
Product Documentation

InterBase 2020
Update 1

Language Reference Guide

© 2020 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other
Embarcadero Technologies product or service names are trademarks or registered trademarks of Embar-
cadero Technologies, Inc. All other trademarks are property of their respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application developers.
Embarcadero enables developers to design systems right, build them faster and run them better, regard-
less of their platform or programming language. Ninety of the Fortune 100 and an active community of
more than three million users worldwide rely on Embarcadero products to increase productivity, reduce
costs and accelerate innovation. The company's flagship tools include: Embarcadero® RAD Studio™, Del-
phi®, C++Builder®, JBuilder®, and the IoT Award winning InterBase®. Founded in 1993, Embarcadero
is headquartered in Austin, with offices located around the world. Embarcadero is online at www.embar-
cadero.com.

April, 2020

http://www.embarcadero.com
http://www.embarcadero.com

Table of Contents

TABLE OF CONTENTS

LANGUAGE REFERENCE GUIDE 1

1. Using the InterBase Language Refer-
ence .. 1

1.1. Who Should Use this Book 1

SQL STATEMENT AND FUNCTION REFER-
ENCE ... 2

1. SQL Flavors ... 2
2. SQL Dialects .. 2
3. Database Object Naming Conven-
tions .. 3
4. Statement List ... 4
5. Function List ... 5
6. Data Types .. 6
7. Exact Numerics ... 7

7.1. Addition and Subtraction 7
7.2. Multiplication ... 8
7.3. Division .. 8

8. Error Handling .. 9
9. Statement and Function Reference 9

9.1. ALTER DATABASE 10
9.2. ALTER DESCRIPTION 12
9.3. ALTER DOMAIN 14
9.4. ALTER EXCEPTION 16
9.5. ALTER INDEX ... 16
9.6. ALTER PROCEDURE 17
9.7. ALTER TABLE ... 18
9.8. ALTER TRIGGER 24
9.9. ALTER USER .. 25
9.10. AVG() ... 26
9.11. BASED ON .. 27
9.12. BEGIN DECLARE SECTION 28
9.13. CASE ... 28
9.14. CAST() ... 29
9.15. CLOSE .. 30
9.16. CLOSE (BLOB) 31
9.17. COALESCE() ... 31
9.18. COMMIT ... 32
9.19. CONNECT .. 33
9.20. COUNT() ... 36
9.21. CREATE DATABASE 36
9.22. CREATE DOMAIN 39
9.23. CREATE ENCRYPTION 42
9.24. CREATE EXCEPTION 43
9.25. CREATE GENERATOR 44
9.26. CREATE INDEX 44
9.27. CREATE JOURNAL 45

9.28. CREATE JOURNAL ARCHIVE 47
9.29. CREATE PROCEDURE 49
9.30. CREATE ROLE 54
9.31. CREATE SHADOW 54
9.32. CREATE SUBSCRIPTION 56
9.33. CREATE TABLE 57
9.34. CREATE TRIGGER 65
9.35. CREATE USER 70
9.36. CREATE VIEW 71
9.37. DECLARE CURSOR 73
9.38. DECLARE CURSOR (BLOB) 75
9.39. DECLARE EXTERNAL FUNCTION 75
9.40. DECLARE FILTER 77
9.41. DECLARE STATEMENT 78
9.42. DECLARE TABLE 79
9.43. DELETE .. 79
9.44. DESCRIBE ... 81
9.45. DISCONNECT 82
9.46. DROP DATABASE 83
9.47. DROP DOMAIN 83
9.48. DROP ENCRYPTION 84
9.49. DROP EXCEPTION 85
9.50. DROP EXTERNAL FUNCTION 85
9.51. DROP FILTER 86
9.52. DROP GENERATOR 86
9.53. DROP INDEX 87
9.54. DROP JOURNAL 87
9.55. DROP JOURNAL ARCHIVE 87
9.56. DROP PROCEDURE 88
9.57. DROP ROLE ... 88
9.58. DