADO.NET Installation and Usage Instructions

Note:
If you have previously installed RAD Studio on this computer, you do not need to perform
any additional installation procedures in order to use the ADO.NET 2.0 driver with
Microsoft Visual Studio 2005/2008.

Prerequisites:

.NET 2.0 SDK with update
Microsoft Visual Studio 2005/2008
InterBase XE or later

Installation Instructions:

Run the InterBase ADO.NET 2.0 installer.

Usage Instructions:

Start Visual Studio 2005/2008.
File new C# Windows application.
Project - Add Reference and add the AdoDbxClient.dll, DbxCommonDriver,
DBXInterBaseDriver to your project.
Add a DataGridView component to your Windows Form.
The sample code below fills a DataGridView component with the contents of the
employee table of the employee.gdb sample InterBase database:

>>>
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Borland.Data;
using Borland.Data.Units;
using System.Data.SqlClient;
using System.Data.Common;

•

•
•
•

•

•

•

•
•
•

•
•

Client/Server Concepts

9

http://docwiki.embarcadero.com/InterBase/2020/en/ADO.NET_Driver

namespace IBXEApplication1
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
ReadData(getConnection());
}
public DbConnection getConnection()
{
// DbProviderFactory factory = DbProviderFactories.GetFactory
// ("Borland.Data.AdoDbxClient");
DbConnection c = new TAdoDbx{{Product}}Connection();
//DbConnection c = factory.CreateConnection();
c.ConnectionString = "Database=C:\\Embarcadero\\{{Product}}\\examples\\database\
\employee.gdb;User_Name=sysdba;Password=masterkey";
return c;
}
public void ReadData(DbConnection conn)
{
string sql = "select * from employee";
DbCommand cmd = conn.CreateCommand();
cmd.CommandText = sql;
conn.Open();
DbDataReader myreader = cmd.ExecuteReader();
dataGridView1.DataSource = myreader;
DataSet ds = new DataSet();
DataTable dt = new DataTable("employee");
ds.Tables.Add(dt);
ds.Load(myreader, LoadOption.PreserveChanges, ds.Tables[0]);
dataGridView1.DataSource = ds.Tables[0];
myreader.Close();
}
private void dataGridView1_CellContentClick(object sender,
DataGridViewCellEventArgs e)
{

}
}
}
<<<

4.2. Developing and Deploying the InterBase ToGo Edition

The InterBase ToGo database engine can be embedded in applications by directly using
the InterBase server library. Used in this form, InterBase does not have to be installed on
any server or end-user workstation. Target applications for the ToGo Edition include small
devices and public kiosks, as well as Value Added Reseller (VAR) applications that were built
using InterBase. In addition, you can deploy the ToGo edition on a read-only device such as
a CD and DVD without having to install anything else on the same machine.

The embedded InterBase engine can run faster with these types of database applications
because network connections are not used and data is not passed between the application
and a separate database server. This gives application developers more choice and
flexibility in their database design and deployment.

The InterBase ToGo edition is available on different platforms, and can access any InterBase
database created by InterBase desktop or server editions, versions 2007 and later. For a full
list of available platforms refer to ToGo Edition Platforms.

The InterBase ToGo edition allows only a single application to connect to the database.
However, the application can make multiple connections to the database by using multiple
threads, where a connection can be made for each thread. The database service, when
accessing a database, exclusively locks the database file so that another application or
InterBase server cannot access the database simultaneously.

Client/Server Concepts

10

http://docwiki.embarcadero.com/InterBase/2020/en/ToGo_Edition_Platforms

4.2.1. Developing with the ToGo Edition

For information on developing with the supported platforms refer to the following topics:

Windows Platform
Linux Platform
macOS Platform
iOS Platform
Android Platform

4.2.2. Deploying with the ToGo Edition

To deploy with the ToGo edition, you need to make sure your application finds the
minimum required files, for a list of the files refer to the following lists:

File List for Windows ToGo Editions
File List for Linux ToGo Edition
File List for macOS ToGo Edition
File List for iOS ToGo Edition
File List for Android ToGo Edition

Additional Guidelines for Deploying with the ToGo Edition

When deploying with the ToGo edition, ensure the following:

Depending on your target platform, that the ibtogo.dll or libibtogo file is available to
your application when it is launched. The easiest way to ensure this is to include it in the
same directory as your application.
Create an InterBase sub-directory under your application directory and copy the
required InterBase configuration and interbase.msg files.

4.3. Embedded Applications

You can write your application using C or C++, or another programming language, and
embed SQL statements in the code. You then preprocess the application using gpre , the
InterBase application development preprocessor. gpre takes SQL embedded in a host
language such as C or C++ and generates a file that a host-language compiler can compile.

The gpre preprocessor matches high-level SQL statements to the equivalent code that calls
functions in InterBase client API library. Therefore, using embedded SQL affords the
advantages of using a high-level language, and the runtime performance and features of the
InterBase client API.

For more information about compiling embedded SQL applications, see the Embedded SQL
Guide.

4.3.1. Predefined Database Queries

Some applications are designed with a specific set of requests or tasks in mind. These
applications can specify exact SQL statements in the code for preprocessing. gpre
translates statements at compile time into an internal representation. These statements
have a slight speed advantage over dynamic SQL because they do not need to incur the
overhead of parsing and interpreting the SQL syntax at runtime.

•
•
•
•
•

•
•
•
•
•

•

•

Client/Server Concepts

11

http://docwiki.embarcadero.com/InterBase/2020/en/Windows_Platforms
http://docwiki.embarcadero.com/InterBase/2020/en/Linux_Platform
http://docwiki.embarcadero.com/InterBase/2020/en/MacOS_Platform
http://docwiki.embarcadero.com/InterBase/2020/en/IOS_Application
http://docwiki.embarcadero.com/InterBase/2020/en/Android_Application
http://docwiki.embarcadero.com/InterBase/2020/en/File_List_for_Windows_32-bit_and_64-bit_ToGo_Editions
http://docwiki.embarcadero.com/InterBase/2020/en/File_List_for_Linux_ToGo_Edition
http://docwiki.embarcadero.com/InterBase/2020/en/File_List_for_macOS_ToGo_Edition
http://docwiki.embarcadero.com/InterBase/2020/en/File_List_for_iOS_ToGo_Edition
http://docwiki.embarcadero.com/InterBase/2020/en/File_List_for_Android_ToGo_Edition
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

4.3.2. Dynamic Applications

Some applications must handle ad hoc SQL statements entered by users at run time; for
example, allowing a user to select a record by specifying criteria to a query. This requires
that the program constructs the query based on user input.

InterBase uses Dynamic SQL (DSQL) for generating dynamic queries. At run time, your
application passes DSQL statements to the InterBase server in the form of a character
string. The server parses the statement and executes it.

BDE provides methods for applications to send DSQL statements to the server and retrieve
results. ODBC applications rely on DSQL statements almost exclusively, even if the
application interface provides a way to visually build these statements. For example, Query
By Example (QBE) or Microsoft Query provide convenient dialogs for selecting, restricting
and sorting data drawn from a BDE or ODBC data source, respectively.

You can also build templates in advance for queries, omitting certain elements such as
values for searching criteria. At run time, supply the missing entries in the form of
parameters and a buffer for passing data back and forth.

For more information about DSQL, see the Embedded SQL Guide.

4.4. API Applications

The InterBase API is a set of functions that enables applications to construct and send SQL
statements to the InterBase engine and receive results back. All database work can be
performed through calls to the API.

4.4.1. Advantages of Using the InterBase API

While programming with the API requires an application developer to allocate and populate
underlying structures commonly hidden at the SQL level, the API is ultimately more
powerful and flexible. Applications built using API calls offer the following advantages over
applications written with embedded SQL:

Control over memory allocation
Simplification of compiling procedure—no precompiler
Access to error messages
Access to transaction handles and options

4.4.2. API Function Categories

API functions can be divided into seven categories, according to the object on which they
operate:

Database attach and detach
Transaction start, prepare, commit, and rollback
Blob calls
Array calls
Database security
Informational calls
Date and integer conversions

The API Guide has complete documentation for developing high-performance applications
using the InterBase API.

•
•
•
•

•
•
•
•
•
•
•

Client/Server Concepts

12

http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

4.4.3. The Install API and the Licensing API

The Install API provides a library of functions that enable you to install InterBase
programmatically. You have the option of creating a silent install that is transparent to the
end user. The functions in the Licensing API permit you to install license certificates and
keys as well.

4.5. Multi-database Applications

Unlike many relational databases, InterBase applications can use multiple databases at the
same time. Most applications access only one database at a time, but others need to use
several databases that could have the same or different structures.

For example, each project in a department might have a database to keep track of its
progress, and the department could need to produce a report of all the active projects.
Another example where more than one database would be used is where sensitive data is
combined with generally available data. One database could be created for the sensitive
data with access to it limited to a few users, while the other database could be open to a
larger group of users.

With InterBase you can open and access any number of databases at the same time. You
cannot join tables from separate databases, but you can use cursors to combine
information. See the Embedded SQL Guide for information about multi-database
applications programming.

Client/Server Concepts

13

http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

Programming Applications with RAD Studio

This chapter discusses programming InterBase applications using the Borland Database
Engine (BDE) with RAD Studio. RAD Studio is shipped with extensive online documentation
on programming database applications; you should use that documentation as your main
source of information. This chapter describes how to best use these programs with
InterBase, including:

Note:
With the introduction of InterBase Express (IBX), it is now possible to create InterBase
applications without the overhead of the BDE. Part II of this book describes how to use
the IBX components. For more information, see Introduction to IBX.

1. Optimizing the InterBase SQL Links Driver

Use the BDE Administrator to configure the InterBase SQL Links driver. To start the BDE
Administrator, select it from Delphi or C++ in the Programs menu. To view the InterBase
driver definition, click on the Configuration tab, and then expand Drivers and Native from
the Configuration tree. Click on INTERBASE to display the InterBase driver settings.

To optimize the InterBase driver, you can change the following options:

DRIVER FLAGS
SQLPASSTHRU MODE
SQLQUERY MODE

These are discussed in the following sections.

1.1. Setting the Driver Flags

Depending on your database needs, you should set the DRIVER FLAGS option to either 512
or 4608 to optimize InterBase. The recommended value for DRIVER FLAGS is 4608.

If you set DRIVER FLAGS to 512, you specify that the default transaction mode should be
repeatable read transactions using hard commits. This reduces the overhead that
automatic transaction control incurs.
If you set DRIVER FLAGS to 4608, you specify that the default transaction mode should
be repeatable read transactions using soft commits. Soft commits are an InterBase
feature that lets the driver retain the cursor while committing changes. Soft commits
improve performance on updates to large sets of data.

When using hard commits, the BDE must re-fetch all records in a dataset, even for a single
record change. This is less expensive when using a desktop database because the data is
transferred in core memory. For a client/server database such as InterBase, refreshing a
dataset consumes the network bandwidth and degrades performance radically. With soft
commit, the cursor is retained, and a re-fetch is not performed.

Note:
Soft commits are never used in explicit transactions started by BDE client applications.
This means that if you use the StartTransaction and Commit methods to explicitly
start and commit a transaction, then the driver flag for soft commit is ignored.

•
•
•

•

•

Programming Applications with RAD Studio

14

1.2. Setting the SQL Pass-through Mode

The SQLPASSTHRU MODE option specifies whether the BDE and passthrough SQL
statements can share the same database connections. By default, SQLPASSTHRU MODE is
set to SHARED AUTOCOMMIT. To reduce the overhead that automatic transaction control
incurs, set this option to SHARED NOAUTOCOMMIT.

However, if you want to pass transaction control to your server, set this option to NOT
SHARED. Depending on the quantity of data, this can increase InterBase performance by a
factor of ten.

The recommended setting for this option is SHARED NOAUTOCOMMIT.

1.3. Setting the SQL Query Mode

Set the SQLQRYMODE to SERVER to allow InterBase, instead of the BDE, to interpret and
execute SQL statements.

2. Working with TQuery

Use TQuery rather than TTable; the latter should never be used with InterBase.

2.1. Why Not to Use TTable

Although TTable is very convenient for its RAD methods and its abstract data-aware
model, it is not designed to be used with client/server applications; it is designed for use on
relatively small tables in a local database, accessed in core memory.

TTable gathers information about the metadata of a table and tries to maintain a cache of
the dataset in memory. It refreshes its client-side copy of the data when you issue the Post
method or the TDatabase.Rollback method. This incurs a huge network overhead for
most client/server databases, which have much larger datasets and are accessed over a
network. In a client/server architecture, you should use TQuery instead.

2.2. Setting TQuery Properties and Methods

Set the following TQuery properties and methods as indicated to optimize InterBase
performance:

CachedUpdates property: set this property to <False> to allow the server to handle
updates, deletes, and conflicts.
RequestLive property: set this property to <False> to prevent the VCL from keeping a
client-side copy of rows; this has a benefit to performance because fewer data must be
sent over the network.

In a client/server configuration, a “fetch-all” severely affects database performance, because
it forces a refresh of an entire dataset over the network. Here are some instances in which
cause a TQuery to perform a fetch-all:

Locate method: you should only use Locate on local datasets.
RecordCount property: although it is nice to get the information on how many records
are in a dataset, calculating the RecordCount itself forces a fetch-all.
Constraints property: let the server enforce the constraint.
Filter property: let the server do the filtering before sending the dataset over the
network.

•

•

•
•

•
•

Programming Applications with RAD Studio

15

Commit method: forces a fetch-all when the BDE DRIVER FLAGS option is not set to
4096 (see Setting the Driver Flags), or when you are using explicit transaction control.

3. Using Generators with ODBC

Using an InterBase trigger to change the value of a primary key on a table can cause the
BDE to produce a record or key deleted error message. This can be overcome by adding a
generator to your trigger.

For example, when your client sends a record to the server, the primary key is NULL. Using a
trigger, InterBase inserts a value into the primary key and posts the record. When the BDE
tries to verify the existence of the just-inserted record, it searches for a record with a NULL
primary key, which it will be unable to find. The BDE then generates a record or key deleted
error message.

To get around this, do the following:

Create a trigger similar to the following. The “if” clause checks to see whether the
primary key being inserted in NULL. If so, a value is produced by the generator; if
not, nothing is done to it.

Create Trigger COUNTRY_INSERT for COUNTRY
active before Insert position 0
as
begin

if (new.Pkey is NULL) then
new.Pkey = gen_id(COUNTRY_GEN,1);

end

Create a stored procedure that returns the value from the generator:

Create Procedure COUNTRY_Pkey_Gen returns (avalue INTEGER)
as
begin

avalue = gen_id(COUNTRY_GEN,10);
end

Add a TStoredProc component to your Delphi or C++Builder application and
associate it with the COUNTRY_Pkey_Gen stored procedure.
Add a TQuery component to your application and add the following code to the
BeforePost event:

If(TQuery.state = dsinsert) then
begin

StoredProc1.ExecProc;
TQuery.FieldByName('Pkey').AsInteger :=

StoredProc1.ParamByName('avalue').AsInteger;
end;

This solution allows the client to retrieve the generated value from the server using a
TStoredProc component and an InterBase stored procedure. This assures that the Delphi
or C++Builder client will know the primary key value when a record is posted.

•

1.

2.

3.

4.

Programming Applications with RAD Studio

16

Programming with JDBC

This chapter covers building InterBase database applications with InterClient and JBuilder,
including:

1. Installing InterClient Classes into JBuilder

InterClient is an all-Java JDBC driver specifically designed to access InterBase databases.

1.1. Database Application Basics

If you want your JBuilder application to connect to a database, use a Database component
to establish the connection, a DataSet component (such as a TableDataSet or
QueryDataSet component) to provide the data, and a data-aware control (such as a
GridControl) to display the results. Follow these steps for any JDBC driver. What
distinguishes InterClient from other JDBC drivers is the values you specify for the connection
parameters of the Database component.

When you edit the connection properties of a Database component, JBuilder displays the
Connection dialog.

To connect to an InterBase database with your Java application, you need to specify the
following connection parameters: the name of a JDBC driver class, a username, a password,
and a connection URL. The name of the InterClient JDBC driver class is always the same:

interbase.interclient.Driver

Spelling and capitalization are important. If you spell the driver class incorrectly, you may
get a ClassNotFoundException , and consequently, a “No suitable driver” error when the
connection is attempted. The username and password parameters are the same that you
would use when connecting to a database with IBConsole or any other tool. For the sake of
simplicity, these examples use <sysdba> (the InterBase root user) and <masterkey> for
username and password, respectively.

There are other useful features of this dialog, as well. Once you fill in your URL, you can
press the Test connection button to ensure that the connection parameters are correct.
The Prompt user password check box forces the user to enter a proper username and

Programming with JDBC

17

password before establishing a connection. The Use extended properties check box
and property page is not used by InterClient.

1.2. Using JDBC URLs

The JDBC URL is the parameter used to locate the actual database to which you want to
connect. A JDBC URL can be broken down into three parts, all separated by colons: the
keyword jdbc , the subprotocol name, and the datasource name or location. The jdbc
keyword is needed to distinguish JDBC URLs from other URLs, such as those for HTTP or
FTP. The subprotocol name is used to select the proper JDBC driver for the connection.
Every JDBC driver has its own subprotocol name to which it responds. InterClient URLs
always have a subprotocol of InterBase . Other JDBC drivers have their own unique
subprotocol names, for example, the JDBC-ODBC Bridge answers JDBC URLs with the
subprotocol of odbc .

The third part of an InterClient URL holds the name of the server that is running InterBase
and the location of the database to which you want to connect. In the following syntax,
“absolute” and “relative” are always with respect to the server, not the client:

On Unix:

jdbc:interbase://servername//absolutePathToDatabase.ib
jdbc:interbase://servername/relativePathToDatabase.ib

On Microsoft Windows:

jdbc:interbase://servername//DriveLetter:/absolutePathToDatabase.ib
jdbc:interbase://servername/relativePathToDatabase.ib

Here are a few possible configuration options and their corresponding JDBC URLs.

For the atlas database on a Unix machine named sunbox you might use something like
this (the path on the Unix machine is /usr/databases/atlas.ib):

jdbc:interbase://sunbox//usr/databases/atlas.ib

To access database test in directory / inetpub on a Unix machine named localhost:

jdbc:interbase://localhost//inetpub/test.ib

To access database test in subdirectory inetpub on a Unix machine named localhost:

jdbc:interbase://localhost/inetpub/test.ib

To access the jupiter database on an NT machine named mrbill , you might use
something like this (notice the drive letter):

jdbc:interbase://mrbill/c:/interbas/examples/jupiter.ib

If the client and the server are on the same machine and you wanted to make a local
connection, use loopback as the server name. For example, on Microsoft Windows:

jdbc:interbase://loopback/c:/interbas/examples/jupiter.ib

Other than these connection-specific issues, InterClient can be used like any other JDBC
driver with JBuilder. With Local InterBase, JBuilder Professional and Client/Server versions, it
makes it easy to develop and test powerful database applications in Java.

Programming with JDBC

18

1.3. JDBC URL Argument

The JDBC URL argument uses a JDBC application to send in connection, data source and
driver properties via the URL. Third party applications can now add run-time parameters to
the InterBase JDBC driver and the InterBase server by appending them to the database URL
property.

The following examples illustrates how to use the JDBC URL argument for passing additional
parameters:

Example:

String url = "jdbc:interbase://localhost:3050/c:/dbs/books.ib?
logWriterFile=logfile.txt";

Multiple properties can also be passed as:

Example:

String url = "jdbc:interbase://localhost:3050/c:/dbs/books.ib?
logWriterFile=logfile.txt;create=true”;

Legacy methods provide for by the Datasource, and the DriverManager class are still
retained and work as before, however, note that the new functionality takes precedence
over the Datasource and Drivermanager methods. Consider the following Java code as an
example:

{
String url = "jdbc:interbase://localhost:3050/c:/dbs/books.ib?
logWriterFile=logfile.txt;create=true”;

dataSource.setServerName ("localhost");
dataSource.setDatabaseName (url);
dataSource.setCreateDatabase (false);
}

In this case, the create database flag in the URL will have precedence.

1.4. Log Writer File Property

A new property has been created, which is only available via the database URL called
logWriterFile . Its usage is similar to other properties' usage on the URL.

Example:

?logWriterFile=c:/smistry/interclient.log

The setLogWriter call takes a defined PrintWriter , while the new logWriterFile
takes an actual filename to be used as a logWriter .

1.5. SSL File Properties

The JDBC driver InterClient has been enabled to allow SSL/TLS connections. For this new
feature, there are some new properties that have been introduced to the JDBC driver. It is
important to note that JDBC 1.4 and above is needed for this functionality.

Programming with JDBC

19

Note:
For information on InterBase Over-the-Wire (OTW) encryption, see Setting up OTW
Encryption.

The client application will indicate to the JDBC driver that it needs to perform OTW
encryption via the database connection string. The connection string will take OTW
properties as specified in the syntax below.

 jdbc:interbase://<secure server host name>:<secure server port number>/<database
path>/<database name>?ssl=true?[serverPublicFile=<server public key file>| [?
clientPrivateFile=<client private key file>][?clientPassPhrase=client private key
password|?clientPassPhraseFile=<file containing the client private key password].

Tip:
For a complete explanation of each property, see Extended Properties.

Example: The following is an example of how this will be used in a java program.

public class Example{

 public static main (String [] args) {

 final String driverClass = "interbase.interclient.Driver";
 final String user = "sysdba"; // username
 final String password = "masterkey"; // password
 final String jdbc = "jdbc:interbase://localhost:3065/C:/InterBase/examples/
database/employee.gdb?ssl=true?serverPublicFile=c:/users/interbase/
ibserver.public";

 Class.forName(driverClass);

 Connection con = DriverManager.getConnection(jdbc, user, password);

 …. /* use the secure connection here */

 }

}

2. Programming with InterClient

As an all-Java JDBC driver, InterClient enables platform-independent, client/server
development for the Internet and corporate intranets. The advantage of an all-Java driver
versus a native-code driver is that you can deploy InterClient-based applications without
having to manually load platform-specific JDBC drivers on each client system. Therefore,
there is no need to manage local native database libraries, which simplifies administration
and maintenance of customer applications. InterClient allows Java and applications to:

Open and maintain a high-performance, direct connection to an InterBase database
server.
Bypass resource-intensive, stateless Web server access methods.
Allow higher throughput speeds and reduced Web server traffic.

InterBase developers who are writing new Java-based client programs can use InterClient to
access their existing InterBase databases.

2.1. InterClient Architecture

The InterClient product consists of a client-side Java package called InterClient, which
contains a library of Java classes that implement most of the JDBC API and a set of

•

•
•

Programming with JDBC

20

http://docwiki.embarcadero.com/InterBase/2020/en/Setting_up_OTW_Encryption
http://docwiki.embarcadero.com/InterBase/2020/en/Setting_up_OTW_Encryption

extensions to the JDBC API. This package interacts with the JDBC Driver Manager to allow
client-side Java applications to interact with InterBase databases.

Developers can deploy InterClient-based clients as Java applications, which are stand-alone
Java programs for execution on a client system. This deployment method requires the
InterClient package, the JDBC Driver Manager, and the Java Runtime Environment (JRE),
which is part of the Java Developer's Kit (JDK) installed on the client system.

2.2. InterClient Communication

InterClient is a driver for managing interactions between a Java application and an InterBase
database server. On a client system, InterClient works with the JDBC Driver Manager to
handle client requests through the JDBC API. To access an InterBase database, InterClient
communicates via a TCP/IP connection to the InterBase server and passes back the results
to the InterClient process on the client machine.

3. Developing InterClient Programs

This section provides a detailed description of how to use InterClient to develop Java
applications, including:

Using the JDBC interfaces
Using InterClient drivers
Accessing InterClient extensions
Opening a database connection
Executing SQL statements

3.1. Using the JDBC Interfaces

The JDBC API is a set of Java interfaces that allow database applications to open connections
to a database, execute SQL statements, and process the results. These include:

java.sql.DriverManager
Loads the specific drivers and supports creating new
database connections.

java.sql.Connection Represents a connection to a specific database.

java.sql.Statement Allows the application to execute a SQL statement.

•
•
•
•
•

Programming with JDBC

21

java.sql.PreparedStatement

Represents a pre-compiled SQL statement.

The following methods have been implemented:

Public void setObject (int parameterIndex, Object x)
now works when parameter x is of type
java.io.Inputstream.
All variations of the setCharacterStream () method
are implemented.
All variations of the setAsciiStream() and
setBinaryStream() methods are implemented.
All variations of setBlob () and setClob() methods are
implemented.
The isClosed() method is implemented.

java.sql.CallableStatement
Represents a call to a stored procedure in the
database.

java.sql.ResultSet

Controls access to the rows resulting from a statement
execution.

The following methods have been implemented:

All variations of the getCharacterStream () method
are implemented.
All variations of the getBlob () and getClob() methods
are implemented.

3.1.1. Importing the InterClient Classes

The InterClient classes provide the code that actually implements the JDBC API. The
java.sql package defines the standard JDBC API interfaces. Importing this package allows
you to reference all of the classes in the java.sql interface without first typing the
“java.sql” prefix. For clarity's sake, this document prefixes all class names with “java.sql,” but
it isn't necessary if you import the package. You can import this package with the following
line:

import java.sql.*;

3.1.2. The DriverManager Class

The DriverManager class is part of the java.sql package. The JDBC framework supports
multiple database drivers. The DriverManager manages all JDBC drivers that are loaded
on a system; it tries to load as many drivers as it can find. For each connection request, it

•

•

•

•

•

•

•

Programming with JDBC

22

locates a driver to connect to the target database URL. The DriverManager also enforces
security measures defined by the JDBC specification.

3.1.3. The Driver Class

Each database driver must provide a Driver class that implements the java.sql.Driver
interface. The interbase.interclient.Driver class is an all-Java implementation of a
JDBC driver that is specific to InterBase. The interbase.interclient package supports
most of the JDBC classes and methods plus some added extensions that are not part of the
JDBC API.

To access an InterBase database, the InterClient driver communicates via a TCP/IP
connection with the InterBase server. InterBase processes the SQL statements and passes
the results back to the InterClient driver.

Multithreading

Any JDBC driver must comply with the JDBC standard for multithreading, which requires that
all operations on Java objects be able to handle concurrent execution.

For a given connection, several threads must be able to safely call the same object
simultaneously. The InterClient driver is thread safe. For example, your application can
execute two or more statements over the same connection concurrently, and process both
result sets concurrently, without generating errors or ambiguous results.

3.1.4. The JDBC Connection Class

After instantiating a Driver object, you can open a connection to the database when
DriverManager gives you a Connection object. A database driver can manage many
connection objects.

The Connection object establishes and manages the connection to your particular
database. Within a given connection, you can execute SQL statements and receive the result
sets.

The java.sql.Connection interface represents a connection to a particular database. The
JDBC specification allows a single application to support multiple connections to one or
more databases, using one or more database drivers. When you establish your connection
using this class, the DriverManager selects an appropriate driver from those loaded based
on the subprotocol specified in the URL, which is passed as a connection parameter.

3.2. About InterClient Drivers

This section describes how to load the InterClient driver and how to explicitly create the
InterClient driver.

3.2.1. Loading the InterClient Driver

The InterClient driver must be loaded before your application can attempt to connect to an
InterBase database. To explicitly load the InterClient driver with the DriverManager ,
include the following line in your program before using the driver to establish a database
connection:

Class.forName("interbase.interclient.Driver");

Programming with JDBC

23

The first time the Java interpreter sees a reference to interbase.interclient.Driver , it
loads the InterClient driver. When the driver is loaded, it automatically creates an instance
of itself, but there is no handle for it that lets you access that driver directly by name. This
driver is anonymous; you do not need to reference it explicitly to make a database
connection. You can make a database connection simply by using the
java.sql.DriverManager class.

It is the responsibility of each newly loaded driver to register itself with the
DriverManager ; the programmer is not required to register the driver explicitly. After the
driver is registered, the DriverManager can use it to make database connections.

3.2.2. Explicitly Creating the InterClient Driver

When writing a client program, you can interact either with the DriverManager class or
with a database driver object directly. To reference an InterClient driver directly, you must
use the java.sql.Driver class to explicitly create an instance of the driver. This instance
is in addition to the anonymous one that's created automatically when the InterClient driver
is loaded:

java.sql.Driver driver = new interbase.interclient.Driver();

Now you can reference the driver classes and methods with driver.XXX() . If all you need
to do is connect to the database and execute SQL statements, you do not need to create a
driver object explicitly; the DriverManager handles everything for you. However, there are
a few cases when you need to reference the driver by name. These include:

Getting information about the driver itself, such as a version number.
Tailoring a driver for debugging purposes. For more information, see Debugging your
Application.

The DriverManager sees a driver as only one of many standard JDBC drivers that can be
loaded. If you need to create a connection to another type of database in the future, you
need only to load the new driver with forName () or declare another driver explicitly with

java.sql.Driver driver = new XXX.Driver

Using java.sql.driver Methods

The java.sql.Driver class has different methods than java.sql.DriverManager . If
you want to use any of the java.sql.Driver methods, you need to create an explicit
driver object. The following are a few of the driver methods:

getMajorVersion() gets the driver's major version number.
getMinorVersion() gets the driver's minor version number.

The example below shows how to interact with the database by referencing the driver
directly:

//create the InterClient driver object as a JDBC driver
java.sql.Driver driver = new interbase.interclient.Driver();
//get the connection object
java.sql.Connection connection = driver.connect(dbURL, properties);
//reference driver to get the driver version number
java.sql.String version = driver.getMajorVersion() + driver.getMinorVersion();
System.out.print("You're using driver", + version");

•
•

•
•

Programming with JDBC

24

Important:
If your application ever needs to access non-InterBase databases, do not define a driver
object as a type interbase.interclient.Driver as follows:

interbase.interclient.Driver driver = new interbase.interclient.Driver();

This method creates a driver object that is an instance of the
interbase.interclient.Driver class, not a generic instance of the java.sql.Driver
class. It is not appropriate for a database-independent client program because it hard-codes
the InterClient driver into your source code, together with all of the classes and methods
that are specific to the InterClient driver. Such applications could access only InterBase
databases.

3.3. Accessing InterClient Extensions to the JDBC

To access InterClient-specific classes and methods such as Driver , Connection , and
Statement , you must cast your JDBC objects before applying the
interbase.interclient method. However, you do not need to declare the original
objects this way. Always create the object with a generic JDBC class, and then cast the object
to the extended class; for example:

interbase.interclient.Driver
interbase.interclient.Connection
interbase.interclient.Statement

java.sql.ResultSet() interface does not have a function to check if a particular column has a
value NULL. The InterBase JDBC driver provides an extension ResultSet.isNull(int) to check if
a particular column in the returned record has the value NULL. You will need to explicitly
qualify the call to the extended API with interbase.interclient.ResultSet as follows.

For example: The following example prints out a message when the column "phone_ext" is
NULL for certain employees.

java.sql.ResultSet rs = s.executeQuery ("select full_name, phone_ext from
employee where salary > 300000");
while (rs.next ()) {
System.out.println (rs.getString ("full_name"));

// Use InterClient extension API to check for NULL
// Demonstrate use of InterClient extension to JDBC...
// ResultSet.isNull() is an extension.
// Since "rs" is defined to be of type java.sql.ResultSet
// this will not work ---> if (true == rs.isNull(2))
// So, qualify the call to the extended API with

interbase.interclient.ResultSet

if (true == ((interbase.interclient.ResultSet)rs).isNull(2))
System.out.println ("Employee phone extension is NULL");}

Tip:
By using explicit casts whenever you need to access InterClient-specific extensions, you
can find these InterClient-specific operations easily if you ever need to port your program
to another driver.

Programming with JDBC

25

3.4. Opening a Database Connection

After loading the driver, or explicitly creating one, you can open a connection to the
database. There are two ways to do this: with the DriverManager 's getConnection ()
method or the driver object's connect () method.

3.4.1. Using the DriverManager to Get a Connection

When you want to access a database, you can get a java.sql.Connection object from the
JDBC management layer's java.sql.DriverManager.getConnection () method. The
getConnection () method takes a URL string and a java.util.Properties object as
arguments. For each connection request, the DriverManager uses the URL to locate a
driver that can connect to the database represented by the URL. If the connection is
successful, a java.sql.Connection object is returned. The following example shows the
syntax for establishing a database connection:

java.sql.Connection connection = java.sql.DriverManager.getConnection
(url,properties);

The Connection object in turn provides access to all of the InterClient classes and methods
that allow you to execute SQL statements and get back the results.

3.4.2. Using InterClient Driver Object to Get a Connection

If you are using the driver object to get a connection, use the connect () method. This
method does the same thing and takes the same arguments as getConnection ().

For example:

//Create the InterClient driver object explicitly
java.sql.Driver driver = new interbase.interclient.Driver();
//Open a database connection using the driver's connect method of the
java.sql.Connection connection = driver.connect(url, properties);

3.4.3. Choosing between the Driver and DriverManager Methods

Suppose that you have created an explicit driver object. Even though you could use the
driver's connect() method, you should always use the generic JDBC methods and classes
unless there is some specific reason not to, such as the ones discussed previously. For
example, suppose you declared an explicit driver object so you could get driver version
numbers, but now you need to create a connection to the database. You should still use the
DriverManager.getConnection() method to create a connection object instead of the
driver.connect() method.

Note:
This is not the case when you are using the InterClient Monitor extension to trace a
connection. See Debugging your Application for a detailed explanation.

3.4.4. Defining Connection Parameters

The database URL and connection properties arguments to connect() or
getConnection() must be defined before trying to create the connection.

Programming with JDBC

26

Syntax for Specifying Database URLs

InterClient follows the JDBC standard for specifying databases using URLs. The JDBC URL
standard provides a framework so that different drivers can use different naming systems
that are appropriate for their own needs. Each driver only needs to understand its own URL
naming syntax; it can reject any other URLs that it encounters. A JDBC URL is structured as
follows:

jdbc:subprotocol:subname

The subprotocol names a particular kind of database connection, which is in turn supported
by one or more database drivers. The DriverManager decides which driver to use based
on which subprotocol is registered for each driver. The contents and syntax of subname in
turn depend upon the subprotocol. If the network address is included in the subname, the
naming convention for the subname is:

//hostname:/subsubname

subsubname can have any arbitrary syntax.

Defining an InterClient URL

InterClient URLs have the following format:

jdbc:interbase://server/full_db_path[?properties]

“InterBase” is the sub-protocol, and server is the hostname of the InterBase server.
full_db_path (that is, “sub-subname”) is the full pathname of a database file, including
the initial slash (/). If the InterBase server is a Windows system, you must include the drive
name as well. InterClient does not support passing any attributes in the URL. For local
connections, use:

server = "localhost"

Note:
The “/” between the server and full_db_path is a delimiter. When specifying the path
for a Unix-based database, you must include the initial “/” for the root directory in
addition to the “/” for the delimiter.

In a Unix-based database, the following URL refers to the database orders.ib in the
directory /dbs on the Unix server accounts .

dbURL = "jdbc:interbase://accounts//dbs/orders.ib"

In a Windows server, the following URL refers to the database customer.ib in the
directory /dbs on drive C of the server support .

dbURL = "jdbc:interbase://support/C:/dbs/customer.ib"

Programming with JDBC

27

Defining the Connection Properties

Connection properties must also be defined before trying to open a database connection.
To do this, pass in a java.util.Properties object, which maps between tag strings and
value strings. Two typical properties are “user” and “password.” First, create the
Properties object:

java.util.Properties properties = new java.util.Properties();

Now create the connection arguments. user and password are either literal strings or string
variables. They must be the username and password on the InterBase database to which
you are connecting:

properties.put (“user”, "sysdba");
properties.put (“password”, "masterkey");

Now create the connection with the URL and connection properties parameters:

java.sql.Connection connection =
java.sql.DriverManager.getConnection(url, properties);

3.4.5. Connection Security

Client applications use standard database user name and password verification to access an
InterBase database. InterClient encrypts the user name and password for transmission over
the network.

3.5. Executing SQL Statements in InterClient Programs

After creating a Connection object, you can use it to obtain a Statement object that
encapsulates and executes SQL statements and returns a result set.

There are three java.sql classes for executing SQL statements:

Statement
PreparedStatement
CallableStatement

3.5.1. The Statement Class

The java.sql.Statement interface allows you to execute a static SQL statement and to
retrieve the results produced by the query. You cannot change any values with a static
statement. For example, the following SQL statement displays information once for specific
employees:

SELECT first_name, last_name, dept_name
FROM emp_table
WHERE dept_name = 'pubs';

The Statement class has two subtypes: PreparedStatement and CallableStatement .

•
•
•

Programming with JDBC

28

PreparedStatement

The PreparedStatement object allows you to execute a set of SQL statements more than
once. Instead of creating and parsing a new statement each time to do the same function,
you can use the PreparedStatement class to execute pre-compiled SQL statements
multiple times. This class has a series of “setXXX” methods that allow your code to pass
parameters to a predefined SQL statement; it is like a template to which you supply the
parameters. Once you have defined parameter values for a statement, they remain to be
used in subsequent executions until you clear them with a call to the
PreparedStatement.clearParameters method.

For example, suppose you want to be able to print a list of all new employees hired on any
given day. The operator types in the date, which is then passed into the
PreparedStatement object. Only those employees or rows in “emp_table” where
“hire_date” matches the input date are returned in the result set.

SELECT first_name, last_name,
emp_no FROM emp_table WHERE hire_date = ?;

See Selecting Data with PreparedStatement for more on how this construct works.

CallableStatement

The CallableStatement class is used for executing stored procedures with OUT
parameters. Since InterBase does not support the use of OUT parameters, there is no need
to use CallableStatement with InterClient.

Note:
You can still use a CallableStatement object if you do not use the OUT parameter
methods.

Creating a Statement Object

Creating a Statement object allows you to execute an SQL query, assuming that you have
already created the connection object. The example below shows how to use the
createStatement method to create a Statement object:

java.sql.Statement statement = connection.createStatement();

3.5.2. Querying Data

After creating a Connection and a Statement or PreparedStatement object, you can
use the executeQuery method to query the database with SQL SELECT statements.

Selecting Data with the Statement Class

The executeQuery method returns a single result set. The argument is a string parameter
that is typically a static SQL statement. The ResultSet object provides a set of “get”
methods that let you access the columns of the current row. For example,
ResultSet.next lets you move to the next row of the ResultSet , and the getString
method retrieves a string.

Programming with JDBC

29

This example shows the sequence for executing SELECT statements, assuming that you
have defined the getConnection arguments:

//Create a Connection object:
java.sql.Connection connection =
java.sql.DriverManager.getConnection(url,properties);
//Create a Statement object
java.sql.Statement statement = connection.createStatement();
//Execute a SELECT statement and store results in resultSet:
java.sql.ResultSet resultSet = statement.executeQuery
("SELECT first_name, last_name, emp_no
FROM emp_table WHERE dept_name = 'pubs'");
//Step through the result rows
System.out.println("Got results:");
while (resultSet.next ()){
//get the values for the current row
String fname = resultSet.getString(1);
String lname = resultSet.getString(2);
String empno = resultSet.getString(3);
//print a list of all employees in the pubs dept
System.out.print(" first name=" + fname);
System.out.print(" last name=" + lname);
System.out.print(" employee number=" + empno);
System.out.print("\n");
}

Selecting Data with PreparedStatement

The following example shows how to use PreparedStatement to execute a query:

//Define a PreparedStatement object type
java.sql.PreparedStatement preparedStatement;
//Create the PreparedStatement object
preparedStatement = connection.prepareStatement("SELECT first_name, last_name,
emp_no FROM emp_table WHERE hire_date = ?");
//Input yr, month, day
java.sql.String yr;
java.sql.String month;
java.sql.String day;
System.in.readln("Enter the year: " + yr);
System.in.readln("Enter the month: " + month);
System.in.readln("Enter the day: " + day);
//Create a date object
java.sql.Date date = new java.sql.Date(yr,month,day);
//Pass in the date to preparedStatement's ? parameter
preparedStatement.setDate(1,date);
//execute the query. Returns records for all employees hired on date
resultSet = preparedStatement.executeQuery();

3.5.3. Finalizing Objects

Applications should explicitly close the various JDBC objects (Connection , Statement ,
and ResultSet) when they are done with them. The Java “garbage collector” may
periodically close connections, but there's no guarantee when, where, or even if this will
happen. It's better to immediately release a connection's database and JDBC resources
rather than waiting for the garbage collector to release them automatically. The following
close statements should appear at the end of the previous executeQuery() example.

resultSet.close();
statement.close();
connection.close();

Programming with JDBC

30

3.5.4. Modifying Data Using SQL Statements

The executeUpdate() method of the Statement or PreparedStatement class can be
used for any type of database modification. This method takes a string parameter (a SQL
INSERT , UPDATE , or DELETE statement), and returns a count of the number of rows that
were updated.

Inserting Data Using SQL Statements

An executeUpdate statement with an INSERT statement string parameter adds one or
more rows to a table. It returns either the row count or 0 for SQL statements that return
nothing:

int rowCount= statement.executeUpdate
("INSERT INTO table_name VALUES (val1, val2,…)";

If you do not know the default order of the columns, the syntax is:

int rowCount= statement.executeUpdate
("INSERT INTO table_name (col1, col2,…) VALUES (val1, val2,…)";

The following example adds a single employee to “emp_table”:

//Create a connection object
java.sql.Connection connection =
java.sql.DriverManager.getConnection(url, properties);
//Create a statement object
java.sql.Statement statement = connection.createStatement();
//input the employee data
Java.lang.String fname;
Java.lang.String lname;
Java.lang.String empno;
System.in.readln("Enter first name: ", + fname);
System.in.readln("Enter last name: ", + lname);
System.in.readln("Enter employee number: ", + empno);
//insert the new employee into the table
int rowCount = statement.executeUpdate
("INSERT INTO emp_table (first_name, last_name, emp_no)
VALUES (fname, lname, empno)");

Updating Data with the Statement Class

The executeUpdate statement with a SQL UPDATE string parameter enables you to
modify existing rows based on a condition using the following syntax:

int rowCount= statement.executeUpdate(
"UPDATE table_name SET col1 = val1, col2 = val2,
WHERE condition");

For example, suppose an employee, Sara Jones, gets married wants you to change her last
name in the “last_name” column of the EMPLOYEE table:

//Create a connection object
java.sql.Connection connection =
java.sql.DriverManager.getConnection(dbURL,properties);
//Create a statement object
java.sql.Statement statement = connection.createStatement();
//insert the new last name into the table
int rowCount = statement.executeUpdate

Programming with JDBC

31

("UPDATE emp_table SET last_name = 'Zabrinski'
WHERE emp_no = 13314");

Updating Data with PreparedStatement

//Define a PreparedStatement object type
java.sql.PreparedStatement preparedStatement;
//Create the Prepared_Statement object
preparedStatement = connection.prepareStatement(
"UPDATE emp_table SET last_name = ? WHERE emp_no = ?");
//input the last name and employee number
String lname;
String empno;
System.in.readln("Enter last name: ", + lname);
System.in.readln("Enter employee number: ", + empno);
int empNumber = Integer.parseInt(empno);
//pass in the last name and employee id to preparedStatement's ? //parameters
//where '1' is the 1st parameter, '2' is the 2nd, etc.
preparedStatement.setString(1,lname);
preparedStatement.setInt(2,empNumber);
//now update the table
int rowCount = preparedStatement.executeUpdate();

Deleting Data Using SQL Statements

The executeUpdate() statement with a SQL DELETE string parameter deletes an existing
row using the following syntax:

DELETE FROM table_name WHERE condition;

The following example deletes the entire “Sara Zabrinski” row from the EMPLOYEE table:

int rowCount = statement.executeUpdate
("DELETE FROM emp_table WHERE emp_no = 13314");

3.6. Executing Stored Procedures

A stored procedure is a self-contained set of extended SQL statements that are stored in a
database as part of its metadata. Stored procedures can pass parameters to and receive
return values from applications. From the application, you can invoke a stored procedure
directly to perform a task, or you can substitute the stored procedure for a table or view in a
SELECT statement. There are two types of stored procedures:

Select procedures are used in place of a table or view in a SELECT statement. A
selectable procedure generally has no IN parameters. See note below.
Executable procedures can be called directly from an application with the EXECUTE
PROCEDURE statement; they may or may not return values to the calling program.

Use the Statement class to call select or executable procedures that have no SQL input
(IN) parameters. Use the PreparedStatement class to call select or executable stored
procedures that have IN parameters.

Note:
Although it is not commonly done, it is possible to use IN parameters in a SELECT
statement. For example:

create procedure with_in_params(in_var integer)
returns (out_data varchar(10))

•

•

Programming with JDBC

32

as
begin
for select a_field1 from a_table
where a_field2 = :in_var
into :out_data
do suspend;

end

To return one row:

execute procedure with_in_params(1)

To return more than one row:

select * from with_in_params(1)

3.6.1. Statement Example

An InterClient application can call a select procedure in place of a table or view inside a
SELECT statement. For example, the stored procedure multiplyby10 multiplies all the
rows in the NUMBERS table (visible only to the stored procedure) by 10, and returns the
values in the result set. The following example uses the Statement.executeQuery()
method to call the multiplyby10 stored procedure, assuming that you have already
created the Connection and Statement objects:

//multiplyby10 multiplies the values in the resultOne, resultTwo, //resultThree
columns of each row of the NUMBERS table by 10
//create a string object
String sql= new String ("SELECT resultone, resulttwo, resultthree FROM
multiplyby10");
//Execute a SELECT statement and store results in resultSet:
java.sql.ResultSet resultSet = statement.executeQuery(sql);
//Step through the result rows
System.out.println("Got results:");
while (resultSet.next ()){
//get the values for the current row
int result1 = resultSet.getInt(1);
int result2 = resultSet.getInt(2);
int result3 = resultSet.getInt(3);
//print the values
System.out.print(" result one =" + result1);
System.out.print(" result two =" + result2);
System.out.print(" result three =" + result3);
System.out.print("\n");
}

3.6.2. PreparedStatement Example

In the example below, the multiply stored procedure is not selectable. Therefore, you
have to call the procedure with the PreparedStatement class. The procedure arguments
are the scale factor and the value of KEYCOL that uniquely identifies the row to be
multiplied in the NUMBERS table.

//Define a PreparedStatement object type
java.sql.PreparedStatement preparedStatement;
//Create a new string object
java.sql.String sql = new String ("EXECUTE PROCEDURE multiply 10, 1");
//Create the PreparedStatement object
preparedStatement = connection.prepareStatement(sql);
//execute the stored procedure with preparedStatement
java.sql.ResultSet resultSet = preparedStatement.executeQuery(sql);
//step through the result set and print out as in Statement example

Programming with JDBC

33

4. Troubleshooting InterClient Programs

This section covers troubleshooting InterClient installation and debugging applications.

4.1. Handling Installation Problems

Call interbase.interclient.InstallTest to test an InterClient installation.
InstallTest provides two static methods for testing the installation. A static main is
provided as a command line test that prints to System.out. main() uses the other public
static methods that test specific features of the installation. These methods can be used by
a GUI application as they return strings, rather than writing the diagnostics to System.out
as main() does. InstallTest allows you to:

determine InterClient driver version information
determine installed packages
check basic network configuration
test making a connection directly without the DriverManager with
driver.connect()
test making a connection with DriverManager.getConnection()
get SQL Exception error messages

4.2. Debugging your Application

You can tailor your own driver instances by using a class called
interbase.interclient.Monito r. This is a public InterClient extension to JDBC. The
Monitor class contains user-configurable switches that enable you to call a method and
trace what happens on a per-driver basis. Types of switches that you can enable include:
enableDriverTrace , enableConnectionTrace , enableStatementTrace , and so forth.

Every driver instance has one and only one monitor instance associated with it. The initial
monitor for the default driver instance that is implicitly registered with the DriverManager
has no logging/tracing enabled. Enabling tracing for the default driver is not recommended.
However, if you create your own driver instance, you can tailor the tracing and logging for
your driver without affecting the default driver registered with the DriverManager .

Note:
If you want to use the Monitor to trace connections and statements, you must create
the original objects using the connect() method of the tailored driver. You cannot
create a connection with DriverManager.getConnection() method and then try to
trace that connection. Since tracing is disabled for the default driver, there will be no
data.

The following example shows calls to getMonitor() trace methods:

//Open the driver manager's log stream
DriverManager.setLogStream(System.out);
//Create the driver object
java.sql.Driver icDriver = new interbase.interclient.Driver();
//Trace method invocations by printing messages to this monitor's
//trace stream
((interbase.interclient.Driver)icDriver).getMonitor().setTraceStream
(System.out);
((interbase.interclient.Driver)icDriver).getMonitor().enableAllTraces (true);

After running the program and executing some SQL statements, you can print out the trace
messages associated with the driver, connection, and statement methods. The tracing
output distinguishes between implicit calls, such as the garbage collector or InterClient

•
•
•
•

•
•

Programming with JDBC

34

driver calling close() versus user-explicit calls. This can be used to test application code,
since it would show if result sets or statements aren't being cleaned up when they should.

5. Deploying InterClient Programs

Once you have developed your InterClient programs, you can deploy them as stand-alone
all-Java applications running on a client system.

5.1. Deploying InterClient Programs as Applications

InterClient programs can also be deployed as stand-alone Java applications. These
applications both reside on and execute from the client machine; they are not downloaded
from a server. The most common use for these types of Java applications is within a
company or corporate intranet, where the application can access corporate database
servers on a local or wide area network. However, you can also use Java applications to
access databases via the Internet.

Note:
If your program needs to access data from more than one server/machine, you must
develop a stand-alone InterClient application.

5.1.1. Required Software for Applications

In order to run InterClient applications, the client and server machines must have the
following software loaded:

Client side Server side

Java programs (compiled bytecode) InterBase server process

InterClient package, including the driver and all of
the classes.

JDBC Driver Manager, which is part of the Java
Developer’s Kit (JDK).

6. InterClient/JDBC Compliance Specifications

The following section includes information on:

InterClient Extensions to the JDBC API
JDBC Features Not Implemented in InterClient
InterClient Implementation of JDBC Features
InterBase Features Not Available through InterClient or JDBC

• •

•

•

•
•
•
•

Programming with JDBC

35

Java SQL Data Type Support
SQL-to-Java Type Conversions
Java-to-SQL Type Conversion
InterClient Class References

6.1. InterClient Extensions to the JDBC API

The following table lists the extensions provided by InterClient that are not part of the JDBC
API:

InterClient
Subclass

Feature Description

ErrorCodes

A class defining all error codes
returned by InterClient in
SQLWarnings and
SQLExceptions

PreparedStatement getParameterMetaData ()

Returns a ParameterMetaData
object, which provides
information about the
parameters to a
PreparedStatement.

ParameterMetaData

A ParameterMetaData object
provides information about the
parameters to a
PreparedStatement

ResultSet isNull()

Returns a Boolean value
indicating whether the column
contains a NULL value. Unlike
wasNull (), isNull () does not

require the application to read
the value first.

SQL Escape processing:
Outer join syntax

InterClient allows you to
associate a label with a table
name.

6.2. JDBC Features Not Implemented in InterClient

Although all JDBC classes and methods must be implemented in order to create a JDBC-
compliant driver, some features are not actually supported.

InterBase XE3U3 introduces a new connection property in the JDBC driver,
returnColumnLabelAsColumnName. Pentaho requires
ResultSetMetaData.getColumnName() to actually return the alias/label name (if provided by
the application). In order to comply with JDBC specifications, and to keep backward
compatibility for existing InterBase JDBC apps, this new connection property will be FALSE
by default.

If you want to use the new property for the Pentaho-type behavior, set the following
connection property:

properties.put(“returnColumnLabelAsColumnName”, “true”)

•
•
•
•

Programming with JDBC

36

Note:
Unsupported features throw a SQLException error message.

The following table lists the JDBC classes, methods, and features not supported by this
version of InterClient.

java.sql Subclass Feature Description

CallableStatement OUT parameters
InterBase does not support
OUT parameters in stored
procedures.

Escape processing for stored
procedures:
{? = call procedure_name[] }

InterClient does not support
escape syntax with a result
parameter.

Statement,
PreparedStatement,
CallableStatement

Escape processing:
Scalar functions

InterClient does not support.
Keywords fn user(), fn now(), fn
curdate() are supported. All
other scalar functions are not
supported unless they are user-
defined.

Statement,
PreparedStatement,
CallableStatement

Escape processing:
time literals:
{t 'hh:mm:ss }

time escape clause not
supported.

Connection getCatalog () InterBase does not support
catalogs.

TRANSACTION_READ_UNCOMMITTED

Not supported.
We recommend using the
TRANSACTION_SERIALIZABLE

transaction isolation level.

getLoginTimeout ()
setLoginTimeout ()

Login timeouts are not
supported in this release.

setQueryTimeout ()
setQueryTimeout ()
cancel ()

Asynchronous cancels are not
supported in this release.

Types BIT
 TINYINT
 BIGINT
InterBase does not support
these data types.

DatabaseMetaData

getCatalogs ()
getCatalogSeparator ()
getCatalogTerm ()
getMaxCatalogNameLength ()
getMaxSchemaNameLength ()
getSchemas ()
getSchemaTerm ()
isCatalogAtStart ()

InterBase does not support
catalogs or schemas.

Programming with JDBC

37

java.sql Subclass Feature Description

PreparedStatement setUnicodeStream () InterClient does not support
Unicode.

ResultSetMetaData
getCatalogName ()
getSchemaName ()

InterBase does not support
catalogs or schemas.

6.3. InterClient Implementation of JDBC Features

The following lists unique aspects of InterClient's implementation of the JDBC API.

java.sql Subclass Feature Description

Driver connect ()

Requires two Properties values:
“user” and “password”,
specifying the database user
login and password.

DriverManager getConnection ()

Requires two Properties values:
“user” and “password”,
specifying the database user
login and password.

6.4. InterBase Features Not Available through InterClient or JDBC

The following table lists InterBase features that are currently unavailable to InterClient
developers.

Unsupported InterBase Feature Description

Arrays InterClient does not support arrays.

Events and Triggers

InterClient does not support InterBase events and
triggers. A trigger or stored procedure posts an event
to signal a database change (for example: inserts,
updates, deletes).

Generators
Used to produce unique values to insert into a column
as a primary key. InterClient does not allow setting of
generator values.

Multiple transactions
InterClient does not allow more than one transaction
on a single connection.

BLOB filters
A Blob is used to store large amounts of data of
various types. A Blob filter is a routine that translates
Blob data from one user-defined subtype to another.

Query plan
InterBase uses a query optimizer to determine the
most efficient plan for retrieving data. InterClient does
not allow you to view a query plan.

Programming with JDBC

38

Unsupported InterBase Feature Description

International character sets
InterClient does not support multiple international
character sets. *JDBC does support some.

Transaction locking
InterClient does not support some transaction options,
such as two-lock resolution modes, and explicit table-
level locks.

6.5. Java SQL Data Type Support

The following table lists the supported and unsupported Java SQL data types.

Supported Java SQL data types Unsupported Java SQL data types

VARCHAR, LONGVARCHAR TINYINT

VARBINARY, LONGVARBINARY BIGINT

NUMERIC

SMALLINT

INTEGER

FLOAT

DOUBLE

DATE

TIME

TIMESTAMP

BIT

6.6. SQL-to-Java Type Conversions

The following table shows the SQL-to-Java type conversion mapping.

DBC SQL Type Maps to Java Type
Or maps to Java objects

returned/used by
get/setObject methods

CHAR java.lang.String

VARCHAR java.lang.String

Programming with JDBC

39

DBC SQL Type Maps to Java Type
Or maps to Java objects

returned/used by
get/setObject methods

LONGVARCHAR java.lang.String

NUMERIC java.lang.Bignum

DECIMAL java.lang.Bignum

SMALLINT short java.lang.Integer

INTEGER int java.lang.Integer

REAL float java.lang.Float

FLOAT double java.lang.Double

DOUBLE double java.lang.Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

6.7. Java-to-SQL Type Conversion

The following table shows the Java-to-SQL type conversion mapping.

Java Type maps to getObject/setObject JDBC SQL Type

java.lang.String VARCHAR, LONGVARCHAR

java.lang.Bignum NUMERIC

short java.lang.Integer SMALLINT

int java.lang.Integer INTEGER

float java.lang.Float REAL

Programming with JDBC

40

Java Type maps to getObject/setObject JDBC SQL Type

double java.lang.Double DOUBLE

byte [] VARBINARY, LONGVARBINARY

java.sql.Date DATE

c.sql.Time TIME

java.sql.Timestamp TIMESTAMP

6.8. InterClient Class References

The reference information for the InterClient classes is included in the documentation set
provided to each client.

7. InterClient Data Source Properties for InterBase

7.1. Standard properties

Name Type Description
Default
Value

databaseName String
The name of the database to
connect to

null

serverName String The InterBase server name localhost

user String
The InterBase user who is
connecting

null

password String The InterBase user password null

networkProtocol String
The InterBase network
protocol; this can only be
jdbc:interbase: for InterClient.

jdbc:interbase

port Number int The InterBase port number 3050

roleName String The InterBase role null

dataSourceName String

The logical name for the
underlying XADataSource or
Connection Pool; used only
when pooling connections for
InterBase (XA is not
supported).

null

description String
A description of this data
source

null

Programming with JDBC

41

7.2. Extended Properties

Name Type Description
Default
Value

charSet String

Specifies the character
encoding for the connection;
used for sending all SQL and
character input data to the
database and for all output
data and InterBase messages
retrieved from the database.

The encoding specified by
charSet must match one of

the supported IANA character-
encoding names detailed in
the CharacterEncodings
class.

If charSet is set to NONE ,
InterClient uses the default
system encoding obtained by
the
System.getProperty(“file
.encoding”)

method if that default
encoding is supported by
InterBase. If the default
system encoding is not
supported by InterBase, it is
recommended that you use
the charSet property to set
the InterClient charSet to
one of the InterBase-
supported encodings.

InterClient messages do not
utilize charSet , but derive
from the resource bundle in
use, which is based on the
locale-specific encoding of the
client.

No default value

sqlDialect int

The client SQL dialect. If the
value is set to 0, then the
dialect of the database is used
for the client dialect.

0

create Boolean
If set, the database is created
if it does not exist.

false

serverManagerHost String Ignored. null

Programming with JDBC

42

Name Type Description
Default
Value

sweepOnConnect boolean

If set, forces garbage collection
of outdated record versions
immediately upon connection

See the InterBase Operations
Guidefor more details. Sweep
does not require exclusive
access, but there is some data
and transaction state
information that can be
updated only where there are
no active transactions on the
database.

false

Programming with JDBC

43

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

suggestedCachePages int

The suggested number of
cache page buffers to use for
this connection

This is a transient property of
the connection and is
overridden by the database-
wide default set by
ServerManager.setDatabas
eCachePages(database,
pages) .

It takes precedence over the
server-wide default set by
DATABASE_CACHE_PAGES in

the InterBase ibconfig
startup file or by
ServerManager.startInter
Base(defaultCachePages,
defaultPageSize) .

In InterBase, if a scache
already exists due to another
attachment to the database,
then the cache size can be
increased but not decreased.
So, although this is a transient
property, once the cache size
is increased, it stays that way
as long as there are active
connections. Once all
connections to the database
are closed, then subsequent
connections use the database-
wide or server-wide defaults.

Note: Using this connection
property can jeopardize the
performance of the server
because an arbitrary user can
connect and reserve 200MB
for foo.ib while
corporate.ib is forced to

accept less.

InterBase code sets an
absolute limitation on
MAX_PAGE_BUFFERS of 65,535

pages. So the cache memory
size for a database cannot go
beyond a maximum of
MAX_PAGE_BUFFERS *
PageSize bytes, which is

512MB for an 8K page size. 8K
is the maximum database
page size currently allowed. If
this property is zero or
unspecified and there is no
server-wide or database-wide
default set, the default pages
used is 2048 cache pages.

Also see
DatabaseMetaData.getPers
istentDatabaseCachePages
()

and
DatabaseMetaData.getActu
alCachePagesInUse() .

0

Programming with JDBC

44

Name Type Description
Default
Value

logWriterFile String

The logWriterFile points a
complete location of a
filename that will be opened
by the driver and be used a a
InterBase log file.This property
differs from the standard
logWriter property as the
logWriter takes in takes a
defined printWriter while the
logWriterFile takes a complete
filename.

No default value

systemEncryptionPassword String

Specifies the system
encryption password used to
connect to an encrypted
database. Refer to the
“Encrypting Your Data” chapter
in the Operations Guide for
details on Encryption

No default value

ssl Boolean

This must be set for any of the
other OTW parameters to be
accepted and for the
connection to be secure.

No default value

serverPublicFile String

Location of the certificate file.
The client will not be expected
to create this file. This file will
be created by the database
administrator of the server
you are connecting to. If you
are the person generating this
file, please ensure that the
public certificate file has been
created binding the certificate
to the DNS of the server. This
DNS must match the <secure
host name> used by the client.

<user home directory>/
ibserverCAfile.pem

If client verification by the server is enabled on the server, these parameters are needed:

clientPrivateFile String

Location and name of the
client certification file. This
certificate will be presented to
the server during the SSL
connection phase. The
certificate file must be in the
PEM format and must contain
both the client certificate and
the private key.

No default value

clientPassPhrase String Private key pass phrase No default value

Note:
For more information on how to generate the certificate and private key files, refer to the
Network Configuration chapter in the Operations Guide.

Programming with JDBC

45

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

7.3. InterClient Connection Pooling

InterClient now works with Container Managed Persistence (CMP) 2.0, which is supplied with
the server. This enables JDBC DataSource 2.x connectivity to InterBase databases. The
following jndi-definition.xml file shows how it can be used through an application
server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jndi-definitions PUBLIC "-//Borland Corporation//DTD JndiDefinitions//
EN" "http://www.borland.com/devsupport/appserver/dtds/jndi-definitions.dtd">
<jndi-definitions>
<visitransact-datasource>
<jndi-name>serial://datasources/DataSource</jndi-name>
<driver-datasource-jndiname>serial://datasources/driverDataSource</driver-
datasource-jndiname>
<property>
<prop-name>connectionType</prop-name>
<prop-type>Enumerated</prop-type>
<prop-value>Direct</prop-value>
</property>
<property>
<prop-name>dialect</prop-name>
<prop-type>Enumerated</prop-type>
<prop-value>interbase</prop-value>
</property>
</visitransact-datasource>
<driver-datasource>
<jndi-name>serial://datasources/driverDataSource</jndi-name>
<datasource-class-name>interbase.interclient.JdbcConnectionFactory</datasource-
class-name>
<property>
<prop-name>user</prop-name>
<prop-type>String</prop-type>
<prop-value>SYSDBA</prop-value>
</property>
<property>
<prop-name>password</prop-name>
<prop-type>String</prop-type>
<prop-value>masterkey</prop-value>
</property>
<property>
<prop-name>serverName</prop-name>
<prop-type>String</prop-type>
<prop-value>agni</prop-value>
</property>
<property>
<prop-name>databaseName</prop-name>
<prop-type>String</prop-type>
<prop-value>c:/admin.ib</prop-value>
</property>
<property>

<prop-name>sqlDialect</prop-name>
<prop-type>int</prop-type>
<prop-value>3</prop-value>
</property>
<property>
<prop-name>create</prop-name>
<prop-type>boolean</prop-type>
<prop-value>true</prop-value>
</property>

</driver-datasource>
</jndi-definitions>

8. InterClient Scrollability

Programming with JDBC

46

8.1. The InterClient Connection Class

To achieve JDBC 2.0 core compliance, InterClient now allows a value of
TYPE_SCROLL_INSENSITIVE for the resultSetType argument for the following
Connection methods:

public java.sql.Statement createStatement (int resultSetType, int
resultSetConcurrency)
public java.sql.CallableStatement prepareCall (String sql, int resultSetType, int
resultSetConcurrency)
public java.sql.PreparedStatement prepareStatement (String sql, int
resultSetType, int resultSetConcurrency)
Previously, the only allowable value for resultSetType was TYPE_FORWARD_ONLY.
Currently, the only type not allowed is the TYPE_SCROLL_SENSITIVE

8.2. The ResultSet Class

The resultSetType property of the ResultSet class can now have a value of
TYPE_SCROLL_INSENSITIVE Previously, the only allowable value for resultSetType was
TYPE_FORWARD_ONLY. Currently, the only type not allowed is the
TYPE_SCROLL_SENSITIVE .

The following methods now return a valid value when the resultSets that are of the new
resultSetType.TYPE_SCROLL_INSENSITIVE :

public boolean isBeforeFirst()
public boolean isAfterLast()
public boolean isFirst()
public isLast()
public void beforeFirst()
public void afterLast()
public boolean first()
public boolean last()
public int getRow()
public boolean absolute(int row)
public boolean relative(int rows)
public boolean previous()

8.3. Additional Functions

Additional functions that implement the JDBC 2.x API functionality are listed below.

Function Functionality

int Statement.getResultSetType()
Returns the type if resultSet is open, otherwise
throws an exception

int Statement. getResultSetConcurreny() Returns the concurrency if resultSet is open.

int Statement. getFetchDirection()
Returns the fetch direction if resultSet is open, the
return value is always FETCH_FORWARD for InterBase.

int ResultSet. getFetchDirection() Returns FETCH_FORWARD in all cases

int ResultSet. getFetchSize()
Returns the fetch size for the result set of the
statement.

Programming with JDBC

47

Function Functionality

int ResultSet. setFetchSize()
Allows you to set the fetch size of the resultset and the
statement.

int ResultSet. setFetchDirection()

Throws an exception; it can only work with
TYPE_SCROLL_SENSITIVE and
TYPE_SCROLL_INSENSITIVE . Neither of these are

supported by InterBase, since InterBase does not
support scrollable cursors. The only ResultSet type
allowed by InterClient/InterBase is
TYPE_FORWARD_ONLY .

9. Batch Updates

9.1. Methods for the Statement and PreparedStatement Classes

The following methods have been added to both the Statement and the
PreparedStatement classes. The methods listed below now work according to the JDBC
specifications.

Method Functionality

void Statement.addBatch(String sql) Adds sql to the current list of commands.

void Statement.clearBatch()
Empties the list of commands for the current
statement object.

int[] Statement.executeBatch()

throws BatchUpdateException

Submits the list of commands for this statement’s
objects to the database for execution as a unit. The
returned integer array contains the update counts for
each of the SQL commands in the list.

void PreparedStatement.addBatch()
Adds a set of parameters to the list of commands for
the current PreparedStatement object's list of
commands to be sent to the database for execution.

9.2. The BatchUpdateException Class

A new BatchUpdateException class has been implemented in order to support JDBC
Batch update functionality. Here is the list of methods and constructors in the new class:

Method/Constructor Functionality

public BatchUpdateException(
 String reason,
 String SQLState,
 int vendorCode,
 int [] updateCounts)

Constructs a BatchUpdateException object where:

reason is a string describing the exception.

SQLState is an object containing Open Group code
identification.

vendorCode identifies the vendor-specific database
error code.

updateCounts contains an array of INT values
where each element indicates the row count for each
SQL UPDATE command that executed successfully
before the exception was thrown.

Programming with JDBC

48

Method/Constructor Functionality

public BatchUpdateException(
 String reason,
 String SQLState,
 int [] updateCounts)

Constructs a BatchUpdateException object where:

reason is a string describing the exception.

SQLState is an object containing the InterBase error
code.

updateCounts contains an array of INT values
where each element indicates the row count for each
SQL UPDATE command that executed successfully
before the exception was thrown.

The vendor code is implicitly set to zero.

public BatchUpdateException(
 String reason,
 int [] updateCounts)

Constructs a BatchUpdateException object where:

reason is a string describing the exception.

updateCounts contains an array of INT values
where each element indicates the row count for each
SQL UPDATE command that executed successfully
before the exception was thrown.

The following values are implicitly set: the
vendorCode is set to zero and the Open Group code

identification is set to null.

public BatchUpdateException (int []
updateCounts)

Constructs a BatchUpdateException object where
updateCounts contains an array of INT values in

which each element indicates the row count for each
SQL UPDATE command that executed successfully
before the exception was thrown.

The following values are implicitly set: reason is set to
null, vendorCode is set to zero, and the Open Group
code identification is set to null.

public BatchUpdateException()

The following values are implicitly set:

updateCounts is set to a zero-length integer array.

reason is set to null.

vendorCode is set to zero.

the Open Group code identification is set to null.

public int [] getUpdateCounts()

Retrieves an array of INT values where each element
indicates the row count for each SQL UPDATE
command that executed successfully before the
exception was thrown.

9.3. The DatabaseMetaData.supportsBatchUpdates Function

The DatabaseMetaData.supportsBatchUpdates function has changed as follows:

Function Functionality

boolean
DatabaseMetaData.supportsBatchUpdates() Can now return TRUE.

Programming with JDBC

49

9.4. Code Examples

Code example for the batch update functions:

Statement Class
con.setAutoCommit(false);
Statement stmt = con.createStatement();
stmt.addBatch("INSERT INTO foo VALUES (1, 10));
stmt.addBatch("INSERT INTO foo VALUES (2, 21));
int[] updateCounts = pstmt.executeBatch();
con.commit();

Code example for the PreparedStatement class:

PreparedStatement pstmt = con.prepareStatement ("UPDATE employee set emp_id = ?
where emp_id = ?")
pstmt.setInt(1, newEmpId1);
pstmt.setInt(2, oldEmpId1);
pstmt.addBatch();
pstmt.setInt(1, newEmpId2);
pstmt.setInt(2, oldEmpId2);
pstmt.addBatch();
int[] updateCounts = pstmt.executeBatch();

Code example for the BatchUpdateException class and getUpdateCounts () method

try
{
int[] updateCounts = pstmt.executeBatch();
}
catch (BatchUpdateException b)
{
int [] updates = b.getUpdateCounts();
for (int i = 0; i < updates.length; i++)
{
System.err.println ("Update Count " + updates[i]);
}
}

10. Implementation of Blob, Clob, and Other Related API's

The following new interfaces have been implemented for JDBC:

JDBC Name InterClient Name Exceptions/Comments

java.sql.Blob interbase.interclient.Blob

For all API the parameter pos is
ignored and assumed to be 1,
hence the complete BLOB is
returned. For example in the
method OutputStream
setBinaryStream(long pos) the
parameter pos is ignored. The same
is true for all other methods which
take the "pos" parameter.

public long position(byte[] pattern,
long start) and public long position
(java.sql.Blob blob, long start) are
not supported.

java.sql.Clob interbase.interclient.Clob

Programming with JDBC

50

JDBC Name InterClient Name Exceptions/Comments

java.io.inputStream
interbase. interclient
IBBlobInputStream

Special implementation of the
java.io.inputStream for InterBase
Blob (and Clobs). Use the read()
methods from this stream to access
the underlying data.

In the java.sql.PreparedStatement class

public void setObject (int parameterIndex, Object x) now works when parameter x is of
type java.io.Inputstream.
All variations of the setCharacterStream () method are implemented.
All variations of the setAsciiStream() and setBinaryStream() methods are implemented.
All variations of the setBlob() and setClob() methods are implemented.
The isClosed() method is implemented.

In the java.sql.Result class

All variations of the getCharacterStream () method are implemented.
All variations of the getBlob () and getClob() methods are implemented.

•

•
•
•
•

•
•

Programming with JDBC

51

Programming Applications with ODBC

This chapter discusses how to program InterBase applications with ODBC, including:

ODBC and OLE DB
Programming with the ODBC driver
Configuring and using ODBC data sources

1. Overview of ODBC

Microsoft standard, similar in intent to the BDE, is called Open Database Connectivity
(ODBC). One standard API provides a unified interface for applications to access data from
any data source for which an ODBC driver is available. The InterBase client for Windows
platforms includes a 32-bit client library for developing and executing applications that
access data via ODBC. The driver is in the file iscdrv32.dll . The ODBC driver follows the
ODBC 3.5 specification, which includes the 2.0 and 3.0 specifications.

You configure a data source using the ODBC Administrator tool, much as you do in BDE. If
you need to access InterBase databases from third party products that do not have
InterBase drivers, you need to install this ODBC driver. The install program then asks you if
you want to configure any ODBC data sources. “Configuring” means providing the complete
path to any databases that you know you will need to access from non-InterBase-aware
products, along with the name of the ODBC driver for InterBase.

ODBC is the common language of data-driven client software. Some software products
make use of databases, but do not yet have specific support for InterBase. In such cases,
they issue data queries that conform to a current SQL standard. This guarantees that these
requests can be understood by any compliant database. The ODBC driver then translates
these generic requests into InterBase-specific code. Other ODBC drivers access other
vendors’ databases.

Microsoft Office, for example, does not have the technology to access InterBase databases
directly, but it can use the ODBC driver that is on the InterBase CDROM.

You do not need to install an ODBC driver if you plan to access your InterBase databases
only from InterBase itself or from products such as Delphi, C++Builder, and JBuilder that use
either native InterBase programming components or SQL-Links components to query
InterBase data.

JDBC and InterClient are covered in Programming with JDBC.

1.1. Configuring an ODBC Driver

To access the ODBC Administrator on Windows machines, display the Control Panel and
choose ODBC. (In some cases, it appears as “32-Bit ODBC Administrator”).

2. Configuring and Using ODBC Data Sources

Use the ODBC Administrator to configure data sources. To access the ODBC Administrator
on Windows platforms, display the Control Panel and choose ODBC (in some cases, it
appears as “32-bit ODBC Administrator” or “ODBC Data Source Administrator” or “ODBC
Data Sources”).

•
•
•

Programming Applications with ODBC

52

Note:
A user data source is a data source visible to the user, whereas a system data source is
visible to the system.

2.1. Configuring Data Sources

Below are the steps for configuring a data source:

Select Start | Settings | Control Panel and double-click the ODBC entry.
(If you have the ODBC SDK installed, you can run the “32bit ODBC Administrator”
utility instead). The “ODBC Data Source Administrator” window opens.
On the User DSN tab, click Add. The “Create New Data Source” window opens.
Select the InterBase ODBC driver and click Finish. The “InterBase ODBC
Configuration” window opens.
Enter the following information:

Data Source Name Make up a name for your data source

Description A description of the data course (not required)

Network Protocol Choose the protocol from the drop-down list

Database
Full physical path to the database, including the
database name

Server
Server name; if you choose the protocol “local,”
this will default to the local server

Username Your database user name, or SYSDBA

Password
The database password corresponding to the
Username

Optionally, click Advanced and fill in CharacterSet and Roles information.
Click OK to return to the “ODBC Data Source Administrator” window. You should
see the data source you just added, listed under User Data Sources.

2.2. Connecting from Delphi Using the ODBC Data Source

ODBC connection from Delphi is very similar to connecting using BDE from Delphi.

The following example shows connecting using the TQuery component, and also displaying
the results of an SQL statement.

Drop a TQuery, a TDatasource, and a TDBGrid component on a Delphi form.
Set the following properties for the TQuery component:

DatabaseName
Pick from the list the data source name created
using ODBC Administrator

SQL
enter the SQL statement to be executed; for
example, “SELECT * FROM Table1”

1.

2.
3.

4.

5.
6.

1.
2.

Programming Applications with ODBC

53

Active
Set to True to connect; supply user name and
password on connection

Set the following property for the TDatasource component:

Data Set
Set to the name of the TQuery component, or
“query1” in this case

Set the following property for the TDBGrid component:

Data Set
Set to the name of the TDatasource component,
or “datasource1” in this case

Inspect the returned results from the SELECT statement, in the DBGrid area.

3.

4.

5.

Programming Applications with ODBC

54

Working with UDFs and Blob Filters

This chapter describes how to create and use UDFs to perform data manipulation tasks that
are not directly supported by InterBase.

1. UDF Overview

Just as InterBase has built-in SQL functions such as MIN() , MAX() , and CAST() , it also
supports libraries of user-defined functions (UDFs). User-defined functions (UDFs) are host-
language programs for performing customized, often-used tasks in applications. UDFs
enable the programmer to modularize an application by separating it into more reusable
and manageable units. Possibilities include statistical, string, and date functions. UDFs are
extensions to the InterBase server and execute as part of the server process.

InterBase provides a library of UDFs, documented in The InterBase UDF Library section of
this chapter.

You can access UDFs and Blob filters through isql or a host-language program. You can
also access UDFs in stored procedures and trigger bodies.

UDFs can be used in a database application anywhere that a built-in SQL function can be
used. This chapter describes how to create UDFs and how to use them in an application.

Creating a UDF is a three-step process:

Write the function in any programming language that can create a shared library.
Functions written in Java are not supported.
Compile the function and link it to a dynamically linked or shared library.
Use DECLARE EXTERNAL FUNCTION to declare each UDF to each database in
which you need to use it.

1.1. Location of ib_udf Files and Library

The UDF script, ib_udf.sql is located in the <InterBase_home>/examples/udf directory.

For example the file is located in the following directory:
x:\ProgramData\Embarcadero\InterBase\gds_db\examples\ib_udf.sql

The UDF library, named ib_udf.dll on Windows platforms and ib_udf on UNIX platforms
is located in <InterBase_home>/UDF and its functions are all implemented using the
standard C library.

Put the ib_udf.dll into your UDF directory (if it is not already there) and run the ib_udf.sql
script to define the functions in it. You can read the comments in the script for what each
does and expected input.

Once that script is applied to your database, you can call the UDF functions defined in that
script.

2. Writing a Function Module

To create a user-defined function (UDF), you code the UDF in a host language, then build a
shared function library that contains the UDF. You must then use
DECLARE EXTERNAL FUNCTION to declare each individual UDF to each database where you
need to it. Each UDF needs to be declared to each database only once.

1.

2.
3.

•

•

Working with UDFs and Blob Filters

55

2.1. Writing a UDF

In the C language, a UDF is written like any standard function. The UDF can require up to ten
input parameters, and can return only a single C data value. A source code module can
define one or more functions and can use typedefs defined in the InterBase ibase.h
header file. You must then include ibase.h when you compile.

2.1.1. Specifying Parameters

A UDF can accept up to ten parameters corresponding to any InterBase data type. Array
elements cannot be passed as parameters. If a UDF returns a Blob, the number of input
parameters is restricted to nine. All parameters are passed to the UDF by reference.

Programming language data types specified as parameters must be capable of handling
corresponding InterBase data types. For example, the C function declaration for FN_ABS()
accepts one parameter of type double. The expectation is that when FN_ABS() is called, it
will be passed a data type of DOUBLE PRECISION by InterBase.

You can use a descriptor parameter to ensure that the InterBase server passes all of the
information it has about a particular data type to the function. A descriptor parameter
assists the server in probing the data type to see if any of its values are SQL NULL. For more
information about the DESCRIPTOR parameter, see Defining a Sample UDF with a
Descriptor Parameter.

UDFs that accept Blob parameters require special data structure for processing. A Blob is
passed by reference to a Blob UDF structure. For more information about the Blob UDF
structure, see Writing a Blob UDF.

2.1.2. Specifying a Return Value

A UDF can return values that can be translated into any InterBase data type, including a
Blob, but it cannot return arrays of data types. For example, the C function declaration for
FN_ABS() returns a value of type double, which corresponds to the InterBase
DOUBLE PRECISION data type.

By default, return values are passed by reference. Numeric values can be returned by
reference or by value. To return a numeric parameter by value, include the optional
BY VALUE keyword after the return value when declaring a UDF to a database.

A UDF that returns a Blob does not actually define a return value. Instead, a pointer to a
structure describing the Blob to return must be passed as the last input parameter to the
UDF. See Declaring a Blob UDF.

Note:
A parameter passed as a descriptor cannot be used as a return type. This action will
throw an error. For more information about the DESCRIPTOR parameter, see Defining a
Sample UDF with a Descriptor Parameter.

2.1.3. UDF Calling Conventions

The calling convention determines how a function is called and how the parameters are
passed. The called function must match the calling convention of the caller function.
InterBase uses the CDECL calling convention, so all UDFs must use the same calling
convention.

Working with UDFs and Blob Filters

56

Note that the situation is different for calls to APIs. On UNIX, InterBase uses CDECL for all
API calls. On Windows platforms InterBase uses STDCALL for all functions that have a fixed
number of arguments and CDECL for functions that have a variable number of arguments.
See “Programming with the InterBase API” in the API Guide for a list of these functions.

2.1.4. UDF Character Data Types

UDFs are written in a host language and therefore take host-language data types for both
their parameters and their return values. However, when a UDF is declared, InterBase must
translate them to SQL data types or to a CSTRING type of a specified maximum byte length.
CSTRING is used to translate parameters of CHAR and VARCHAR data types into a null-
terminated C string for processing, and to return a variable-length, null-terminated C string
to InterBase for automatic conversion to CHAR or VARCHAR .

When you declare a UDF that returns a C string, CHAR or VARCHAR , you must include the
FREE_IT keyword in the declaration in order to free the memory used by the return value.

2.2. Thread-safe UDFs

In InterBase, the server runs as a single multi-threaded process. This means that you must
take some care in the way you allocate and release memory when coding UDFs and in the
way you declare UDFs. This section describes how to write UDFs that handle memory
correctly in the new single-process environment.

There are several issues to consider when handling memory in the single-process, multi-
thread architecture:

UDFs must avoid static variables in order to be thread safe. You can use static variables
only if you can guarantee that only one user at a time will be accessing UDFs, since
users running UDFs concurrently will conflict in their use of the same static memory
space. If you do return a pointer to static data, you must not use FREE_IT .
UDFs must allocate memory using ib_util_malloc () rather than static arrays in order
to be thread-safe. The UDF Declaration employs the "FREE_IT" keyword because
memory must be released by the same runtime library that allocated it and "FREE_IT"
uses the Visual Studio runtime library, therefore, the memory must be allocated by the
Visual Studio runtime library which is facilitated by ib_util_malloc(). Similar problems
may occur where ib_util_malloc() is used in a function that does not employ "FREE_IT" in
the declaration.

Note:
If malloc() is employed in a UDF for which "FREE_IT" is specified then there will be a
mismatch if C++Builder runtime library is used to allocate the memory because Visual
Studio runtime library will be used to free it.

Note:
In the case where "FREE_IT" is not specified in the declaration, it is fine to allocate
memory using malloc() because memory will be freed by the same runtime library.

Memory allocated dynamically is not automatically released, since the process does not
end. You must use the FREE_IT keyword when you declare the UDF to the database
(DECLARE EXTERNAL FUNCTION).

In the following example for user-defined function FN_LOWER() , the array must be global to
avoid going out of context:

•

•

•

Working with UDFs and Blob Filters

57

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

Multi-process Version :

char buffer[256];
char *fn_lower(char *ups)
{
. . .
return (buffer);
}

In the following version, the InterBase engine will free the buffer if the UDF is declared using
the FREE_IT keyword:

Thread-safe Version:

Notice that this example uses InterBase ib_util_malloc () function to allocate memory.

char *fn_lower(char *ups)
{
 char *buffer = (char *) ib_util_malloc(256);
 ...
 return (buffer);
}

The procedure for allocating and freeing memory for return values in a fashion that is both
thread safe and compiler independent is as follows:

1. In the UDF code, use InterBase ib_util_malloc () function to allocate memory for
return values. This function is located as follows:

Windows <<InterBase_home> >/bin/ib_util.dll

Linux /usr/lib/ib_util.so

Solaris <<interbase_home> >/lib/ib_util.so

2. Use the FREE_IT keyword in the RETURNS clause when declaring a function that returns
dynamically allocated objects. For example:

DECLARE EXTERNAL FUNCTION lowers VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'ib_udf'

InterBase FREE_IT keyword allows InterBase users to write thread-safe UDF functions
without memory leaks. Note that it is not necessary to provide the extension of the module
name.
3. Memory must be released by the same runtime library that allocated it.

3. Compiling and Linking a Function Module

After a UDF module is complete, you can compile it in a normal fashion into object or library
format. You then declare the UDFs in the resulting object or library module to the database
using the DECLARE EXTERNAL FUNCTION statement. Once declared to the database, the
library containing all the UDFs is automatically loaded at run time from a shared library or
dynamic link library.

Include ibase.h in the source code if you use typedefs defined in the InterBase
ibase.h header file. All “include” (*.h) libraries are in the <<InterBase_home>>
/SDK/include directory.
Link to gds32.dll if you use calls to InterBase library functions.

•

•

Working with UDFs and Blob Filters

58

Linking and compiling:

Microsoft Visual C/C++ Link with <<InterBase_home>> /SDK /lib_ms/ib_util_ms.lib
and include <<InterBase_home>> /SDK/include/ib_util.h

Use the following options when compiling applications with Microsoft C++:

Option Action

c Compile without linking (DLLs only)

Zi Generate complete debugging information

DWIN32 Defines “WIN32”

D_MT Use a multi-thread, statically-linked library

C++ Link with <<InterBase_home>> /SDK/lib/ib_util.lib and include
<<InterBase_home>> /SDK/include/ib_util.h

Delphi Use <<InterBase_home>> /SDK/include/ib_util.pas .

Examples: The following commands use the Microsoft compiler to build a DLL that uses
InterBase:

cl -c -Zi -DWIN32 -D_MT -LD udf.c
lib -out:udf.dll -def:funclib.def -machine:i586 -subsystem:console
link -DLL -out:funclib.dll -DEBUG:full,mapped -DEBUGTYPE:CV
-machine:i586 -entry:_DllMainCRTStartup@12 -subsystem:console
-verbose udf.obj udf.exp gds32_ms.lib ib_util_ms.lib crtdll.lib

This command builds an InterBase executable using the Microsoft compiler:

cl -Zi -DWIN32 -D_MT -MD udftest.c udf.lib gds32_ms.lib
ib_util_ms.lib crtdll.lib

See the makefiles (makefile.bc and makefile.msc on Windows platforms, makefile
on UNIX) in the InterBase examples subdirectory for details on how to compile a UDF
library.

Examples: For examples of how to write thread-safe UDFs, see <<InterBase_home>>
/examples/UDF/udflib.c .

3.1. Creating a UDF Library

UDF libraries are standard shared libraries that are dynamically loaded by the database at
runtime. You can create UDF libraries on any platform—except NetWare—that is supported
by InterBase. To use the same set of UDFs with databases running on different platforms,
create separate libraries on each platform where the databases reside. UDFs run on the
server where the database resides.

Note:
A library, in this context, is a shared object that typically has a dll extension on
Windows platforms, and a so extension on Solaris and Linux.

•

Working with UDFs and Blob Filters

59

The InterBase examples directory contains sample makefiles (makefile.bc and
makefile.msc on Windows platforms, makefile on UNIX) that build a UDF function
library from udflib.c .

3.2. Modifying a UDF Library

To add a UDF to an existing UDF library on a platform:

Compile the UDF according to the instructions for the platform.
Include all object files previously included in the library and the newly-created object file
in the command line when creating the function library.

Note:
On some platforms, object files can be added directly to existing libraries. For more
information, consult the platform-specific compiler and linker documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an object from a
library. Deleting a UDF from a library does not eliminate references to it in the database.

3.3. Creating a UDF Library

UDF libraries are standard shared libraries that are dynamically loaded by the database at
runtime. You can create UDF libraries on any platform–except NetWare–that is supported
by InterBase. To use the same set of UDFs with databases running on different platforms,
create separate libraries on each platform where the databases reside. UDFs run on the
server where the database resides.

Note: A library, in this context, is a shared object that typically has a dll extension on
Windows platforms, and an so extension on Solaris and Linux.

The InterBase examples directory contains sample makefiles (makefile.bc and
makefile.msc on Windows platforms, makefile on UNIX) that build a UDF function
library from udflib.c .

3.4. Modifying a UDF Library

To add a UDF to an existing UDF library on a platform:

Compile the UDF according to the instructions for the platform.
Include all object files previously included in the library and the newly-created object file
in the command line when creating the function library.

Note:
On some platforms, object files can be added directly to existing libraries. For more
information, consult the platform-specific compiler and linker documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an object from a
library. Deleting a UDF from a library does not eliminate references to it in the database.

4. Declaring a UDF to a Database

Once a UDF has been written and compiled into a library, you must use the
DECLARE EXTERNAL FUNCTION statement to declare each function to each database where
you want to use it. Each function in a library must be declared separately, but needs to be
declared only once to each database.

•
•

•
•

Working with UDFs and Blob Filters

60

Declaring a UDF to a database informs the database about its location and properties:

The UDF name as it will be used in embedded SQL statements
The number and data types of its arguments
The return data type
The name of the function as it exists in the UDF module or library
The name of the library that contains the UDF

You can use isql , IBConsole, or a script to declare your UDFs.

You can use the following syntax to execute a DECLARE EXTERNAL FUNCTION statement:

DECLARE EXTERNAL FUNCTION name [data_type ;
| CSTRING (int) | DESCRIPTOR [, data_type | CSTRING (int) ...] DESCRIPTOR]
RETURNS {data_type [BY VALUE] | CSTRING (int) | PARAMETER n}
[FREE_IT]
ENTRY_POINT 'entryname'
MODULE_NAME 'modulename';

The following describes the arguments you can append to a DECLARE EXTERNAL FUNCTION
statement.

Argument Description

<name>
Name of the UDF to use in SQL statements; can be different from
the name of the function specified after the ENTRY_POINT
keyword.

<data_type>

Data type of an input or return parameter

All input parameters are passed to a UDF by reference.
Return parameters can be passed by value.
Cannot be an array element.

CSTRING (<int>) Specifies a UDF that returns a null-terminated string <int> bytes
in length.

DESCRIPTOR
Ensures that the InterBase server passes all the information it
has about a particular data type to the function via the
Descriptor control structure.

RETURNS Specifies the return value of a function.

BY VALUE
Specifies that a return value should be passed by value rather
than by reference.

PARAMETER <n>
Specifies that the <n>th input parameter is to be returned.
Used when the return data type is BLOB .

FREE_IT
Frees memory of the return value after the UDF finishes running.

Use only if the memory is allocated dynamically in the UDF.
See also the UDF chapter in the Developer's Guide.

'<entryname>'
Quoted string specifying the name of the UDF in the source code
and as stored in the UDF library.

•
•
•
•
•

•
•
•

•
•

•
•

Working with UDFs and Blob Filters

61

Argument Description

'<modulename>'

Quoted specification identifying the library that contains the
UDF.

The library must reside on the same machine as the InterBase
server.
On any platform, the module can be referenced with no path
name if it is in <<InterBase_home>> /UDF or
<<InterBase_home>> / intl
If the library is in a directory other than <<InterBase_home>>
/UDF or <<InterBase_home>>. / intl , you must specify its

location in InterBase configuration file (ibconfig) using the
EXTERNAL_FUNCTION_DIRECTORY parameter.

It is not necessary to supply the extension to the module
name.

4.1. Defining a Sample UDF with a Descriptor Parameter

Functions are defined in C/C++ or Delphi code. In C, the developer needs to accept the
descriptor parameter using the ISC_DSC structure. This structure is defined in the include
file “ibase.h”.

The following example defines a DESC_ABS function in a C program file:

Example:

double IB_UDF_abs (ISC_DSC *d)
{
double double_var ;
/* function body */
return double_var ;
}

For C/C++ programs, the ISC_DSC structure is defined as follows:

Example:

/*********************************/
/* Descriptor control structure */
/*********************************/
typedef struct isc_dsc {
unsigned char dsc_version; /* should be set to DSC_CURRENT_VERSION or 2 */
unsigned char dsc_dtype; /* the InterBase data type of this particular parameter
*/
char dsc_scale; /* scale of the parameter for numeric data types */
char dsc_precision; /* precision of the numeric data type */
unsigned short dsc_length; /* size in bytes of the parameter */
short dsc_sub_type; /* for textual data types will have information about
character set and collation sequence,
see DSC_GET_CHARSET and DSC_GET_COLLATE macros for more information */
unsigned short dsc_flags; /* will be set to indicate null to DSC_null or to
DSC_no_subtype to indicate that the sub type is not set, this is a bit map so
multiple bits might be set, use binary operations to test, see table below for
explanation */
unsigned char *dsc_address; /* pointer to the actual value of the data type */
} ISC_DSC;

Some related macros follow:

#define DSC_VERSION2 2
#define DSC_CURRENT_VERSION DSC_VERSION2
#define DSC_null 1
#define DSC_no_subtype 2
#define DSC_nullable 4
#define dsc_ttype dsc_sub_type

•

•

•

•

Working with UDFs and Blob Filters

62

#define DSC_GET_CHARSET(dsc) (((dsc)->dsc_ttype) #0x00FF)
#define DSC_GET_COLLATE(dsc) (((dsc)->dsc_ttype) >> 8)

The following table describes the structure fields used in the example above.

Element Name Type Explanation

dsc_version unsigned char Should be set to DSC_CURRENT_VERSION or 2

dsc_dtype unsigned char
The InterBase data type of this particular
parameter

dsc_scale char

Scale of the parameter for numeric data
types. Scale is the number of digits to the
right of the decimal point that comprise the
fractional portion of the number. The
allowable range for scale is from zero to
precision; in other words, scale must be less
than or equal to precision. See “Working with
Dynamic SQL” in the InterBase API Guide for
information on handling NUMERIC and
DECIMAL types.

dsc_precision Char

Precision is the total number or maximum
number of digits, both significant fractional,
that can appear in a column of these data
types. The allowable range for precision is
from 1 to a maximum of 18. See “Specifying
Data Types” in the Data Definition Guide for
more information.

dsc_length unsigned short
Use dsc_length to figure out how many bytes
are of valid data after de-referencing the
dsc_address.

dsc_sub_type Short

Use DSC_GET_CHARSET and
DSC_GET_COLLATE to retrieve information
about character sets and collation sequences
from textual data types. Also, note that for
some textual dtypes, the dsc_flags maybe set
to indicate that the subtype has not been set
for the dtype.

dsc_flags unsigned short
See the table at the bottom of this page for
more information about dsc_flag settings

dsc_address unsigned char* Pointer to the actual data.

For more details on the ranges of the data types and related information, see “Specifying
Data Types” in the Data Definition Guide. See also “Working with Dynamic SQL” in the API
Guide.

The following table describes the dsc_types that you can use in a DECLARE EXTERNAL
FUNCTION statement.

Working with UDFs and Blob Filters

63

http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/API_Guide

dsc_dtype
Numeric

value
Explanation

dtype_text 1

Associated with the text data type; use the
subtype for character set and collation
information. This dtype maps to the SQL data
type of SQL_TEXT, and CHAR.

dtype_string 2 Indicates a null-terminated string.

dtype_varying 3

Associated with the text data type; use the
subtype for character set and collation
information. This dtype maps to the SQL data
type SQL_VARYING and VARCHAR.

dtype_short 8 Maps to the data type SQL_SHORT.

dtype_long 9 Maps to the data type SQL_LONG.

dtype_quad 10 Maps to the data type SQL_QUAD.

dtype_real 11 Maps to SQL_FLOAT.

dtype_double 12 Maps to SQL_DOUBLE.

dtype_d_float 13 Maps to SQL_D_FLOAT

dtype_sql_date 14 Maps to SQL_TYPE_DATE.

dtype_sql_time 15 Maps to SQL_TYPE_TIME.

dtype_timestamp 16 Maps to SQL_TIMESTAMP.

dtype_blob 17 Maps to SQL_BLOB.

dtype_array 18 Maps to SQL_ARRAY.

dtype_int64 19 Maps to SQL_INT64.

dtype_bollean 20 Maps to SQL_BOOLEAN.

The following table describes the dsc_flags that you can use in a DECLARE EXTERNAL
FUNCTION statement.

Flag Name
Numeric

value
Explanation

DSC_null 1
This flag indicates that data passed in the
descriptor has an SQL NULL value.

Working with UDFs and Blob Filters

64

Flag Name
Numeric

value
Explanation

DSC_no_subtype 2

Flag is set for text, cstring or varying dtypes,
where the subtype is not set. Normally the
subtype for these dtypes will be set to the
collation and charter set values.

DSC_nullable 4 Internal use. Ignore for now.

DSC_system 8
DSC_system flags a format descriptor for
system (not user) relations/tables.

4.2. Declaring UDFs with FREE IT

InterBase FREE_IT keyword allows InterBase users to write thread-safe UDF functions
without memory leaks.

Whenever a UDF returns a value by reference to dynamically allocated memory, you must
declare it using the FREE_IT keyword in order to free the allocated memory.

Note:
You must not use FREE_IT with UDFs that return a pointer to static data, as in the “multi-
process version” example on page Thread-safe UDFs.

The following code shows how to use this keyword:

DECLARE EXTERNAL FUNCTION lowers VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'ib_udf'

4.3. UDF Library Placement

Earlier versions of InterBase had few requirements about the placement of UDF libraries.
For security reasons, current versions of InterBase have the following requirements for the
placement of UDF libraries:

On any platform, the module can be referenced with no path name if it is in
<<InterBase_home>> /UDF or <<InterBase_home>> /intl .
If the library in a directory other than <InterBase_home>/UDF or
<<InterBase_home>> /intl , you must specify its location in InterBase configuration
file (ibconfig) using the EXTERNAL_FUNCTION_DIRECTORY parameter. Give the
complete pathname to the library, including a drive letter in the case of a Windows
server.

When either of the above conditions is met, InterBase finds the library. You do not need to
specify a path in the declaration.

Note:
The library must reside on the same machine as the InterBase server.

To specify a location for UDF libraries in ibconfig , enter a line such as the following:

Windows:

•

•

Working with UDFs and Blob Filters

65

EXTERNAL_FUNCTION_DIRECTORY "C:\<InterBase_home>\Mylibraries"

Unix:

EXTERNAL_FUNCTION_DIRECTORY "/usr/interbase/Mylibraries"

Note that it is no longer sufficient to include a complete path name for the module in the
DECLARE EXTERNAL FUNCTION statement. You must list the path in the
EXTERNAL_FUNCTION_DIRECTORY parameter of the InterBase configuration file if the library
is not located in <InterBase_home>/UDF or <InterBase_home>/intl .

Important:
For security reasons, InterBase strongly recommends that you place your compiled
libraries in directories that are dedicated to InterBase libraries. Placing InterBase libraries
in directories such as C:\WINNT\system32 or /usr/lib permits access to all libraries
in those directories and is a serious security hole.

Example: The following statement declares the TOPS() UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS
CHAR(256), INTEGER, BLOB
RETURNS INTEGER BY VALUE
ENTRY_POINT 'TE1' MODULE_NAME 'TM1';

This example does not need the FREE_IT keyword because only cstrings, CHAR , and
VARCHAR return types require memory allocation. The module must be in InterBase UDF
directory or in a directory that is named in the configuration file.

Example: The following isql script declares UDFs, ABS () and TRIM (), to the
employee.gdb database:

CONNECT 'employee.gdb';
DECLARE EXTERNAL FUNCTION ABS
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'fn_abs' MODULE_NAME 'ib_udf';
DECLARE EXTERNAL FUNCTION TRIM
SMALLINT, CSTRING(256), SMALLINT
RETURNS CSTRING(256) FREE_IT
ENTRY_POINT 'fn_trim' MODULE_NAME 'ib_udf';
COMMIT;

Note that no extension is supplied for the module name. This creates a portable module.
Windows machines add a dll extension automatically.

5. Calling a UDF

After a UDF is created and declared to a database, it can be used in SQL statements
wherever a built-in function is permitted. To use a UDF, insert its name in a SQL statement
at an appropriate location, and enclose its input arguments in parentheses.

For example, the following DELETE statement calls the ABS() UDF as part of a search
condition that restricts which rows are deleted:

DELETE FROM CITIES
WHERE ABS (POPULATION - 100000) > 50000;

Working with UDFs and Blob Filters

66

UDFs can also be called in stored procedures and triggers. For more information, see
“Working with Stored Procedures” and “Working with Triggers” in the Data Definition Guide.

5.1. Calling a UDF with SELECT

In SELECT statements, a UDF can be used in a select list to specify data retrieval, or in the
WHERE clause search condition.

The following statement uses ABS() to guarantee that a returned column value is positive:

SELECT ABS (JOB_GRADE) FROM PROJECTS;

The next statement uses DATEDIFF() in a search condition to restrict rows retrieved:

SELECT START_DATE FROM PROJECTS
WHERE DATEDIFF (:today, START_DATE) > 10;

5.2. Calling a UDF with INSERT

In INSERT statements, a UDF can be used in the comma-delimited list in the VALUES
clause.

The following statement uses TRIM() to remove leading blanks from firstname and trailing
blanks from lastname before inserting the values of these host variables into the EMPLOYEE
table:

INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, EMP_NO, DEPT_NO, SALARY)
VALUES (TRIM (0, ' ',:firstname), TRIM (1, ' ', :lastname),
:empno, :deptno, greater(30000, :est_salary));

5.3. Calling a UDF with UPDATE

In UPDATE statements, a UDF can be used in the SET clause as part of the expression
assigning column values. For example, the following statement uses TRIM() to ensure that
update values do not contain leading or trailing blanks:

UPDATE COUNTRIES
SET COUNTRY = TRIM (2, ' ', COUNTRY);

5.4. Calling a UDF with DELETE

In DELETE statements, a UDF can be used in a WHERE clause search condition:

DELETE FROM COUNTRIES
WHERE ABS (POPULATION - 100000) < 50000;

6. Writing a Blob UDF

A Blob UDF differs from other UDFs because pointers to Blob control structures are passed
to the UDF instead of references to actual data. A Blob UDF cannot open or close a Blob, but
instead invokes functions to perform Blob access.

For information on how to convert a BLOB to a VARCHAR , see the chapter Specifying Data
Types of the Data Definition Guide.

Working with UDFs and Blob Filters

67

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Specifying_Data_Types
http://docwiki.embarcadero.com/InterBase/2020/en/Specifying_Data_Types
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

6.1. Creating a Blob Control Structure

A Blob control structure is a C structure, declared within a UDF module as a
typedef. Programmers must provide the control structure definition, which should be
defined as follows:

typedef struct blob {
 short (*blob_get_segment)(isc_blob_handle, byte *, ISC_USHORT,
ISC_USHORT *);
 isc_blob_handle *blob_handle;
 ISC_LONG number_segments;
 ISC_LONG max_seglen;
 ISC_LONG total_size;
 void (*blob_put_segment)(isc_blob_handle, byte *, ISC_USHORT);
 ISC_LONG (*blob_seek)(isc_blob_handle, ISC_USHORT, ISC_LONG); /* reserved
for future use */
} *Blob;

Field Description

blob_get_segment

Points to a function that is called to read a segment
from a Blob if one is passed; the function takes four
arguments: a Blob handle, the address of a buffer into
which to place Blob a segment of data that is read, the
size (unsigned short integer) of that buffer, and the
address of the variable that stores the size of the
segment (address of unsigned short integer) that is
read.

If Blob data is not read by the UDF, set
blob_get_segment to NULL.

The function returns a signed short integer type with the
following possible values:
short (*blob_get_segment) (isc_blob_handle, byte *,
ISC_USHORT, ISC_USHORT *)

1 -- Complete segment has been
returned
0 -- End of blob (no data returned)
-1 -- Current segment is incomplete

blob_handle
Required Uniquely identifies a Blob passed to a UDF
or returned by it.

number_segments
Specifies the total number of segments in the Blob. Set
this value to NULL if Blob data is not passed to a UDF.

max_seglen
Specifies the size, in bytes, of the largest single
segment passed. Set this value to NULL if Blob data is
not passed to a UDF.

total_size
Specifies the actual size, in bytes, of the Blob as a
single unit. Set this value to NULL if Blob data is not
passed to a UDF.

•

Working with UDFs and Blob Filters

68

Field Description

blob_put_segment

Points to a function that writes a segment to a Blob if
one is being returned by the UDF. The function takes
three arguments: a Blob handle, the address of a
buffer containing the data to write into the Blob, and
the size (unsigned short integer), in bytes, of the data to
write. If Blob data is not read by the UDF, set
blob_put_segment to NULL. The function has no return
type (void)

6.2. Declaring a Blob UDF

To specify that a UDF should return a Blob, use the RETURNS PARAMETER <n> statement to
specify which input Blob is to be returned. For example, if the Blob to be returned is the
third input parameter, specify RETURNS PARAMETER 3. In the following example, the
Blob_PLUS_Blob UDF concatenates two Blobs and returns the concatenation in a third Blob.
The following statement declares this UDF to a database, specifying that the third input
parameter is the one that should be returned:

DECLARE EXTERNAL FUNCTION Blob_PLUS_Blob
Blob,
Blob,
Blob
RETURNS PARAMETER 3
ENTRY_POINT 'blob_concatenate' MODULE_NAME 'ib_udf';
COMMIT;

The blob_concatenate () function shown as the entry point above is defined in the
following Blob UDF example. The blob_concatenate () function concatenates two blobs
into a third blob.

6.3. A Blob UDF Example

The following code creates a UDF, blob_concatenate () , that appends data from one
Blob to the end of another Blob to return a third Blob consisting of concatenated Blob data.
Notice that it is okay to use malloc () rather than ib_util_malloc () when you free the
memory in the same function where you allocate it.

/* Blob control structure */
typedef struct blob {
void (*blob_get_segment) ();
int *blob_handle;
long number_segments;
long max_seglen;
long total_size;
void (*blob_put_segment) ();
} *Blob;

extern char *isc_$alloc();
#define MAX(a, b) (a > b) ? a : b
#define DELIMITER "-----------------------------"

void blob_concatenate(Blob from1, Blob from2, Blob to)
/* Note Blob to, as final input parameter, is actually for output! */
{
char *buffer;
unsigned short length, b_length;

b_length = MAX(from1->max_seglen, from2->max_seglen);
buffer = malloc(b_length);

/* write the from1 Blob into the return Blob, to */
while ((*from1->blob_get_segment) (from1->blob_handle, buffer,

Working with UDFs and Blob Filters

69

b_length, &length))
(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* now write a delimiter as a dividing line in the blob */
(*to->blob_put_segment) (to->blob_handle, DELIMITER,
sizeof(DELIMITER) - 1);

/* finally write the from2 Blob into the return Blob, to */
while ((*from2->blob_get_segment) (from2->blob_handle, buffer,
b_length, &length))
(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* free the memory allocated to the buffer */
free(buffer);
}

7. The InterBase UDF Library

InterBase provides a number of frequently needed functions in the form of a UDF library,
named ib_udf.dll on Windows platforms and ib_udf on UNIX platforms. This UDF
library is located in <<InterBase_home>> /UDF and its functions are all implemented using
the standard C library. This section describes each UDF and provides its declaration.

Important notes:

Do not move the UDF library file from its installed location unless you also move the
utility file that is located in the same directory (ib_util.dll on Windows,
ib_util.so on Solaris and Linux). The UDF library file requires the utility file to
function correctly.
There is a script, ib_udf.sql , in the <<InterBase_home>> /examples/udf directory
that declares all of the functions listed below. If you want to declare only a subset of
these, copy and edit the script file.
Several of these UDFs must be called using the new FREE_IT keyword if, and only if,
they are written in thread-safe form, using malloc to allocate dynamic memory.
When trigonometric functions are passed inputs that are out of bounds, they return
zero rather than NaN.

Below is a list of the functions supplied in the InterBase UDF library. The description and
code for each function follow the table.

Function
name

Description Inputs Outputs

abs Absolute value Double precision Double precision

acos Arc cosine Double precision Double precision

ascii_char
Return character based on
ASCII code.

Integer Char(1)

ascii_val
Returns the ASCII value of
the character passed in.

Char(1) Integer

io
Return ASCII code for
given character.

Char(1) Integer

asin Arc sine Double precision Double precision

•

•

•

•

Working with UDFs and Blob Filters

70

Function
name

Description Inputs Outputs

atan Arc tangent Double precision Double precision

atan2
Arc tangent divided by
second argument

Double precision,
Double precision

Double precision

bin_and Bitwise AND operation Integer, Integer Integer

bin_or Bitwise OR operation Integer, Integer Integer

bin_xor Bitwise XOR operation Integer, Integer Integer

ceiling
Round up to nearest
whole value.

Double precision Double precision

cos Cosine Double precision Double precision

cosh Hyperbolic cosine Double precision Double precision

cot Cotangent Double precision Double precision

div Integer division Integer Integer

floor
Round down to nearest
whole value.

Double precision Double precision

ln Natural logarithm Double precision Double precision

log
Logarithm of the first
argument, by the base of
the second argument.

Double precision,
Double precision

Double precision

log10 Logarithm base 10 Double precision Double precision

lower
Reduce all upper-case
characters to lower-case.

Cstring(80) Cstring(80)

ltrim Strip preceding blanks. Cstring(80) Cstring(80)

mod
Modulus operation
between the two
arguments.

Integer, Integer Integer

pi Return the value of p. — Double precision

rand Return a random value. — Double precision

Working with UDFs and Blob Filters

71

Function
name

Description Inputs Outputs

rtrim Strip trailing blanks. Cstring(80) Cstring(80)

sign Return -1, 0, or 1. Double precision Integer

sin Sine Double precision Double precision

sinh Hyperbolic sine Double precision Double precision

sqrt Square root Double precision Double precision

strlen Length of string Cstring(80) Integer

substr

The substring of <s>
starting at position <m>
and ending at position
<n>.

Cstring(80), Smallint,
Smallint

Cstring(80)

tan Tangent Double precision Double precision

tanh Hyperbolic tangent Double precision Double precision

7.1. Abs

abs

Returns the absolute value of a number.

DECLARE EXTERNAL FUNCTION ABS
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_abs' MODULE_NAME 'ib_udf';

7.1.1. Advance To

Acos

7.2. Acos

acos

Returns the arccosine of a number between -1 and 1; if the number is out of bounds it
returns zero.

DECLARE EXTERNAL FUNCTION ACOS
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_acos' MODULE_NAME 'ib_udf';

Working with UDFs and Blob Filters

72

7.2.1. Advance To

ascii_char

7.3. Ascii char

ascii_char

Returns the ASCII character corresponding to the value passed in.

DECLARE EXTERNAL FUNCTION ascii_char
INTEGER
RETURNS CSTRING(1) FREE_IT
ENTRY_POINT 'IB_UDF_ascii_char' MODULE_NAME 'ib_udf';

7.3.1. Advance To

ascii_val

7.4. Ascii val

ascii_val

Returns the ASCII value of the character passed in.

DECLARE EXTERNAL FUNCTION ASCII_VAL
CHAR(1)
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_ascii_val' MODULE_NAME 'ib_udf';

7.4.1. Advance To

asin

7.5. Asin

asin

Returns the arcsin of a number between -1 and 1; returns zero if the number is out of
range.

DECLARE EXTERNAL FUNCTION ASIN
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_asin' MODULE_NAME 'ib_udf';

7.5.1. Advance To

atan

7.6. Atan

atan

Returns the arctangent of the input value.

Working with UDFs and Blob Filters

73

DECLARE EXTERNAL FUNCTION ATAN
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_atan' MODULE_NAME 'ib_udf';

7.6.1. Advance To

atan2

7.7. Atan2

atan2

Returns the arctangent of the first parameter divided by the second parameter.

DECLARE EXTERNAL FUNCTION ATAN2
DOUBLE PRECISION, DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_atan2' MODULE_NAME 'ib_udf';

7.7.1. Advance To

bin_and

7.8. Bin and

bin_and

Returns the result of a binary AND operation performed on the two input values.

DECLARE EXTERNAL FUNCTION BIN_AND
INTEGER, INTEGER
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_bin_and' MODULE_NAME 'ib_udf';

7.8.1. Advance To

bin_or

7.9. Bin or

bin_or

Returns the result of a binary OR operation performed on the two input values.

DECLARE EXTERNAL FUNCTION BIN_OR
INTEGER, INTEGER
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_bin_or' MODULE_NAME 'ib_udf';

7.9.1. Advance To

bin_xor

Working with UDFs and Blob Filters

74

7.10. Bin xor

bin_xor

Returns the result of a binary XOR operation performed on the two input values.

DECLARE EXTERNAL FUNCTION BIN_XOR
INTEGER, INTEGER
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_bin_xor' MODULE_NAME 'ib_udf';

7.10.1. Advance To

ceiling

7.11. Ceiling

ceiling

Returns a double value representing the smallest integer that is greater than or equal to the
input value.

DECLARE EXTERNAL FUNCTION CEILING
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_ceiling' MODULE_NAME 'ib_udf';

7.11.1. Advance To

cos

7.12. Cos

cos

Returns the cosine of <x>. If <x> is greater than or equal to 263, or less than or equal to
-263, there is a loss of significance in the result of the call, and the function generates a
_TLOSS error and returns a zero.

DECLARE EXTERNAL FUNCTION COS
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_cos' MODULE_NAME 'ib_udf';

7.12.1. Advance To

cosh

7.13. Cosh

cosh

Returns the hyperbolic cosine of x. If <x> is greater than or equal to 263, or less than or
equal to -263, there is a loss of significance in the result of the call, and the function
generates a _TLOSS error and returns a zero.

Working with UDFs and Blob Filters

75

DECLARE EXTERNAL FUNCTION COSH
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_cosh' MODULE_NAME 'ib_udf';

7.13.1. Advance To

cot

7.14. Cot

cot

Returns 1 over the tangent of the input value.

DECLARE EXTERNAL FUNCTION COT
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_cot' MODULE_NAME 'ib_udf';

7.14.1. Advance To

div

7.15. Div

div

Divides the two inputs and returns the quotient.

DECLARE EXTERNAL FUNCTION DIV
INTEGER, INTEGER
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_div' MODULE_NAME 'ib_udf';

7.15.1. Advance To

floor

7.16. Floor

floor

Returns a floating-point value representing the largest integer that is less than or equal to
<x>.

DECLARE EXTERNAL FUNCTION FLOOR
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_floor' MODULE_NAME 'ib_udf';

7.16.1. Advance To

ln

Working with UDFs and Blob Filters

76

7.17. Ln

ln

Returns the natural log of a number.

DECLARE EXTERNAL FUNCTION LN
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_ln' MODULE_NAME 'ib_udf';

7.17.1. Advance To

log

7.18. Log

log

LOG (<x,y>) returns the logarithm base <x> of <y>.

DECLARE EXTERNAL FUNCTION LOG
DOUBLE PRECISION, DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_log' MODULE_NAME 'ib_udf';

7.18.1. Advance To

log10

7.19. Log10

log10

Returns the logarithm base 10 of the input value.

DECLARE EXTERNAL FUNCTION LOG10
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_log10' MODULE_NAME 'ib_udf';

7.19.1. Advance To

lower

7.20. Lower

lower

Returns the input string as lowercase characters. This function works only with ASCII
characters.

Note: This function can receive and return up to 80 characters, the limit on an InterBase
character string.

DECLARE EXTERNAL FUNCTION lower
CSTRING(80)

Working with UDFs and Blob Filters

77

RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_lower' MODULE_NAME 'ib_udf';

7.20.1. Advance To

ltrim

7.21. Ltrim

Removes leading spaces from the input string.

Note: This function can receive and return up to 80 characters, the limit on an InterBase
character string.

DECLARE EXTERNAL FUNCTION LTRIM
CSTRING(80)
RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_ltrim' MODULE_NAME 'ib_udf';

7.21.1. Advance To

mod

7.22. Mod

Divides the two input parameters and returns the remainder.

DECLARE EXTERNAL FUNCTION MOD
INTEGER, INTEGER
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_mod' MODULE_NAME 'ib_udf';

7.22.1. Advance To

pi

7.23. Pi

Returns the value of pi = 3.14159...

DECLARE EXTERNAL FUNCTION PI
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_pi' MODULE_NAME 'ib_udf';

7.23.1. Advance To

rand

7.24. Rand

Returns a random number between 0 and 1. The current time is used to seed the random
number generator.

DECLARE EXTERNAL FUNCTION rand
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_rand' MODULE_NAME 'ib_udf';

Working with UDFs and Blob Filters

78

7.24.1. Advance To

rtrim

7.25. Rtrim

Removes trailing spaces from the input string.

Note: This function can receive and return up to 80 characters, the limit on an InterBase
character string.

DECLARE EXTERNAL FUNCTION RTRIM
CSTRING(80)
RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_rtrim' MODULE_NAME 'ib_udf';

7.25.1. Advance To

sign

7.26. Sign

Returns 1, 0, or -1 depending on whether the input value is positive, zero or negative,
respectively.

DECLARE EXTERNAL FUNCTION SIGN
DOUBLE PRECISION
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_sign' MODULE_NAME 'ib_udf';

7.26.1. Advance To

sin

7.27. Sin

Returns the sine of <x>. If <x> is greater than or equal to 263, or less than or equal to -263,
there is a loss of significance in the result of the call, and the function generates a _TLOSS
error and returns a zero.

DECLARE EXTERNAL FUNCTION SIN
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_sin' MODULE_NAME 'ib_udf';

7.27.1. Advance To

sinh

7.28. Sinh

Returns the hyperbolic sine of <x>. If <x> is greater than or equal to 263, or less than or
equal to -263, there is a loss of significance in the result of the call, and the function
generates a _TLOSS error and returns a zero.

Working with UDFs and Blob Filters

79

DECLARE EXTERNAL FUNCTION SINH
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_sinh' MODULE_NAME 'ib_udf';

7.28.1. Advance To

sqrt

7.29. Sqrt

Returns the square root of a number.

DECLARE EXTERNAL FUNCTION SQRT
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_sqrt' MODULE_NAME 'ib_udf';

7.29.1. Advance To

strlen

7.30. Strlen

Returns the length of a the input string.

DECLARE EXTERNAL FUNCTION STRLEN
CSTRING(80)
RETURNS INTEGER BY VALUE
ENTRY_POINT 'IB_UDF_strlen' MODULE_NAME 'ib_udf';

7.30.1. Advance To

substr

7.31. Substr

substr (<s,m,n>) returns the substring of <s> starting at position <m> and ending at
position <n>.

Note: This function can receive and return up to 80 characters, the limit on an InterBase
character string.

DECLARE EXTERNAL FUNCTION SUBSTR
CSTRING(80), SMALLINT, SMALLINT
RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_substr' MODULE_NAME 'ib_udf';

7.31.1. Advance To

tan

7.32. Tan

Working with UDFs and Blob Filters

80

Returns the tangent of <x>. If <x> is greater than or equal to 263, or less than or equal to
-263, there is a loss of significance in the result of the call, and the function generates a
_TLOSS error and returns a zero.

DECLARE EXTERNAL FUNCTION TAN
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_tan' MODULE_NAME 'ib_udf';

7.32.1. Advance To

tanh

7.33. Tanh

Returns the hyperbolic tangent of <x>. If <x> is greater than or equal to 263, or less than or
equal to -263, there is a loss of significance in the result of the call, and the function
generates a _TLOSS error and returns a zero.

DECLARE EXTERNAL FUNCTION TANH
DOUBLE PRECISION
RETURNS DOUBLE PRECISION BY VALUE
ENTRY_POINT 'IB_UDF_tanh' MODULE_NAME 'ib_udf';

7.33.1. Advance To

The InterBase UDF Library

8. Declaring Blob Filters

You can use BLOB filters to convert data from one BLOB subtype to another. You can
access BLOB filters from any program that contains SQL statements.

BLOB filters are user-written utility programs that convert data in BLOB columns from one
subtype to another. The subtype can be either an InterBase subtype or a user-defined one.
Declare the filter to the database with the DECLARE FILTER statement. For example:

DECLARE FILTER BLOB_FORMAT
INPUT_TYPE 1 OUTPUT_TYPE -99
ENTRY_POINT 'Text_filter' MODULE_NAME 'Filter_99';

InterBase invokes BLOB filters in either of the following ways:

SQL statements in an application
interactively through isql .

isql automatically uses a built-in ASCII BLOB filter for a BLOB defined without a subtype,
when asked to display the BLOB . It also automatically filters BLOB data defined with
subtypes to text, if the appropriate filters have been defined.

To use BLOB filters, follow these steps:

Write the filters and compile them into object code.
Create a shared filter library.
Make the filter library available to InterBase at run time.
Define the filters to the database using DECLARE FILTER .
Write an application that requests filtering.

•
•

1.
2.
3.
4.
5.

Working with UDFs and Blob Filters

81

You can use BLOB subtypes and BLOB filters to do a large variety of processing. For
example, you can define one BLOB subtype to hold:

Compressed data and another to hold decompressed data. Then you can write BLOB
filters for expanding and compressing BLOB data.
Generic code and other BLOB subtypes to hold system-specific code. Then you can
write BLOB filters that add the necessary system-specific variations to the generic code.
Word processor input and another to hold word processor output. Then you can write a
BLOB filter that invokes the word processor.

For more information about creating and using BLOB filters, see the Embedded SQL Guide.
For the complete syntax of DECLARE FILTER , see the Language Reference Guide.

•

•

•

Working with UDFs and Blob Filters

82

http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

Designing Database Applications

Database applications allow users to interact with information that is stored in databases.
Databases provide structure for the information and allow it to be shared among different
applications.

The InterBase Express (IBX) components provide support for relational database
applications. Relational databases organize information into tables, which contain rows
(records) and columns (fields). These tables can be manipulated by simple operations
known as relational calculus.

When designing a database application, you must understand how the data is structured.
Based on that structure, you can then design a user interface to display data to the user and
allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database application
and the decisions involved in designing a user interface.

The following topics introduce topics to be considered when designing a database
application:

Using InterBase Databases
Database Architecture
Designing the User Interface

1. Using InterBase Databases

The components on the InterBase page of the Tool palette allow your application to read
from and write to databases. These components access database information which they
make available to the data-aware controls in your user interface.

1.1. Local Databases

Local databases reside on your local drive or on a local area network. They use the
InterBase proprietary APIs for accessing the data. Often, they are dedicated to a single
system. When they are shared by several users, they use file-based locking mechanisms.
Because of this, they are sometimes called file-based databases.

Local databases can be faster than remote database servers because they often reside on
the same system as the database application.

Because they are file-based, local databases are more limited than remote database servers
in the amount of data they can store. Therefore, in deciding whether to use a local
database, you must consider how much data the tables are expected to hold.

Applications that use local databases are called single-tiered applications because the
application and the database share a single file system.

1.2. Remote Database Servers

Remote database servers usually reside on a remote machine. They use Structured Query
Language (SQL) to enable clients to access the data. Because of this, they are sometimes
called SQL servers. (Another name is Remote Database Management system, or RDBMS.)

•
•
•

Designing Database Applications

83

Remote database servers are designed for access by several users at the same time. Instead
of a file-based locking system such as those employed by local databases, they provide
more sophisticated multi-user support, based on transactions.

Remote database servers hold more data than local databases. Sometimes, the data from a
remote database server does not even reside on a single machine, but is distributed over
several servers.

Applications that use remote database servers are called two-tiered applications or multi-
tiered applications because the application and the database operate on independent
systems (or tiers).

1.3. Database Security

Databases often contain sensitive information. When users try to access protected tables,
they are required to provide a password. Once users have been authenticated, they can see
only those fields (columns) for which they have permission.

For access to InterBase databases on a server, a valid user name and password is required.
Once the user has logged in to the database, that username and password (and sometimes,
role) determine which tables can be used. For information on providing passwords to
InterBase servers, see Controlling Server Login. There is also a chapter on database security
in the Operations Guide.

If you are requiring your user to supply a password, you must consider when the password
is required. If you are using a local database but intend to scale up to a larger SQL server
later, you may want to prompt for the password before you access the table, even though it
is not required until then.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master password
which is used to access a table of passwords required by the protected systems. The
application then supplies passwords programmatically, without requiring the user to
provide multiple passwords.

In multi-tiered applications, you may want to use a different security model altogether. You
can use CORBA or MTS to control access to middle tiers, and let the middle tiers handle all
details of logging into database servers.

1.4. Transactions

A transaction is a group of actions that must all be carried out successfully on one or more
tables in a database before they are committed (made permanent). If any of the actions in
the group fails, then all actions are rolled back (undone).

Client applications can start multiple simultaneous transactions. InterBase provides full and
explicit transaction control for starting, committing, and rolling back transactions. The
statements and functions that control starting a transaction also control transaction
behavior.

InterBase transactions can be isolated from changes made by other concurrent
transactions. For the life of these transactions, the database appears to be unchanged
except for the changes made by the transaction. Records deleted by another transaction
exist, newly stored records do not appear to exist, and updated records remain in the
original state.

Designing Database Applications

84

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

For details on using transactions in database applications, see Using Transactions. For
details on using transactions in multi-tiered applications, see Creating Multi-tiered
Applications in the Delphi Developer’s Guide. For more information about transactions refer
to Understanding InterBase Transactions.

1.4.1. Understanding InterBase Transactions

Note: This content comes originally from 2004 BorCon and was published at Embarcadero
Developer Network it is now reproduced here for reference.

By: Bill Todd

Abstract: This session covers every aspect of transactions and save points and their effect
on InterBase. Topics include isolation levels, the wait option, the record version option, the
OIT, OAT, OST and next transaction; what they mean and when they change.

Introduction

A thorough understanding of transactions will let you get the data you want with maximum
concurrent access for all of your users. Understanding transactions will also let you avoid
errors that can lead to poor performance. The information in this paper applies to InterBase
version 7.1 service pack 2 or later unless otherwise noted.

What is a Transaction?

A transaction is a group of changes to one or more tables in the database that are treated
as a single logical unit. All of the changes will succeed or all of the changes will fail as a unit.
A transaction must exhibit all of the characteristics shown in the following table.

Characteristic Description

Atomicity
All of the changes that are part of the transaction
will succeed or fail together as a single atomic
unit.

Consistency

The database will always be left in a logically
consistent state. If the server crashes all active
transactions will automatically roll back when the
server is restarted. The database can never
contain changes that were made by a transaction
that did not commit.

Isolation
Changes made by other transactions are invisible
to a transaction until the transaction that made
the change commits.

Durability
When a transaction has been committed the
changes are a permanent part of the database.
They cannot be lost or undone.

Note that some databases claim to implement transactions when, in fact, they do not.
Paradox tables are a good example. Paradox transactions exhibit neither consistency or
isolation. Paradox transactions fail the consistency test because active transactions are not
rolled back on restart after a crash thus leaving the database in a logically inconsistent state.
Paradox transactions fail the isolation test because they use read uncommitted (sometimes
called dirty read) transaction isolation which allows other transactions to see uncommitted
changes.

Designing Database Applications

85

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

Understanding Transaction Isolation Level

Your transaction's transaction isolation level determines when your transaction can see
changes made by other transactions. The ANSI SQL standard defines the following four
transaction isolation levels.

ANSI Isolation Level Description

Read Uncommitted

Also called "dirty read". Your transaction can see
changes made by other transactions that have
not committed. This is dangerous because the
transaction that made the change can roll back
and the data values your transaction saw can
vanish. Many databases do not support read
uncommitted.

Read Committed
Your transaction can see all changes made by
other transactions that have committed.

Repeatable Read

If your transaction performs a SELECT and later
performs the same SELECT again it will see the
same values in all of the rows returned by the
first select. However, if, after the first SELECT ,
another transaction inserts a new row and
commits the second SELECT will see that new
row. Thus, a repeatable read transaction,
contrary to what you might expect, does not
provide repeatable result sets or a stable view of
the data.

InterBase does not support the ANSI standard transaction isolation levels. Instead,
InterBase provides the following transaction isolation levels.

InterBase Isolation Level Description

Read Committed
Your transaction can see all changes made by
other transactions that have committed.

Consistency

Also called Table Stability. Provides a stable view
of the data and is serializable. However,
serializability is achieved by locking tables which
blocks updates by other transactions. It is very
unlikely that you will ever need to use this
isolation level.

Most databases use locking architecture. To provide a stable snapshot of the data in the
database they must apply table locks or index range locks to prevent other transactions
from updating the data that your transaction is using. This is not multi-user friendly.
InterBase uses versioning architecture to provide a snapshot of the database without
preventing other transactions from updating the data.

How Does Versioning Work?

All access to data in an InterBase database must take place within a transaction. When a
Transaction starts it is assigned a unique number. Transaction numbers are 32 bit integers
so every two billion transactions you must backup and restore your database to restart the
numbering sequence. Each row version contains the number of the transaction that created
it.

Designing Database Applications

86

For reasons that you will see in a moment, transactions must be able to determine the state
of other transactions. InterBase tracks the state of transactions on the transaction inventory
pages (TIP). A transaction can be in one of four states so two bits on the TIP are used for
each transaction. The four states are:

Active
Committed
Rolled back
Limbo

Limbo requires some explanation. InterBase supports transactions that span multiple
databases. Committing a transaction that includes changes to two or more databases is
done using a process called two-phase commit. Here is what happens when a multi-
database transaction is committed.

The server where the commit is issued notifies all other servers involved that a
commit has been requested.
Each server sets the transaction state to limbo in each of its databases that is
involved in the transaction and notifies the controlling server that it is ready to
commit.
When the controlling server receives a message from the other server(s) that they
are ready to commit it notifies each server to commit.
When each server receives the command to commit it changes the transaction
state to committed.

If one of the servers crashes or if the network connection to one of the servers is lost
between steps 2 and 3 above, the transaction will be left in limbo. More about this later.

When a transaction using snapshot isolation starts InterBase makes a copy of the TIP and
gives the new transaction a pointer to this copy. This enables the transaction to determine
what the state of all other transactions was when it started. When a read committed
transaction starts it gets a pointer to the live TIP (actually the TIP cache or TPC) so it can
determine the current state of any transaction.

When a transaction updates a row it looks it its TIP to see if there are other active
transactions with a transaction number lower than its transaction number. If there are no
older transactions that are active it updates the row. If there are older transactions that are
still active it creates a new version of the row and enters its transaction number in the new
version.

When a snapshot transaction reads a row it looks for the most recent version of that row
that was created by a transaction whose state is committed in the snapshot transaction's
copy of the TIP. In other words, the snapshot transaction finds the most recent version of
the row that was already committed when the snapshot transaction started. Another way to
look at this process is that the snapshot transaction ignores all of the changes made by
transactions that committed after it started and returns the version of the row that
represents the state of the row when the snapshot transaction started. Consider the
following example of a row for which four versions exist.

Assume that a snapshot transaction with transaction number 90 attempts to read this row.
The read transaction will not see the version of the row created by transaction 100 because
the update that created this version took place after transaction 90 began. Transaction 90
also will not read the version created by transaction 80 although it has a lower transaction
number because transaction 80 was not commited when transaction 90 started. In this
scenario I am assuming that transaction 80 committed after transaction 90 started but
before transaction 100 started. Although the version for transaction 60 still exists on disk

•
•
•
•

1.

2.

3.

4.

Designing Database Applications

87

transaction 60 has rolled back and rolled back versions are always ignored. Therefore, the
version that transaction 90 will read is the version created by transaction 40.

The same thing happens when a transaction using read committed transaction isolation
reads a row. What is different is that instead of looking a copy of the TIP that it got when it
started to determine the state of the transaction that created each version of the row, a
read committed transaction looks at the live TIP to determine the current state of the
transaction that created the row version. This means that a read committed transaction will
get the most recent version of the row that was created by a transaction whose current
state is committed regardless of what the state of the creating transaction was at the time
the reading transaction started. Therefore, in the example above, a read committed
transaction would read the version of row 123 created by transaction 100.

Transaction Options

Besides the isolation level InterBase transactions offer a number of options that you can set
to get the behavior you need. These options are divided into several categories and are
described in the following sections.

Access Mode

InterBase transactions can be either read only or read write. The default access mode is
read write. To set the access mode for a transaction using IBTransaction use the read or,
optionally, the write keyword. For example:

concurrency
read

specifies a read only concurrency (snapshot) transaction. You can specify the access mode
with concurrency (snapshot), read committed and consistency (table stability) transactions.

Read only transactions consume less overhead and, in the case of read committed read only
transactions, do not inhibit garbage collection. Not interfering with garbage collection can
lead to better performance. If you do not need to make changes to the database you should
always make your transaction read only.

Lock Resolution

When your transaction updates an existing row your transaction places a row level write
lock on that row until the transaction ends. This prevents another transaction from
updating the same row before your transaction either commits or rolls back. The lock
resolution setting determines what happens to the other transaction when it tries to update
a row that your transaction has locked.

If the lock resolution setting is wait, the other transaction will wait until your transaction
ends, then it will proceed. If the lock resolution setting is nowait the other transaction will
return an error immediately when it tries to update the locked row. Here is an example of
the IBTransaction parameters for a read write snapshot transaction using the wait option.

concurrency
write
wait

Note that write is not required since the default access mode is read write.

Designing Database Applications

88

Table Reservation

Normally, if your transaction cannot proceed because a record it needs to update is locked
by another transaction it will either return an error or wait depending on the lock resolution
setting. If the lock resolution setting is nowait and your transaction generates an error due
to a lock conflict your code would probably rollback and try again.

Although rare, there might be a situation where a transaction performs many time
consuming operations, possibly requiring hours to complete. In this case it might not be
acceptable to get most of the way through the processing and have the transaction fail due
to a lock conflict. If, for some reason, you cannot use the wait option there is another
alternative.

The table reservation mechanism lets you lock tables when your transaction starts so you
are guaranteed the access you need to every row in the tables for the life of your
transaction. The disadvantage of table reservation is that no other transaction can update
the reserved tables for the life of your transaction. This is why this option is rarely used. The
four table reservation options are described in the following table.

Reservation Description

Shared, lock_write
Write transactions with concurrency or read
committed isolation can update the table. All
transactions can read the table.

Shared, lock_read
Any write transaction can update the table. Any
transaction can read the table.

Protected, lock_write
Other transactions cannot update the table.
Concurrency and read committed transactions
can read the table.

Protected, lock_read
No other transaction can update the table. Any
transaction can read the table.

Here is an example of the IBTransaction. Params for a concurrency read write transactions
that reserves the employee table for protected read only access.

concurrency
nowait
protected
lock_read=EMPLOYEE

Note that the table name is case sensitive. The following shows a read commited
transaction that locks the employee table for shared read access.

read_committed
nowait
shared
lock_read=EMPLOYEE

You can reserve as many tables as you need and the tables can have different reservations.
For example:

concurrency
nowait
protected
lock_read=EMPLOYEE
shared
lock_read=SALARY_HISTORY

Designing Database Applications

89

IBX Params Keywords

The following tables give all of the keywords you can use in the IBTransaction Params
property with a description of each.

Isolation Level Keywords Description

concurrency
Concurrency (also called snapshot) transaction
isolation.

read_committed Read commited transaction isolation.

consistency
Consistency (also called table stability)
transaction isolation.

Access Mode Keywords Description

read Transaction has read only access to the database.

write
Transaction has read/write access to the
database.

Lock Resolution Keywords Description

wait
If a record is locked the transaction will wait until
the record is unlocked.

nowait
If a record is locked the transaction will return an
error.

Table Reservation Keywords Description

shared
lock_write=TableName

Write transactions with concurrency or read
committed isolation can update the table. All
transactions can read the table.

shared
lock_read=TableName

Any write transaction can update the table. Any
transaction can read the table.

protected
lock_write=TableName

Other transactions cannot update the table.
Concurrency and read committed transactions
can read the table.

protected
lock_read=TableName

No other transaction can update the table. Any
transaction can read the table.

Ending a Transaction

You can end a transaction by committing it or by rolling it back. When you commit a
transaction InterBase changes the transaction's state on the TIP from active to committed.

When you roll back a transaction what happens depends on how many changes the
transaction includes. For reason's I will explain later in this paper, rolling back a transaction
can degrade performance. Committing a transaction will never degrade performance.
Therefore, if the number of changes in the transaction is less than or equal to 100,000
InterBase undoes the changes to each row and commits the transaction. If the number of
changes is greater than 100,000 InterBase changes the transaction's state on the TIP from
active to rolled back and leaves any record versions created by the transaction in place.

Designing Database Applications

90

OIT, OAT, OST and Next Transaction

InterBase tracks four values that are important in understanding how transactions work.
These values are the oldest interesting transaction (OIT), the oldest active transaction (OAT),
the oldest snapshot transaction (OST) and the next transaction.

Next Transaction

The next transaction is the number that will be assigned to the next transaction that starts.

OIT

The OIT is the oldest transaction whose state is other than committed. Put another way, the
OIT will be equal to the transaction number of whichever of the following three transactions
is oldest.

The OAT
The oldest rolled back transaction
The oldest limbo transaction

Normally the OIT and the OAT are the same transaction. When the OAT is comitted both the
OIT and the OAT advance to the number of the new oldest active transaction. However,
there are three things that can cause the OIT to stop advancing.

Rolling back a transaction that includes over 100,000 changes.
Automatic rollback of transactions that were active when the database server
crashed. This happens automatically when InterBase is restarted.
A transaction stuck in limbo.

If 1 or 2 happens the oldest transaction with a state other than committed will no longer by
the OAT but instead will be the oldest transaction that was rolled back. If a transaction is
stuck in limbo due to a failed two-phase commit it can be the oldest transaction with a state
other than committed.

OST

The oldest snapshot transaction is the lowest number that appears in the Oldest Snapshot
field of any active transaction. Here is how the Oldest Snapshot value of a transaction is set.

When a read only read committed transaction starts the Oldest Snapshot field is
not assigned a value.
When a read/write read committed transaction starts, its snapshot number is the
same as its transaction number.
When a snapshot transaction starts, its snapshot number is set to the transaction
number of the oldest active read/write transaction.

The OST only moves forward when a new transaction starts, when a commit retaining is
done or when a sweep is run. Commit retaining on a snapshot transaction that has
performed updates commits the existing transaction and starts a new transaction whose
snapshot number is the same as the snapshot number of the transaction it is replacing. This
can lead to an OST that is less than the OIT.

•
•
•

1.
2.

3.

1.

2.

3.

Designing Database Applications

91

Garbage Collection

Since InterBase creates new row versions whenever a row is updated and there are other
active transactions that might need the current row values there must be a way to remove
row versions that are no longer needed to keep the database from growing rapidly. This
process is called garbage collection. Garbage collection happens automatically each time a
row is accessed. Garbage collection is done by a background thread so the user does not
see any performance degradation when accessing a table with a lot of garbage row versions
that need to be deleted.

A sweep is an operation that garbage collects every row in every table in the database. If
you leave the sweep interval set to its default of 20,000 transactions a sweep will be
triggered automatically when OAT - OIT >= 20,000\. This will only happen if the OIT gets
stuck as described above. If the OIT is stuck due to a rollback the sweep will remove all of
the row versions belonging to all rolled back transactions as well as all row versions up to
the most recent committed row version whose transaction number is less than the OAT.
This will unstick the OIT and allow it to move up to the OAT.

You can change the sweep interval using IBConsole by choosing Database > Properties
from the menu and setting the sweep interval in the dialog box below.

You can also change the sweep interval using the gfix command line utility. The following
command sets the sweep interval to 10,000.

gfix -h 10000 -user sysdba -password masterkey employee.gdb

If the OIT is stuck because a transaction is in limbo garbage collection cannot remove any
record version created by a transaction greater than the OIT. The only way to fix this
problem is to commit or rollback the limbo transaction. Using IBConsole choose Database >
Maintenance > Transaction Recovery from the menu. See the Operations Guide for
detailed instructions for recovering limbo transactions with IBConsole.

To fix limbo transactions using gfix use the following command.

gfix -two_phase -user sysdba -password masterkey employee.gdb

The two_phase switch decides automatically whether to commit or rollback each limbo
transaction. To see what choice gfix will make without actually committing or rolling back
the transaction use the -list swtich. To commit all limbo transactions or a specific
transaction use the -commit switch. To rollback one or all limbo transactions use the
-rollback switch . For detailed information see the Operations Guide.

Since the events that can stick the OIT and cause an automatic sweep are very rare with
InterBase 7.1 SP 1 and later automatic sweeps rarely happen. Automatic garbage collection
cleans up rows as they are accessed but in many database applications many rows are
accessed rarely. This means that unneeded record versions can remain in the database for
a long time. The solution is to run a sweep manually on a regular basis.

You can run a sweep from IBConsole by choosing Database > Maintenance > Sweep from
the menu. You can also run a sweep using gfix with the following command.

gfix -sweep -user sysdba -password masterkey employee.gdb

If you want to sweep the database regularly just create a batch file that contains the
command above and use Windows Scheduler to run it automatically at the interval you
choose.

Designing Database Applications

92

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

Possible Problems

There are a few transaction related problems that can occur. The following sections look at
what they are, how to prevent them and how to fix them if they occur.

What Happens when the OIT Gets Stuck

Neither automatic garbage collection or a sweep can remove any record version created by
a transaction whose number is greater than the OIT. So, if the OIT gets stuck garbage
collection stops. When garbage collection stops and new transactions continue to be
created performance begins to suffer for three reasons.

Retrieving a row takes longer if there are many record versions that must be
examined to find the right one.
Database size increases.
The TIP gets larger.

The TIP gets larger because the TIP contains the state of every transaction with a number
equal to or greater than the OIT. If the OIT stops advancing and new transactions are being
created the TIP has more transactions to track and grows in size. This takes more memory
on the database server. It also makes starting a transaction that uses snapshot
(concurrency) transaction isolation slower because each snapshot transaction gets its own
copy of the TIP when it starts. As the TIP gets larger it takes both more memory and more
time to make the copy. The higher the transaction volume the faster performance will
degrade.

Fortunately this is a very rare problem with InterBase 7.1 and later because the events that
will stick the OIT are rare. If the OIT does get stuck running a sweep will correct the situation
unless the cause is a limbo transaction. If the cause is a limbo transaction you can correct
the problem by commtting or rolling back the limbo transaction. If you roll back the limbo
transaction you will need to run a sweep to get the OIT moving again.

What Happens when the OAT Gets Stuck?

When the OAT gets stuck because a transaction is left active the OIT also gets stuck.
Therefore, the same performance degradation will happen for the same reasons. However,
with InterBase 7.1 SP 1 and later not every active transaction will cause the OAT to stick.
Here are the rules.

A read only read committed transaction can remain open indefinitely without
causing the OAT to stick.
A read/write read committed transaction can remain open indefinitely as long as
you call commit retaining each time the transaction updates the database.
Any snapshot transaction will stick the OAT. Snapshot transactions should be
committed as soon as possible to prevent performance degradation.

Note that these rules apply only to InterBase 7.1 SP 1 and later. In earlier versions of
InterBase any active transaction will stick the OAT.

Savepoints

InterBase 7.1 introduced SQL 92 standard savepoints. A savepoint is a named point in a
transaction that you can rollback to without rolling back the entire transaction. Savepoints

1.

2.
3.

1.

2.

3.

Designing Database Applications

93

are particularly useful in stored procedures and triggers. You can create a savepoint with
the following statement.

SAVEPOINT MY_SAVEPOINT

where MY_SAVEPOINT is the savepoint's name. The name must be unique within the
execution context which is an application, a trigger or a stored procedure. For example you
could have many savepoints with the same name if one was in your application, and the
others were in different stored procedures and triggers. If you no longer need a savepoint
release it as follows.

RELEASE SAVEPOINT MY_SAVEPOINT

where MY_SAVEPOINT is the name of the savepoint to release. To rollback to a save point
use the following command.

ROLLBACK TO SAVEPOINT MY_SAVEPOINT

When you rollback to a savepoint the savepoint is also released. If you rollback to a
savepoint all savepoints created after the one you rollback to are also rolled back and
released. Use savepoints any time you need to undo some of the changes within a
transaction. For example, you could create a savepoint at the beginning of a stored
procedure and if the stored procedure is unable to complete its work your code could roll
back to that save point before exiting the stored procedure.

Using Transactions with ISQL

The ISQL command line tool is a handy way to test transaction behavior in conjuntion with
the InterBase Performance Monitor. You can easily start multiple ISQL sessions at the same
time with a different transaction in each session. ISQL supports all InterBase transaction
options so you can test any transaction or combination of transactions. For detailed
documentation on ISQL see chapter 10 of the Operations Guide. For a brief list of ISQL's
command line switches enter:

isql -?

at the command prompt to see the following display.

To start ISQL open a command prompt and enter the command:

isql -u sysdba -p masterkey employee.gdb

where sysdba is the username and masterkey is the password. When ISQL starts and
connects to the database you will see the ISQL command prompt as shown in the following
image. Note that ISQL first displays the name of the database you are attached to and the
user you are logged in as. Then it displays the ISQL> prompt to show that it is ready for a
command. All ISQL commands must end with the current terminator character which, by
default, is the semicolon.

There are two ways to close ISQL. The EXIT command commits the current transaction and
closes ISQL. The QUIT command rolls back the current transaction and exits ISQL.

Designing Database Applications

94

Starting a Transaction in ISQL

When ISQL connects to a database it automatically starts a transaction. You can end the
current transaction by issuing the COMMIT or ROLLBACK command. To start a new
transaction issue the SET TRANSACTION COMMAND . The following table shows the options
for SET TRANSACTION .

Command Description

READ WRITE or READ ONLY Specifies the transaction's access mode.

WAIT or NO WAIT
Specifies how the transaction will handle lock
conflicts.

ISOLATION LEVEL SNAPSHOT [TABLE STABILITY]
or READ COMMITTED RECORD_VERSION
or READ COMMITTED NO RECORD_VERSION

Specifies the transaction isolation level.

RESERVING <table name> FOR [SHARED or
PROTECTED] [READ or WRITE]

Specifies the tables to reserve and the locks to be
applied.

SET TRANSACTION READ ONLY NOWAIT ISOLATION
LEVEL READ COMMITTED;

starts a read only read committed transaction
that will return an error immidiately if it needs to
lock a row that is already locked by another
transaction. Of course the NOWAIT option is
superfluous. Since this is a read only transaction
it will never lock a row.

Monitoring Transactions

InterBase 7 introduced a set of temporary tables that provide information about the
attachments, transactions and statements the server is executing in the database you are
connected to. The temporary tables give you the ability to analyze what the server is doing
as it runs and, if necessary, force transactions or attachments to terminate. InterBase 7.1
integrates Craig Stuntz's Performance Monitor into IBConsole. This gives you a visual display
of the information in the temporary tables. The following image shows the Performance
Monitor with the Transactions tab selected.

Here two transactions are active. The second one belongs to the SYSDBA user and is the
read only read committed transaction used by Perfromance Monitor. The first transaction is
also a read only read committed transaction that belongs to user BILL.

The two toolbar buttons let you close the selected transaction and find the attachment the
transaction belongs to. Clicking the Find Attachment button takes you to the Attachments
page and highlights the attachment that owns the transaction as shown below.

To see summary information for all of the transactions that are active in the database
switch to the Database tab and scroll to the end of the grid as shown below.

The Transactions entry shows the total number of active transactions. A little farther down
you can see the Next transaction number, the oldest active transaction number (OAT), the
oldest interesting transaction number (OIT) and the oldest snapshot transaction number
(OST). This display is particularly useful if you suspect that either the OIT or the OAT is stuck.

Designing Database Applications

95

Since Performance monitor automatically refreshes the display you can watch as
transactions are started and committed and tell easily if either the OIT or the OAT is not
advancing.

Summary

Understanding transactions and how they interact is the key to writing high concurrency
applications that provide the the right view of the data for each task. The IBConsole
Performance Monitor makes it easy to see what transactions are active and their properties.
With this information you can diagnose any concurrency problem.

1.5. The Data Dictionary

No matter what type of database you use, your application has access to the Data
Dictionary. The Data Dictionary provides a customizable storage area, independent of your
applications, where you can create extended field attribute sets that describe the content
and appearance of data.

For example, if you frequently develop financial applications, you may create a number of
specialized field attribute sets describing different display formats for currency. When you
create datasets for your application at design time, rather than using the Object Inspector to
set the currency fields in each dataset by hand, you can associate those fields with an
extended field attribute set in the data dictionary. Using the data dictionary ensures a
consistent data appearance within and across the applications you create.

In a Client/Server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design time,
and how to associate them with fields throughout the datasets in your application, see
Creating attribute sets for field components in the Delphi Developer’s Guide. To learn more
about creating a data dictionary and extended field attributes with the SQL and Database
Explorers, see their respective online help files.

A programming interface to the Data Dictionary is available in the drintf unit (located in
the lib directory). This interface supplies the following methods:

Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

IsNullID Indicates whether a given ID is a null ID.

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

Designing Database Applications

96

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Attribute_Sets_for_Field_Components
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

Routine Use

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames
Executes a callback for each attribute set in the
dictionary.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr
Updates an attribute set to match the properties of a
field.

CreateField Creates a field component based on stored attributes.

UpdateField
Changes the properties of a field to match a specified
attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control classs for a specified attribute ID.

QualifyTableName
Returns a fully qualified table name (qualified by user
name).

QualifyTableNameByName
Returns a fully qualified table name (qualified by user
name).

HasConstraints
Indicates whether the dataset has constraints in the
dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset
Updates a dataset to the current settings and
constraints in the dictionary.

1.6. Referential Integrity, Stored Procedures, and Triggers

All relational databases have certain features in common that allow applications to store
and manipulate data. InterBase also provides other database-specific, features that can
prove useful for ensuring consistent relationships between the tables in a database. These
include:

Referential integrity. Referential integrity provides a mechanism to prevent master/detail
relationships between tables from being broken. When the user attempts to delete a
field in a master table which would result in orphaned detail records, referential
integrity rules prevent the deletion or automatically delete the orphaned detail records.

•

Designing Database Applications

97

Stored procedures. Stored procedures are sets of SQL statements that are named and
stored on a SQL server. Stored procedures usually perform common database-related
tasks on the server, and return sets of records (datasets).
Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

2. Database Architecture

Database applications are built from user interface elements, components that manage the
database or databases, and components that represent the data contained by the tables in
those databases (datasets). How you organize these pieces is the architecture of your
database application.

By isolating database access components in data modules, you can develop forms in your
database applications that provide a consistent user interface. By storing links to well-
designed forms and data modules in the Object Repository, you and other developers can
build on existing foundations rather than starting over from scratch for each new project.
Sharing forms and modules also makes it possible for you to develop corporate standards
for database access and application interfaces.

Many aspects of the architecture of your database application depend on the number of
users who will be sharing the database information and the type of information you are
working with.

When writing applications that use information that is not shared among several users, you
may want to use a local database in a single-tiered application. This approach can have the
advantage of speed (because data is stored locally), and does not require the purchase of a
separate database server and expensive site licences. However, it is limited in how much
data the tables can hold and the number of users your application can support.

Writing a two-tiered application provides more multi-user support and lets you use large
remote databases that can store far more information.

When the database information includes complicated relationships between several tables,
or when the number of clients grows, you may want to use a multi-tiered application. Multi-
tiered applications include middle tiers that centralize the logic that governs database
interactions so that there is centralized control over data relationships. This allows different
client applications to use the same data while ensuring that the data logic is consistent.
They also allow for smaller client applications because much of the processing is off-loaded
onto middle tiers. These smaller client applications are easier to install, configure, and
maintain because they do not include the database connectivity software. Multi-tiered
applications can also improve performance by spreading the data-processing tasks over
several systems.

2.1. Planning for Scalability

The development process can get more involved and expensive as the number of tiers
increases. Because of this, you may wish to start developing your application as a single-
tiered application. As the amount of data, the number of users, and the number of different
applications accessing the data grows, you may later need to scale up to a multi-tiered
architecture. By planning for scalability, you can protect your development investment
when writing a single- or two-tiered application so that the code can be reused as your
application grows.

The VCL data-aware components make it easy to write scalable applications by abstracting
the behavior of the database and the data stored by the database. Whether you are writing
a single-tiered, two-tiered, or multi-tiered application, you can isolate your user interface
from the data access layer as illustrated in the following picture:

•

•

Designing Database Applications

98

A form represents the user interface, and contains data controls and other user interface
elements. The data controls in the user interface connect to datasets which represent
information from the tables in the database. A data source links the data controls to these
datasets. By isolating the data source and datasets in a data module, the form can remain
unchanged as you scale your application up. Only the datasets must change.

A flat-file database application is easily scaled to the client in a multi-tiered application
because both architectures use the same client dataset component. In fact, you can write an
application that acts as both a flat-file application and a multi-tiered client (see Using the
Briefcase Model).

If you plan to scale your application up to a three-tiered architecture eventually, you can
write your one- or two-tiered application with that goal in mind. In addition to isolating the
user interface, isolate all logic that will eventually reside on the middle tier so that it is easy
to replace at a later time. You can even connect your user interface elements to client
datasets (used in multi-tiered applications), and connect them to local versions of the
datasets in a separate data module that will eventually move to the middle tier. If you do
not want to introduce this artifice of an extra dataset layer in your one- and two-tiered
applications, it is still easy to scale up to a three-tiered application at a later date. See
Scaling Up to a Three-tiered Application for more information.

2.2. Single-tiered Database Applications

In single-tiered database applications, the application and the database share a single file
system. They use local databases or files that store database information in a flat-file
format.

A single application comprises the user interface and incorporates the data access
mechanism. The type of dataset component used to represent database tables is in a flat
file.The following picture illustrates this:

For more information on building single-tiered database applications, see Building Multi-
tiered Applications.

Designing Database Applications

99

2.3. Two-tiered Database Applications

In two-tiered database applications, a client application provides a user interface to data,
and interacts directly with a remote database server. The following picture illustrates this
relationship:

In this model, all applications are database clients. A client requests information from and
sends information to a database server. A server can process requests from many clients
simultaneously, coordinating access to and updating data.

2.4. Multi-tiered Database Applications

In multi-tiered database applications, an application is partitioned into pieces that reside on
different machines. A client application provides a user interface to data. It passes all data
requests and updates through an application server (also called a “remote data broker”).
The application server, in turn, communicates directly with a remote database server or
some other custom dataset. Usually, in this model, the client application, the application
server, and the remote database server are on separate machines. The Following illustrates
these relationships for multi-tiered applications.

Designing Database Applications

100

You can use Delphi to create both client applications and application servers. The client
application uses standard data-aware controls connected through a data source to one or
more client dataset components to display data for viewing and editing. Each client dataset
communicates with an application server through an IProvider interface that is part of
the application server’s remote data module. The client application can use a variety of
protocols (TCP/IP, DCOM, MTS, or CORBA) to establish this communication. The protocol
depends on the type of connection component used in the client application and the type of
remote data module used in the server application.

The application server creates the IProvider interfaces in one of two ways. If the
application server includes any provider objects, then these objects are used to create the
IProvider interface. This is the method illustrated in the previous figure. Using a provider
component gives an application more control over the interface. All data is passed between
the client application and the application server through the interface. The interface
receives data from and sends updates to conventional datasets, and these components
communicate with a database server.

Usually, several client applications communicate with a single application server in the
multi-tiered model. The application server provides a gateway to your databases for all your
client applications, and it lets you provide enterprise-wide database tasks in a central
location, accessible to all your clients. For more information about creating and using a
multi-tiered database application, see Creating multi-tiered applications in the in the Delphi
Developer’s Guide.

3. Designing the User Interface

The Data Controls page of the Tool palette provides a set of data-aware controls that
represent data from fields in a database record, and can permit users to edit that data and
post changes back to the database. Using data-aware controls, you can build your database
application’s user interface (UI) so that information is visible and accessible to users. For
more information on data-aware controls see Using Data Controls in the Delphi Developer’s
Guide.

Data-aware controls get data from and send data to a data source component,
TDataSource . A data source component acts as a conduit between the user interface and
a dataset component that represents a set of information from the tables in a database.
Several data-aware controls on a form can share a single data source, in which case the
display in each control is synchronized so that as the user scrolls through records, the
corresponding value in the fields for the current record is displayed in each control. An
application’s data source components usually reside in a data module, separate from the
data-aware controls on forms.

The data-aware controls you add to your user interface depend on what type of data you
are displaying (plain text, formatted text, graphics, multimedia elements, and so on). Also,
your choice of controls is determined by how you want to organize the information and how
(or if) you want to let users navigate through the records of datasets and add or edit data.

The following sections introduce the components you can use for various types of user
interface:

Displaying a Single Record
Displaying Multiple Records
Analyzing Data
Selecting What Data to Show

•
•
•
•

Designing Database Applications

101

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Data_Controls
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

3.1. Displaying a Single Record

In many applications, you may only want to provide information about a single record of
data at a time. For example, an order-entry application may display the information about a
single order without indicating what other orders are currently logged. This information
probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand because all
database information is about the same thing (in the previous case, the same order). The
data-aware controls in these user interfaces represent a single field from a database record.
The Data Controls page of the Tool palette provides a wide selection of controls to
represent different kinds of fields. For more information about specific data-aware controls,
see Using Data Controls chapter of the Delphi Developer’s Guide.

3.2. Displaying Multiple Records

Sometimes you want to display many records in the same form. For example, an invoicing
application might show all the orders made by a single customer on the same form.

To display multiple records, use a grid control. Grid controls provide a multi-field, multi-
record view of data that can make your application’s user interface more compelling and
effective. They are discussed in Viewing and editing data with TDBGrid and Creating a grid
that contains other data-aware controls in the Using data controls chapter of the Delphi
Developer’s Guide.

You may want to design a user interface that displays both fields from a single record and
grids that represent multiple records. There are two models that combine these two
approaches:

Master-detail forms: You can represent information from both a master table and a
detail table by including both controls that display a single field and grid controls. For
example, you could display information about a single customer with a detail grid that
displays the orders for that customer. For information about linking the underlying
tables in a master-detail form, see Creating master/detail forms.
Drill-down forms: In a form that displays multiple records, you can include single field
controls that display detailed information from the current record only. This approach
is particularly useful when the records include long memos or graphic information. As
the user scrolls through the records of the grid, the memo or graphic updates to
represent the value of the current record. Setting this up is very easy. The
synchronization between the two displays is automatic if the grid and the memo or
image control share a common data source.

Note: It is generally not a good idea to combine these two approaches on a single form.
While the result can sometimes be effective, it is usually confusing for users to understand
the data relationships.

3.3. Analyzing Data

Some database applications do not present database information directly to the user.
Instead, they analyze and summarize information from databases so that users can draw
conclusions from the data.

The TDBChart component on the Data Controls page of the Tool Palette lets you present
database information in a graphical format that enables users to quickly grasp the import of
database information.

•

•

Designing Database Applications

102

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Data_Controls
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Viewing_and_Editing_Data_with_TDBGrid
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_a_Grid_That_Contains_Other_Data-aware_Controls
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_a_Grid_That_Contains_Other_Data-aware_Controls
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_data_controls_Index
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

Also, some versions of Delphi include a Decision Cube page on the Tool Palette. It contains
six components that let you perform data analysis and cross-tabulations on data when
building decision support applications. For more information about using the Decision Cube
components, see “Using decision support components” in the Delphi Developer’s Guide.

If you want to build your components that display data summaries based on various
grouping criteria, you can use maintained aggregates with a client dataset. For more
information about using maintained aggregates, see Using maintained aggregates in the
Creating and using a client dataset chapter of the Delphi Developer’s Guide.

3.4. Selecting What Data to Show

Often, the data you want to surface in your database application does not correspond
exactly to the data in a single database table. You may want to use only a subset of the
fields or a subset of the records in a table. You may want to combine the information from
more than one table into a single joined view.

The data available to your database application is controlled by your choice of dataset
component. Datasets abstract the properties and methods of a database table, so that you
do not need to make major alterations depending on whether the data is stored in a
database table or derived from one or more tables in the database. For more information
on the common properties and methods of datasets, see Understanding Datasets.

Your application can contain more than one dataset. Each dataset represents a logical table.
By using datasets, your application logic is buffered from restructuring of the physical tables
in your databases. You might need to alter the type of dataset component, or the way it
specifies the data it contains, but the rest of your user interface can continue to work
without alteration.

You can use any of the following types of dataset:

Table components: Tables (TIBTable) correspond directly to the underlying tables in
the database. You can adjust which fields appear (including adding lookup fields and
calculated fields) by using persistent field components. You can limit the records that
appear using ranges or filters. Tables are described in more detail in Working with
Tables. Persistent fields are described in “Persistent field components” in the Delphi
Developer’s Guide. Ranges and filters are described in Working with a subset of data.
Query components: Queries (TIBQuery , TIBDataSet , and TIBSQL) provide the most
general mechanism for specifying what appears in a dataset. You can combine the data
from multiple tables using joins, and limit the fields and records that appear based on
any criteria you can express in SQL. For more information on queries, see Working with
Queries.
Stored procedures: Stored procedures (TIBStoredProc) are sets of SQL statements that
are named and stored on an SQL server. If your database server defines a remote
procedure that returns the dataset you want, you can use a stored procedure
component. For more information on stored procedures, see Working with Stored
Procedures.
Client datasets: Client datasets cache the records of the logical dataset in memory.
Because of that, they can only hold a limited number of records. Client datasets are
populated with data in one of two ways: from an application server or flat-file data
stored on disk. When using a client dataset to represent flat-file data, you must create
the underlying table programmatically. For more information about client datasets, see
Creating and using a client dataset in the Delphi Developer’s Guide.
Custom datasets: You can create your custom descendants of TDataSet to represent a
body of data that you create or access in code you write. Writing custom datasets
allows you the flexibility of managing the data using any method you choose while still

•

•

•

•

•

Designing Database Applications

103

http://docs.embarcadero.com/products/rad_studio/delphi7/D7_DevelopersGuide.pdf
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Maintained_Aggregates
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Client_Datasets_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Client_Datasets_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

letting you use the VCL data controls to build your user interface. For more information
about creating custom components, see Overview of component creation in the Delphi
Developer’s Guide.

Designing Database Applications

104

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Overview_of_Component_Creation
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

Building Multi-tiered Applications

One- and two-tiered applications include the logic that manipulates database information in
the same application that implements the user interface. Because the data manipulation
logic is not isolated in a separate tier, these types of applications are most appropriate
when there are no other applications sharing the same database information. Even when
other applications share the database information, these types of applications are
appropriate if the database is very simple, and there are no data semantics that must be
duplicated by all applications that use the data.

You may want to start by writing a one- or two-tiered application, even when you intend to
eventually scale up to a multi-tiered model as your needs increase. This approach lets you
avoid having to develop data manipulation logic up front so that the application server can
be available while you are writing the user interface. It also allows you to develop a simpler,
cheaper prototype before investing in a large, multi-system development project. If you
intend to eventually scale up to a multi-tiered application, you can isolate the data
manipulation logic so that it is easy to move it to a middle tier at a later date.

1. Understanding Databases and Datasets

Databases contain information stored in tables. They may also include tables of information
about what is contained in the database, objects such as indexes that are used by tables,
and SQL objects such as stored procedures. See Connecting to Databases for more
information about databases.

The InterBase page of the Tool Palette contains various dataset components that represent
the tables contained in a database or logical tables constructed out of data stored in those
database tables. See Selecting What Data to Show for more information about these dataset
components. You must include a dataset component in your application to work with
database information.

Each dataset component on the InterBase page has a published Database property that
specifies the database which contains the table or tables that hold the information in that
dataset. When setting up your application, you must use this property to specify the
database before you can bind the dataset to specific information contained in that
database. What value you specify depends on whether or not you are using explicit
database components. Database components (TIBDatabase) represent a database in your
application. If you do not add a database component explicitly, a temporary one is created
for you automatically, based on the value of the Database property. If you are using
explicit database components, Database is the value of the Database property of the
database component. See Persistent and Temporary Database Components for more
information about using database components.

1.1. Using Transactions

A transaction is a group of actions that must all be carried out successfully on one or more
tables in a database before they are committed (made permanent). If one of the actions in
the group fails, then all actions are rolled back (undone). By using transactions, you ensure
that the database is not left in an inconsistent state when a problem occurs completing one
of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to another is an
operation you would want to protect with a transaction. If, after decrementing the balance

Building Multi-tiered Applications

105

http://docwiki.embarcadero.com/InterBase/2020/en/Connecting_to_Databases

in one account, an error occurred incrementing the balance in the other, you want to roll
back the transaction so that the database still reflects the correct total balance.

By default, implicit transaction control is provided for your applications. When an
application is under implicit transaction control, a separate transaction is used for each
record in a dataset that is written to the underlying database. Implicit transactions
guarantee both a minimum of record update conflicts and a consistent view of the
database. On the other hand, because each row of data written to a database takes place in
its own transaction, implicit transaction control can lead to excessive network traffic and
slower application performance. Also, implicit transaction control will not protect logical
operations that span more than one record, such as the transfer of funds described
previously.

If you explicitly control transactions, you can choose the most effective times to start,
commit, and roll back your transactions. When you develop applications in a multi-user
environment, particularly when your applications run against a remote SQL server, you
should control transactions explicitly.

Note:
InterBase does not support nested transactions.
You can also minimize the number of transactions you need by caching updates. For
more information about cached updates, see Working with Cached Updates.

1.1.1. Using a Transaction Component

When you start a transaction, all subsequent statements that read from and write to the
database occur in the context of that transaction. Each statement is considered part of a
group. Changes must be successfully committed to the database, or every change made in
the group must be undone.

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more concurrent,
simultaneous transactions that start and end during the lifetime of your transaction, the
greater the likelihood that your transaction will conflict with another when you attempt to
commit your changes.

When using a transaction component, you code a single transaction as follows:

Start the transaction by calling the transaction’s StartTransaction method:

IBTransaction.StartTransaction;

Once the transaction is started, all subsequent database actions are considered
part of the transaction until the transaction is explicitly terminated. You can
determine whether a transaction is in process by checking the transaction
component’s InTransaction property.
When the actions that make up the transaction have all succeeded, you can make
the database changes permanent by using the transaction component’s Commit
method:

IBTransaction.Commit;

Alternately, you can commit the transaction while retaining the current
transaction context using the CommitRetaining method:

 IBTransaction.CommitRetaining;

•
•

1.

2.

3.

Building Multi-tiered Applications

106

Commit is usually attempted in a try...except statement. That way, if a
transaction cannot commit successfully, you can use the except block to handle
the error and retry the operation or to roll back the transaction.

If an error occurs when making the changes that are part of the transaction, or
when trying to commit the transaction, you will want to discard all changes that
make up the transaction. To discard these changes, use the database component’s
Rollback method:

IBTransaction.Rollback;

You can also rollback the transaction while retaining the current transaction
context using the RollbackRetaining method:

 IBTransaction.RollbackRetaining;

Rollback usually occurs in

Exception handling code when you cannot recover from a database error.
Button or menu event code, such as when a user clicks a Cancel button.

1.2. Caching Updates

InterBase Express (IBX) provides support for caching updates. When you cache updates,
your application retrieves data from a database, makes all changes to a local, cached copy
of the data, and applies the cached changes to the dataset as a unit. Cached updates are
applied to the database in a single transaction.

Caching updates can minimize transaction times and reduce network traffic. However,
cached data is local to your application and is not under transaction control. This means
that while you are working on your local, in-memory, copy of the data, other applications
can be changing the data in the underlying database table. They also cannot see any
changes you make until you apply the cached updates. Because of this, cached updates may
not be appropriate for applications that work with volatile data, as you may create or
encounter too many conflicts when trying to merge your changes into the database.

You can tell datasets to cache updates using the CachedUpdates property. When the
changes are complete, they can be applied by the dataset component, by the database
component, or by a special update object. When changes cannot be applied to the database
without additional processing (for example, when working with a joined query), you must
use the OnUpdateRecord event to write changes to each table that makes up the joined
view.

For more information on caching updates, see Working with Cached Updates.

Note:
If you are caching updates, you may want to consider moving to a multi-tiered model to
have greater control over the application of updates. For more information about the
multi-tiered model, see Creating multi-tiered applications in the Delphi Developer’s
Guide.

1.3. Creating and Restructuring Database Tables

You can use the TIBTable component to create new database tables and to add indexes
to existing tables.

•
•

Building Multi-tiered Applications

107

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

You can create tables either at design time, in the Forms Designer, or at runtime. To create
a table, you must specify the fields in the table using the FieldDefs property, add any
indexes using the IndexDefs property, and call the CreateTable method (or select the
Create Table command from the table’s context menu). For more detailed instructions on
creating tables, see Creating a table.

You can add indexes to an existing table using the AddIndex method of TIBTable .

Note:
To create and restructure tables on remote servers at design time, use the SQL Explorer
and restructure the table using SQL.

1.4. Using the Briefcase Model

Most of this chapter has described creating and using a client dataset in a one-tiered
application. The one-tiered model can be combined with a multi-tiered model to create
what is called the briefcase model. In this model, a user starts a client application on one
machine and connects over a network to an application server on a remote machine. The
client requests data from the application server and sends updates to it. The updates are
applied by the application server to a database that is presumably shared with other clients
throughout an organization.

Note:
The briefcase model is sometimes called the disconnected model, or mobile computing.

Suppose, however, that your on-site company database contains valuable customer contact
data that your sales representatives can use and update in the field. In this case, it would be
useful if your sales reps could download some or all of the data from the company
database, work with it on their laptops as they fly across the country, and even update
records at existing or new customer sites. When the sales reps return on-site, they could
upload their data changes to the company database for everyone to use. The ability to work
with data offline and then apply updates online at a later date is known as the “briefcase”
model.

By using the briefcase model, you can take advantage of the client dataset component’s
ability to read and write data to flat files to create client applications that can be used both
online with an application server, and off-line, as temporary one-tiered applications.

To implement the briefcase model, you must

Create a multi-tiered server application as described in Creating multi-tiered
applications in the Delphi Developer’s Guide.
Create a flat-file database application as your client application. Add a connection
component and set the RemoteServer property of your client datasets to specify
this connection component. This allows them to talk to the application server
created in step 1. For more information about connection components, see
Connecting to the application server in the Delphi Developer’s Guide.
In the client application, try on start-up to connect to the application server. If the
connection fails, prompt the user for a file and read in the local copy of the data.
In the client application, add code to apply updates to the application server. For
more information on sending updates from a client application to an application
server, see Updating records in the Delphi Developer’s Guide.

1.

2.

3.

4.

Building Multi-tiered Applications

108

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Connecting_to_the_Application_Server
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Updating_Records
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

2. Scaling Up to a Three-tiered Application

In a two-tiered client/server application, the application is a client that talks directly to a
database server. Even so, the application can be thought of as having two parts: a database
connection and a user interface. To make a two-tiered client/server application into a multi-
tiered application you must:

Split your existing application into an application server that handles the database
connection, and into a client application that contains the user interface.
Add an interface between the client and the application server.

There are a number of ways to proceed, but the following sequential steps may best keep
your translation work to a minimum:

Create a new project for the application server, duplicate the relevant database
connection portions of your former two-tiered application, and for each dataset,
add a provider component that will act as a data conduit between the application
server and the client.
Copy your existing two-tiered project, remove its direct database connections, add
an appropriate connection component to it.
Substitute a client dataset for each dataset component in the original project.
In the client application, add code to apply updates to the application server.
Move the dataset components to the application server’s data modules. Set the
DataSet property of each provider to specify the corresponding datasets.

For more information, see Connecting to the application server and Creating and using a
client dataset in the Delphi Developer’s Guide.

3. Creating Multi-tiered Applications

A multi-tiered client/server application is partitioned into logical units that run in
conjunction on separate machines. Multi-tiered applications share data and communicate
with one another over a local area network or even over the Internet. They provide many
benefits, such as centralized business logic and thin client applications. For information on
how to build multi-tiered applications, refer to Creating multi-tiered applications in the
Delphi Developer’s Guide.

•

•

1.

2.

3.
4.
5.

Building Multi-tiered Applications

109

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Connecting_to_the_Application_Server
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Client_Datasets_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Client_Datasets_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_Multi-tiered_Applications_-_Overview
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

Introduction to IBX

This chapter on the IBX components, the InterBase tab, and the InterBase Admin tab is no
longer covered in this InterBase Developers Guide.

Since IBX is a RAD product-based component suite that supports InterBase, the IBX
components evolve with RAD to support InterBase features. Therefore the IBX components
will be maintained and updated in the RAD Studio documentation set.

For complete documentation, see Getting Started with InterBase Express. This
documentation is located in the RAD Studio DocWiki.

See Also:

Getting Started with InterBase Express•

Introduction to IBX

110

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Getting_Started_with_InterBase_Express
http://docwiki.embarcadero.com/RADStudio/Berlin/en/Getting_Started_with_InterBase_Express%7C

Connecting to Databases (Developer's Guide)

When an InterBase Express (IBX) application connects to a database, that connection is
encapsulated by a TIBDatabase component. A database component encapsulates the
connection to a single database in an application. This chapter describes database
components and how to manipulate database connections.

Another use for database components is applying cached updates for related tables. For
more information about using a database component to apply cached updates, see
Applying Cached Updates with a Database Component Method.

1. Persistent and Temporary Database Components

Each database connection in an application is encapsulated by a database component
whether you explicitly provide a database component at design time or create it dynamically
at runtime. When an application attempts to connect to a database, it either uses an
explicitly instantiated, or persistent , database component, or it generates a temporary
database component that exists only for the lifetime of the connection.

Temporary database components are created as necessary for any datasets in a data
module or form for which you do not create yourself. Temporary database components
provide broad support for many typical desktop database applications without requiring
you to handle the details of the database connection. For most client/server applications,
however, you should create your own database components instead of relying on
temporary ones. You gain greater control over your databases, including the ability to

Create persistent database connections
Customize database server logins
Control transactions and specify transaction isolation levels
Create event notifiers to track when a connection is made or broken

1.1. Using Temporary Database Components

Temporary database components are automatically generated as needed. For example, if
you place a TIBTable component on a form, set its properties, and open the table without
first placing and setting up a TIBDatabase component and associating the table
component with it, Delphi creates a temporary database component for you behind the
scenes.

The default properties created for temporary database components provide reasonable,
general behaviors meant to cover a wide variety of situations. For complex, mission-critical
client/server applications with many users and different requirements for database
connections, however, you should create your own database components to tune each
database connection to your application’s needs.

1.2. Creating Database Components at Design Time

The InterBase page of the Tool Palette contains a database component you can place in a
data module or form. The main advantages to creating a database component at design
time are that you can set its initial properties and write OnLogin events for it. OnLogin
offers you a chance to customize the handling of security on a database server when a
database component first connects to the server. For more information about managing
connection properties, see Connecting to a Database Server. For more information about
server security, see Controlling Server Login.

•
•
•
•

Connecting to Databases (Developer's Guide)

111

2. Controlling Connections

Whether you create a database component at design time or runtime, you can use the
properties, events, and methods of TIBDatabase to control and change its behavior in
your applications. The following sections describe how to manipulate database
components. For details about all TIBDatabase properties, events, and methods, see
TIBDatabase in the InterBase Express Reference.

2.1. Controlling Server Login

InterBase servers include security features to prohibit unauthorized access. The server
requires a user name and password login before permitting database access.

At design time, a standard Login dialog box prompts for a user name and password when
you first attempt to connect to the database.

At runtime, there are three ways you can handle a request of a server for a login:

Set the LoginPrompt property of a database component to True (the default). Your
application displays the standard Login dialog box when the server requests a user
name and password.
Set the LoginPrompt to False , and include hard-coded USER_NAME and PASSWORD
parameters in the Params property for the database component. For example:

USER_NAME=SYSDBA
PASSWORD=masterkey

Important:
Note that because the Params property is easy to view, this method compromises server
security, so it is not recommended.

Write an OnLogin event for the database component, and use it to set login
parameters at runtime. OnLogin gets a copy of the Params property of the database
component, which you can modify. The name of the copy in OnLogin is LoginParams .
Use the Values property to set or change login parameters as follows:

LoginParams.Values['USER_NAME'] := UserName;
LoginParams.Values['PASSWORD'] := PasswordSearch(UserName);

On exit, OnLogin passes its LoginParams values back to Params , which is used to
establish a connection.

2.2. Connecting to a Database Server

There are two ways to connect to a database server using a database component:

Call the Open method.
Set the Connected property to True .

Setting Connected to True executes the Open method. Open verifies that the database
specified by the Database or Directory properties exists, and if an OnLogin event exists
for the database component, it is executed. Otherwise, the default Login dialog box
appears.

Note:
When a database component is not connected to a server and an application attempts to

•

•

•

•
•

Connecting to Databases (Developer's Guide)

112

http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBDatabase

open a dataset associated with the database component, the database component’s
Open method is first called to establish the connection. If the dataset is not associated
with an existing database component, a temporary database component is created and
used to establish the connection.

Once a database connection is established the connection is maintained as long as there is
at least one active dataset. If a dataset is later opened which uses the database, the
connection must be reestablished and initialized. An event notifier procedure can be
constructed to indicate whenever a connection to the database is made or broken.

2.3. Working with Network Protocols

As part of configuring the appropriate DBExpress or ODBC driver, you might need to specify
the network protocol for the server, such as TCP/IP, depending on the driver’s configuration
options. In most cases, network protocol configuration is handled using a server’s client
setup software. For ODBC it might also be necessary to check the driver setup using the
Microsoft ODBC Administrator. See Programming Applications with ODBC for more
information.

Establishing an initial connection between client and server can be problematic. The
following troubleshooting checklist should be helpful if you encounter difficulties:

Is your server’s client-side connection properly configured?
If you are using TCP/IP:

Is your TCP/IP communications software installed? Is the proper WINSOCK.DLL
installed?
Is the server’s IP address registered in the client’s HOSTS file?
Is the Domain Name Service (DNS) properly configured?
Can you ping the server?

Are the DLLs for your connection and database drivers in the search path?

2.4. Using ODBC

An application can use ODBC data sources (for example, Btrieve). An ODBC driver
connection requires:

A vendor-supplied ODBC driver
The Microsoft ODBC Driver Manager

2.5. Disconnecting from a Database Server

There are two ways to disconnect a server from a database component:

Set the Connected property to False
Call the Close method

Setting Connected to False calls Close . Close closes all open datasets and disconnects
from the server. For example, the following code closes all active datasets for a database
component and drops its connections:

IBDatabase1.Connected := False;

•
•

•

•
•
•

•

•
•

•
•

Connecting to Databases (Developer's Guide)

113

2.6. Iterating Through a Database Component’s Datasets

A database component provides two properties that enable an application to iterate
through all the datasets associated with the component: DataSets and DataSetCount .

DataSets is an indexed array of all active datasets (TIBDataSet , TIBSQL , TIBTable ,
TIBQuery , and TIBStoredProc) for a database component. An active dataset is one that
is currently open. DataSetCount is a read-only integer value specifying the number of
currently active datasets.

You can use DataSets with DataSetCount to cycle through all currently active datasets in
code. For example, the following code cycles through all active datasets to set the
CachedUpdates property for each dataset of type TIBTable to True :

var
 I: Integer;
begin
 for I := 0 to DataSetCount - 1 do
 if DataSets[I] is TIBTable then
 DataSets[I].CachedUpdates := True;
end;

3. Requesting Information about an Attachment

Use a TIBDatabaseInfo component in your application to query InterBase for attachment
information, such as the version of the on-disk structure (ODS) used by the attachment, the
number of database cache buffers allocated, the number of database pages read from or
written to, or write ahead log information.

After attaching to a database, you can use the TIBDatabaseInfo properties to return
information on:

Database characteristics
Environmental characteristics
Performance statistics
Database operation counts

3.1. Database Characteristics

Several properties are available for determining database characteristics, such as size and
major and minor ODS numbers. The following table lists the properties that can be passed,
and the information returned in the result buffer for each property type:

Property Returns

Allocation The number of pages allocated as a long integer

BaseLevel The database version number as a long integer

DBFileName The database file name as a string

DBImplementationClass
The database implementation class number as a long
integer; either 1 or 12

•
•
•
•

Connecting to Databases (Developer's Guide)

114

Property Returns

DBImplementationNo
The database implementation number as a long
integer

DBSiteName The database site name as a string

DBSQLDialect The database SQL dialect as a long integer

Handle The database handle

NoReserve
0 to indicate that space is reserved for each database
page for holding backup version of modified records
(the default) or 1 to indicate that no space is reserved

ODSMajorVersion
The on-disk structure (ODS) major version number as a
long integer

ODSMinorVersion The ODS minor version number as a long integer

PageSize The number of bytes per page as a long integer

Version The database version as a string

3.2. Environmental Characteristics

Several properties are provided for determining environmental characteristics, such as the
amount of memory currently in use, or the number of database cache buffers currently
allocated. These properties are described in the following table:

Property Returns

CurrentMemory
The amount of server memory currently in use (in
bytes) as a long integer

ForcedWrites
0 for asynchronous (forced) database writes, or 1 for
synchronous writes

MaxMemory
The maximum amount of memory used at one time
since the first process attached to database as a long
integer

NumBuffers
The number of memory buffers currently allocated as a
long integer

SweepInterval
The number of transactions that are committed
between sweeps as a long integer

UserNames
The names of all users currently attached to the
database as a TStringList

Connecting to Databases (Developer's Guide)

115

3.3. Performance Statistics

There are four properties that provide performance statistics of a database. The statistics
accumulate for a database from the moment the first process attaches to the database until
the last remaining process detaches from the database. For example, the value that the
Reads property returns the number of reads since the current database was first attached
by any process. That number is an aggregate of all reads done by all attached processes and
not the number of reads done by the process of the current program.

Property Returns

Fetches
The number of reads from the memory buffer cache as
a long integer

Marks
The number of writes to the memory buffer cache as a
long integer

Reads
The number of pages reads from the database since
the current database was first attached; returned as a
long integer

Writes
The number of page writes to the current database
since it was first attached by any process; returned as
long integer

3.4. Database Operation Counts

Several information properties are provided for determining the number of various
database operations performed by the currently attached calling program. These values are
calculated on a per-table basis.

The following table describes the properties that return count values for operations on the
database:

Property Returns

BackoutCount
The number of removals of a version of a record as a
long integer

DeleteCount
The number of database deleted since the database
was last attached; returned as long integer

ExpungeCount
The number of removals of a record and all of its
ancestors as a long integer

InsertCount
The number of inserts into the database since the
database was last attached; returned as a long integer

PurgeCount
The number of removals of fully mature records from
the database; returned as a long integer

Connecting to Databases (Developer's Guide)

116

Property Returns

ReadIdxCount
The number of sequential database reads done via an
index since the database was last attached; returned
as a long integer

ReadSeqCount
The number of sequential database reads done on
each table since the database was last attached;
returned as a long integer

UpdateCount
The number of updates since the database was last
attached; returned as a long integer

3.5. Requesting Database Information

This section gives an example of how to use the TIBDatabaseInfo component.

To set up a simple TIBDatabaseInfo component:

Drop a TIBDatabase component and a TIBDatabaseInfo component on a
Delphi form.
Using either the Object Inspector or the Database Component Editor, set up the
database connection. For more information, see Connecting to a Database Server.
Set the TIBDatabaseInfo component’s Database property to the name of the
TIBDatabase component.
Connect the TIBDatabase component to the database by setting the Connected
property to <True>.
Drop a Button component and a Memo component on the form.
Double-click the Button component to bring up the code editor, and set any of
the TIBDatabaseInfo properties described above. For example:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
with IBDatabaseInfo1 do
 begin
 for I := 0 to UserNames.Count - 1 do
 Memo1.Lines.Add(UserNames[i]);
 Memo1.Lines.Add(DBFileName);
 Memo1.Lines.Add(IntToStr(Fetches));
 Memo1.Lines.Add(IntToStr(CurrentMemory));
 end;
end;

1.

2.

3.

4.

5.
6.

Connecting to Databases (Developer's Guide)

117

Importing and Exporting Data

InterBase Express (IBX) provides a convenient means to migrate data to and from the
database. The TIBSQL component, along with the TIBBatchInput and TIBBatchOutput
objects make it possible to import and export data to and from databases in virtually any
format.

Descendents of this class can specify a file name (for input or output), and a TIBXSQLDA
object representing a record or parameters. The ReadyFile method is called right before
performing the batch input or output.

Note:
For information on exporting InterBase tables to XML using special API calls, see
Exporting XML.

1. Exporting and Importing Raw Data

Use the TIBSQL component, along with the TIBOutputRawFile and TIBInputRawFile
objects to perform batch imports and exports of raw data. A raw file is the equivalent of
InterBase external file output. Raw files are not limited to straight character format, so
whatever structure is defined by your query is what goes in the file.

Use a SQL SELECT statement to export the data to the raw file, and an INSERT statement
to import the raw data into another database.

Raw files are probably the fastest way, aside from external tables, to get data in and out of
an InterBase database, although dealing with fixed-width files requires considerable
attention to detail.

1.1. Exporting Raw Data

To export raw data, you will need TIBSQL , TIBDatabase , and TIBTransaction
components. Associate the components with each other, select a source database, and set
the connections to active.

Tip:
Use the Database Editor to set up the database component. To start the Database Editor,
right click the database component with the mouse and select Database Editor from the
drop-down menu.

The following code snippet outputs selected data with a SQL SELECT statement from the
SOURCE table to the file source_raw .

procedure TForm1.Button1Click(Sender: TObject);
var
RawOutput : TIBOutputRawFile;
begin
IBSQL1.SQL.Text := 'Select name, number, hired from Source';
RawOutput := TIBOutputRawFile.Create;
try
RawOutput.Filename := 'source_raw';
IBSQL1.BatchOutput(RawOutput);
finally
RawOutput.Free;
end;
end;

Importing and Exporting Data

118

http://docwiki.embarcadero.com/InterBase/2020/en/Exporting_XML

1.2. Importing Raw Data

To import raw data, you will need TIBSQL , TIBDatabase , and TIBTransaction
components. Associate the components with each other, select a destination database, and
set the connections to active.

Tip:
Use the Database Editor to set up the database component. To start the Database Editor,
right click the database component with the mouse and select Database Editor from the
drop-down menu.

It is important to note that you must import data into a table with the same column
definitions and data types, and in the same order; otherwise, all sorts of unpredictable and
undesirable results may occur.

The following code snippet inputs selected data with an SQL INSERT statement from the
source_raw file created in the last example into the DESTINATION table.

procedure TForm1.Button2Click(Sender: TObject);
var
RawInput : TIBInputRawFile;
begin
IBSQL2.SQL.Text := 'Insert into Destination values(:name, :number, :hired)';
RawInput := TIBInputRawFile.Create;
try
RawInput.Filename := 'source_raw';
IBSQL2.BatchInput(RawInput);
finally
RawInput.Free;
end;

2. Exporting and Importing Delimited Data

Use the TIBSQL component, along with TIBOutputDelimitedFile and
TIBInputDelimitedFile objects to perform batch exports and imports of data to and
from a database into pipe-tilde (|~) and Z - W - F delimited files.

Use a SQL SELECT statement to export the data to the delimited file, and an INSERT
statement to import the delimited data into another database.

By default, the column delimiter is a tab, and the row delimiter is a tab-line feed (Z -
{{{1}}} - F). Use the ColDelimiter and RowDelimiter properties to change the
column delimiter and row delimiter, respectively.

For example, to set the column delimiter to a comma, you could use the following line of
code:

DelimOutput.ColDelimiter := ',';

Note:
Columns may contain spaces before the delimiter. For example, if you have a column
called NAME which is defined as a CHAR(10), and the name “Joe” is in that column, then
“Joe” will be followed by 7 spaces before the column is delimited.

Importing and Exporting Data

119

2.1. Exporting Delimited Data

To export delimited data, you will need TIBSQL , TIBDatabase , and TIBTransaction
components. Set up the database component, and associate the components with each
other. In the following example, the database and transaction components are set to active
in the code.

Tip:
Use the Database Editor to set up the database component. To start the Database Editor,
right click the database component with the mouse and select Database Editor from the
drop-down menu.

The following code snippet outputs selected data with a SQL SELECT statement from the
SOURCE table to the file source_delim .

procedure TForm1.Button3Click(Sender: TObject);
var
DelimOutput : TIBOutputDelimitedFile;
begin
IBSQL3.Database.Open;
IBSQL3.Transaction.StartTransaction;
IBSQL3.SQL.Text := 'Select name, number, hired from Source';
DelimOutput := TIBOutputDelimitedFile.Create;
try
DelimOutput.Filename := 'source_delim';
IBSQL3.BatchOutput(DelimOutput);
finally
DelimOutput.Free;
IBSQL3.Transaction.Commit;
end;
end;

2.2. Importing Delimited Data

To import delimited data, you will need TIBSQL , TIBDatabase , and TIBTransaction
components.et up the database component, and associate the components with each
other. In the following example, the database and transaction components are set to active
in the code.

Tip:
Use the Database Editor to set up the database component. To start the Database Editor,
right click the database component with the mouse and select Database Editor from the
drop-down menu.

It is important to note that you must import data into a table with the same column
definitions and data types, and in the same order; otherwise, all sorts of unpredictable and
undesirable results may occur.

The following code snippet inputs selected data with a SQL INSERT statement from the
source_delim file created in the last example into the DESTINATION table.

procedure TForm1.Button4Click(Sender: TObject);
var
DelimInput : TIBInputDelimitedFile;
begin
IBSQL4.Database.Open;
IBSQL4.Transaction.StartTransaction;
IBSQL4.SQL.Text := 'Insert into Destination values(:name, :number, :hired)';
DelimInput := TIBInputDelimitedFile.Create;
try

Importing and Exporting Data

120

DelimInput.Filename := 'source_delim';
IBSQL4.BatchInput(DelimInput);
finally
DelimInput.Free;
IBSQL4.Transaction.Commit;
end;
end;

Importing and Exporting Data

121

Working with InterBase Services

InterBase Express (IBX) comes with a set of service components, located on the InterBase
Admin page of the Tool Palette. They allow you to build InterBase database and server
administration tools directly into your application.

This chapter shows you how to build the following InterBase database services into your
applications, including:

Configuration
Backup and Restore
Licensing
Security
Validation
Statistics
Log
Server properties

1. Overview of the InterBase Service Components

This section describes the general concepts of the InterBase service components and
methods for attaching and detaching from a services manager.

1.1. About the Services Manager

All InterBase servers include a facility called the services manager. The InterBase service
components enable client applications to submit requests to the services manager of an
InterBase server, and the service manager performs the tasks. the server can be local (on
the same host as your application), or remote (on another host on the network). The
services components offer the same features when connected to either local or remote
InterBase servers.

1.2. Service Component Hierarchy

The root object of the InterBase service components is TIBCustomService , from which
descend TIBControlService and TIBServerProperties. TIBServerProperties
contains properties and methods specific to server configuration, while
TIBControlService is the ancestor object from which all the database configuration and
administration components descend.

The following three components descend directly from TIBControlService :

TIBControlAndQueryService contains all the database administration elements,
such as monitoring, maintenance, and backup and restore, as well as all of the user
validation and security elements.
TIBConfigService contains all the methods and properties for database
configuration.
TIBLicensingService contains all the properties and methods to add and remove
database licenses.

1.3. Attaching to a Service Manager

To initiate a connection from your application to an InterBase service manager:

•
•
•
•
•
•
•
•

•

•

•

Working with InterBase Services

122

1. Place a service component on a form.
2. Set the ServerName property for that component to the name of the server on which the
services are to be run.
3. Use the Protocol property to set the network protocol with which to connect to the
server.
4. Set the Active property to <True>. A login dialog is displayed. If you do not wish to
display the login dialog, set the user name and password in the Params string editor, and
set LoginPrompt to <False>.

To start the service, use the ServiceStart method.

Note:
TIBLicensingService and TIBSecurityService do not require that you start the
service using the ServiceStart method. For example, to add a license you could use:

Action := LicenseAdd;
ServiceStart;

or you could use:

AddLicense;

1.4. Detaching from a Service Manager

After you finish your tasks with the services components, you should end the connection
with the service manager by setting the Active property to <False>. This calls the Detach
method which detaches the service component from the service manager.

2. Setting Database Properties Using InterBase Services

The configuration service component, TIBConfigService allows the SYSDBA user to
attach to an InterBase database server and configure its behavior, including the following
topics:

2.1. Bringing a Database Online

Use the BringDatabaseOnline method of the TIBConfigService component to bring a
database back online.

For example, you could associate the BringDatabaseOnline method to a menu item:

procedure TForm1.BringDatabaseOnline1Click(Sender: TObject);
begin
with IBConfigService1 do
begin
BringDatabaseOnline;

end;
end;

For more information, refer to “Restarting a database” in the Operations Guide.

2.2. Shutting Down a Database Using InterBase Services

Use the ShutdownDatabase method of the TIBConfigService component to shut down
the database (or perform an action of type TShutdownMode and shut down the database)
after a specified number of seconds.

Working with InterBase Services

123

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

The database shutdown options are:

Shutdown Mode Meaning

Forced
Shut down the database after the specified number of
seconds; to shut down the database immediately, set
the shutdown interval to 0.

DenyTransaction

Deny new transactions and shut down the database
after the specified number of seconds; if transactions
are active after the shutdown interval has expired, the
shutdown will fail; to shut down the database
immediately, set the shutdown interval to 0.

DenyAttachment

Deny new attachments and shut down the database
after the specified number of seconds; if attachments
are active after the shutdown interval has expired, the
shutdown will fail; to shut down the database
immediately, set the shutdown interval to 0.

For example, you could use radio buttons to select the shut down mode and an Edit
component to specify the number of seconds before shutting down a database:

if RadioButton1.Checked then
ShutdownDatabase(Forced, (StrToInt(Edit4.Text)));

if RadioButton2.Checked then
ShutdownDatabase(DenyTransaction,(StrToInt(Edit4.Text)));

if RadioButton3.Checked then
ShutdownDatabase(DenyAttachment,(StrToInt(Edit4.Text)));

For more information, refer to “Database shutdown and restart” in the Operations Guide.

2.3. Setting the Sweep Interval Using InterBase Services

Use the SetSweepInterval method of the TIBConfigService component to set the
database sweep interval. The sweep interval refers to the number of transactions between
database sweeps. To turn off database sweeps, set the sweep interval to 0.

For example, you could set up an application that allows a user to set the sweep interval in
an Edit component:

procedure TDBConfigForm.Button1Click(Sender: TObject);
begin
with IBConfigService1 do
begin
SetSweepInterval(StrtoInt(Edit1.Text));

end;
end;

For more information, refer to “Sweep interval and automated housekeeping” in the
Operations Guide.

2.4. Setting the Async Mode

InterBase allows you to write to databases in both synchronous and asynchronous modes.
In synchronous mode, the database writes are forced. In asynchronous mode, the database
writes are buffered.

Working with InterBase Services

124

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

Set the SetAsyncMode method of the IBConfigService component to True to set the
database write mode to asynchronous.

procedure TDBConfigForm.CheckBox2Click(Sender: TObject);
begin
with IBConfigService1 do
begin
SetAsyncMode(True);

end;
end;

For more information, refer to “Forced writes vs. buffered writes” in the Operations Guide.

2.5. Setting the Page Buffers

The SetPageBuffers method of the IBConfigService component lets you set the
number of database page buffers. For example, you could set up an application that allows
a user to set the number of page buffers in an Edit component:

procedure TDBConfigForm.Button1Click(Sender: TObject);
begin
with IBConfigService1 do
begin
SetPageBuffers(StrtoInt(Edit2.Text));

end;
end;

For more information on page buffers, refer to “Default cache size per database” in the
Operations Guide.

2.6. Setting the Access Mode

Set the SetReadOnly method of the IBConfigService component to True to set the
database access mode to read-only.

procedure TDBConfigForm.CheckBox1Click(Sender: TObject);
begin
with IBConfigService1 do
begin
SetReadOnly(True);

end;
end;

Note:
Once you set the database to read-only, you will be unable to change any of the other
database options until you set SetReadOnly method to False again.

For more information on access mode, refer to “Read-only databases” in the Operations
Guide.

2.7. Setting the Database Reserve Space

Use the SetReserveSpace method of the IBConfigService component to reserve space
on the data page for versioning.

procedure TDBConfigForm.CheckBox3Click(Sender: TObject);
begin
with IBConfigService1 do
begin
SetReserveSpace(True);

Working with InterBase Services

125

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

end;
end;

2.8. Activating the Database Shadow

The ActivateShadow method of the IBConfigService component lets you activate a
shadow file for database use.

For example, you could associate the ActivateShadow method to a button:

procedure TDBConfigForm.Button2Click(Sender: TObject);
begin
with IBConfigService1 do
begin
ActivateShadow;
end;

end;

For more information, see “Shadowing” in the Operations Guide.

2.9. Adding and Removing Journal Files

The Journal Information property gives you access to the underlying
IBJournalInformation field. Call GetJournalInformation to retrieve the Journaling information
for a database.

You can use the following methods with the JournalInformation property:

CreateJournal - creates a journal based on the Journal Information.
AlterJournal - alters a pre-existing journal system. Not all properties can be altered. See the
Journaling chapter of the Update Guide for limitations.
DropJournal - drops a journal system.
CreateJournalArchive - creates an archive. Takes an optional directory parameter.
DropJournalArchive - drops an archive.
GetJournalInformation - retrieves journaling information for this database and stores it in
the Journal Information property.

3. Backing up and Restoring Databases

IBX comes with both Backup and Restore services: TIBBackupService and
TIBRestoreService , respectively. These are discussed in Backing Up Databases and
Restoring Databases.

For more information on backup and restore, refer to Database backup and restore in the
Operations Guide.

3.1. Setting Common Backup and Restore Properties

TIBBackupService and TIBRestoreService descend from a common ancestor, which
contains the following properties:

Property Meaning

BackupFile The path of the backup file name

BackupFileLength
The length in pages of the restored database file; must
exceed 2 gigabytes; you must supply a length for each
database file except the last

Working with InterBase Services

126

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Database_Backup_and_Restore
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

Property Meaning

DatabaseName
Path of the primary file of the database from the
server’s point of view; you can specify multiple
database files

Verbose
If set to <True>, displays backup or restore
information in verbose mode

BufferSize
The number of default cache buffers to configure for
attachments to the restored database

3.2. Backing Up Databases

TIBBackupService contains many properties and methods to allow you to build a backup
component into your application. Only the SYSDBA user or the database owner will be able
to perform backup operations on a database.

When backing up a database under normal circumstances, the backup file will always be on
the local server since the backup service cannot open a file over a network connection.
However, TIBBackupService can create a remote file in one of the following is true:

The server is running on Windows, the path to the backup file is specified as an UNC
name, and the destination for the file is another Windows machine (or a machine which
can be connected to via UNC naming conventions).
The destination drive is mounted via NFS (or some equivalent) on the machine running
the InterBase server.

3.2.1. Setting the Backup Options

The Options property allows you to build backup options of type TBackupOption into
your application. The backup options are:

Option Meaning

IgnoreChecksums Ignore checksums during backup

IgnoreLimbo Ignored limbo transactions during backup

MetadataOnly
Output backup file for metadata only with empty
tables

NoGarbageCollect
Suppress normal garbage collection during backup;
improves performance on some databases

OldMetadataDesc Output metadata in pre-4.0 format

NonTransportable
Output backup file with non-XDR data format;
improves space and performance by a negligible
amount

ConvertExtTables Convert external table data to internal tables

•

•

Working with InterBase Services

127

3.2.2. Displaying Backup Output

Set the Verbose property to True to display the backup output to a data control, such as
a Memo component.

3.2.3. Setting Up a Backup Component

To set up a simple backup component:

1. Drop a TIBBackupService component on a Delphi form.
2. Drop Button and Memo components on the form.
3. Enter the name and path of the database to be backed up in the DatabaseName field and
the name and path of the database backup file in the BackupFile string field of the Object
Inspector, or double click on the button and set the properties in code:

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBBackupService1 do
begin
DatabaseName := 'employee.gdb';
BackupFile.Add('d:\temp\employee1.gbk');
end;

end;

4. Attach to the service manager as described in Attaching to a Service Manager, or set the
properties in code:

with IBBackupService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
end;

5. Set any other options in the Object inspector (or set them in code), and then start the
service with the ServiceStart method.

The final code for a backup application that displays verbose backup output in a Memo
component might look like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBBackupService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
try
verbose := True;
Options := [NonTransportable, IgnoreLimbo];
DatabaseName := 'employee.gdb';
BackupFile.Add('d:\temp\employee1.gbk');
ServiceStart;
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

Working with InterBase Services

128

http://docwiki.embarcadero.com/InterBase/2020/en/Attaching_to_a_Service_Manager

3.2.4. Backing Up a Database to Multiple Files

InterBase allows you to back up a database to multiple files. To do this, you must specify the
size of each backup file except for the last, which will hold the remaining information.

procedure TForm1.Button2Click(Sender: TObject);
begin
with IBBackupService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
try
Verbose := True;
Options := [MetadataOnly, NoGarbageCollection];
DatabaseName := 'employee.gdb';

BackupFile.Add('c:\temp\e1.gbk = 2048');
BackupFile.Add('c:\temp\e2.gbk' = 4096);
BackupFile.Add('c:\temp\e3.gbk'); ServiceStart;
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

3.3. Restoring Databases

TIBRestoreService contains many properties and methods to allow you to build a
restore component into your application. Only the SYSDBA user or the database owner may
use the TIBRestoreService to overwrite an existing database.

The username and password used to connect to the TIBRestoreService will be used to
connect to the database for restore.

3.3.1. Setting the Database Cache Size

Use the PageBuffers property to set the cache size for the restored database. The default
is 2048 buffer pages in the database cache. To change the database cache size, set it in the
Object Inspector or in code:

PageBuffers := 3000

3.3.2. Setting the Page Size

InterBase supports database page sizes of 1024, 2048, 4096, and 8192 bytes. By default, the
database will be restored with the page size with which it was created. To change the page
size, you can set it in the Object Inspector or in code:

PageSize := 4096;

Changing the page size can improve database performance, depending on the data type
size, row length, and so forth. For a discussion of how page size affects performance, see
Page size in the Operations Guide.

Working with InterBase Services

129

http://docwiki.embarcadero.com/InterBase/2020/en/Creating_Databases#Page_Size_.28Database_Options.29
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

3.3.3. Setting the Restore Options

The Options property allows you to build restore options of type TRestoreOption into
your application. The restore options are:

Option Meaning

DeactivateIndex Do not build indexes during restore

NoShadow Do not recreate shadow files during restore

NoValidity
Do not enforce validity conditions (for example, NOT
NULL) during restore

OneRelationATime Commit after completing a restore of each table

Replace Replace database if one exists

Create Restore but do not overwrite an existing database

UseAllSpace
Do not reserve 20% of each datapage for future record
versions; useful for read-only databases

3.3.4. Displaying Restore Output

Set the Verbose property to True to display the restore output to a data control, such as
a Memo component.

3.3.5. Setting up a Restore Component

To set up a simple restore component:

Drop a TIBRestoreService component on a Delphi form.
Drop Button and Memo components on the form.
Enter the name and path of the database to be restored in the DatabaseName
field and the name and path of the database backup file in the BackupFile string
field of the Object Inspector, or double click on the button and set the properties
in code:

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBRestoreService1 do
begin
DatabaseName.Add('employee.gdb');
BackupFile.Add('c:\temp\employee1.gbk');
end;

Attach to the service manager as described in Attaching to a Service Manager, or
set the properties in code:

begin
with IBRestoreService1 do
begin
ServerName := 'Poulet';

1.
2.
3.

4.

Working with InterBase Services

130

http://docwiki.embarcadero.com/InterBase/2020/en/Attaching_to_a_Service_Manager

LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
end;

Set any other options in the Object inspector (or set them in code), and then start
the restore service with the ServiceStart method. The final code for a restore
application that displays verbose restore output in a Memo component might look
like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBRestoreService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
try
Verbose := True;
Options := [Replace, UseAllSpace];
PageBuffers := 3000;
PageSize := 4096;
DatabaseName.Add('c:\InterBase6\tutorial\tutorial.ib');

BackupFile.Add('c:\InterBase6\tutorial\backups\tutor5.gbk');
ServiceStart;

While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

3.3.6. Restoring a Database from Multiple Backup Files

InterBase allows you to restore a database from multiple files. The following code example
shows how to do this.

procedure TForm1.Button3Click(Sender: TObject);
begin
with IBRestoreService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
try
Verbose := True;
Options := [Replace, UseAllSpace];
PageBuffers := 3000;
PageSize := 4096;
BackupFile.Add('c:\temp\employee1.gbk');
BackupFile.Add('c:\temp\employee2.gbk');
BackupFile.Add('c:\temp\employee3.gbk');
DatabaseName.Add('employee.gdb');
ServiceStart;
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

5.

Working with InterBase Services

131

3.3.7. Restoring a Database to Multiple Files

You might want to restore a database to multiple files to distribute it among different disks,
which provides more flexibility in allocating system resources. The following code example
shows how to do this.

procedure TForm1.Button2Click(Sender: TObject);
begin
with IBRestoreService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
try
Verbose := True;
Options := [Replace, UseAllSpace];
PageBuffers := 3000;
PageSize := 4096;
BackupFile.Add('c:\temp\employee1.gbk');
DatabaseName.Add('c:\temp\employee2.ib = 2048');
DatabaseName.Add('c:\temp\employee3.ib = 2048');
DatabaseName.Add('c:\temp\employee4.ib');
ServiceStart;
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

4. Performing Database Maintenance

TIBValidationService contains many properties and methods to allow you to perform
database validation and resolve limbo transactions. These are discussed in the following
sections. For more information, refer to “Database Configuration and Maintenance” in the
Operations Guide.

4.1. Validating a Database (Performing Database Maintenance)

Use the Options property of TIBValidationService component to invoke a database
validation. Set any of the following options of type TValidateOption to <True> to perform
the appropriate validation:

Option Meaning

LimboTransactions

Returns limbo transaction information, including:

Transaction ID
Host site
Remote site
Remote database path
Transaction state
Suggested transaction action
Transaction action
Multiple database information

CheckDB
Request a read-only validation of the database without
correcting any problems

•
•
•
•
•
•
•
•

Working with InterBase Services

132

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

Option Meaning

IgnoreChecksum
Ignore all checksum errors when validating or
sweeping

KillShadows Remove references to unavailable shadow files

MendDB
Mark corrupted records as unavailable so that
subsequent operations skip them

SweepDB
Request database sweep to mark outdated records as
free space

ValidateDB
Locate and release pages that are allocated but
unassigned to any data structures

ValidateFull
Check record and page structures, releasing
unassigned record fragments; use with ValidateDB

To set these options in code, use the Options property:

Options := [CheckDB, IgnoreChecksum, KillShadows];

Note:
Not all combinations of validation options work together. For example, you could not
simultaneously mend and validate the database at the same time. Conversely, some
options are intended to be used with other options, such as IgnoreChecksum with
SweepDB or ValidateDB , or ValidateFull with ValidateDB .

To use the LimboTransactions option, see the following section.

4.2. Displaying Limbo Transaction Information

Use the FetchLimboTransaction method along with the LimboTransactions option to
retrieve a record of all current limbo transactions. The following code snippet will display
the contents of the TLimboTransactionInfo record, provided that there are any limbo
transactions to display.

try
Options := [LimboTransactions];
FetchLimboTransactionInfo;
for I := 0 to LimboTransactionInfoCount - 1 do
begin
with LimboTransactionInfo[i] do
begin
Memo1.Lines.Add('Transaction ID: ' + IntToStr(ID));
Memo1.Lines.Add('Host Site: ' + HostSite);
Memo1.Lines.Add('Remote Site: ' + RemoteSite);
Memo1.Lines.Add('Remote Database Path: ' + RemoteDatabasePath);
//Memo1.Lines.Add('Transaction State: ' + TransactionState);
Memo1.Lines.Add('-----------------------------------');
end;
end;
finally

Working with InterBase Services

133

4.3. Resolving Limbo Transactions

You can correct transactions in a limbo state using the GlobalAction property of the
TIBValidationService to perform one of the following actions of type
TTransactionGlobalAction on the database specified by the DatabaseName property:

Action Meaning

CommitGlobal
Commits the limbo transaction specified by ID or
commits all limbo transactions

RollbackGlobal
Rolls back the limbo transaction specified by ID or rolls
back all limbo transactions

RecoverTwoPhaseGlobal
Performs automated two-phase recovery, either for a
limbo transaction specified by ID or for all limbo
transactions

NoGlobalAction Takes no action

For example, to set the global action using radio buttons:

with IBValidationService1 do
try
if RadioButton1.Checked then GlobalAction := (CommitGlobal);
if RadioButton2.Checked then GlobalAction := (RollbackGlobal);
if RadioButton3.Checked then GlobalAction := (RecoverTwoPhaseGlobal);
if RadioButton4.Checked then GlobalAction := (NoGlobalAction);

5. Requesting Database and Server Status Reports

TIBStatisticalService contains many properties and methods to allow you to build a
statistical component into your application. Only the SYSDBA user or owner of the database
will be able to run this service.

5.1. Requesting Database Statistics

Use the Options property of TIBStatisticalService to request database statistics.
These options are incremental; that is, setting DbLog to <True> also returns HeaderPages
statistics, setting IndexPages to <True> returns also returns DbLog and HeaderPages
statistics, and so forth. Set any of the following options of type TStatOption to <True> to
retrieve the appropriate information:

Option Meaning

HeaderPages
Stop reporting statistics after reporting the information
on the header page

DbLog
Stop reporting statistics after reporting information on
the log pages

IndexPages Request statistics for the user indexes in the database

DataPages Request statistics for data tables in the database

Working with InterBase Services

134

Option Meaning

SystemRelations
Request statistics for system tables and indexes in
addition to user tables and indexes

To use the statistical service:

Drop an IBStatisticalServices component on a Delphi form.
Attach to the service manager as described in Attaching to a Service Manager.
Set the DatabaseName property to the path of the database for which you would
like statistics.
Set the options for which statistics you would like to receive, either by setting
them to <True> in the Object Inspector, or in code using the Options property.
Start the statistical service using the ServiceStart method.

The following example displays the statistics for a database. With a button click,
HeaderPages and DBLog statistics are returned until the end of the file is reached.

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBStatisticalService1 do
begin
ServerName := 'Poulet';
DatabaseName := 'C:\InterBase\tutorial\tutorial.ib';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
ServiceStart;
try
Options := [DataPages, DBLog];
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

6. Using the Log Service

Use the TIBLogService to retrieve the interbase.log file, if it exists, from the server. If
the log file does not exist, an error is returned.

To use the log service:

Drop a TIBLogService component on a Delphi application.
Drop Button and Memo components on the same application.
Attach to the service manager as described in Attaching to a Service Manager.
Start the log service using the ServiceStart method.

The following example displays the contents of the interbase.log file. With a click of the
button, the log file is displayed until the end of the file is reached.

procedure TForm1.Button1Click(Sender: TObject);
begin
with IBLogService1 do
begin
ServerName := 'Poulet';
LoginPrompt := False;
Params.Add('user_name=sysdba');
Params.Add('password=masterkey');
Active := True;
ServiceStart;

1.
2.
3.

4.

5.

1.
2.
3.
4.

Working with InterBase Services

135

http://docwiki.embarcadero.com/InterBase/2020/en/Attaching_to_a_Service_Manager
http://docwiki.embarcadero.com/InterBase/2020/en/Attaching_to_a_Service_Manager

try
While not Eof do
Memo1.Lines.Add(GetNextLine);
finally
Active := False;
end;
end;
end;

7. Configuring Users

Security for InterBase relies on a central database for each server host. This database
contains legitimate users who have permission to connect to databases and InterBase
services on that host. The database also contains an encrypted password for the user. This
user and password applies to any database on that server host.

You can use the TIBSecurityService component to list, add, delete, and modify users.
These are discussed in the following sections.

For more information on InterBase database security, refer to “DataBase Security” in the
Operations Guide.

7.1. Adding a User to the Security Database

Use the AddUser method along with the following properties to add a user to the InterBase
security database (admin.ib by default).

Property Purpose

UserName User name to create; maximum 31 characters

Password
Password for the user; maximum 31 characters, only
first 8 characters are significant

FirstName Optional first name of person using this user name

MiddleName Optional middle name of person using this user name

LastName Optional last name of person using this user name

UserID
Optional user ID number, defined in /etc/passwd , to
assign to the user

GroupID
Optional groupID number, defined in /etc/group , to
assign to the user

SQLRole
Optional role to use when attaching to the security
database; for more information on roles in InterBase,
refer to “ANSI SQL 3 roles” in the Operations Guide.

The following code snippet allows you to set user information in Edit components, and
then adds the user with the AddUser method.

try
UserName := Edit1.Text;
FirstName := Edit2.Text;
MiddleName := Edit3.Text;

Working with InterBase Services

136

http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Operations_Guide

LastName := Edit4.Text;
UserID := StrToInt(Edit5.Text);
GroupID := StrToInt(Edit6.Text);
Password := Edit7.Text;
AddUser;

finally

7.2. Listing Users in the Security Database

Use the DisplayUser and DisplayUsers methods to display information for a single user
or all users respectively in the InterBase security database (admin.ib by default).

7.2.1. Displaying Information for a Single User

To view the information for a single user, use the DisplayUser method. The following
code snippet displays all the information contained in the TUserInfoArray , keyed on the
UserName field.

try
UserName := Edit1.Text;
DisplayUser(UserName);
Edit2.Text := UserInfo[0].FirstName;
Edit3.Text := UserInfo[0].MiddleName;
Edit4.Text := UserInfo[0].LastName;
Edit5.Text := IntToStr(UserInfo[0].UserID);
Edit6.Text := IntToStr(UserInfo[0].GroupID);
finally

7.2.2. Displaying Information for All Users

To view all users, use the DisplayUsers method. DisplayUsers displays the user
information contained in the TUserInfo array. The following code snippet displays all
users in a memo window.

try
DisplayUsers;
for I := 0 to UserInfoCount - 1 do
begin
with UserInfo[i] do
begin

Memo1.Lines.Add('User Name : ' + UserName);
Memo1.Lines.Add('Name: ' + FirstName + ' ' + MiddleName +

' ' + LastName);
Memo1.Lines.Add('UID: ' + IntToStr(UserId));
Memo1.Lines.Add('GID: ' + IntToStr(GroupId));
Memo1.Lines.Add('-----------------------------------');

end;
end;

finally

7.3. Removing a User from the Security Database

Use the DeleteUser method to remove a user from the InterBase security database
(admin.ib by default).

The following code snippet calls the DeleteUser method to delete the user indicated by
the UserName property:

try
UserName := Edit1.Text;
DeleteUser;
finally

Working with InterBase Services

137

Edit1.Clear;
Active := False;
end;

If you remove a user entry from the InterBase security database (admin.ib by default), no
one can log into any database on that server using that name. You must create a new entry
for that name using the AddUser method.

7.4. Modifying a User in the Security Database

Use the ModifyUser method along with the properties listed in Adding a User to the
Security Database to modify user information in the InterBase security database. You
cannot change the UserName property, only the properties associated with that user name.

To modify user information you could display the user information using the example in
Displaying Information for a Single User. The TUserInfo record is displayed in the Edit
boxes. Use the ModifyUser code in the same way as the AddUser code.

8. Displaying Server Properties

Use the Options property of TIBServerProperties to return server configuration
information, including the version of the database and server, license and license mask
information, and InterBase configuration parameters. These options are discussed in the
following sections.

8.1. Displaying the Database Information

Use the Database option to display the TDatabaseInfo record, which consists of the
number of databases attached to the server, the number of databases on the server, and
the names and paths of the database files.

You can set the Database option to <True> in the Object Inspector, or set it in code.

The following code displays the elements of the TDatabaseInfo record.
NoOfAttachements and NoOfDatabases are strings displayed in Label components,
while DbName is an array of type string, and displayed in a Memo component.

Options := [Database];
FetchDatabaseInfo;
Label1.Caption := 'Number of Attachments = ' +
IntToStr(DatabaseInfo.NoOfAttachments);
Label2.Caption := 'Number of Databases = ' +
IntToStr(DatabaseInfo.NoOfDatabases);
for I:= 0 to High(DatabaseInfo.DbName) do
Memo1.Lines.Add(DatabaseInfo.DbName[i])

8.2. Displaying InterBase Configuration Parameters

Use the ConfigParams option along with the FetchConfigParams or Fetch method to
display the parameters and values in the ibconfig file on the server. ConfigParams
displays the location of the InterBase executable, the lock file, the message file, and the
security database. It also displays the configuration file parameters. You can set
ConfigParams to <True> in the Object Inspector, or you can set it in code.

The following code snippet shows how you could display configuration parameters as label
captions.

Options := [ConfigParameters];
FetchConfigParams;

Working with InterBase Services

138

Label1.Caption := 'Base File = ' + ConfigParams.BaseLocation;
Label2.Caption := 'Lock File = ' + ConfigParams.LockFileLocation;
Label3.Caption := 'Message File = ' + ConfigParams.MessageFileLocation;
Label4.Caption := 'Security Database = ' + ConfigParams.SecurityDatabaseLocation;

You could also set the ConfigFileData array to display server key values in a Memo
component.

var
I: Integer;
st1: string;
.
.
.
for I:= 0 to High(ConfigParams.ConfigFileData.ConfigFileValue) do
begin
case ConfigParams.ConfigFileData.ConfigFileKey[i] of
ISCCFG_IPCMAP_KEY: st1 := 'IPCMAP_KEY';
ISCCFG_LOCKMEM_KEY: st1 := 'LOCKMEM_KEY';
.
.
.
ISCCFG_DUMMY_INTRVL_KEY: st1 := 'DUMMY_INTRVL_KEY';
end;
Memo1.Lines.Add(st1 + ' = ' +
IntTostr(ConfigParams.ConfigFileData.ConfigFileValue[i]));

8.3. Displaying the Server Version

Use the Version option to display the server version information. The TVersionInfo
record contains the server version, the implementation version, and the service version.

You can set the Version option to <True> in the Object Inspector, or set the Options
property in code.

The following code displays server properties in Label components when a button is
clicked:

Options := [Version];
 FetchVersionInfo;
Label1.Caption := 'Server Version = ' + VersionInfo.ServerVersion;
 Label2.Caption := 'Server Implementation = ' +
VersionInfo.ServerImplementation;
Label3.Caption := 'Service Version = ' +
IntToStr(VersionInfo.ServiceVersion);
end;

Working with InterBase Services

139

Programming with Database Events

Use the TIBEvents component in your IBX-based application to register interest in and
asynchronously handle InterBase server events. The InterBase event mechanism enables
applications to respond to action and database changes made by other, concurrently
running applications without the need for those applications to communicate directly with
each other, and without incurring the expense of CPU time required for period polling to
determine if an event has occurred.

Use the TIBEvents component in your application to register an event (or a list of events)
with the event manager. The event manager maintains a list of events posted to it by triggers
and stored procedures. It also maintains a list of applications that have registered an
interest in events. Each time a new event is posted to it, the event manager notifies
interested applications that the event has occurred.

To use TIBEvents in your application:

Create a trigger or stored procedure on the InterBase server which will post an
event.
Add a TIBDatabase and a TIBEvents component to your form.
Add the events to the Events list and register them with the event manager.
Write an OnEventAlert event handler for each event.

Events are passed by triggers or stored procedures only when the transaction under which
they occur is posted. Also, InterBase consolidates events before posting them. For example,
if an InterBase trigger posts 20 x STOCK_LOW events within a transaction, when the
transaction is committed these will be consolidated into a single STOCK_LOW event, and the
client will only receive one event notification.

For more information on events, refer to Working with Events in the Embedded SQL Guide.

1. Setting up Event Alerts

Double click on the ellipsis button (...) of the Events property add an event to the Events
list. Each TIBEvents component can handle up to 15 events. If you need to respond to
more that 15 events, use more than one TIBEvents component. If you attempt to add too
many events at runtime, an exception will be raised.

To add an event to the Events list use the following code:

TIBEvents.Events.Add('STOCK_LOW')

1.1. Writing an Event Handler

OnEventAlert is called everytime an InterBase event is received by an IBEvents
component. The EventName variable contains the name of the event that has just been
received. The EventCount variable contains the number of EventName events that have
been received since OnEventAlert was last called.

OnEventAlert runs as a separate thread to allow for true asynchronous event processing,
however, the IBEvents component provides synchronization code to ensure that only one
OnEventAlert event handler executes at any one time.

1.

2.
3.
4.

Programming with Database Events

140

http://docwiki.embarcadero.com/InterBase/2020/en/Working_with_Events
http://docwiki.embarcadero.com/InterBase/2020/en/Embedded_SQL_Guide

Working with Cached Updates

Cached updates enable you to retrieve data from a database, cache and edit it locally, and
then apply the cached updates to the database as a unit. When cached updates are
enabled, updates to a dataset (such as posting changes or deleting records) are stored in an
internal cache instead of being written directly to the dataset’s underlying table. When
changes are complete, your application calls a method that writes the cached changes to
the database and clears the cache.

This chapter describes when and how to use cached updates. It also describes the
TIBUpdateSQL component that can be used in conjunction with cached updates to update
virtually any dataset, particularly datasets that are not normally updatable.

1. Deciding When to Use Cached Updates

Cached updates are primarily intended to reduce data access contention on remote
database servers by:

Minimizing transaction times.
Minimizing network traffic.

While cached updates can minimize transaction times and drastically reduce network traffic,
they may not be appropriate for all database client applications that work with remote
servers. There are three areas of consideration when deciding to use cached updates:

Cached data is local to your application, and is not under transaction control. In a busy
client/server environment this has two implications for your application:

Other applications can access and change the actual data on the server while your
users edit their local copies of the data.
Other applications cannot see any data changes made by your application until it
applies all its changes.

In master/detail relationships managing the order of applying cached updates can be
tricky. This is particularly true when there are nested master/detail relationships where
one detail table is the master table for yet another detail table and so on.
Applying cached updates to read-only, query-based datasets requires use of
update objects.

The InterBase Express components provide cached update methods and transaction control
methods you can use in your application code to handle these situations, but you must take
care that you cover all possible scenarios your application is likely to encounter in your
working environment.

2. Using Cached Updates

This section provides a basic overview of how cached updates work in an application. If you
have not used cached updates before, this process description serves as a guideline for
implementing cached updates in your applications.

To use cached updates, the following order of processes must occur in an application:

1. Enable cached updates. Enabling cached updates causes a read-only transaction that
fetches as much data from the server as is necessary for display purposes and then
terminates. Local copies of the data are stored in memory for display and editing. For more

•
•

•

•

•

•

•

Working with Cached Updates

141

information about enabling and disabling cached updates, see Enabling and Disabling
Cached Updates.
2. Display and edit the local copies of records, permit insertion of new records, and support
deletions of existing records. Both the original copy of each record and any edits to it are
stored in memory. For more information about displaying and editing when cached updates
are enabled, see Applying Cached Updates.
3. Fetch additional records as necessary. As a user scrolls through records, additional
records are fetched as needed. Each fetch occurs within the context of another short
duration, read-only transaction. (An application can optionally fetch all records at once
instead of fetching many small batches of records.) For more information about fetching all
records, see Fetching Records.
4. Continue to display and edit local copies of records until all desired changes are
complete.
5. Apply the locally cached records to the database or cancel the updates. For each record
written to the database, an OnUpdateRecord event is triggered. If an error occurs when
writing an individual record to the database, an OnUpdateError event is triggered which
enables the application to correct the error, if possible, and continue updating. When
updates are complete, all successfully applied updates are cleared from the local cache. For
more information about applying updates to the database, see Applying Cached Updates.

If instead of applying updates, an application cancels updates, the locally cached copy of the
records and all changes to them are freed without writing the changes to the database. For
more information about canceling updates, see Canceling Pending Cached Updates.

2.1. Enabling and Disabling Cached Updates

Cached updates are enabled and disabled through the CachedUpdates properties of
TIBDataSet , TIBTable , TIBQuery , and TStoredProc . CachedUpdates is False by
default, meaning that cached updates are not enabled for a dataset.

Note:
Client datasets always cache updates. They have no CachedUpdates property because
you cannot disable cached updates on a client dataset.

To use cached updates, set CachedUpdates to True , either at design time (through the
Object Inspector), or at runtime. When you set CachedUpdates to True , the dataset’s
OnUpdateRecord event is triggered if you provide it. For more information about the
OnUpdateRecord event, see Creating an OnUpdateRecord Event Handler.

For example, the following code enables cached updates for a dataset at runtime:

CustomersTable.CachedUpdates := True;

When you enable cached updates, a copy of all records necessary for display and editing
purposes is cached in local memory. Users view and edit this local copy of data. Changes,
insertions, and deletions are also cached in memory. They accumulate in memory until the
current cache of local changes is applied to the database. If changed records are
successfully applied to the database, the record of those changes are freed in the cache.

Note:
Applying cached updates does not disable further cached updates; it only writes the
current set of changes to the database and clears them from memory.

To disable cached updates for a dataset, set CachedUpdates to False . If you disable
cached updates when there are pending changes that you have not yet applied, those
changes are discarded without notification. Your application can test the UpdatesPending

Working with Cached Updates

142

property for this condition before disabling cached updates. For example, the following
code prompts for confirmation before disabling cached updates for a dataset:

if (CustomersTable.UpdatesPending)
 if (Application.MessageBox(“Discard pending updates?”,
 “Unposted changes”,
 MB_YES + MB_NO) = IDYES) then
 CustomersTable.CachedUpdates = False;

2.2. Fetching Records

By default, when you enable cached updates, datasets automatically handle fetching of data
from the database when necessary. Datasets fetch enough records for display. During the
course of processing, many such record fetches may occur. If your application has specific
needs, it can fetch all records at one time. You can fetch all records by calling the dataset’s
FetchAll method. FetchAll creates an in-memory, local copy of all records from the
dataset. If a dataset contains many records or records with large Blob fields, you may not
want to use FetchAll .

Client datasets use the PacketRecords property to indicate the number of records that
should be fetched at any time. If you set the FetchOnDemand property to True , the client
dataset automatically handles fetching of data when necessary. Otherwise, you can use the
GetNextPacket method to fetch records from the data server. For more information about
fetching records using a client dataset, see Requesting data from the Source Dataset or
Document in the Delphi Developer’s Guide.

2.3. Applying Cached Updates

When a dataset is in cached update mode, changes to data are not actually written to the
database until your application explicitly calls methods that apply those changes. Normally
an application applies updates in response to user input, such as through a button or menu
item.

Important:
To apply updates to a set of records retrieved by a SQL query that does not return a live
result set, you must use a TIBUpdateSQL object to specify how to perform the updates.
For updates to joins (queries involving two or more tables), you must provide one
TIBUpdateSQL object for each table involved, and you must use the OnUpdateRecord
event handler to invoke these objects to perform the updates. For more information, see
Updating a Read-only Result Set. For more information about creating and using an
OnUpdateRecord event handler, see Creating an OnUpdateRecord Event Handler.

Applying updates is a two-phase process that should occur in the context of a transaction
component to enable your application to recover gracefully from errors.

When applying updates under transaction control, the following events take place:

A database transaction starts.
Cached updates are written to the database (phase 1). If you provide it, an
OnUpdateRecord event is triggered once for each record written to the database.
If an error occurs when a record is applied to the database, the OnUpdateError
event is triggered if you provide one.

If the database write is unsuccessful:

Database changes are rolled back, ending the database transaction.
Cached updates are not committed, leaving them intact in the internal cache buffer.

1.
2.

•
•

Working with Cached Updates

143

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Requesting_Data_from_the_Source_Dataset_or_Document
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Requesting_Data_from_the_Source_Dataset_or_Document
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

If the database write is successful:

Database changes are committed, ending the database transaction.
Cached updates are committed, clearing the internal cache buffer (phase 2).

The two-phased approach to applying cached updates allows for effective error recovery,
especially when updating multiple datasets (for example, the datasets associated with a
master/detail form). For more information about handling update errors that occur when
applying cached updates, see Handling Cached Update Errors.

There are actually two ways to apply updates. To apply updates for a specified set of
datasets associated with a database component, call the database component’s
ApplyUpdates method. To apply updates for a single dataset, call the dataset’s
ApplyUpdates and Commit methods. These choices, and their strengths, are described in
the following sections.

2.3.1. Applying Cached Updates with a Database Component Method

Ordinarily, applications cache updates at the dataset level. However, there are times when it
is important to apply the updates to multiple interrelated datasets in the context of a single
transaction. For example, when working with master/detail forms, you will likely want to
commit changes to master and detail tables together.

To apply cached updates to one or more datasets in the context of a database connection,
call the database component’s ApplyUpdates method. The following code applies updates
to the CustomersQuery dataset in response to a button click event:

procedure TForm1.ApplyButtonClick(Sender: TObject);
begin
 IBDatabase1.ApplyUpdates([CustomersQuery]);
end;

The above sequence starts a transaction, and writes cached updates to the database. If
successful, it also commits the transaction, and then commits the cached updates. If
unsuccessful, this method rolls back the transaction, and does not change the status of the
cached updates. In this latter case, your application should handle cached update errors
through a dataset’s OnUpdateError event. For more information about handling update
errors, see Handling Cached Update Errors.

The main advantage to calling a database component’s ApplyUpdates method is that you
can update any number of dataset components that are associated with the database. The
parameter for the ApplyUpdates method for a database is an array of
TIBCustomDataSet . For example, the following code applies updates for two queries used
in a master/detail form:

IBDatabase1.ApplyUpdates([CustomerQuery, OrdersQuery]);

For more information about updating master/detail tables, see Applying Updates for
Master/detail Tables.

2.3.2. Applying Cached Updates with a Dataset Component Methods

You can apply updates for individual datasets directly using the dataset’s ApplyUpdates
method. Applying updates at the dataset level gives you control over the order in which
updates are applied to individual datasets. Order of update application is especially critical
for handling master/detail relationships. To ensure the correct ordering of updates for

•
•

Working with Cached Updates

144

master/detail tables, you should always apply updates at the dataset level. For more
information see Applying Updates for Master/detail Tables.

The following code illustrates how you apply updates within a transaction for the
CustomerQuery dataset previously used to illustrate updates through a database method:

IBTransaction1.StartTransaction;
try
 CustomerQuery.ApplyUpdates; {try to write the updates to the database }
 IBTransaction1.Commit; { on success, commit the changes }
except
 IBTransaction1.Rollback; { on failure, undo any changes }
 raise;
end;

If an exception is raised during the ApplyUpdates call, the database transaction is rolled
back. Rolling back the transaction ensures that the underlying database table is not
changed. The raise statement inside the try...except block re- raises the exception,
thereby preventing the call to CommitUpdates . Because CommitUpdates is not called, the
internal cache of updates is not cleared so that you can handle error conditions and
possibly retry the update.

2.3.3. Applying Updates for Master/detail Tables

When you apply updates for master/detail tables, the order in which you list datasets to
update is significant. Generally you should always update master tables before detail tables,
except when handling deleted records. In complex master/detail relationships where the
detail table for one relationship is the master table for another detail table, the same rule
applies.

You can update master/detail tables at the database or dataset component levels. For
purposes of control (and of creating explicitly self-documented code), you should apply
updates at the dataset level. The following example illustrates how you should code cached
updates to two tables, Master and Detail , involved in a master/detail relationship:

IBTransaction1.StartTransaction;
try
 Master.ApplyUpdates;
 Detail.ApplyUpdates;
 Database1.Commit;
except
 IBTransaction1.Rollback;
 raise;
end;
Master.CommitUpdates;
Detail.CommitUpdates;

If an error occurs during the application of updates, this code also leaves both the cache
and the underlying data in the database tables in the same state they were in before the
calls to ApplyUpdates .

If an exception is raised during the call to Master.ApplyUpdates , it is handled like the
single dataset case previously described. Suppose, however, that the call to
Master.ApplyUpdates succeeds, and the subsequent call to Detail.ApplyUpdates fails.
In this case, the changes are already applied to the master table. Because all data is
updated inside a database transaction, however, even the changes to the master table are
rolled back when IBTransaction1.Rollback is called in the except block. Furthermore,
UpdatesMaster.CommitUpdates is not called because the exception which is re-raised
causes that code to be skipped, so the cache is also left in the state it was before the
attempt to update.

Working with Cached Updates

145

To appreciate the value of the two-phase update process, assume for a moment that
ApplyUpdates is a single-phase process which updates the data and the cache. If this were
the case, and if there were an error while applying the updates to the Detail table, then
there would be no way to restore both the data and the cache to their original states. Even
though the call to IBTransaction1.Rollback would restore the database, there would be
no way to restore the cache.

2.4. Canceling Pending Cached Updates

Pending cached updates are updated records that are posted to the cache but not yet
applied to the database. There are three ways to cancel pending cached updates:

To cancel all pending updates and disable further cached updates, set the
CachedUpdates property to False .
To discard all pending updates without disabling further cached updates, call the
CancelUpdates method.
To cancel updates made to the current record call RevertRecord .

The following sections discuss these options in more detail.

2.4.1. Cancelling Pending Updates and Disabling Further Cached Updates

To cancel further caching of updates and delete all pending cached updates without
applying them, set the CachedUpdates property to False . When CachedUpdates is set
to False , the CancelUpdates method is automatically invoked.

From the update cache, deleted records are undeleted, modified records revert to original
values, and newly inserted record simply disappear.

Note:
This option is not available for client datasets.

2.4.2. Discarding Pending Cached Updates

CancelUpdates clears the cache of all pending updates, and restores the dataset to the
state it was in when the table was opened, cached updates were last enabled, or updates
were last successfully applied. For example, the following statement cancels updates for the
CustomersTable :

CustomersTable.CancelUpdates;

From the update cache, deleted records are undeleted, modified records revert to original
values, and newly inserted records simply disappear.

Note:
Calling CancelUpdates does not disable cached updating. It only cancels currently
pending updates. To disable further cached updates, set the CachedUpdates property
to False .

2.4.3. Canceling Updates to the Current Record

RevertRecord restores the current record in the dataset to the state it was in when the
table was opened, cached updates were last enabled, or updates were last successfully

•

•

•

Working with Cached Updates

146

applied. It is most frequently used in an OnUpdateError event handler to correct error
situations. For example,

CustomersTable.RevertRecord;

Undoing cached changes to one record does not affect any other records. If only one record
is in the cache of updates and the change is undone using RevertRecord , the
UpdatesPending property for the dataset component is automatically changed from True
to False .

If the record is not modified, this call has no effect. For more information about creating an
OnUpdateError handler, see Creating an OnUpdateRecord Event Handler.

2.5. Undeleting Cached Records

To undelete a cached record requires some coding because once the deleted record is
posted to the cache, it is no longer the current record and no longer even appears in the
dataset. In some instances, however, you may want to undelete such records. The process
involves using the UpdateRecordTypes property to make the deleted records “visible,” and
then calling RevertRecord . Here is a code example that undeletes all deleted records in a
table:

procedure TForm1.UndeleteAll(DataSet: TDataSet)
begin
 DataSet.UpdateRecordTypes := [cusDeleted];
{ show only deleted records }
 try
 DataSet.First;
{ go to the first previously deleted record }
 while not (DataSet.Eof)
 DataSet.RevertRecord;
{ undelete until we reach the last record]
 except
 { restore updates types to recognize only modified, inserted, and
unchanged }
 DataSet.UpdateRecordTypes := [cusModified, cusInserted, cusUnmodified];
 raise;
 end;
 DataSet.UpdateRecordTypes := [cusModified, cusInserted, cusUnmodified];
end;

2.6. Specifying Visible Records in the Cache

The UpdateRecordTypes property controls what type of records are visible in the cache
when cached updates are enabled. UpdateRecordTypes works on cached records in much
the same way as filters work on tables. UpdateRecordTypes is a set, so it can contain any
combination of the following values:

Value Meaning

cusModified Modified records

cusInserted Inserted records

cusDeleted Deleted records

cusUninserted Uninserted records

Working with Cached Updates

147

Value Meaning

cusUnmodified Unmodified records

The default value for UpdateRecordTypes includes only
cusModified, cusInserted, cusUnmodified , and cusUninserted with deleted
records (cusDeleted) not displayed.

The UpdateRecordTypes property is primarily useful in an OnUpdateError event handler
for accessing deleted records so they can be undeleted through a call to RevertRecord .
This property is also useful if you wanted to provide a way in your application for users to
view only a subset of cached records, for example, all newly inserted (cusInserted)
records.

For example, you could have a set of four radio buttons (RadioButton1 through
RadioButton4) with the captions All, Modified, Inserted, and Deleted. With all four radio
buttons assigned to the same OnClick event handler, you could conditionally display all
records (except deleted, the default), only modified records, only newly inserted records, or
only deleted records by appropriately setting the UpdateRecordTypes property.

procedure TForm1.UpdateFilterRadioButtonsClick(Sender: TObject);
begin
 if RadioButton1.Checked then
 CustomerQuery.UpdateRecordTypes := [cusUnmodified, cusModified, cusInserted]
 else if RadioButton2.Checked then
 CustomerQuery.UpdateRecordTypes := [cusModified]
 else if RadioButton3.Checked then
 CustomerQuery.UpdateRecordTypes := [cusInserted]
 else
 CustomerQuery.UpdateRecordTypes := [cusDeleted];
end;

For more information about creating an OnUpdateError handler, see Creating an
OnUpdateRecord Event Handler.

2.7. Checking Update Status

When cached updates are enabled for your application, you can keep track of each pending
update record in the cache by examining the UpdateStatus property for the record.
Checking update status is most frequently used in OnUpdateRecord and OnUpdateError
event handlers. For more information about creating and using an OnUpdateRecord event,
see Creating an OnUpdateRecord Event Handler. For more information about creating and
using an OnUpdateError event, see Handling Cached Update Errors.

As you iterate through a set of pending changes, UpdateStatus changes to reflect the
update status of the current record. UpdateStatus returns one of the following values for
the current record:

Value Meaning

usUnmodified Record is unchanged

usModified Record is changed

usInserted Record is a new record

Working with Cached Updates

148

Value Meaning

usDeleted Record is deleted

When a dataset is first opened all records will have an update status of usUnmodified . As
records are inserted, deleted, and so on, the status values change. Here is an example of
UpdateStatus property used in a handler for a dataset’s OnScroll event. The event
handler displays the update status of each record in a status bar.

procedure TForm1.CustomerQueryAfterScroll(DataSet: TDataSet);
begin
 with CustomerQuery do begin
 case UpdateStatus of
 usUnmodified: StatusBar1.Panels[0].Text := 'Unmodified';
 usModified: StatusBar1.Panels[0].Text := 'Modified';
 usInserted: StatusBar1.Panels[0].Text := 'Inserted';
 usDeleted: StatusBar1.Panels[0].Text := 'Deleted';
 else StatusBar1.Panels[0].Text := 'Undetermined status';
 end;
 end;
end;

Note:
If a record’s UpdateStatus is usModified , you can examine the OldValue property
for each field in the dataset to determine its previous value. OldValue is meaningless
for records with UpdateStatus values other than usModified . For more information
about examining and using OldValue , see Creating an OnUpdateRecord Event Handler
in the Delphi Developer’s Guide.

3. Using Update Objects to Update a Dataset

TIBUpdateSQL is an update component that uses SQL statements to update a dataset. You
must provide one TIBUpdateSQL component for each underlying table accessed by the
original query that you want to update.

Note:
If you use more than one update component to perform an update operation, you must
create an OnUpdateRecord event to execute each update component.

An update component actually encapsulates four TIBQuery components. Each of these
query components perform a single update task. One query component provides a SQL
UPDATE statement for modifying existing records; a second query component provides an
INSERT statement to add new records to a table; a third component provides a DELETE
statement to remove records from a table, and a forth component provides a SELECT
statement to refresh the records in a table.

When you place an update component in a data module, you do not see the query
components it encapsulates. They are created by the update component at runtime based
on four update properties for which you supply SQL statements:

ModifySQL specifies the UPDATE statement.
InsertSQL specifies the INSERT statement.
DeleteSQL specifies the DELETE statement.
RefreshSQL specifies the SELECT statement.

•
•
•
•

Working with Cached Updates

149

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_an_OnUpdateRecord_Event_Handler
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

At runtime, when the update component is used to apply updates, it:

Selects a SQL statement to execute based on the UpdateKind parameter
automatically generated on a record update event. UpdateKind specifies
whether the current record is modified, inserted, or deleted.
Provides parameter values to the SQL statement.
Prepares and executes the SQL statement to perform the specified update.

3.1. Specifying the UpdateObject Property for a Dataset

One or more update objects can be associated with a dataset to be updated. Associate
update objects with the update dataset either by setting the UpdateObject property of the
dataset component to the update object or by setting the DataSet property of the update
object to the update dataset. Which method is used depends on whether only one base
table or multiple tables in the update dataset are to be updated.

You must use one of these two means of associating update datasets with update objects.
Without proper association, the dynamic filling of parameters in the update object’s SQL
statements cannot occur. Use one association method or the other, but never both.

How an update object is associated with a dataset also determines how the update object is
executed. An update object might be executed automatically, without explicit intervention
by the application, or it might need to be explicitly executed. If the association is made using
the dataset component’s UpdateObject property, the update object will automatically be
executed. If the association is made with the update object’s DataSet property, you must
execute the update object programmatically.

The following sections explain the process of associating update objects with update
dataset components in greater detail, along with suggestions about when each method
should be used and effects on update execution.

3.1.1. Using a Single Update Object

When only one of the base tables referenced in the update dataset needs to be updated,
associate an update object with the dataset by setting the UpdateObject property of the
dataset component to the name of the update object.

IBQuery1.UpdateObject := UpdateSQL1;

The update SQL statements in the update object are automatically executed when the
ApplyUpdates method of the update dataset is called. The update object is invoked for
each record that requires updating. Do not call the ExecSQL method of the update object
in a handler for the OnUpdateRecord event as this will result in a second attempt to apply
each record’s update.

If you supply a handler for the OnUpdateRecord event of the dataset, the minimum action
that you need to take in that handler is setting the UpdateAction parameter of the event
handler to uaApplied . You may optionally perform data validation, data modification, or
other operations like setting parameter values.

3.1.2. Using Multiple Update Objects

When more than one base table referenced in the update dataset needs to be updated, you
need to use multiple update objects: one for each base table updated. Because the
UpdateObject of the dataset component only allows one update object to be associated
with the dataset, you must associate each update object with the dataset by setting its

1.

2.
3.

Working with Cached Updates

150

DataSet property to the name of the dataset. The DataSet property for update objects is
not available at design time in the Object Inspector. You can only set this property at
runtime.

IBUpdateSQL1.DataSet := IBQuery1;

The update SQL statements in the update object are not automatically executed when the
ApplyUpdates method of the update dataset is called. To update records, you must supply
a handler for the OnUpdateRecord event of the dataset component and call the ExecSQL
or Apply methods of the update object. This invokes the update object for each record
that requires updating.

In the handler for the OnUpdateRecord event of the dataset, the minimal actions that you
need to take in that handler are:

Calling the SetParams method of the update object (if you later call ExecSQL).
Executing the update object for the current record with ExecSQL or Apply .
Setting the UpdateAction parameter of the event handler to uaApplied .

You may optionally perform data validation, data modification, or other operations that
depend on each record’s update.

Note:
It is also possible to have one update object associated with the dataset using the
UpdateObject property of the dataset component, and the second and subsequent
update objects associated using their DataSet properties. The first update object is
executed automatically on calling the ApplyUpdates method of the dataset component.
The rest need to be manually executed.

3.2. Creating SQL Statements for Update Components

To update a record in an associated dataset, an update object uses one of three SQL
statements. The four SQL statements delete, insert, refresh, and modify records cached for
update. The statements are contained in the update object’s string list properties
DeleteSQL , InsertSQL , RefreshSQL , and ModifySQL . As each update object is used to
update a single table, the object’s update statements each reference the same base table.

As the update for each record is applied, one of the four SQL statements is executed against
the base table updated. Which SQL statement is executed depends on the UpdateKind
parameter automatically generated for each record’s update.

Creating the SQL statements for update objects can be done at design time or at runtime.
The sections that follow describe the process of creating update SQL statements in greater
detail.

3.2.1. Creating SQL Statements at Design Time

To create the SQL statements for an update component,

Select the TIBUpdateSQL component.
Select the name of the update component from the drop-down list for the dataset
component’s UpdateObject property in the Object Inspector. This step ensures
that the Update SQL editor you invoke in the next step can determine suitable
default values to use for SQL generation options.
Right-click the update component and select UpdateSQL Editor from the context
menu to invoke the Update SQL editor. The editor creates SQL statements for the

•
•
•

1.
2.

3.

Working with Cached Updates

151

update component’s ModifySQL , RefreshSQL , InsertSQL , and DeleteSQL
properties based on the underlying data set and on the values you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first invoke the
editor. Use the Table Name combo box to select the table to update. When you specify a
table name, the Key Fields and Update Fields list boxes are populated with available
columns.

The Update Fields list box indicates which columns should be updated. When you first
specify a table, all columns in the Update Fields list box are selected for inclusion. You can
multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the update.
Instead of setting Key Fields you can click the Primary Keys button to choose key fields for
the update based on the table’s primary index. Click Dataset Defaults to return the selection
lists to the original state: all fields selected as keys and all selected for update.

Check the Quote Field Names check box if your server requires quotation marks around
field names.

After you specify a table, select key columns, and select update columns, click Generate SQL
to generate the preliminary SQL statements to associate with the update component’s
ModifySQL , InsertSQL , RefreshSQL , and DeleteSQL properties. In most cases you may
want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have
generated SQL statements, then when you select this page, the statement for the
ModifySQL property is already displayed in the SQL Text memo box. You can edit the
statement in the box as desired.

Important:
Keep in mind that generated SQL statements are starting points for creating update
statements. You may need to modify these statements to make them execute correctly.
For example, when working with data that contains NULL values, you need to modify the
WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly yourself
before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements and edit
them as desired.

To accept the statements and associate them with the update component’s SQL properties,
click OK.

3.2.2. Understanding Parameter Substitution in Update SQL Statements

Update SQL statements use a special form of parameter substitution that enables you to
substitute old or new field values in record updates. When the Update SQL editor generates
its statements, it determines which field values to use. When you write the update SQL, you
specify the field values to use.

When the parameter name matches a column name in the table, the new value in the field
in the cached update for the record is automatically used as the value for the parameter.
When the parameter name matches a column name prefixed by the string “OLD_”, then the

Working with Cached Updates

152

old value for the field will be used. For example, in the update SQL statement below, the
parameter :LastName is automatically filled with the new field value in the cached update
for the inserted record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an
update for a modified record, the new field value from the update cache is used by the
UPDATE statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property uses
the “:OLD_FieldName” syntax. Old field values are also normally used in the WHERE clause of
the SQL statement for a modified or deletion update to determine which record to update
or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at least the
minimal number of parameters to uniquely identify the record in the base table that is
updated with the cached data. For instance, in a list of customers, using just a customer’s
last name may not be sufficient to uniquely identify the correct record in the base table;
there may be a number of records with “Smith” as the last name. But by using parameters
for last name, first name, and phone number could be a distinctive enough combination.
Even better would be a unique field value like a customer number.

For more information about old and new value parameter substitution, see Creating an
OnUpdateRecord Event Handler in the Delphi Developer’s Guide.

3.2.3. Composing Update SQL Statements

The TIBUpdateSQL component has four properties for updating SQL statements:
DeleteSQL , InsertSQL , RefreshSQL , and ModifySQL . As the names of the properties
imply, these SQL statements delete, insert, refresh, and modify records in the base table.

The DeleteSQL property should contain only a SQL statement with the DELETE command.
The base table to be updated must be named in the FROM clause. So that the SQL
statement only deletes the record in the base table that corresponds to the record deleted
in the update cache, use a WHERE clause. In the WHERE clause, use a parameter for one or
more fields to uniquely identify the record in the base table that corresponds to the cached
update record. If the parameters are named the same as the field and prefixed with “OLD_”,
the parameters are automatically given the values from the corresponding field from the
cached update record. If the parameter are named in any other manner, you must supply
the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

Some tables types might not be able to find the record in the base table when fields used to
identify the record contain NULL values. In these cases, the delete update fails for those
records. To accommodate this, add a condition for those fields that might contain NULLs
using the IS NULL predicate (in addition to a condition for a non-NULL value). For example,
when a FirstName field may contain a NULL value:

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND
((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

Working with Cached Updates

153

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_an_OnUpdateRecord_Event_Handler
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Creating_an_OnUpdateRecord_Event_Handler
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

The InsertSQL statement should contain only a SQL statement with the INSERT
command. The base table to be updated must be named in the INTO clause. In the
VALUES clause, supply a comma-separated list of parameters. If the parameters are named
the same as the field, the parameters are automatically given the value from the cached
update record. If the parameter are named in any other manner, you must supply the
parameter values. The list of parameters supplies the values for fields in the newly inserted
record. There must be as many value parameters as there are fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The RefreshSQL statement should contain only a SQL statement with the SELECT
command. The base table to be updated must be named in the FROM clause. If the
parameters are named the same as the field, the parameters are automatically given the
value from the cached update record. If the parameter are named in any other manner, you
must supply the parameter values.

SELECT COUNTRY, CURRENCY
FROM Country
WHERE
COUNTRY = :COUNTRY and CURRENCY = :CURRENCY

The ModifySQL statement should contain only a SQL statement with the UPDATE
command. The base table to be updated must be named in the FROM clause. Include one or
more value assignments in the SET clause. If values in the SET clause assignments are
parameters named the same as fields, the parameters are automatically given values from
the fields of the same name in the updated record in the cache. You can assign additional
field values using other parameters, as long as the parameters are not named the same as
any fields and you manually supply the values. As with the DeleteSQL statement, supply a
WHERE clause to uniquely identify the record in the base table to be updated using
parameters named the same as the fields and prefixed with “OLD_”. In the update
statement below, the parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

Considering the above update SQL, take an example case where the application end-user
modifies an existing record. The original value for the ItemNo field is 999. In a grid
connected to the cached dataset, the end-user changes the ItemNo field value to 123 and
Amount to 20. When the ApplyUpdates method is invoked, this SQL statement affects all
records in the base table where the ItemNo field is 999, using the old field value in the
parameter :OLD_ItemNo. In those records, it changes the ItemNo field value to 123 (using
the parameter :ItemNo, the value coming from the grid) and Amount to 20.

3.2.4. Using an Update Component’s Query Property

Use the Query property of an update component to access one of the update SQL
properties DeleteSQL , InsertSQL , RefreshSQL , or ModifySQL , such as to set or alter
the SQL statement. Use UpdateKind constant values as an index into the array of query
components. The Query property is only accessible at runtime.

The statement below uses the UpdateKind constant ukDelete with the Query property
to access the DeleteSQL property.

Working with Cached Updates

154

with IBUpdateSQL1.Query[ukDelete] do begin
Clear;
Add(‘DELETE FROM Inventory I’);
Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);

end;

Normally, the properties indexed by the Query property are set at design time using the
Update SQL editor. You might, however, need to access these values at runtime if you are
generating a unique update SQL statement for each record and not using parameter
binding. The following example generates a unique Query property value for each row
updated:

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
with IBUpdateSQL1 do begin
case UpdateKind of
ukModified:
begin
Query[UpdateKind].Text := Format('update emptab set Salary = %d where

EmpNo = %d',
[EmpAuditSalary.NewValue, EmpAuditEmpNo.OldValue]);

ExecSQL(UpdateKind);
end;

ukInserted:
{...}

ukDeleted:
{...}

end;
end;
UpdateAction := uaApplied;

end;

Note:
Query returns a value of type TIBDataSetUpdateObject . To treat this return value as
a TIBUpdateSQL component, to use properties and methods specific to TIBUpdateSQL ,
typecast the UpdateObject property. For example:

with (DataSet.UpdateObject as IBUpdateSQL).Query[UpdateKind] do begin
{ perform operations on the statement in DeleteSQL }

end;

For an example of using this property, see Calling the SetParams Method.

3.2.5. Using the DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL Properties

Use the DeleteSQL , InsertSQL , ModifySQL , and RefreshSQL properties to set the
update SQL statements for each. These properties are all string list containers. Use the
methods of string lists to enter SQL statement lines as items in these properties. Use an
integer value as an index to reference a specific line within the property. The DeleteSQL ,
InsertSQL , ModifySQL , and RefreshSQL properties are accessible both at design time
and at runtime.

with UpdateSQL1.DeleteSQL do begin
 Clear;
 Add(‘DELETE FROM Inventory I’);
 Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);
end;

Below, the third line of a SQL statement is altered using an index of 2 with the ModifySQL
property.

Working with Cached Updates

155

UpdateSQL1.ModifySQL[2] := ‘WHERE ItemNo = :ItemNo’;

3.3. Executing Update Statements

There are a number of methods involved in executing the update SQL for an individual
record update. These method calls are typically used within a handler for the
OnUpdateRecord event of the update object to execute the update SQL to apply the
current cached update record. The various methods are applicable under different
circumstances. The sections that follow discuss each of the methods in detail.

3.3.1. Calling the Apply Method

The Apply method for an update component manually applies updates for the current
record. There are two steps involved in this process:

Values for the record are bound to the parameters in the appropriate update SQL
statement.
The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache.
Only use Apply when the update object is not associated with the dataset using the
dataset component’s UpdateObject property, in which case the update object is not
automatically executed. Apply automatically calls the SetParams method to bind old and
new field values to specially named parameters in the update SQL statement. Do not call
SetParams yourself when using Apply . The Apply method is most often called from
within a handler for the dataset’s OnUpdateRecord event.

If you use the dataset component’s UpdateObject property to associate dataset and update
object, this method is called automatically. Do not call Apply in a handler for the dataset
component’s OnUpdateRecord event as this will result in a second attempt to apply the
current record’s update.

In a handler for the OnUpdateRecord event, the UpdateKind parameter is used to
determine which update SQL statement to use. If invoked by the associated dataset, the
UpdateKind is set automatically. If you invoke the method in an OnUpdateRecord event,
pass an UpdateKind constant as the parameter of Apply .

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 IBUpdateSQL1.Apply(UpdateKind);
 UpdateAction := uaApplied;
end;

If an exception is raised during the execution of the update program, execution continues in
the OnUpdateError event, if it is defined.

Note:
The operations performed by Apply are analogous to the SetParams and ExecSQL
methods described in the following sections.

3.3.2. Calling the SetParams Method

The SetParams method for an update component uses special parameter substitution
rules to substitute old and new field values into the update SQL statement. Ordinarily,
SetParams is called automatically by the update component’s Apply method. If you call

1.

2.

Working with Cached Updates

156

Apply directly in an OnUpdateRecord event, do not call SetParams yourself. If you
execute an update object using its ExecSQL method, call SetParams to bind values to the
update statement’s parameters.

SetParams sets the parameters of the SQL statement indicated by the UpdateKind
parameter. Only those parameters that use a special naming convention automatically have
a value assigned. If the parameter has the same name as a field or the same name as a field
prefixed with “OLD_” the parameter is automatically a value. Parameters named in other
ways must be manually assigned values. For more information see the section
Understanding Parameter Substitution in Update SQL Statements.

The following example illustrates one such use of SetParams :

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 with DataSet.UpdateObject as TIBUpdateSQL do begin
 SetParams(UpdateKind);
 if UpdateKind = ukModified then
 IBQuery[UpdateKind].ParamByName('DateChanged').Value := Now;
 ExecSQL(UpdateKind);
 end;
 UpdateAction := uaApplied;
end;

This example assumes that the ModifySQL property for the update component is as
follows:

UPDATE EmpAudit
SET EmpNo = :EmpNo, Salary = :Salary, Changed = :DateChanged
WHERE EmpNo = :OLD_EmpNo

In this example, the call to SetParams supplies values to the EmpNo and Salary
parameters. The DateChanged parameter is not set because the name does not match the
name of a field in the dataset, so the next line of code sets this value explicitly.

3.3.3. Calling the ExecSQL Method

The ExecSQL method for an update component manually applies updates for the current
record. There are two steps involved in this process:

Values for the record are bound to the parameters in the appropriate update SQL
statement.
The SQL statement is executed.

Call the ExecSQL method to apply the update for the current record in the update cache.
Only use ExecSQL when the update object is not associated with the dataset using the
dataset component’s UpdateObject property, in which case the update object is not
automatically executed. ExecSQL does not automatically call the SetParams method to
bind update SQL statement parameter values; call SetParams yourself before invoking
ExecSQL . The ExecSQL method is most often called from within a handler for the dataset’s
OnUpdateRecord event.

If you use the dataset component’s UpdateObject property to associate dataset and
update object, this method is called automatically. Do not call ExecSQL in a handler for the
dataset component’s OnUpdateRecord event as this will result in a second attempt to apply
the current record’s update.

In a handler for the OnUpdateRecord event, the UpdateKind parameter is used to
determine which update SQL statement to use. If invoked by the associated dataset, the

1.

2.

Working with Cached Updates

157

UpdateKind is set automatically. If you invoke the method in an OnUpdateRecord event,
pass an UpdateKind constant as the parameter of ExecSQL .

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 with (DataSet.UpdateObject as TIBUpdateSQL) do begin
 SetParams(UpdateKind);
 ExecSQL(UpdateKind);
 end;
 UpdateAction := uaApplied;
end;

If an exception is raised during the execution of the update program, execution continues in
the OnUpdateError event, if it is defined.

Note:
The operations performed by ExecSQL and SetParams are analogous to the Apply
method described previously.

3.4. Using Dataset Components to Update a Dataset

Applying cached updates usually involves use of one or more update objects. The update
SQL statements for these objects apply the data changes to the base table. Using update
components is the easiest way to update a dataset, but it is not a requirement. You can
alternately use dataset components like TIBTable and TIBQuery to apply the cached
updates.

In a handler for the dataset component’s OnUpdateRecord event, use the properties and
methods of another dataset component to apply the cached updates for each record.

For example, the following code uses a table component to perform updates:

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 if UpdateKind = ukInsert then
 UpdateTable.AppendRecord([DataSet.Fields[0].NewValue,
DataSet.Fields[1].NewValue])
 else
 if UpdateTable.Locate('KeyField', VarToStr(DataSet.Fields[1].OldValue), [])
then
 case UpdateKind of
 ukModify:
 begin
 Edit;
 UpdateTable.Fields[1].AsString :=
VarToStr(DataSet.Fields[1].NewValue);
 Post;
 end;
 ukInsert:
 begin
 Insert;
 UpdateTable.Fields[1].AsString :=
VarToStr(DataSet.Fields[1].NewValue);
 Post;
 end;
 ukModify: DeleteRecord;
 end;
 UpdateAction := uaApplied;
end;

Working with Cached Updates

158

4. Updating a Read-only Dataset

To manually update a read-only dataset:

Add a TIBUpdateSQL component to the data module in your application.
Set the dataset component’s UpdateObject property to the name of the
TIBUpdateSQL component in the data module.
Enter the SQL update statement for the result set to the update component’s
ModifySQL , InsertSQL , DeleteSQL , or RefreshSQL properties, or use the
Update SQL editor.
Close the dataset.
Set the dataset component’s CachedUpdates property to True .
Reopen the dataset.

In many circumstances, you may also want to write an OnUpdateRecord event handler for
the dataset.

5. Controlling the Update Process

When a dataset component’s ApplyUpdates method is called, an attempt is made to apply
the updates for all records in the update cache to the corresponding records in the base
table. As the update for each changed, deleted, or newly inserted record is about to be
applied, the dataset component’s OnUpdateRecord event fires.

Providing a handler for the OnUpdateRecord event allows you to perform actions just
before the current record’s update is actually applied. Such actions can include special data
validation, updating other tables, or executing multiple update objects. A handler for the
OnUpdateRecord event affords you greater control over the update process.

The sections that follow describe when you might need to provide a handler for the
OnUpdateRecord event and how to create a handler for this event.

5.1. Determining if you Need to Control the Updating Process

Some of the time when you use cached updates, all you need to do is call ApplyUpdates to
apply cached changes to the base tables in the database. In most other cases, however, you
either might want to or must provide additional processing to ensure that updates can be
properly applied. Use a handler for the updated dataset component’s OnUpdateRecord
event to provide this additional processing.

For example, you might want to use the OnUpdateRecord event to provide validation
routines that adjust data before it is applied to the table, or you might want to use the
OnUpdateRecord event to provide additional processing for records in master and detail
tables before writing them to the base tables.

In many cases you must provide additional processing. For example, if you access multiple
tables using a joined query, then you must provide one TIBUpdateSQL object for each
table in the query, and you must use the OnUpdateRecord event to make sure each update
object is executed to write changes to the tables.

The following sections describe how to create and use an TIBUpdateSQL object and how to
create and use an OnUpdateRecord event.

5.2. Creating an OnUpdateRecord Event Handler

The OnUpdateRecord event handles cases where a single update component cannot be
used to perform the required updates, or when your application needs more control over

1.
2.

3.

4.
5.
6.

Working with Cached Updates

159

special parameter substitution. The OnUpdateRecord event fires once for the attempt to
apply the changes for each modified record in the update cache.

To create an OnUpdateRecord event handler for a dataset:

1. Select the dataset component.
2. Choose the Events page in the Object Inspector.
3. Double-click the OnUpdateRecord property value to invoke the code editor.

Here is the skeleton code for an OnUpdateRecord event handler:

procedure TForm1.DataSetUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 { perform updates here... }
end;

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update to perform. Values for
UpdateKind are ukModify , ukInsert , and ukDelete . When using an update
component, you need to pass this parameter to its execution and parameter binding
methods. For example using ukModify with the Apply method executes the update
object’s ModifySQL statement. You may also need to inspect this parameter if your handler
performs any special processing based on the kind of update to perform.

The UpdateAction parameter indicates if you applied an update or not. Values for
UpdateAction are uaFail (the default), uaAbort , uaSkip , uaRetry , uaApplied .
Unless you encounter a problem during updating, your event handler should set this
parameter to uaApplied before exiting. If you decide not to update a particular record, set
the value to uaSkip to preserve unapplied changes in the cache.

If you do not change the value for UpdateAction , the entire update operation for the
dataset is aborted. For more information about UpdateAction , see Specifying the Action to
Take.

In addition to these parameters, you will typically want to make use of the OldValue and
NewValue properties for the field component associated with the current record. For more
information about OldValue and NewValue see “Accessing a field’s OldValue, NewValue,
and CurValue properties” in the Delphi Developer’s Guide.

Important:
The OnUpdateRecord event, like the OnUpdateError and OnCalcFields event
handlers, should never call any methods that change which record in a dataset is the
current record.

Here is an OnUpdateRecord event handler that executes two update components using
their Apply methods. The UpdateKind parameter is passed to the Apply method to
determine which update SQL statement in each update object to execute.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 EmployeeUpdateSQL.Apply(UpdateKind);
 JobUpdateSQL.Apply(UpdateKind);
 UpdateAction := uaApplied;
end;

Working with Cached Updates

160

In this example the DataSet parameter is not used. This is because the update
components are not associated with the dataset component using its UpdateObject
property.

6. Handling Cached Update Errors

Because there is a delay between the time a record is first cached and the time cached
updates are applied, there is a possibility that another application may change the record in
a database before your application applies its updates. Even if there is no conflict between
user updates, errors can occur when a record’s update is applied.

A dataset component’s OnUpdateError event enables you to catch and respond to errors.
You should create a handler for this event if you use cached updates. If you do not, and an
error occurs, the entire update operation fails.

Important:
Do not call any dataset methods that change the current record (such as Next and
Prior) in an OnUpdateError event handler. Doing so causes the event handler to
enter an endless loop.

Here is the skeleton code for an OnUpdateError event handler:

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E: EDatabaseError;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 { ... perform update error handling here ... }
end;

The following sections describe specific aspects of error handling using an OnUpdateError
handler, and how the event’s parameters are used.

6.1. Referencing the Dataset to Which to Apply Updates

DataSet references the dataset to which updates are applied. To process new and old
record values during error handling you must supply this reference.

6.2. Indicating the Type of Update that Generated an Error

The OnUpdateRecord event receives the parameter UpdateKind , which is of type
TUpdateKind . It describes the type of update that generated the error. Unless your error
handler takes special actions based on the type of update being carried out, your code
probably will not make use of this parameter.

The following table lists possible values for UpdateKind:

Value Meaning

ukModify Editing an existing record caused an error

ukInsert Inserting a new record caused an error

ukDelete Deleting an existing record caused an error

The example below shows the decision construct to perform different operations based on
the value of the UpdateKind parameter.

Working with Cached Updates

161

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E: EDatabaseError;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin
 case UpdateKind of
 ukModify:
 begin
 { handle error due to applying record modification update }
 end;
 ukInsert:
 begin
 { handle error due to applying record insertion update }
 end;
 ukDelete:
 begin
 { handle error due to applying record deletion update }
 end;
 end;
end;

6.3. Specifying the Action to Take

UpdateAction is a parameter of type TUpdateAction . When your update error handler is
first called, the value for this parameter is always set to uaFail . Based on the error
condition for the record that caused the error and what you do to correct it, you typically set
UpdateAction to a different value before exiting the handler. UpdateAction can be set to
one of the following values:

Value Meaning

uaAbort
Aborts the update operation without displaying an
error message

uaFail
Aborts the update operation, and displays an error
message; this is the default value for UpdateAction
when you enter an update error handler

uaSkip
Skips updating the row, but leaves the update for the
record in the cache

uaRetry
Repeats the update operation; correct the error
condition before setting UpdateAction to this value

uaApplied Not used in error handling routines

If your error handler can correct the error condition that caused the handler to be invoked,
set UpdateAction to the appropriate action to take on exit. For error conditions you
correct, set UpdateAction to uaRetry to apply the update for the record again.

When set to uaSkip , the update for the row that caused the error is skipped, and the
update for the record remains in the cache after all other updates are completed.

Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an
exception, and displays an error message. uaAbort raises a silent exception (does not
display an error message).

Note:
If an error occurs during the application of cached updates, an exception is raised and an
error message displayed. Unless the ApplyUpdates is called from within a

Working with Cached Updates

162

try...except construct, an error message to the user displayed from inside your
OnUpdateError event handler may cause your application to display the same error
message twice. To prevent error message duplication, set UpdateAction to uaAbort to
turn off the system-generated error message display.

The uaApplied value should only be used inside an OnUpdateRecord event. Do not set
this value in an update error handler. For more information about update record events,
see Creating an OnUpdateRecord Event Handler.

Working with Cached Updates

163

Understanding Datasets

In Delphi, the fundamental unit for accessing data is the dataset family of objects. Your
application uses datasets for all database access. Generally, a dataset object represents a
specific table belonging to a database, or it represents a query or stored procedure that
accesses a database.

All dataset objects that you will use in your database applications descend from the
virtualized dataset object, TDataSet , and they inherit data fields, properties, events, and
methods from TDataSet . This chapter describes the functionality of TDataSet that is
inherited by the dataset objects you will use in your database applications. You need to
understand this shared functionality to use any dataset object.

The following figure illustrates the hierarchical relationship of all the dataset components:

1. What is TDataSet?

TDataSet is the ancestor for all the dataset objects that you use in your applications. It
defines a set of data fields, properties, events, and methods that are shared by all dataset
objects. TDataSet is a virtualized dataset, meaning that many of its properties and
methods are virtual or abstract. A virtual method is a function or procedure declaration
where the implementation of that method can be (and usually is) overridden in descendant
objects. An abstract method is a function or procedure declaration without an actual
implementation. The declaration is a prototype that describes the method (and its
parameters and return type, if any) that must be implemented in all descendant dataset
objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an application
without generating a runtime error. Instead, you either create instances of TDataSet ’s
descendants, such as TIBCustomDataSet , TIBDataSet , TIBTable , TIBQuery ,
TIBStoredProc , and TClientDataSet , and use them in your application, or you derive
your own dataset object from TDataSet or its descendants and write implementations for
all its abstract methods.

Nevertheless, TDataSet defines much that is common to all dataset objects. For example,
TDataSet defines the basic structure of all datasets: an array of TField components that
correspond to actual columns in one or more database tables, lookup fields provided by
your application, or calculated fields provided by your application. For more information
about TField components, see “Working with field components” in the Delphi Developer’s
Guide.

Understanding Datasets

164

The following topics are discussed in this chapter:

Opening and Closing Datasets
Determining and Setting Dataset States
Navigating Datasets
Searching Datasets
Modifying Dataset Data
Using Dataset Events

2. Opening and Closing Datasets

To read or write data in a table or through a query, an application must first open a dataset.
You can open a dataset in two ways:

Set the Active property of the dataset to True , either at design time in the Object
Inspector, or in code at runtime:

IBTable.Active := True;

Call the Open method for the dataset at runtime:

IBQuery.Open;

You can close a dataset in two ways:

Set the Active property of the dataset to False, either at design time in the Object
Inspector, or in code at runtime:

IBQuery.Active := False;

Call the Close method for the dataset at runtime:

IBTable.Close;

You may need to close a dataset when you want to change certain of its properties, such as
TableName on a TIBTable component. At runtime, you may also want to close a dataset
for other reasons specific to your application.

3. Determining and Setting Dataset States

The state (or mode) of a dataset determines what can be done to its data. For example,
when a dataset is closed, its state is dsInactive , meaning that nothing can be done to its
data. At runtime, you can examine a dataset’s read-only State property to determine its
current state. The following table summarizes possible values for the State property and
what they mean:

Value State Meaning

dsInactive Inactive
DataSet closed; its data is
unavailable

dsBrowse Browse
DataSet open; its data can be
viewed, but not changed

•
•
•
•
•
•

•

•

•

•

Understanding Datasets

165

Value State Meaning

dsEdit Edit
DataSet open; the current row can
be modified

dsInsert Insert
DataSet open; a new row is inserted
or appended

dsCalcFields CalcFields

DataSet open; indicates that an
OnCalcFields event is under way

and prevents changes to fields that
are not calculated

dsCurValue CurValue Internal use only

dsNewValue NewValue Internal use only

dsOldValue OldValue Internal use only

dsFilter Filter

DataSet open; indicates that a filter
operation is under way: a restricted
set of data can be viewed, and no
data can be changed

When an application opens a dataset, it appears by default in dsBrowse mode. The state of
a dataset changes as an application processes data. An open dataset changes from one
state to another based on either the code in your application, or the built-in behavior of
data-related components.

To put a dataset into dsBrowse , dsEdit , or dsInsert states, call the method
corresponding to the name of the state. For example, the following code puts IBTable into
dsInsert state, accepts user input for a new record, and writes the new record to the
database:

IBTable.Insert; { Your application explicitly sets dataset state to Insert }
AddressPromptDialog.ShowModal;
if AddressPromptDialog.ModalResult := mrOK then
 IBTable.Post; { Delphi sets dataset state to Browse on successful completion }
else
 IBTable.Cancel; {Delphi sets dataset state to Browse on cancel }

This example also illustrates that the state of a dataset automatically changes to dsBrowse
when

The Post method successfully writes a record to the database. (If Post fails, the
dataset state remains unchanged.)
The Cancel method is called.

Some states cannot be set directly. For example, to put a dataset into dsInactive state,
set its Active property to False, or call the Close method for the dataset. The following
statements are equivalent:

IBTable.Active := False;
IBTable.Close;

•

•

Understanding Datasets

166

The remaining states (dsCalcFields , dsCurValue, dsNewValue , dsOldValue , and
dsFilter) cannot be set by your application. Instead, the state of the dataset changes
automatically to these values as necessary. For example, dsCalcFields is set when a
dataset’s OnCalcFields event is called. When the OnCalcFields event finishes, the
dataset is restored to its previous state.

Whenever a dataset state changes, the OnStateChange event is called for any data source
components associated with the dataset. For more information about data source
components and OnStateChange , see the Using Data Controls chapter of the Delphi
Developer’s Guide.

The following sections provide overviews of each state, how and when states are set, how
states relate to one another, and where to go for related information, if applicable.

3.1. Deactivating a Dataset

A dataset is inactive when it is closed. You cannot access records in a closed dataset. At
design time, a dataset is closed until you set its Active property to True . At runtime, a
dataset is initially closed until an application opens it by calling the Open method, or by
setting the Active property to True .

When you open an inactive dataset, its state automatically changes to the dsBrowse state.
The following figure illustrates the relationship between these states and the methods that
set them.

To make a dataset inactive, call its Close method. You can write BeforeClose and
AfterClose event handlers that respond to the Close method for a dataset. For
example, if a dataset is in dsEdit or dsInsert modes when an application calls Close ,
you should prompt the user to post pending changes or cancel them before closing the
dataset. The following code illustrates such a handler:

procedure IBTable.VerifyBeforeClose(DataSet: TIBCustomDataSet)
begin
 if (IBTable.State = dsEdit) or (IBTable.State = dsInsert) then
 begin
 if MessageDlg('Post changes before closing?', mtConfirmation, mbYesNo, 0) =
mrYes then
 IBTable.Post;
 else
 IBTable.Cancel;
 end;
end;

To associate a procedure with the BeforeClose event for a dataset at design time:

Select the table in the data module (or form).
Click the Events page in the Object Inspector.
Enter the name of the procedure for the BeforeClose event (or choose it from
the drop-down list).

1.
2.
3.

Understanding Datasets

167

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Using_Data_Controls
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

3.2. Browsing a Dataset

When an application opens a dataset, the dataset automatically enters dsBrowse state.
Browsing enables you to view records in a dataset, but you cannot edit records or insert
new records. You mainly use dsBrowse to scroll from record to record in a dataset. For
more information about scrolling from record to record, see Navigating Datasets.

From dsBrowse all other dataset states can be set. For example, calling the Insert or
Append methods for a dataset changes its state from dsBrowse to dsInsert (note that
other factors and dataset properties, such as CanModify , may prevent this change). For
more information about inserting and appending records in a dataset, see Modifying
Dataset Data.

Two methods associated with all datasets can return a dataset to dsBrowse state. Cancel
ends the current edit, insert, or search task, and always returns a dataset to dsBrowse
state. Post attempts to write changes to the database, and if successful, also returns a
dataset to dsBrowse state. If Post fails, the current state remains unchanged.

The following figure illustrates the relationship of dsBrowse both to the other dataset
modes you can set in your applications, and the methods that set those modes.

3.3. Enabling Dataset Editing

A dataset must be in dsEdit mode before an application can modify records. In your code
you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is True . CanModify is True if the database
underlying a dataset permits read and write privileges.

On forms in your application, some data-aware controls can automatically put a dataset into
dsEdit state if:

The ReadOnly property of the control is False (the default),
The AutoEdit property of the data source for the control is True , and
CanModify is True for the dataset.

Important:
For TIBTable components, if the ReadOnly property is True , CanModify is False,
preventing editing of records.

Note:
Even if a dataset is in dsEdit state, editing records will not succeed for InterBase
databases if your application user does not have proper SQL access privileges.

You can return a dataset from dsEdit state to dsBrowse state in code by calling the
Cancel , Post, or Delete methods. Cancel discards edits to the current field or record.
Post attempts to write a modified record to the dataset, and if it succeeds, returns the

•
•
•

Understanding Datasets

168

dataset to dsBrowse . If Post cannot write changes, the dataset remains in dsEdit state.
Delete attempts to remove the current record from the dataset, and if it succeeds, returns
the dataset to dsBrowse state. If Delete fails, the dataset remains in dsEdit state.

Data-aware controls for which editing is enabled automatically call Post when a user
executes any action that changes the current record (such as moving to a different record in
a grid) or that causes the control to lose focus (such as moving to a different control on the
form).

For a complete discussion of editing fields and records in a dataset, see Modifying Dataset
Data.

3.4. Enabling Insertion of New Records

A dataset must be in dsInsert mode before an application can add new records. In your
code you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is True . CanModify is True if the
database underlying a dataset permits read and write privileges.

On forms in your application, the data-aware grid and navigator controls can put a dataset
into dsInsert state if

The ReadOnly property of the control is False (the default),
The AutoEdit property of the data source for the control is True , and
CanModify is True for the dataset.

Important:
For TIBTable components, if the ReadOnly property is True , CanModify is False,
preventing editing of records.

Note:
Even if a dataset is in dsInsert state, inserting records will not succeed for InterBase
databases if your application user does not have proper SQL access privileges.

You can return a dataset from dsInsert state to dsBrowse state in code by calling the
Cancel , Post , or Delete methods. Delete and Cancel discard the new record. Post
attempts to write the new record to the dataset, and if it succeeds, returns the dataset to
dsBrowse . If Post cannot write the record, the dataset remains in dsInsert state.

Data-aware controls for which inserting is enabled automatically call Post when a user
executes any action that changes the current record (such as moving to a different record in
a grid).

For more discussion of inserting and appending records in a dataset, see Modifying Dataset
Data.

3.5. Calculating Fields

Delphi puts a dataset into dsCalcFields mode whenever an application calls the dataset’s
OnCalcFields event handler. This state prevents modifications or additions to the records
in a dataset except for the calculated fields the handler is designed to modify. The reason all
other modifications are prevented is because OnCalcFields uses the values in other fields
to derive values for calculated fields. Changes to those other fields might otherwise
invalidate the values assigned to calculated fields.

When the OnCalcFields handler finishes, the dataset is returned to dsBrowse state.

•
•
•

Understanding Datasets

169

For more information about creating calculated fields and OnCalcFields event handlers,
see Using OnCalcFields.

3.6. Updating Records

When performing cached update operations, Delphi may put the dataset into dsNewValue ,
dsOldValue , or dsCurValue states temporarily. These states indicate that the
corresponding properties of a field component (NewValue , OldValue , and CurValue ,
respectively) are being accessed, usually in an OnUpdateError event handler. Your
applications cannot see or set these states. For more information about using cached
updates, see Working with Cached Updates.

4. Navigating Datasets

For information on navigating datasets, refer to Navigating datasets in the Delphi
Developer’s Guide.

5. Searching Datasets

For information on searching datasets, refer to Searching datasets in the Delphi Developer’s
Guide.

6. Modifying Dataset Data

For information on modifying data, refer to Modifying data in the Delphi Developer’s Guide.

7. Using Dataset Events

Datasets have a number of events that enable an application to perform validation,
compute totals, and perform other tasks. The events are listed in the following table:

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.

BeforeClose, AfterClose Called before/after a dataset is closed.

BeforeInsert, AfterInsert Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.

BeforePost, AfterPost Called before/after changes to a table are posted.

BeforeCancel, AfterCancel Called before/after the previous state is canceled.

BeforeDelete, AfterDelete Called before/after a record is deleted.

OnNewRecord
Called when a new record is created; used to set
default values.

OnCalcFields Called when calculated fields are calculated.

Understanding Datasets

170

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Navigating_Datasets
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Searching_Datasets
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Modifying_Data
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide

For more information about events for the TIBCustomDataSet component, see the online
VCL Reference.

7.1. Aborting a Method

To abort a method such as an Open or Insert, call the Abort procedure in any of the Before
event handlers (BeforeOpen, BeforeInsert, and so on). For example, the following code
requests a user to confirm a delete operation or else it aborts the call to Delete :

procedure TForm1.TableBeforeDelete (Dataset: TDataset)
begin
 if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) <> mrYes
then
 Abort;
end;

7.2. Using OnCalcFields

The OnCalcFields event is used to set the values of calculated fields. The AutoCalcFields
property determines when OnCalcFields is called. If AutoCalcFields is True , then
OnCalcFields is called when

A dataset is opened.
Focus moves from one visual component to another, or from one column to another in
a data-aware grid control and the current record has been modified.
A record is retrieved from the database.

OnCalcFields is always called whenever a value in a non-calculated field changes, regardless
of the setting of AutoCalcFields.

Important:
OnCalcFields is called frequently, so the code you write for it should be kept short. Also, if
AutoCalcFields is True , OnCalcFields should not perform any actions that modify the
dataset (or the linked dataset if it is part of a master-detail relationship), because this can
lead to recursion. For example, if OnCalcFields performs a Post, and AutoCalcFields is
True , then OnCalcFields is called again, leading to another Post, and so on.

If AutoCalcFields is False, then OnCalcFields is not called when individual fields within a
single record are modified.

When OnCalcFields executes, a dataset is in dsCalcFields mode, so you cannot set the values
of any fields other than calculated fields. After OnCalcFields is completed, the dataset
returns to dsBrowse state.

8. Using Dataset Cached Updates

Cached updates enable you to retrieve data from a database, cache and edit it locally, and
then apply the cached updates to the database as a unit. When cached updates are
enabled, updates to a dataset (such as posting changes or deleting records) are stored in an
internal cache instead of being written directly to the dataset’s underlying table. When
changes are complete, your application calls a method that writes the cached changes to
the database and clears the cache.

Implementation of cached updating occurs in TIBCustomDataSet . The following table lists
the properties, events, and methods for cached updating:

•
•

•

Understanding Datasets

171

http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBCustomDataSet.TIBCustomDataSet
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/VCL_Overview

Property, event, or method Purpose

CachedUpdates property
Determines whether or not cached updates are in
effect for the dataset. If True, cached updating is
enabled. If False, cached updating is disabled.

UpdateObject property
Indicates the name of the TUpdateSQL component
used to update datasets based on queries.

UpdatesPending property

Indicates whether or not the local cache contains
updated records that need to be applied to the
database. True indicates there are records to update.
False indicates the cache is empty.

UpdateRecordTypes property
Indicates the kind of updated records to make visible
to the application during the application of cached
updates.

UpdateStatus method Indicates if a record is unchanged, modified, inserted,
or deleted.

OnUpdateError event A developer-created procedure that handles update
errors on a record-by-record basis.

OnUpdateRecord event A developer-created procedure that processes updates
on a record-by-record basis.

ApplyUpdates method Applies records in the local cache to the database.

CancelUpdates method Removes all pending updates from the local cache
without applying them to the database.

FetchAll method Copies all database records to the local cache for
editing and updating.

RevertRecord method Undoes updates to the current record if updates are
not yet applied on the server side.

Using cached updates and coordinating them with other applications that access data in a
multi-user environment is an advanced topic that is fully covered in Working with Cached
Updates.

Understanding Datasets

172

Working with Queries

This chapter describes the TIBDataSet and TIBQuery dataset components which enable
you to use SQL statements to access data. It assumes you are familiar with the general
discussion of datasets and data sources in Understanding Datasets.

A query component encapsulates an SQL statement that is used in a client application to
retrieve, insert, update, and delete data from one or more database tables. Query
components can be used with remote database servers and with ODBC-compliant
databases.

1. Queries for desktop developers

As a desktop developer you are already familiar with the basic table, record, and field
paradigm used by Delphi and InterBase Express. You feel very comfortable using a
TIBTable component to gain access to every field in every data record in a dataset. You
know that when you set a TableName property of a table, you specify the database table to
access.

Chances are you have also used range methods and a filter property of TIBTable to limit
the number of records available at any given time in your applications. Applying a range
temporarily limits data access to a block of contiguously indexed records that fall within
prescribed boundary conditions, such as returning all records for employees whose last
names are greater than or equal to “Jones” and less than or equal to “Smith.” Setting a filter
temporarily restricts data access to a set of records that is usually non-contiguous and that
meets filter criteria, such as returning only those customer records that have a California
mailing address.

A query behaves in many ways very much like a table filter, except that you use the SQL
property of the query component (and sometimes the Params property) to identify the
records in a dataset to retrieve, insert, delete, or update. In some ways a query is even more
powerful than a filter because it lets you access:

More than one table at a time (called a “join” in SQL).
A specified subset of rows and columns in its underlying table(s), rather than always
returning all rows and columns. This improves both performance and security. Memory
is not wasted on unnecessary data, and you can prevent access to fields a user should
not view or modify.

Queries can be verbatim, or they can contain replaceable parameters. Queries that use
parameters are called parameterized queries. When you use parameterized queries, the
actual values assigned to the parameters are inserted into the query before you execute, or
run, the query. Using parameterized queries is very flexible, because you can change a
user’s view of and access to data on the fly at runtime without having to alter the SQL
statement.

Most often you use queries to select the data that a user should see in your application, just
as you do when you use a table component. Queries, however, can also perform update,
insert, and delete operations as well as retrieving records for display. When you use a query
to perform insert, update, and delete operations, the query ordinarily does not return
records for viewing.

To learn more about using the SQL property to write a SQL statement, see Specifying the
SQL statement to execute. To learn more about using parameters in your SQL statements,

•
•

Working with Queries

173

see Setting parameters. To learn about executing a query, see Executing a query of the
InterBase Language Reference.

2. Queries for server developers

As a server developer you are already familiar with SQL and with the capabilities of your
database server. To you a query is the SQL statement you use to access data. You know how
to use and manipulate this statement and how to use optional parameters with it.

The SQL statement and its parameters are the most important parts of a query component.
The query component’s SQL property is used to provide the SQL statement to use for data
access, and the component’s Params property is an optional array of parameters to bind
into the query. However, a query component is much more than a SQL statement and its
parameters. A query component is also the interface between your client application and
the server.

A client application uses the properties and methods of a query component to manipulate a
SQL statement and its parameters, to specify the database to query, to prepare and
unprepare queries with parameters, and to execute the query. A query component’s
methods communicates with the database server.

To learn more about using the SQL property to write a SQL statement, see Specifying the
SQL statement to execute. To learn more about using parameters in your SQL statements,
see Setting parameters. To learn about preparing a query, see Preparing a query, and to
learn more about executing a query, see Executing a query.

3. When to use TIBDataSet, TIBQuery, and TIBSQL

Both TIBDataSet , TIBQuery, and TIBSQL can execute any valid dynamic SQL statement.
However, when you use TIBSQL to execute SELECT statements, its results are unbuffered
and therefore unidirectional. TIBDataSet and TIBQuery , on the other hand, are intended
primarily for use with SELECT statements. They buffer the result set, so that it is completely
scrollable.

Use TIBDataSet or TIBQuery when you require use of data-aware components or a
scrollable result set. In any other case, it is probably best to use TIBSQL , which requires
much less overhead.

4. Using a query component: an overview

To use a query component in an application, follow these steps at design time:

Place a query component from the InterBase tab of the Tool Palette in a data
module, and set its Name property appropriately for your application.
Set the Database property of the component to the name of the TIBDatabase
component to query.
Set the Transaction property of the component to the name of the
TIBTransaction component to query.
Specify a SQL statement in the SQL property of the component, and optionally
specify any parameters for the statement in the Params property. For more
information, see Specifying the SQL property at design time.
If the query data is to be used with visual data controls, place a data source
component from the Data Access tab of the Tool Palette in the data module, and
set its DataSet property to the name of the query component. The data source
component is used to return the results of the query (called a result set) from the
query to data-aware components for display. Connect data-aware components to
the data source using their DataSource and DataField properties.

1.

2.

3.

4.

5.

Working with Queries

174

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide

Activate the query component. For queries that return a result set, use the
Active property or the Open method. For queries that only perform an action
on a table and return no result set, use the ExecSQL method.

Executing the query:

To execute a query for the first time at runtime, follow these steps:

Close the query component.
Provide a SQL statement in the SQL property if you did not set the SQL property
at design time, or if you want to change the SQL statement already provided. To
use the design-time statement as is, skip this step. For more information about
setting the SQL property, see Specifying the SQL statement to execute.
Set parameters and parameter values in the Params property either directly or by
using the ParamByName method. If a query does not contain parameters, or the
parameters set at design time are unchanged, skip this step. For more information
about setting parameters, see Setting parameters.
Call Prepare to bind parameter values into the query. Calling Prepare is
optional, though highly recommended. For more information about preparing a
query, see Preparing a query.
Call Open for queries that return a result set, or call ExecSQL for queries that do
not return a result set. For more information about opening and executing a
query, see Executing a query.

After you execute a query for the first time, then as long as you do not modify the SQL
statement, an application can repeatedly close and reopen or re-execute a query without
preparing it again. For more information about reusing a query, see Executing a query.

5. Specifying the SQL statement to execute

Use the SQL property to specify the SQL query statement to execute. At design time a
query is prepared and executed automatically when you set the query component’s
Active property to True . At runtime, a query is prepared with a call to Prepare , and
executed when the application calls the component’s Open or ExecSQL methods.

The SQL property is a TStrings object, which is an array of text strings and a set of
properties, events, and methods that manipulate them. The strings in SQL are
automatically concatenated to produce the SQL statement to execute. You can provide a
statement in as few or as many separate strings as you desire. One advantage to using a
series of strings is that you can divide the SQL statement into logical units (for example,
putting the WHERE clause for a SELECT statement into its own string), so that it is easier to
modify and debug a query.

The SQL statement can be a query that contains hard-coded field names and values, or it
can be a parameterized query that contains replaceable parameters that represent field
values that must be bound into the statement before it is executed. For example, this
statement is hard-coded:

SELECT * FROM Customer WHERE CustNo = 1231

Hard-coded statements are useful when applications execute exact, known queries each
time they run. At design time or runtime you can easily replace one hard-code query with
another hard-coded or parameterized query as needed. Whenever the SQL property is
changed the query is automatically closed and unprepared.

Note:
In queries using local SQL, when column names in a query contain spaces or special

6.

1.
2.

3.

4.

5.

Working with Queries

175

characters, the column name must be enclosed in quotes and must be preceded by a
table reference and a period. For example, BIOLIFE."Species Name".

A parameterized query contains one or more placeholder parameters, application variables
that stand in for comparison values such as those found in the WHERE clause of a SELECT
statement. Using parameterized queries enables you to change the value without rewriting
the application. Parameter values must be bound into the SQL statement before it is
executed for the first time. Query components do this automatically for you even if you do
not explicitly call the Prepare method before executing a query.

This statement is a parameterized query:

SELECT * FROM Customer WHERE CustNo = :Number

The variable Number, indicated by the leading colon, is a parameter that fills in for a
comparison value that must be provided at runtime and that may vary each time the
statement is executed. The actual value for Number is provided in the query component’s
Params property.

Tip:
It is a good programming practice to provide variable names for parameters that
correspond to the actual name of the column with which it is associated. For example, if
a column name is “Number,” then its corresponding parameter would be “:Number”.
Using matching names ensures that if a query uses its DataSource property to provide
values for parameters, it can match the variable name to valid field names.

5.1. Specifying the SQL property at design time

You can specify the SQL property at design time using the String List editor. To invoke the
String List editor for the SQL property:

Double-click on the SQL property value column, or
Click its ellipsis button.

You can enter a SQL statement in as many or as few lines as you want. Entering a statement
on multiple lines, however, makes it easier to read, change, and debug. Choose OK to assign
the text you enter to the SQL property.

Normally, the SQL property can contain only one complete SQL statement at a time,
although these statements can be as complex as necessary (for example, a SELECT
statement with a WHERE clause that uses several nested logical operators such as AND and
OR). InterBase supports “batch” syntax so you can enter multiple statements in the SQL
property.

Note:
You can use the SQL Builder to construct a query based on a visible representation of
tables and fields in a database. To use the SQL Builder, select a query component, right-
click it to invoke the context menu, and choose Graphical Query Editor. To learn how to
use the SQL Builder, open it and use its online help.

5.2. Specifying a SQL statement at runtime

There are three ways to set the SQL property at runtime. An application can set the SQL
property directly, it can call the SQL property’s LoadFromFile method to read a SQL

•
•

Working with Queries

176

statement from a file, or a SQL statement in a string list object can be assigned to the SQL
property.

5.2.1. Setting the SQL property directly

To directly set the SQL property at runtime,

Call Close to deactivate the query. Even though an attempt to modify the SQL
property automatically deactivates the query, it is a good safety measure to do so
explicitly.
If you are replacing the whole SQL statement, call the Clear method for the SQL
property to delete its current SQL statement.
If you are building the whole SQL statement from nothing or adding a line to an
existing statement, call the Add method for the SQL property to insert and
append one or more strings to the SQL property to create a new SQL statement.
If you are modifying an existing line use the SQL property with an index to
indicate the line affected, and assign the new value.
Call Open or ExecSQL to execute the query.

The following code illustrates building an entire SQL statement from nothing.

with CustomerQuery do begin
 Close; { close the query if it’s active }
 with SQL do begin
 Clear; { delete the current SQL statement, if any }
 Add(‘SELECT * FROM Customer’); { add first line of SQL... }
 Add(‘WHERE Company = “Sight Diver”’); { ... and second line }
 end;
 Open; { activate the query }
end;

The code below demonstrates modifying only a single line in an existing SQL statement. In
this case, the WHERE clause already exists on the second line of the statement. It is
referenced via the SQL property using an index of 1.

CustomerQuery.SQL[1] := ‘WHERE Company = “Kauai Dive Shoppe“’;

Note:
If a query uses parameters, you should also set their initial values and call the Prepare
method before opening or executing a query. Explicitly calling Prepare is most useful if
the same SQL statement is used repeatedly; otherwise it is called automatically by the
query component.

5.2.2. Loading the SQL property from a file

You can also use the LoadFromFile method to assign a SQL statement in a text file to the
SQL property. The LoadFromFile method automatically clears the current contents of the
SQL property before loading the new statement from file. For example:

CustomerQuery.Close;
CustomerQuery.SQL.LoadFromFile(‘c:\orders.txt’);
CustomerQuery.Open;

Note:
If the SQL statement contained in the file is a parameterized query, set the initial values
for the parameters and call Prepare before opening or executing the query. Explicitly

1.

2.

3.

4.

Working with Queries

177

calling Prepare is most useful if the same SQL statement is used repeatedly; otherwise
it is called automatically by the query component.

5.2.3. Loading the SQL property from string list object

You can also use the Assign method of the SQL property to copy the contents of a string
list object into the SQL property. The Assign method automatically clears the current
contents of the SQL property before copying the new statement. For example, copying a
SQL statement from a TMemo component:

CustomerQuery.Close;
CustomerQuery.SQL.Assign(Memo1.Lines);
CustomerQuery.Open;

Note:
If the SQL statement is a parameterized query, set the initial values for the parameters
and call Prepare before opening or executing the query. Explicitly calling Prepare is
most useful if the same SQL statement is used repeatedly; otherwise it is called
automatically by the query component.

6. Setting parameters

A parameterized SQL statement contains parameters, or variables, the values of which can
be varied at design time or runtime. Parameters can replace data values, such as those used
in a WHERE clause for comparisons, that appear in a SQL statement. Ordinarily, parameters
stand in for data values passed to the statement. For example, in the following INSERT
statement, values to insert are passed as parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, <:name>, <:capital>, and <:population> are placeholders for actual
values supplied to the statement at runtime by your application. Before a parameterized
query is executed for the first time, your application should call the Prepare method to
bind the current values for the parameters to the SQL statement. Binding means that the
server allocates resources for the statement and its parameters that improve the execution
speed of the query.

with IBQuery1 do begin
 Close;
 Unprepare;
 ParamByName(‘Name’).AsString := ‘Belize’;
 ParamByName(‘Capital’).AsString := ‘Belmopan’;
 ParamByName(‘Population’).AsInteger := ‘240000’;
 Prepare;
 Open;
end;

6.1. Supplying parameters at design time

At design time, parameters in the SQL statement appear in the parameter collection editor.
To access the TParam objects for the parameters, invoke the parameter collection editor,
select a parameter, and access the TParam properties in the Object Inspector. If the SQL
statement does not contain any parameters, no TParam objects are listed in the collection
editor. You can only add parameters by writing them in the SQL statement.

Working with Queries

178

To access parameters:

Select the query component.
Click on the ellipsis button for the Params property in Object Inspector.
In the parameter collection editor, select a parameter.
The TParam object for the selected parameter appears in the Object Inspector.
Inspect and modify the properties for the TParam in the Object Inspector.

For queries that do not already contain parameters (the SQL property is empty or the
existing SQL statement has no parameters), the list of parameters in the collection editor
dialog is empty. If parameters are already defined for a query, then the parameter editor
lists all existing parameters.

Note:
The TIBQuery component shares the TParam object and its collection editor with a
number of different components. While the right-click context menu of the collection
editor always contains the Add and Delete options, they are never enabled for
TIBQuery parameters. The only way to add or delete TIBQuery parameters is in the
SQL statement itself.

As each parameter in the collection editor is selected, the Object Inspector displays the
properties and events for that parameter. Set the values for parameter properties and
methods in the Object Inspector.

The DataType property lists the data type for the parameter selected in the editing dialog.
Initially the type will be ftUnknown . You must set a data type for each parameter.

The ParamType property lists the type of parameter selected in the editing dialog. Initially
the type will be ptUnknown . You must set a type for each parameter.

Use the Value property to specify a value for the selected parameter at design time. This is
not mandatory when parameter values are supplied at runtime. In these cases, leave
Value blank.

6.2. Supplying parameters at runtime

To create parameters at runtime, you can use the:

ParamByName method to assign values to a parameter based on its name.
Params property to assign values to a parameter based on the parameter’s ordinal
position within the SQL statement.
Params.ParamValues property to assign values to one or more parameters in a single
command line, based on the name of each parameter set. This method uses variants
and avoids the need to cast values.

Note:
In dialect 3, parameter names passed to functions are case-sensitive.

For all of the examples below, assume the SQL property contains the SQL statement below.
All three parameters used are of data type ftString .

INSERT INTO "COUNTRY.DB"
(Name, Capital, Continent)
VALUES (:Name, :Capital, :Continent)

1.
2.
3.
4.
5.

•
•

•

Working with Queries

179

The following code uses ParamByName to assign the text of an edit box to the Capital
parameter:

IBQuery1.ParamByName(‘Capital’).AsString := Edit1.Text;

The same code can be rewritten using the Params property, using an index of 1 (the Capital
parameter is the second parameter in the SQL statement):

IBQuery1.Params[1].AsString := Edit1.Text;

The command line below sets all three parameters at once, using the
Params.ParamValues property:

IBQuery1.Params.ParamValues[‘Country;Capital;Continent’] :=
 VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

6.3. Using a data source to bind parameters

If parameter values for a parameterized query are not bound at design time or specified at
runtime, the query component attempts to supply values for them based on its
DataSource property. DataSource specifies a different table or query component that
the query component can search for field names that match the names of unbound
parameters. This search dataset must be created and populated before you create the
query component that uses it. If matches are found in the search dataset, the query
component binds the parameter values to the values of the fields in the current record
pointed to by the data source.

You can create a simple application to understand how to use the DataSource property to
link a query in a master-detail form. Suppose the data module for this application is called
LinkModule, and that it contains a query component called SalesQuery that has the
following SQL property:

SELECT Cust_No, Po_Number, Order_Date
FROM Sales
WHERE Cust_No = :Cust_No

The LinkModule data module also contains:

A TIBDatabase component named SalesDatabase linked to the employee.gdb
database, SalesQuery and SalesTransaction .
A TIBTransaction component named SalesTransaction linked to SalesQuery
and SalesDatabase .
A TIBTable dataset component named CustomersTable linked to the CUSTOMER table,
CustomersDatabase and CustomersTransaction .
A TIBDatabase component named CustomersDatabase linked to the
employee.gdb database, CustomersTable and CustomersTransaction .
A TIBTransaction component named CustomersTransaction linked to
CustomersTable and CustomersDatabase .
A TDataSource component named SalesSource . The DataSet property of
SalesSource points to SalesQuery .
A TDataSource named CustomersSource linked to CustomersTable . The
DataSource property of the OrdersQuery component is also set to
CustomersSource . This is the setting that makes OrdersQuery a linked query.

•

•

•

•

•

•

•

Working with Queries

180

Suppose, too, that this application has a form, named LinkedQuery that contains two data
grids, a Customers Table grid linked to CustomersSource , and an SalesQuery grid
linked to SalesSource .

The following figure illustrates how this application appears at design time:

Note:
If you build this application, create the table component and its data source before
creating the query component.

If you compile this application, at runtime the :Cust_No parameter in the SQL statement
for SalesQuery is not assigned a value, so SalesQuery tries to match the parameter by
name against a column in the table pointed to by CustomersSource . CustomersSource
gets its data from CustomersTable , which, in turn, derives its data from the CUSTOMER
table. Because CUSTOMER contains a column called “Cust_No,” the value from the Cust_No
field in the current record of the CustomersTable dataset is assigned to the :Cust_No
parameter for the SalesQuery SQL statement. The grids are linked in a master-detail
relationship. At runtime, each time you select a different record in the Customers Table grid,
the SalesQuery SELECT statement executes to retrieve all orders based on the current
customer number.

7. Executing a query

After you specify a SQL statement in the SQL property and set any parameters for the
query, you can execute the query. When a query is executed, the server receives and
processes SQL statements from your application. If the query is against local tables, the SQL
engine processes the SQL statement and, for a SELECT query, returns data to the
application.

Note:
Before you execute a query for the first time, you may want to call the Prepare method
to improve query performance. Prepare initializes the database server, each of which
allocates system resources for the query. For more information about preparing a query,
see Preparing a query.

Working with Queries

181

The following sections describe executing both static and dynamic SQL statements at design
time and at runtime.

7.1. Executing a query at design time

To execute a query at design time, set its Active property to True in the Object Inspector.

The results of the query, if any, are displayed in any data-aware controls associated with the
query component.

Note:
The Active property can be used only with queries that returns a result set, such as by
the SELECT statement.

7.2. Executing a query at runtime

To execute a query at runtime, use one of the following methods:

Open executes a query that returns a result set, such as with the SELECT statement.
ExecSQL executes a query that does not return a result set, such as with the INSERT ,
UPDATE , or DELETE statements.

Note:
If you do not know at design time whether a query will return a result set at runtime,
code both types of query execution statements in a try...except block. Put a call to the
Open method in the try clause. This allows you to suppress the error message that
would occur due to using an activate method not applicable to the type of SQL statement
used. Check the type of exception that occurs. If it is other than an ENoResult
exception, the exception occurred for another reason and must be processed. This works
because an action query will be executed when the query is activated with the Open
method, but an exception occurs in addition to that.

try
 IBQuery2.Open;
except
 on E: Exception do
 if not (E is ENoResultSet) then
 raise;
end;

7.2.1. Executing a query that returns a result set

To execute a query that returns a result set (a query that uses a SELECT statement), follow
these steps:

1. Call Close to ensure that the query is not already open. If a query is already open you
cannot open it again without first closing it. Closing a query and reopening it fetches a new
version of data from the server.
2. Call Open to execute the query.

For example:

IBQuery.Close;
IBQuery.Open; { query returns a result set }

•
•

Working with Queries

182

For information on navigating within a result set, see Disabling bi-directional cursors. For
information on editing and updating a result set, see Working with result sets.

7.2.2. Executing a query without a result set

To execute a query that does not return a result set (a query that has a SQL statement such
as INSERT , UPDATE , or DELETE), call ExecSQL to execute the query.

For example:

IBQuery.ExecSQL; { query does not return a result set }

8. Preparing a query

Preparing a query is an optional step that precedes query execution. Preparing a query
submits the SQL statement and its parameters, if any, for parsing, resource allocation, and
optimization. The server, too, may allocate resources for the query. These operations
improve query performance, making your application faster, especially when working with
updatable queries.

An application can prepare a query by calling the Prepare method. If you do not prepare a
query before executing it, then Delphi automatically prepares it for you each time you call
Open or ExecSQL . Even though Delphi prepares queries for you, it is better programming
practice to prepare a query explicitly. That way your code is self-documenting, and your
intentions are clear. For example:

CustomerQuery.Close;
if not (CustomerQuery.Prepared) then
 CustomerQuery.Prepare;
CustomerQuery.Open;

This example checks the query component’s Prepared property to determine if a query is
already prepared. Prepared is a Boolean value that is True if a query is already prepared.
If the query is not already prepared, the example calls the Prepare method before calling
Open .

9. Unpreparing a query to release resources

The UnPrepare method sets the Prepared property to False. UnPrepare

Ensures that the SQL property is prepared prior to executing it again.
Notifies the server to release any resources it has allocated for the statement.

To unprepare a query, call

CustomerQuery.UnPrepare;

When you change the text of the SQL property for a query, the query component
automatically closes and unprepares the query.

10. Improving query performance

Following are steps you can take to improve query execution speed:

Set the TIBQuery component’s UniDirectional property to True if you do not need
to navigate backward through a result set (SQL-92 does not, itself, permit backward
navigation through a result set).

•
•

•

Working with Queries

183

http://docwiki.embarcadero.com/InterBase/2020/en/Disabling_bi-directional_cursors

Prepare the query before execution. This is especially helpful when you plan to execute
a single query several times. You need only prepare the query once, before its first use.
For more information about query preparation, see Preparing a query.

10.1. Disabling bi-directional cursors

The UniDirectional property determines whether or not bi-directional cursors are
enabled for a TIBQuery component. When a query returns a result set, it also receives a
cursor, or pointer to the first record in that result set. The record pointed to by the cursor is
the currently active record. The current record is the one whose field values are displayed in
data-aware components associated with the result set’s data source.

UniDirectional is False by default, meaning that the cursor for a result set can navigate
both forward and backward through its records. Bi-directional cursor support requires
some additional processing overhead, and can slow some queries. To improve query
performance, you may be able to set UniDirectional to True , restricting a cursor to
forward movement through a result set.

If you do not need to be able to navigate backward through a result set, you can set
UniDirectional to True for a query. Set UniDirectional before preparing and
executing a query. The following code illustrates setting UniDirectional prior to
preparing and executing a query:

if not (CustomerQuery.Prepared) then begin
 CustomerQuery.UniDirectional := True;
 CustomerQuery.Prepare;
end;
CustomerQuery.Open; { returns a result set with a one-way cursor }

11. Working with result sets

By default, the result set returned by a query is read-only. Your application can display field
values from the result set in data-aware controls, but users cannot edit those values. To
enable editing of a result set, your application must use a TIBUpdateSQL component.

11.1. Updating a read-only result set

Applications can update data returned in a read-only result set if they are using cached
updates. To update a read-only result set associated with a query component:

Add a TIBUpdateSQL component to the data module in your application to
essentially give you the ability to post updates to a read-only dataset.
Enter the SQL update statement for the result set to the ModifySQL , InsertSQL ,
or DeleteSQL properties of the update component. To do this more easily, right-
click on the TIBUpdateSQL component to access the UpdateSQL Editor.

•

1.

2.

Working with Queries

184

Working with Tables

This chapter describes how to use the TIBTable dataset component in your database
applications. A table component encapsulates the full structure of and data in an underlying
database table. A table component inherits many of its fundamental properties and
methods from TDataSet and TIBCustomDataSet . Therefore, you should be familiar with
the general discussion of datasets in Understanding Datasets and before reading about the
unique properties and methods of table components discussed here.

1. Using table components

A table component gives you access to every row and column in an underlying database
table. You can view and edit data in every column and row of a table. You can work with a
range of rows in a table, and you can filter records to retrieve a subset of all records in a
table based on filter criteria you specify. You can search for records, copy, rename, or delete
entire tables, and create master/detail relationships between tables.

Note:
A table component always references a single database table. If you need to access
multiple tables with a single component, or if you are only interested in a subset of rows
and columns in one or more tables, you should use a TIBQuery or TIBDataSet
component instead of a TIBTable component. For more information about TIBQuery
and TIBDataSet components, see Working with Queries.

2. Setting up a table component

The following steps are general instructions for setting up a table component at design
time. There may be additional steps you need to tailor properties of a table to the
requirements of your application.

To create a table component:

Place a table component from the InterBase page of the Tool Palette in a data
module or on a form, and set its Name property to a unique value appropriate to
your application.
Set the Database property to the name of the database component to access.
Set the Transaction property to the name of the transaction component.
Set the DatabaseName property in the Database component to the name of a the
database containing the table.
Set the TableName property to the name of the table in the database. You can
select tables from the drop-down list if the Database and Transaction
properties are already specified, and if the Database and Transaction
components are connected to the server.
Place a data source component in the data module or on the form, and set its
DataSet property to the name of the table component. The data source
component is used to pass a result set from the table to data-aware components
for display.

To access the data encapsulated by a table component:

Place a data source component from the Data Access page of the Tool Palette in
the data module or form, and set its DataSet property to the name of the table
component.

1.

2.
3.
4.

5.

6.

1.

Working with Tables

185

Place a data-aware control, such as TDBGrid , on a form, and set the control’s
DataSource property to the name of the data source component placed in the
previous step.
Set the Active property of the table component to True .

Tip:
For more information about database components, see Connecting to Databases.

2.1. Specifying a table name

The TableName property specifies the table in a database to access with the table
component. To specify a table, follow these steps:

Set the table’s Active property to False, if necessary.
Set the DatabaseName property of the database component to a directory path.

Note:
You can use the Database Editor to set the database location, login name, password, SQL
role, and switch the login prompt on and off. To access the Database Component Editor,
right click on the database component and choose Database Editor from the drop-down
menu.

Set the TableName property to the table to access. You are prompted to log in to
the database. At design time you can choose from valid table names in the drop-
down list for the TableName property in the Object Inspector. At runtime, you
must specify a valid name in code.

Once you specify a valid table name, you can set the table component’s Active property to
True to connect to the database, open the table, and display and edit data.

At runtime, you can set or change the table associated with a table component by:

Setting Active to False.
Assigning a valid table name to the TableName property.

For example, the following code changes the table name for the OrderOrCustTable table
component based on its current table name:

with OrderOrCustTable do
begin
 Active := False; {Close the table}
 if TableName = 'CUSTOMER.DB' then
 TableName := 'ORDERS.DB'
 else
 TableName := 'CUSTOMER.DB';
 Active := True; {Reopen with a new table}
end;

2.2. Opening and closing a table

To view and edit a table’s data in a data-aware control such as TDBGrid, open the table.
There are two ways to open a table. You can set its Active property to True , or you can
call its Open method. Opening a table puts it into dsBrowse state and displays data in any
active controls associated with the table’s data source.

To end display and editing of data, or to change the values for a table component’s
fundamental properties (for example: Database , TableName , and TableType), first post

2.

3.

1.
2.

1.

•
•

Working with Tables

186

http://docwiki.embarcadero.com/InterBase/2020/en/Connecting_to_Databases

or discard any pending changes. If cached updates are enabled, call the ApplyUpdates
method to write the posted changes to the database. Finally, close the table.

There are two ways to close a table. You can set its Active property to False, or you can
call its Close method. Closing a table puts the table into dsInactive state. Active controls
associated with the table’s data source are cleared.

3. Controlling read/write access to a table

By default when a table is opened, it requests read and write access for the underlying
database table. Depending on the characteristics of the underlying database table, the
requested write privilege may not be granted (for example, when you request write access
to a SQL table on a remote server and the server restricts the table’s access to read only).

The ReadOnly property for table components is the only property that can affect an
application’s read and write access to a table.

ReadOnly determines whether or not a user can both view and edit data. When ReadOnly
is False (the default), a user can both view and edit data. To restrict a user to viewing data,
set ReadOnly to True before opening a table.

4. Searching for records

You can search for specific records in a table in various ways. The most flexible and
preferred way to search for a record is to use the generic search methods Locate and
Lookup . These methods enable you to search on any type of fields in any table, whether or
not they are indexed or keyed.

Locate finds the first row matching a specified set of criteria and moves the cursor to
that row.
Lookup returns values from the first row that matches a specified set of criteria, but
does not move the cursor to that row.

You can use Locate and Lookup with any kind of dataset, not just TIBTable . For a
complete discussion of Locate and Lookup , see Understanding Datasets.

5. Sorting records

An index determines the display order of records in a table. In general, records appear in
ascending order based on a primary index. This default behavior does not require
application intervention. If you want a different sort order, however, you must specify either

An alternate index.
A list of columns on which to sort.

Specifying a different sort order requires the following steps:

Determining available indexes.
Specifying the alternate index or column list to use.

5.1. Retrieving a list of available indexes with GetIndexNames

At runtime, your application can call the GetIndexNames method to retrieve a list of
available indexes for a table. GetIndexNames returns a string list containing valid index
names. For example, the following code determines the list of indexes available for the
CustomersTable dataset:

var
 IndexList: TList;

•

•

•
•

1.
2.

Working with Tables

187

{...}
CustomersTable.GetIndexNames(IndexList);

5.2. Specifying an alternative index with IndexName

To specify that a table should be sorted using an alternative index, specify the index name
in the table component’s IndexName property. At design time you can specify this name in
the Object Inspector, and at runtime you can access the property in your code. For example,
the following code sets the index for CustomersTable to CustDescending :

CustomersTable.IndexName := 'CustDescending';

5.3. Specifying sort order for SQL tables

In SQL, sort order of rows is determined by the ORDER BY clause. You can specify the index
used by this clause either with the

IndexName property, to specify an existing index, or
IndexFieldNames property, to create a pseudo-index based on a subset of columns in
the table.

IndexName and IndexFieldNames are mutually exclusive. Setting one property clears
values set for the other.

6. Specifying fields with IndexFieldNames

IndexFieldNames is a string list property. To specify a sort order, list each column name to
use in the order it should be used, and delimit the names with semicolons. Sorting is by
ascending order only.

The following code sets the sort order for PhoneTable based on LastName , then
FirstName :

PhoneTable.IndexFieldNames := 'LastName;FirstName';

6.1. Examining the field list for an index

When your application uses an index at runtime, it can examine the

IndexFieldCount property, to determine the number of columns in the index.
IndexFields property, to examine a list of column names that comprise the index.

IndexFields is a string list containing the column names for the index. The following code
fragment illustrates how you might use IndexFieldCount and IndexFields to iterate
through a list of column names in an application:

var
 I: Integer;
 ListOfIndexFields: array[0 to 20} of string;
begin
with CustomersTable do
 begin
 for I := 0 to IndexFieldCount - 1 do
 ListOfIndexFields[I] := IndexFields[I];
 end;
end;

•
•

•
•

Working with Tables

188

Note:
IndexFieldCount is not valid for a base table opened on an expression index.

7. Working with a subset of data

Production tables can be huge, so applications often need to limit the number of rows with
which they work. For table components use filters to limit records used by an application.
Filters can be used with any kind of dataset, including TIBDataSet , TIBTable , TIBQuery ,
and TIBStoredProc components. Because they apply to all datasets, you can find a full
discussion of using filters in Understanding Datasets.

8. Deleting all records in a table

To delete all rows of data in a table, call a table component’s EmptyTable method at
runtime. For SQL tables, this method only succeeds if you have DELETE privileges for the
table. For example, the following statement deletes all records in a dataset:

PhoneTable.EmptyTable;

Important:
Data you delete with EmptyTable is gone forever.

9. Deleting a table

At design time, to delete a table from a database, right-click the table component and select
Delete Table from the context menu. The Delete Table menu pick will only be present if the
table component represents an existing database table (the Database and TableName
properties specify an existing table).

To delete a table at runtime, call the table component’s DeleteTable method. For
example, the following statement removes the table underlying a dataset:

CustomersTable.DeleteTable;

Important:
When you delete a table with DeleteTable , the table and all its data are gone forever.

10. Renaming a table

You can rename a table by typing over the name of an existing table next to the TableName
property in the Object Inspector. When you change the TableName property, a dialog
appears asking you if you want to rename the table. At this point, you can either choose to
rename the table, or you can cancel the operation, changing the TableName property (for
example, to create a new table) without changing the name of the table represented by the
old value of TableName .

11. Creating a table

You can create new database tables at design time or at runtime. The Create Table
command (at design time) or the CreateTable method (at runtime) provides a way to
create tables without requiring SQL knowledge. They do, however, require you to be
intimately familiar with the properties, events, and methods common to dataset

Working with Tables

189

components, TIBTable in particular. This is so that you can first define the table you want
to create by doing the following:

Set the Database property to the database that will contain the new table.
Set the TableName property to the name of the new table.
Add field definitions to describe the fields in the new table. At design time, you can add
the field definitions by double-clicking the FieldDefs property in the Object Inspector
to bring up the collection editor. Use the collection editor to add, remove, or change the
properties of the field definitions. At runtime, clear any existing field definitions and
then use the AddFieldDef method to add each new field definition. For each new field
definition, set the properties of the TFieldDef object to specify the desired attributes
of the field.
Optionally, add index definitions that describe the desired indexes of the new table. At
design time, you can add index definitions by double-clicking the IndexDefs property
in the Object Inspector to bring up the collection editor. Use the collection editor to add,
remove, or change the properties of the index definitions. At runtime, clear any existing
index definitions, and then use the AddIndexDef method to add each new index
definition. For each new index definition, set the properties of the TIndexDef object to
specify the desired attributes of the index.

Note:
At design time, you can preload the field definitions and index definitions of an existing
table into the FieldDefs and IndexDefs properties, respectively. Set the Database
and TableName properties to specify the existing table. Right click the table component
and choose Update Table Definition. This automatically sets the values of the
FieldDefs and IndexDefs properties to describe the fields and indexes of the existing
table. Next, reset the Database and TableName to specify the table you want to create,
cancelling any prompts to rename the existing table. If you want to store these
definitions with the table component (for example, if your application will be using them
to create tables on user’s systems), set the StoreDefs property to True .

Once the table is fully described, you are ready to create it. At design time, right-click the
table component and choose Create Table. At runtime, call the CreateTable method to
generate the specified table.

Important:
If you create a table that duplicates the name of an existing table, the existing table and
all its data are overwritten by the newly created table. The old table and its data cannot
be recovered.

The following code creates a new table at runtime and associates it with the employee.gdb
database . Before it creates the new table, it verifies that the table name provided does not
match the name of an existing table:

var
 NewTable: TIBTable;
 NewIndexOptions: TIndexOptions;
 TableFound: Boolean;
begin
 NewTable := TIBTable.Create;
 NewIndexOptions := [ixPrimary, ixUnique];
 with NewTable do
 begin
 Active := False;
 Database := 'employee.gdb';
 TableName := Edit1.Text;
 TableType := ttDefault;
 FieldDefs.Clear;
 FieldDefs.Add(Edit2.Text, ftInteger, 0, False);

•
•
•

•

Working with Tables

190

 FieldDefs.Add(Edit3.Text, ftInteger, 0, False);
 IndexDefs.Clear;
 IndexDefs.Add('PrimaryIndex’, Edit2.Text, NewIndexOptions);
 end;
 {Now check for prior existence of this table}
 TableFound := FindTable(Edit1.Text); {code for FindTable not shown}
 if TableFound = True then
 if MessageDlg('Overwrite existing table ' + Edit1.Text + '?', mtConfirmation,
 mbYesNo, 0) = mrYes then
 TableFound := False;
 if not TableFound then
 CreateTable; { create the table}
 end;
end;

12. Synchronizing tables linked to the same database table

If more than one table component is linked to the same database table through their
Database and TableName properties and the tables do not share a data source
component, then each table has its own view on the data and its own current record. As
users access records through each table component, the components’ current records will
differ.

You can force the current record for each of these table components to be the same with
the GotoCurrent method. GotoCurrent sets its own table’s current record to the current
record of another table component. For example, the following code sets the current record
of CustomerTableOne to be the same as the current record of CustomerTableTwo :

CustomerTableOne.GotoCurrent(CustomerTableTwo);

Tip:
If your application needs to synchronize table components in this manner, put the
components in a data module and include the header for the data module in each unit
that accesses the tables.

If you must synchronize table components on separate forms, you must include one form’s
header file in the source unit of the other form, and you must qualify at least one of the
table names with its form name.

For example:

CustomerTableOne.GotoCurrent(Form2.CustomerTableTwo);

13. Creating master/detail forms

A table component’s MasterSource and MasterFields properties can be used to establish
one-to-many relationships between two tables.

The MasterSource property is used to specify a data source from which the table will get
data for the master table. For instance, if you link two tables in a master/detail relationship,
then the detail table can track the events occurring in the master table by specifying the
master table’s data source component in this property.

The MasterFields property specifies the column(s) common to both tables used to
establish the link. To link tables based on multiple column names, use a semicolon
delimited list:

Table1.MasterFields := 'OrderNo;ItemNo';

Working with Tables

191

To help create meaningful links between two tables, you can use the Field Link Designer. For
more information about the Field Link Designer, see the Delphi User’s Guide.

13.1. Building an example master/detail form

The following steps create a simple form in which a user can scroll through customer
records and display all orders for the current customer. The master table is the
CustomersTable table, and the detail table is SalesTable.

To create a VCL project, select File > New > VCL Forms Application - Delphi.
Add a data module to the project:
In the Project Manager, right-click the project and select Add New... > Other... >
Data Module.
Drop two of each of these components in the data module: TIBTable, TIBDatabase,
TIBTransaction, and TDataSource.
Set the Name of the first TIBDatabase component to CustDatabase.
Double-click the CustDatabase component to open the Database Component
Editor:

Set the Database parameter to:
C:
\Users\Public\Documents\Embarcadero\Studio\17.0\Samples\Data\employee.gdb
(location of the database)
Set the User Name to sysdba.
Set the Password to masterkey.
Uncheck the Login Prompt box.

Click Test to check is the connection is successful.
Click OK to close the DataBase Component Editor.

Set the Name of the first TIBTransaction component to CustTransaction and the
DefaultDatabase to CustDatabase.
Set the DefaultTransaction of the CustDatabase component to CustTransaction.
Set the properties of the first TIBTable component as follows:

Database as CustDatabase.
Transaction as CustTransaction.
TableName as CUSTOMER.
Name as CustomersTable.

Set the Name of the second TIBDatabase component to SalesDatabase.
For SalesDatabase, open the Database Component Editor, and fill it as in Step 5.
Set the Name of the second TIBTransaction component to SalesTransaction and
the DefaultDatabase to SalesDatabase.
Set the DefaultTransaction of the SalesDatabase component to
SalesTransaction.
Set the properties of the second TIBTable component as follows:

Database as SalesDatabase.

1.
2.

3.

4.
5.

1.

2.
3.
4.

5.
6.

6.

7.
8.

1.
2.
3.
4.

9.
10.
11.

12.

13.
1.

Working with Tables

192

http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Field_Link_Designer
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Field_Link_Designer
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Delphi_Developer%27s_Guide
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBDatabase
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBDatabase
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBTransaction
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSource
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBTransaction.DefaultDatabase
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBDatabase.DefaultTransaction
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBCustomDataSet.TIBCustomDataSet.Database
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBCustomDataSet.TIBCustomDataSet.Transaction
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBTable.TIBTable.TableName
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBTransaction.DefaultDatabase
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBDatabase.TIBDatabase.DefaultTransaction
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBCustomDataSet.TIBCustomDataSet.Database

Transaction as SalesTransaction.
TableName as SALES.
Name as SalesTable.

Set the properties of the first TDataSource component as follows:
Name as CustSource.
DataSet as CustomersTable.

Set the properties of the second TDataSource component as follows:
Name as SalesSource.
DataSet as SalesTable.

Now, on the form, place two TDBGrid components.
Choose File>Use Unit to specify that the form should use the data module.
Set the DataSource property of the first grid component to
DataModule2.CustSource, and set the DataSource property of the second grid
to DataModule2.SalesSource.
On the data module, set the MasterSource property of SalesTable to
CustSource. This links the CUSTOMER table (the master table) to the ORDERS
table (the detail table).
Double-click the MasterFields property value box in the Object Inspector to
invoke the Field Link Designer to set the following properties:

Select CustNo in both the Detail Fields and Master Fields field lists.
Click the Add button to add this join condition. In the Joined Fields list,
CustNo -> CustNo appears.
Choose OK to commit your selections and exit the Field Link Designer.

Set the Active properties of CustomersTable and SalesTable to True to display
data in the grids on the form. At this point, you can see data on the TDBGrid
components.

Compile and run the application.

2.
3.
4.

14.
1.
2.

15.
1.
2.

16.
17.
18.

19.

20.

1.
2.

3.
21.

22.

Working with Tables

193

http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBCustomDataSet.TIBCustomDataSet.Transaction
http://docwiki.embarcadero.com/Libraries/Rio/en/IBX.IBTable.TIBTable.TableName
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSource.DataSet
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent.Name
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSource.DataSet
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.DBGrids.TDBGrid

If you run the application now, you will see that the tables are linked together, and that
when you move to a new record in the CUSTOMER table, you see only those records in the
SALES table that belong to the current customer.

Working with Tables

194

Working with Stored Procedures

This chapter describes how to use stored procedures in your database applications. A
stored procedure is a self-contained program written in the procedure and trigger language
specific to the database system used. There are two fundamental types of stored
procedures. The first type retrieves data (as with a SELECT query). The retrieved data can
be in the form of a dataset consisting of one or more rows of data, divided into one or more
columns. Alternatively, the retrieved data can be in the form of individual pieces of
information. The second type does not return data but performs an action on data stored in
the database (as with a DELETE statement).

InterBase servers return all data (datasets and individual pieces of information) exclusively
with output parameters.

In InterBase Express applications, access to stored procedures is provided by the
TIBStoredProc and TIBQuery components. The choice of which to use for the access is
predicated on how the stored procedure is coded, how data is returned (if any), and the
database system used. The TIBStoredProc and TIBQuery components are both
descendants of TIBCustomDataSet and inherit behaviors from TIBCustomDataSet . For
more information about TIBCusomDataSet , see Understanding Datasets.

A stored procedure component is used to execute stored procedures that do not return any
data, to retrieve individual pieces of information in the form of output parameters, and to
relay a returned dataset to an associated data source component. The stored procedure
component allows values to be passed to and return from the stored procedure through
parameters, each parameter defined in the Params property. The stored procedure
component is the preferred means for using stored procedures that either do not return
any data or only return data through output parameters.

A query component is primarily used to run InterBase stored procedures that only return
datasets via output parameters. The query component can also be used to execute a stored
procedure that does not return a dataset or output parameter values.

Use parameters to pass distinct values to or return values from a stored procedure. Input
parameter values are used in such places as the WHERE clause of a SELECT statement in a
stored procedure. An output parameter allows a stored procedure to pass a single value to
the calling application. Some stored procedures return a result parameter. See “Input
parameters” and “Output parameters” in the “Procedures and Triggers” chapter of the
Language Reference Guide, and “Working with Stored Procedures” in the Data Definition
Guide for more information.

1. When Should You use Stored Procedures?

If your server defines stored procedures, you should use them if they apply to the needs of
your application. A database server developer creates stored procedures to handle
frequently-repeated database-related tasks. Often, operations that act upon large numbers
of rows in database tables—or that use aggregate or mathematical functions—are
candidates for stored procedures. If stored procedures exist on the remote database server
your application uses, you should take advantage of them in your application. Chances are
you need some of the functionality they provide, and you stand to improve the performance
of your database application by:

Taking advantage of the server’s usually greater processing power and speed.
Reducing the amount of network traffic since the processing takes place on the server
where the data resides.

•
•

Working with Stored Procedures

195

http://docwiki.embarcadero.com/InterBase/2020/en/Language_Reference_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

For example, consider an application that needs to compute a single value: the standard
deviation of values over a large number of records. To perform this function in your
application, all the values used in the computation must be fetched from the server,
resulting in increased network traffic. Then your application must perform the computation.
Because all you want in your application is the end result—a single value representing the
standard deviation—it would be far more efficient for a stored procedure on the server to
read the data stored there, perform the calculation, and pass your application the single
value it requires.

See “Working with Stored Procedures” in the Data Definition Guide for more information.

2. Using a Stored Procedure

How a stored procedure is used in a Delphi application depends on how the stored
procedure was coded, whether and how it returns data, the specific database server used,
or a combination of these factors.

In general terms, to access a stored procedure on a server, an application must:

1. Instantiate a TIBStoredProc component and optionally associate it with a stored
procedure on the server. Or instantiate a TIBQuery component and compose the contents
of its SQL property to perform either a SELECT query against the stored procedure or an
EXECUTE command, depending on whether the stored procedure returns a result set. For
more information about creating a TIBStoredProc , see Creating a Stored Procedure
Component. For more information about creating a TIBQuery component, see Working
with Queries.
2. Provide input parameter values to the stored procedure component, if necessary. When a
stored procedure component is not associated with stored procedure on a server, you must
provide additional input parameter information, such as parameter names and data types.
For more information about providing input parameter information, see Setting Parameter
Information at Design Time.
3. Execute the stored procedure.
4. Process any result and output parameters. As with any other dataset component, you can
also examine the result dataset returned from the server. For more information about
output and result parameters, see Using Output Parameters and Using the Result
Parameter. For information about viewing records in a dataset, see Using Stored
Procedures that Return Result Sets.

2.1. Creating a Stored Procedure Component

To create a stored procedure component for a stored procedure on a database server:

1. Place stored procedure, database, and transaction components from the InterBase page
of the Tool Palette in a data module.
2. Set the Database and Transaction properties of the stored procedure component to
the names of the database and transaction components.
3. Set the DatabaseName property in the Database component.
Normally you should specify the DatabaseName property, but if the server database
against which your application runs is currently unavailable, you can still create and set up a
stored procedure component by omitting the DatabaseName and supplying a stored
procedure name and input, output, and result parameters at design time. For more
information about input parameters, see Using Input Parameters. For more information
about output parameters, see Using Output Parameters. For more information about result
parameters, see Using the Result Parameter.
4. Optionally set the StoredProcName property to the name of the stored procedure to
use. If you provided a value for the Database property, and the Database component is

Working with Stored Procedures

196

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

connected to the database, then you can select a stored procedure name from the drop-
down list for the property. A single TIBStoredProc component can be used to execute any
number of stored procedures by setting the StoredProcName property to a valid name in
the application. It may not always be desirable to set the StoredProcName at design time.
5. Double-click the Params property value box to invoke the StoredProc Parameters editor
to examine input and output parameters for the stored procedure. If you did not specify a
name for the stored procedure in Step 4, or you specified a name for the stored procedure
that does not exist on the server specified in the DatabaseName property in Step 3, then
when you invoke the parameters editor, it is empty.

See “Working with Stored Procedures” in the Data Definition Guide for more information.

Note:
If you do not specify the Database property in Step 2, then you must use the StoredProc
Parameters editor to set up parameters at design time. For information about setting
parameters at design time, see Setting Parameter Information at Design Time.

2.2. Creating a Stored Procedure

Ordinarily, stored procedures are created when the application and its database is created,
using tools supplied by InterBase. However, it is possible to create stored procedures at
runtime. For more information, see “Creating procedures” in the InterBase Data Definition
Guide.

A stored procedure can be created by an application at runtime using a SQL statement
issued from a TIBQuery component, typically with a CREATE PROCEDURE statement. If
parameters are used in the stored procedure, set the ParamCheck property of the
TIBQuery to False . This prevents the TIBQuery from mistaking the parameter in the
new stored procedure from a parameter for the TIBQuery itself.

Note:
You can also use the SQL Explorer to examine, edit, and create stored procedures on the
server.

After the SQL property has been populated with the statement to create the stored
procedure, execute it by invoking the ExecSQL method.

with IBQuery1 do begin
 ParamCheck := False;
 with SQL do begin
 Clear;
 Add(‘CREATE PROCEDURE GET_MAX_EMP_NAME’);
 Add(‘RETURNS (Max_Name CHAR(15))’);
 Add(‘AS’);
 Add(‘BEGIN’);
 Add(‘ SELECT MAX(LAST_NAME)’);
 Add(‘ FROM EMPLOYEE’);
 Add(‘ INTO :Max_Name;’);
 Add(‘ SUSPEND;’);
 Add(‘END’);
 end;
 ExecSQL;
end;

2.3. Preparing and Executing a Stored Procedure

To use a stored procedure, you can optionally prepare it, and then execute it.

Working with Stored Procedures

197

http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2020/en/Data_Definition_Guide

You can prepare a stored procedure at:

Design time, by choosing OK in the Parameters editor.
Runtime, by calling the Prepare method of the stored procedure component.

For example, the following code prepares a stored procedure for execution:

IBStoredProc1.Prepare;

Note:
If your application changes parameter information at runtime, you should prepare the
procedure again.

To execute a prepared stored procedure, call the ExecProc method for the stored procedure
component. The following code illustrates code that prepares and executes a stored
procedure:

IBStoredProc1.Params[0].AsString := Edit1.Text;
IBStoredProc1.Prepare;
IBStoredProc1.ExecProc;

Note:
If you attempt to execute a stored procedure before preparing it, the stored procedure
component automatically prepares it for you, and then unprepares it after it executes. If
you plan to execute a stored procedure a number of times, it is more efficient to call
Prepare yourself, and then only call UnPrepare once, when you no longer need to
execute the procedure.

When you execute a stored procedure, it can return all or some of these items:

A dataset consisting of one or more records that can be viewed in data-aware controls
associated with the stored procedure through a data source component.
Output parameters.
A result parameter that contains status information about the stored procedure’s
execution.

2.4. Using Stored Procedures that Return Result Sets

Stored procedures that return data in datasets, rows and columns of data, should most
often be used with a query component. However, a stored procedure component can also
serve this purpose.

2.4.1. Retrieving a Result Set with a TIBQuery

To retrieve a dataset from a stored procedure using a TIBQuery component:

1. Instantiate a query component.
2. In the TIBQuery.SQL property, write a SELECT query that uses the name of the stored
procedure instead of a table name.
3. If the stored procedure requires input parameters, express the parameter values as a
comma-separated list, enclosed in parentheses, following the procedure name.
4. Set the Active property to True or invoke the Open method.

•
•

•

•
•

Working with Stored Procedures

198

For example, the InterBase stored procedure GET_EMP_PROJ , below, accepts a value using
the input parameter EMP_NO and returns a dataset through the output parameter
PROJ_ID .

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN
 FOR SELECT PROJ_ID
 FROM EMPLOYEE_PROJECT
 WHERE EMP_NO = :EMP_NO
 INTO :PROJ_ID
 DO
 SUSPEND;
END

The SQL statement issued from a TIBQuery to use this stored procedure would be:

SELECT *
FROM GET_EMP_PROJ(52)

2.5. Using Stored Procedures that Return Data Using Parameters

Stored procedures can be composed to retrieve individual pieces of information, as
opposed to whole rows of data, through parameters. For instance, a stored procedure
might retrieve the maximum value for a column, add one to that value, and then return that
value to the application. Such stored procedures can be used, and the values inspected
using either a TIBQuery or a TIBStoredProc component. The preferred method for
retrieving parameter values is with a TIBStoredProc .

2.5.1. Retrieving Individual Values with a TIBQuery

Parameter values retrieved via a TIBQuery component take the form of a single-row
dataset, even if only one parameter is returned by the stored procedure. To retrieve
individual values from stored procedure parameters using a TIBQuery component:

Instantiate a query component.
In the TIBQuery.SQL property, write a SELECT query that uses the name of the
stored procedure instead of a table name. The SELECT clause of this query can
specify the parameter by its name as if it were a column in a table, or it can simply
use the * operator to retrieve all parameter values.
If the stored procedure requires input parameters, express the parameter values
as a comma-separated list, enclosed in parentheses, following the procedure
name.
Set the Active property to True or invoke the Open method.

For example, the InterBase stored procedure GET_HIGH_EMP_NAME , below, retrieves the
alphabetically last value in the LAST_NAME column of a table named EMPLOYEE. The stored
procedure returns this value in the output parameter High_Last_Name .

CREATE PROCEDURE GET_HIGH_EMP_NAME
RETURNS (High_Last_Name CHAR(15))
AS
BEGIN
SELECT MAX(LAST_NAME)
FROM EMPLOYEE
INTO :High_Last_Name;
SUSPEND;

END

1.
2.

3.

4.

Working with Stored Procedures

199

The SQL statement issued from a TIBQuery to use this stored procedure would be:

SELECT High_Last_Name
FROM GET_HIGH_EMP_NAME

2.5.2. Retrieving Individual Values with a TIBStoredProc

To retrieve individual values from stored procedure output parameters using a
TIBStoredProc component:

Instantiate a stored procedure component.
In the StoredProcName property, specify the name of the stored procedure.
If the stored procedure requires input parameters, supply values for the
parameters using the Params property or ParamByName method.
Invoke the ExecProc method.
Inspect the values of individual output parameters using the Params property or
ParamByName method.

For example, the InterBase stored procedure GET_HIGH_EMP_NAME , below, retrieves the
alphabetically last value in the LAST_NAME column of a table named EMPLOYEE . The stored
procedure returns this value in the output parameter High_Last_Name .

CREATE PROCEDURE GET_HIGH_EMP_NAME
RETURNS (High_Last_Name CHAR(15))
AS
BEGIN
SELECT MAX(LAST_NAME)
FROM EMPLOYEE
INTO :High_Last_Name;
SUSPEND;

END

The Delphi code to get the value in the High_Last_Name output parameter and store it to
the Text property of a TEdit component is:

with StoredProc1 do begin
StoredProcName := 'GET_HIGH_EMP_NAME';
ExecProc;
Edit1.Text := ParamByName('High_Last_Name').AsString;

end;

2.6. Using Stored Procedures that Perform Actions on Data

Stored procedures can be coded such that they do not return any data at all, and only
perform some action in the database. SQL operations involving the INSERT and DELETE
statements are good examples of this type of stored procedure. For instance, instead of
allowing a user to delete a row directly, a stored procedure might be used to do so. This
would allow the stored procedure to control what is deleted and also to handle any
referential integrity aspects, such as a cascading delete of rows in dependent tables.

2.6.1. Executing an Action Stored Procedure with a TIBQuery

To execute an action stored procedure using a TIBQuery component:

1. Instantiate a query component.
2. In the TIBQuery.SQL property, include the command necessary to execute the stored
procedure and the stored procedure name. (The command to execute a stored procedure

1.
2.
3.

4.
5.

Working with Stored Procedures

200

can vary from one database system to another. In InterBase, the command is
EXECUTE PROCEDURE .)
3. If the stored procedure requires input parameters, express the parameter values as a
comma-separated list, enclosed in parentheses, following the procedure name.
4. Invoke the TIBQuery.ExecSQL method.

For example, the InterBase stored procedure ADD_EMP_PROJ , below, adds a new row to the
table EMPLOYEE_PROJECT . No dataset is returned and no individual values are returned in
output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN
BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:EMP_NO, :PROJ_ID);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

END
SUSPEND;

END

The SQL statement issued from a TIBQuery to execute this stored procedure would be:

EXECUTE PROCEDURE ADD_EMP_PROJ(20, “GUIDE”)

2.6.2. Executing an action stored procedure with a TIBStoredProc

To retrieve individual values from stored procedure output parameters using a
TIBStoredProc component:

Instantiate a stored procedure component.
In the StoredProcName property, specify the name of the stored procedure.
If the stored procedure requires input parameters, supply values for the
parameters using the Params property or ParamByName method.
Invoke the ExecProc method.

For example, the InterBase stored procedure ADD_EMP_PROJ , below, adds a new row to the
table EMPLOYEE_PROJECT . No dataset is returned, and no individual values are returned in
output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN
BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:EMP_NO, :PROJ_ID);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

END
SUSPEND;

END

The Delphi code to execute the ADD_EMP_PROJ stored procedure is:

with StoredProc1 do begin
StoredProcName := ‘ADD_EMP_PROJ’;
ExecProc;

end;

1.
2.
3.

4.

Working with Stored Procedures

201

3. Understanding Stored Procedure Parameters

There are four types of parameters that can be associated with stored procedures:

Input parameters, used to pass values to a stored procedure for processing.
Output parameters, used by a stored procedure to pass return values to an application.
Input/output parameters, used to pass values to a stored procedure for processing, and
used by the stored procedure to pass return values to the application.
A result parameter, used to return an error or status value to an application. A stored
procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and on a
specific instance of a stored procedure. For example, individual stored procedures on any
server may either be implemented using input parameters, or may not be. On the other
hand, some uses of parameters are server-specific. For example, the InterBase
implementation of a stored procedure never returns a result parameter.

Access to stored procedure parameters is provided by TParam objects in the
TIBStoredProc.Params property. If the name of the stored procedure is specified at
design time in the StoredProcName property, a TParam object is automatically created for
each parameter and added to the Params property. If the stored procedure name is not
specified until runtime, the TParam objects need to be programmatically created at that
time. Not specifying the stored procedure and manually creating the TParam objects allows
a single TIBStoredProc component to be used with any number of available stored
procedures.

Note:
Some stored procedures return a dataset in addition to output and result parameters.
Applications can display dataset records in data-aware controls, but must separately
process output and result parameters. For more information about displaying records in
data-aware controls, see Using Stored Procedures that Return Result Sets.

3.1. Using Input Parameters

Application use input parameters to pass singleton data values to a stored procedure. Such
values are then used in SQL statements within the stored procedure, such as a comparison
value for a WHERE clause. If a stored procedure requires an input parameter, assign a value
to the parameter prior to executing the stored procedure.

If a stored procedure returns a dataset and is used through a SELECT query in a TIBQuery
component, supply input parameter values as a comma-separated list, enclosed in
parentheses, following the stored procedure name. For example, the SQL statement below
retrieves data from a stored procedure named GET_EMP_PROJ and supplies an input
parameter value of 52.

SELECT PROJ_ID
FROM GET_EMP_PROJ(52)

If a stored procedure is executed with a TIBStoredProc component, use the Params
property or the ParamByName method access to set each input parameter. Use the TParam
property appropriate for the data type of the parameter, such as the TParam.AsString
property for a CHAR type parameter. Set input parameter values prior to executing or
activating the TIBStoredProc component. In the example below, the EMP_NO parameter
(type SMALLINT) for the stored procedure GET_EMP_PROJ is assigned the value 52.

•
•
•

•

Working with Stored Procedures

202

with IBStoredProc1 do begin
 ParamByName(‘EMP_NO’).AsSmallInt := 52;
 ExecProc;
end;

3.2. Using Output Parameters

Stored procedures use output parameters to pass singleton data values to an application
that calls the stored procedure. Output parameters are not assigned values except by the
stored procedure and then only after the stored procedure has been executed. Inspect
output parameters from an application to retrieve its value after invoking the
TIBStoredProc.ExecProc method.

Use the TIBStoredProc.Params property or TIBStoredProc.ParamByName method to
reference the TParam object that represents a parameter and inspect its value. For
example, to retrieve the value of a parameter and store it into the Text property of a
TEdit component:

with IBStoredProc1 do begin
 ExecProc;
 Edit1.Text := Params[0].AsString;
end;

Most stored procedures return one or more output parameters. Output parameters may
represent the sole return values for a stored procedure that does not also return a dataset,
they may represent one set of values returned by a procedure that also returns a dataset,
or they may represent values that have no direct correspondence to an individual record in
the dataset returned by the stored procedure. Each server’s implementation of stored
procedures differs in this regard.

3.3. Using Input/output Parameters

Input/output parameters serve both function that input and output parameters serve
individually. Applications use an input/output parameter to pass a singleton data value to a
stored procedure, which in turn reuses the input/output parameter to pass a singleton data
value to the calling application. As with input parameters, the input value for an input/
output parameter must be set before the using stored procedure or query component is
activated. Likewise, the output value in an input/output parameter will not be available until
after the stored procedure has been executed.

In the example Oracle stored procedure below, the parameter IN_OUTVAR is an input/
output parameter.

CREATE OR REPLACE PROCEDURE UPDATE_THE_TABLE (IN_OUTVAR IN OUT INTEGER)
AS
BEGIN
UPDATE ALLTYPETABLE
SET NUMBER82FLD = IN_OUTVAR
WHERE KEYFIELD = 0;
IN_OUTVAR:=1;

END UPDATE_THE_TABLE;

In the Delphi program code below, IN_OUTVAR is assigned an input value, the stored
procedure executed, and then the output value in IN_OUTVAR is inspected and stored to a
memory variable.

with StoredProc1 do begin
 ParamByName(‘IN_OUTVAR’).AsInteger := 103;
 ExecProc;

Working with Stored Procedures

203

 IntegerVar := ParamByName(‘IN_OUTVAR’).AsInteger;
end;

3.4. Using the Result Parameter

In addition to returning output parameters and a dataset, some stored procedures also
return a single result parameter. The result parameter is usually used to indicate an error
status or the number of records processed base on stored procedure execution. See your
database server’s documentation to determine if and how your server supports the result
parameter. Result parameters are not assigned values except by the stored procedure and
then only after the stored procedure has been executed. Inspect a result parameter from an
application to retrieve its value after invoking the TIBStoredProc.ExecProc method.

Use the TIBStoredProc.Params property or TIBStoredProc.ParamByName method to
reference the TParam object that represents the result parameter and inspect its value.

DateVar := StoredProc1.ParamByName('MyOutputParam').AsDate;

3.5. Accessing Parameters at Design Time

If you connect to a remote database server by setting the Database and StoredProcName
properties at design time, then you can use the StoredProc Parameters editor to view the
names and data types of each input parameter, and you can set the values for the input
parameters to pass to the server when you execute the stored procedure.

Important:
Do not change the names or data types for input parameters reported by the server, or
when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, use the SQL
Explorer or IBConsole to look at the source code of the stored procedure on the server to
determine input parameters and data types. See the SQL Explorer online help for more
information.

At design time, if you do not receive a parameter list from a stored procedure on a remote
server (for example because you are not connected to a server), then you must invoke the
StoredProc Parameters editor, list each required input parameter, and assign each a data
type and a value. For more information about using the StoredProc Parameters editor to
create parameters, see Setting Parameter Information at Design Time.

3.6. Setting Parameter Information at Design Time

You can invoke the StoredProc parameter collection editor at design time to set up
parameters and their values.

The parameter collection editor allows you to set up stored procedure parameters. If you
set the Database and StoredProcName properties of the TIBStoredProc component at
design time, all existing parameters are listed in the collection editor. If you do not set both
of these properties, no parameters are listed and you must add them manually.
Additionally, some database types do not return all parameter information, like types. For
these database systems, use the SQL Explorer utility to inspect the stored procedures,
determine types, and then configure parameters through the collection editor and the
Object Inspector. The steps to set up stored procedure parameters at design time are:

Optionally set the Database and StoredProcName properties.1.

Working with Stored Procedures

204

In the Object Inspector, invoke the parameter collection editor by clicking on the
ellipsis button in the Params field.
If the Database and StoredProcName properties are not set, no parameters
appear in the collection editor. Manually add parameter definitions by right-
clicking within the collection editor and selecting Add from the context menu.
Select parameters individually in the collection editor to display their properties in
the Object Inspector.
If a type is not automatically specified for the ParamType property, select a
parameter type (Input , Output , Input/Output , or Result) from the
property’s drop-down list.
If a data type is not automatically specified for the DataType property, select a
data type from the property’s drop-down list.
Use the Value property to optionally specify a starting value for an input or
input/output parameter.

Right-clicking in the parameter collection editor invokes a context menu for operating on
parameter definitions. Depending on whether any parameters are listed or selected,
enabled options include: adding new parameters, deleting existing parameters, moving
parameters up and down in the list, and selecting all listed parameters.

You can edit the definition for any TParam you add, but the attributes of the TParam
objects you add must match the attributes of the parameters for the stored procedure on
the server. To edit the TParam for a parameter, select it in the parameter collection editor
and edit its property values in the Object Inspector.

Note:
You can never set values for output and result parameters. These types of parameters
have values set by the execution of the stored procedure.

3.7. Creating Parameters at Runtime

If the name of the stored procedure is not specified in StoredProcName until runtime, no
TParam objects will be automatically created for parameters and they must be created
programmatically. This can be done using the TParam.Create method or the
TParams.AddParam method.

For example, the InterBase stored procedure GET_EMP_PROJ , below, requires one input
parameter (EMP_NO) and one output parameter (PROJ_ID).

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN
FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO
SUSPEND;

END

The Delphi code to associate this stored procedure with a TIBStoredProc named
StoredProc1 and create TParam objects for the two parameters using the
TParam.Create method is:

var
 P1, P2: TParam;
begin
 {...}

2.

3.

4.

5.

6.

7.

Working with Stored Procedures

205

 with StoredProc1 do begin
 StoredProcName := 'GET_EMP_PROJ';
 Params.Clear;
 P1 := TParam.Create(Params, ptInput);
 P2 := TParam.Create(Params, ptOutput);
 try
 Params[0].Name := ‘EMP_NO’;
 Params[1].Name := ‘PROJ_ID’;
 ParamByname(‘EMP_NO’).AsSmallInt := 52;
 ExecProc;
 Edit1.Text := ParamByname(‘PROJ_ID’).AsString;
 finally
 P1.Free;
 P2.Free;
 end;
 end;
 {...}
end;

4. Viewing Parameter Information at Design Time

If you have access to a database server at design time, there are two ways to view
information about the parameters used by a stored procedure:

Invoke the SQL Explorer to view the source code for a stored procedure on a remote
server. The source code includes parameter declarations that identify the data types
and names for each parameter.
Use the Object Inspector to view the property settings for individual TParam objects.

You can use the SQL Explorer to examine stored procedures on your database servers. If
you are using ODBC drivers, you cannot examine stored procedures with the SQL Explorer.
While using the SQL Explorer is not always an option, it can sometimes provide more
information than the Object Inspector viewing TParam objects. The amount of returned
information about a stored procedure in the Object Inspector depends on your database
server.

To view individual parameter definitions in the Object Inspector:

Select the stored procedure component.
Set the Database property of a stored procedure component to the Database
property of a TIBDatabase .
Set the StoredProcName property to the name of the stored procedure.
Click the ellipsis button in for the TIBStoredProc.Params property in the Object
Inspector.
Select individual parameters in the collection editor to view their property settings
in the Object Inspector.

For some servers, some or all parameter information may not be accessible.

In the Object Inspector, when viewing individual TParam objects, the ParamType property
indicates whether the selected parameter is an input, output, input/output, or result
parameter. The DataType property indicates the data type of the value the parameter
contains, such as string, integer, or date. The Value edit box enables you to enter a value
for a selected input parameter.

For more about setting parameter values, see Setting Parameter Information at Design
Time.

Note:
You can never set values for output and result parameters. These types of parameters
have values set by the execution of the stored procedure.

•

•

1.
2.

3.
4.

5.

Working with Stored Procedures

206

Debugging with SQL Monitor

Use the TIBSQLMonitor component to monitor the dynamic SQL that passes through the
InterBase server. You can write an application that can view only its SQL statements, or you
can write a generic SQL monitor application that monitors the dynamic SQL of all
applications built with InterBase Express (IBX).

Use the TIBSQLMonitor component to watch dynamic SQL taking place in all InterBase
data access applications both before and after they have been compiled.

SQL monitoring involves a bit of overhead, so you should be aware of the following:

If no SQL monitors are loaded, there is little to no overhead.
SQL monitoring can be switched off globally by an application to ensure that it does not
get bogged down during debugging.
Disabling monitoring in an application that does not require it further reduces the
overhead.

1. Building a Simple Monitoring Application

To build a simple SQL monitoring application, follow these steps:

Open a new form in Delphi.
Add a Memo component to the form and clear the Lines property.
Add a TIBSQLMonitor component to the form
Double-click the OnSQL event and add the following line of code:

 Memo1.Lines.Add(EventText);

Compile the application.

You can now start another IBX application and monitor the code.

•
•

•

1.
2.
3.
4.

5.

Debugging with SQL Monitor

207

Writing Installation Wizards

This chapter discusses the installing and uninstalling of components.

1. Installing

TIBInstall and its ancestor, TIBSetup provide properties to allow you to build an
InterBase install component into your application. TIBInstall allows you to set the
installation source and destination, display your own installation messages, and set the
individual InterBase components to be installed.

The following sections describe how to set up an installation application, select the
installation options, set the source and destination installation directories, and track the
installation progress. Once the installation component is set up, you execute it using the
InstallExecute method.

1.1. Defining the Installation Component

TIBInstall provides the following properties for defining an installation component:

Property Purpose

DestinationDirectory
Sets or returns the installation target path; if not set,
defaults to what is in the Windows registry.

InstallOptions
Sets what InterBase components are to be installed;
see below.

MsgFilePath
Sets or returns the directory path where the
ibinstall.msg file can be found.

Progress
Returns an integer from 0 to 100 indicating the
percentage of installation completed; if unset, no
progress is displayed.

RebootToComplete
If set to <True>, returns a message instructing the user
to reboot after installation is complete.

SourceDirectory
Sets or returns the path of the installation source files;
in most cases, this will be a path on the InterBase CD.

UnInstallFile
Returns the name and path of the uninstall file, which
contains information on the installed options.

1.1.1. Setting the Installation Options

The InstallOptions property allows you to set which InterBase components are to be
installed. Set any of the following options to <True> to install it. For more information on
each option, refer to the online help for TInstallOptions .

Writing Installation Wizards

208

Option Installs:

CmdLineTools
the InterBase command line tools, including isql ,
gbak , and gsec .

ConnectivityClients
the InterBase connectivity clients, including ODBC, OLE
DB, and JDBC.

Examples the InterBase database and API examples.

MainComponents
the main InterBase components, including the client,
server, documentation, GUI tools, and development
tools.

TIBInstall keeps track of the installed options in the uninstall file.

The following code snippet shows how you could set up a series of check boxes to allow a
user to select the InterBase main components:

procedure TSampleform.ExecuteClick(Sender: TObject);
var
MComps : TMainOptions;
begin
Execute.Visible := False;
Cancel.Visible := True;
MComps := [];
if ServerCheck.Checked then
Include(MComps, moServer);
if ClientCheck.Checked then
Include(MComps, moClient);
if ConServerCheck.Checked then
Include(MComps, moConServer);
if GuiToolsCheck.Checked then
Include(MComps, moGuiTools);
if DevCheck.Checked then
Include(MComps, moDevelopment);
if DocCheck.Checked then
Include(MComps, moDocumentation);
IBInstall1.InstallOptions.MainComponents := MComps;

1.1.2. Setting Up the Source and Destination Directories

Use the SourceDirectory , DestinationDirectory and SuggestedDestination
properties along with the InstallCheck method to set up the source and destination
directories for your installation component. The following code snippet uses two
TDirectoryListBox components, SrcDir and DestDir , to allow the user to change the
source and destination directories. The InstallCheck method checks to see if everything
is prepared for the installation.

try
IBInstall1.SourceDirectory := SrcDir.Directory;
IBInstall1.DestinationDirectory := DestDir.Directory;
IBInstall1.InstallCheck;
except
on E:EIBInstallError do
begin
Label1.Caption := '';
Cancel.Visible := False;
Execute.Visible := True;
ProgressBar1.Visible := False;
Exit;

Writing Installation Wizards

209

end;
end;

1.1.3. Setting Up the Installation Progress Components

Use the Progress property, along with a ProgressBar component track the installation
status.

function TSampleform.IBInstall1StatusChange(
Sender: TObject; StatusComment : String): TStatusResult;
begin
Result := srContinue;
ProgressBar1.Position := IBInstall1.Progress;
Label1.Caption := StatusComment;
if Cancelling then
begin
if Application.MessageBox(PChar('UserAbort'),
PChar('Do you want to exit'), MB_YESNO) = IDYES then
Result := srAbort;
end
else
// Update billboards and other stuff as necessary
Application.ProcessMessages;
end;

2. Defining the Uninstall Component

Use the TIBUnInstall component to define which components are removed and what
messages are displayed when the user uninstalls InterBase. The following code snippet
shows a simple uninstall component.

procedure TUninstall.bUninstallClick(Sender: TObject);
begin
IBUninstall1.UnInstallFile := 'C:\Program Files\InterBase
Corp\InterBase\ibuninst.000';
bUninstall.Visible := False;
ProgressBar1.Visible := True;
try
IBUninstall1.UnInstallCheck;
except
on E:EIBInstallError do
begin
Application.MessageBox(PChar(E.Message), PChar('Precheck Error'), MB_OK);
Label1.Caption := '';
bUninstall.Visible := True;
ProgressBar1.Visible := False;
Exit;
end;
end;
try
IBUninstall1.UnInstallExecute;
except
on E:EIBInstallError do
begin
Application.MessageBox(PChar(E.Message), PChar('Install Error'), MB_OK);
Label1.Caption := '';
bUninstall.Visible := True;
ProgressBar1.Visible := False;
Exit;
end;
end;
Label1.Caption := 'Uninstall Completed';
ProgressBar1.Visible := False;
bCancel.Visible := False;
bExit.Visible := True;
end;

Writing Installation Wizards

210

	Using the InterBase Developer’s Guide
	Client/Server Concepts
	Definition of a Client
	The InterBase Client Library
	Definition of a Server
	Application Development
	Client Tools Applications
	InterBase Express (IBX) for Delphi and C++Builder
	dbExpress (DBX)
	ADO.NET Provider for InterBase (64-bit)
	ADO.NET Installation and Usage Instructions

	Developing and Deploying the InterBase ToGo Edition
	Developing with the ToGo Edition
	Deploying with the ToGo Edition
	Additional Guidelines for Deploying with the ToGo Edition

	Embedded Applications
	Predefined Database Queries
	Dynamic Applications

	API Applications
	Advantages of Using the InterBase API
	API Function Categories
	The Install API and the Licensing API

	Multi-database Applications

	Programming Applications with RAD Studio
	Optimizing the InterBase SQL Links Driver
	Setting the Driver Flags
	Setting the SQL Pass-through Mode
	Setting the SQL Query Mode

	Working with TQuery
	Why Not to Use TTable
	Setting TQuery Properties and Methods

	Using Generators with ODBC

	Programming with JDBC
	Installing InterClient Classes into JBuilder
	Database Application Basics
	Using JDBC URLs
	JDBC URL Argument
	Log Writer File Property
	SSL File Properties

	Programming with InterClient
	InterClient Architecture
	InterClient Communication

	Developing InterClient Programs
	Using the JDBC Interfaces
	Importing the InterClient Classes
	The DriverManager Class
	The Driver Class
	Multithreading

	The JDBC Connection Class

	About InterClient Drivers
	Loading the InterClient Driver
	Explicitly Creating the InterClient Driver
	Using java.sql.driver Methods

	Accessing InterClient Extensions to the JDBC
	Opening a Database Connection
	Using the DriverManager to Get a Connection
	Using InterClient Driver Object to Get a Connection
	Choosing between the Driver and DriverManager Methods
	Defining Connection Parameters
	Syntax for Specifying Database URLs
	Defining an InterClient URL
	Defining the Connection Properties

	Connection Security

	Executing SQL Statements in InterClient Programs
	The Statement Class
	PreparedStatement
	CallableStatement
	Creating a Statement Object

	Querying Data
	Selecting Data with the Statement Class
	Selecting Data with PreparedStatement

	Finalizing Objects
	Modifying Data Using SQL Statements
	Inserting Data Using SQL Statements
	Updating Data with the Statement Class
	Updating Data with PreparedStatement
	Deleting Data Using SQL Statements

	Executing Stored Procedures
	Statement Example
	PreparedStatement Example

	Troubleshooting InterClient Programs
	Handling Installation Problems
	Debugging your Application

	Deploying InterClient Programs
	Deploying InterClient Programs as Applications
	Required Software for Applications

	InterClient/JDBC Compliance Specifications
	InterClient Extensions to the JDBC API
	JDBC Features Not Implemented in InterClient
	InterClient Implementation of JDBC Features
	InterBase Features Not Available through InterClient or JDBC
	Java SQL Data Type Support
	SQL-to-Java Type Conversions
	Java-to-SQL Type Conversion
	InterClient Class References

	InterClient Data Source Properties for InterBase
	Standard properties
	Extended Properties
	InterClient Connection Pooling

	InterClient Scrollability
	The InterClient Connection Class
	The ResultSet Class
	Additional Functions

	Batch Updates
	Methods for the Statement and PreparedStatement Classes
	The BatchUpdateException Class
	The DatabaseMetaData.supportsBatchUpdates Function
	Code Examples

	Implementation of Blob, Clob, and Other Related API's

	Programming Applications with ODBC
	Overview of ODBC
	Configuring an ODBC Driver

	Configuring and Using ODBC Data Sources
	Configuring Data Sources
	Connecting from Delphi Using the ODBC Data Source

	Working with UDFs and Blob Filters
	UDF Overview
	Location of ib_udf Files and Library

	Writing a Function Module
	Writing a UDF
	Specifying Parameters
	Specifying a Return Value
	UDF Calling Conventions
	UDF Character Data Types

	Thread-safe UDFs

	Compiling and Linking a Function Module
	Creating a UDF Library
	Modifying a UDF Library
	Creating a UDF Library
	Modifying a UDF Library

	Declaring a UDF to a Database
	Defining a Sample UDF with a Descriptor Parameter
	Declaring UDFs with FREE IT
	UDF Library Placement

	Calling a UDF
	Calling a UDF with SELECT
	Calling a UDF with INSERT
	Calling a UDF with UPDATE
	Calling a UDF with DELETE

	Writing a Blob UDF
	Creating a Blob Control Structure
	Declaring a Blob UDF
	A Blob UDF Example

	The InterBase UDF Library
	Abs
	Advance To

	Acos
	Advance To

	Ascii char
	Advance To

	Ascii val
	Advance To

	Asin
	Advance To

	Atan
	Advance To

	Atan2
	Advance To

	Bin and
	Advance To

	Bin or
	Advance To

	Bin xor
	Advance To

	Ceiling
	Advance To

	Cos
	Advance To

	Cosh
	Advance To

	Cot
	Advance To

	Div
	Advance To

	Floor
	Advance To

	Ln
	Advance To

	Log
	Advance To

	Log10
	Advance To

	Lower
	Advance To

	Ltrim
	Advance To

	Mod
	Advance To

	Pi
	Advance To

	Rand
	Advance To

	Rtrim
	Advance To

	Sign
	Advance To

	Sin
	Advance To

	Sinh
	Advance To

	Sqrt
	Advance To

	Strlen
	Advance To

	Substr
	Advance To

	Tan
	Advance To

	Tanh
	Advance To

	Declaring Blob Filters

	Designing Database Applications
	Using InterBase Databases
	Local Databases
	Remote Database Servers
	Database Security
	Transactions
	Understanding InterBase Transactions
	Introduction
	What is a Transaction?
	Understanding Transaction Isolation Level
	How Does Versioning Work?
	Transaction Options
	Access Mode
	Lock Resolution
	Table Reservation
	IBX Params Keywords

	Ending a Transaction
	OIT, OAT, OST and Next Transaction
	Next Transaction
	OIT
	OST

	Garbage Collection
	Possible Problems
	What Happens when the OIT Gets Stuck
	What Happens when the OAT Gets Stuck?

	Savepoints
	Using Transactions with ISQL
	Starting a Transaction in ISQL

	Monitoring Transactions
	Summary

	The Data Dictionary
	Referential Integrity, Stored Procedures, and Triggers

	Database Architecture
	Planning for Scalability
	Single-tiered Database Applications
	Two-tiered Database Applications
	Multi-tiered Database Applications

	Designing the User Interface
	Displaying a Single Record
	Displaying Multiple Records
	Analyzing Data
	Selecting What Data to Show

	Building Multi-tiered Applications
	Understanding Databases and Datasets
	Using Transactions
	Using a Transaction Component

	Caching Updates
	Creating and Restructuring Database Tables
	Using the Briefcase Model

	Scaling Up to a Three-tiered Application
	Creating Multi-tiered Applications

	Introduction to IBX
	Connecting to Databases (Developer's Guide)
	Persistent and Temporary Database Components
	Using Temporary Database Components
	Creating Database Components at Design Time

	Controlling Connections
	Controlling Server Login
	Connecting to a Database Server
	Working with Network Protocols
	Using ODBC
	Disconnecting from a Database Server
	Iterating Through a Database Component’s Datasets

	Requesting Information about an Attachment
	Database Characteristics
	Environmental Characteristics
	Performance Statistics
	Database Operation Counts
	Requesting Database Information

	Importing and Exporting Data
	Exporting and Importing Raw Data
	Exporting Raw Data
	Importing Raw Data

	Exporting and Importing Delimited Data
	Exporting Delimited Data
	Importing Delimited Data

	Working with InterBase Services
	Overview of the InterBase Service Components
	About the Services Manager
	Service Component Hierarchy
	Attaching to a Service Manager
	Detaching from a Service Manager

	Setting Database Properties Using InterBase Services
	Bringing a Database Online
	Shutting Down a Database Using InterBase Services
	Setting the Sweep Interval Using InterBase Services
	Setting the Async Mode
	Setting the Page Buffers
	Setting the Access Mode
	Setting the Database Reserve Space
	Activating the Database Shadow
	Adding and Removing Journal Files

	Backing up and Restoring Databases
	Setting Common Backup and Restore Properties
	Backing Up Databases
	Setting the Backup Options
	Displaying Backup Output
	Setting Up a Backup Component
	Backing Up a Database to Multiple Files

	Restoring Databases
	Setting the Database Cache Size
	Setting the Page Size
	Setting the Restore Options
	Displaying Restore Output
	Setting up a Restore Component
	Restoring a Database from Multiple Backup Files
	Restoring a Database to Multiple Files

	Performing Database Maintenance
	Validating a Database (Performing Database Maintenance)
	Displaying Limbo Transaction Information
	Resolving Limbo Transactions

	Requesting Database and Server Status Reports
	Requesting Database Statistics

	Using the Log Service
	Configuring Users
	Adding a User to the Security Database
	Listing Users in the Security Database
	Displaying Information for a Single User
	Displaying Information for All Users

	Removing a User from the Security Database
	Modifying a User in the Security Database

	Displaying Server Properties
	Displaying the Database Information
	Displaying InterBase Configuration Parameters
	Displaying the Server Version

	Programming with Database Events
	Setting up Event Alerts
	Writing an Event Handler

	Working with Cached Updates
	Deciding When to Use Cached Updates
	Using Cached Updates
	Enabling and Disabling Cached Updates
	Fetching Records
	Applying Cached Updates
	Applying Cached Updates with a Database Component Method
	Applying Cached Updates with a Dataset Component Methods
	Applying Updates for Master/detail Tables

	Canceling Pending Cached Updates
	Cancelling Pending Updates and Disabling Further Cached Updates
	Discarding Pending Cached Updates
	Canceling Updates to the Current Record

	Undeleting Cached Records
	Specifying Visible Records in the Cache
	Checking Update Status

	Using Update Objects to Update a Dataset
	Specifying the UpdateObject Property for a Dataset
	Using a Single Update Object
	Using Multiple Update Objects

	Creating SQL Statements for Update Components
	Creating SQL Statements at Design Time
	Understanding Parameter Substitution in Update SQL Statements
	Composing Update SQL Statements
	Using an Update Component’s Query Property
	Using the DeleteSQL, InsertSQL, ModifySQL, and RefreshSQL Properties

	Executing Update Statements
	Calling the Apply Method
	Calling the SetParams Method
	Calling the ExecSQL Method

	Using Dataset Components to Update a Dataset

	Updating a Read-only Dataset
	Controlling the Update Process
	Determining if you Need to Control the Updating Process
	Creating an OnUpdateRecord Event Handler

	Handling Cached Update Errors
	Referencing the Dataset to Which to Apply Updates
	Indicating the Type of Update that Generated an Error
	Specifying the Action to Take

	Understanding Datasets
	What is TDataSet?
	Opening and Closing Datasets
	Determining and Setting Dataset States
	Deactivating a Dataset
	Browsing a Dataset
	Enabling Dataset Editing
	Enabling Insertion of New Records
	Calculating Fields
	Updating Records

	Navigating Datasets
	Searching Datasets
	Modifying Dataset Data
	Using Dataset Events
	Aborting a Method
	Using OnCalcFields

	Using Dataset Cached Updates

	Working with Queries
	Queries for desktop developers
	Queries for server developers
	When to use TIBDataSet, TIBQuery, and TIBSQL
	Using a query component: an overview
	Specifying the SQL statement to execute
	Specifying the SQL property at design time
	Specifying a SQL statement at runtime
	Setting the SQL property directly
	Loading the SQL property from a file
	Loading the SQL property from string list object

	Setting parameters
	Supplying parameters at design time
	Supplying parameters at runtime
	Using a data source to bind parameters

	Executing a query
	Executing a query at design time
	Executing a query at runtime
	Executing a query that returns a result set
	Executing a query without a result set

	Preparing a query
	Unpreparing a query to release resources
	Improving query performance
	Disabling bi-directional cursors

	Working with result sets
	Updating a read-only result set

	Working with Tables
	Using table components
	Setting up a table component
	Specifying a table name
	Opening and closing a table

	Controlling read/write access to a table
	Searching for records
	Sorting records
	Retrieving a list of available indexes with GetIndexNames
	Specifying an alternative index with IndexName
	Specifying sort order for SQL tables

	Specifying fields with IndexFieldNames
	Examining the field list for an index

	Working with a subset of data
	Deleting all records in a table
	Deleting a table
	Renaming a table
	Creating a table
	Synchronizing tables linked to the same database table
	Creating master/detail forms
	Building an example master/detail form

	Working with Stored Procedures
	When Should You use Stored Procedures?
	Using a Stored Procedure
	Creating a Stored Procedure Component
	Creating a Stored Procedure
	Preparing and Executing a Stored Procedure
	Using Stored Procedures that Return Result Sets
	Retrieving a Result Set with a TIBQuery

	Using Stored Procedures that Return Data Using Parameters
	Retrieving Individual Values with a TIBQuery
	Retrieving Individual Values with a TIBStoredProc

	Using Stored Procedures that Perform Actions on Data
	Executing an Action Stored Procedure with a TIBQuery
	Executing an action stored procedure with a TIBStoredProc

	Understanding Stored Procedure Parameters
	Using Input Parameters
	Using Output Parameters
	Using Input/output Parameters
	Using the Result Parameter
	Accessing Parameters at Design Time
	Setting Parameter Information at Design Time
	Creating Parameters at Runtime

	Viewing Parameter Information at Design Time

	Debugging with SQL Monitor
	Building a Simple Monitoring Application

	Writing Installation Wizards
	Installing
	Defining the Installation Component
	Setting the Installation Options
	Setting Up the Source and Destination Directories
	Setting Up the Installation Progress Components

	Defining the Uninstall Component

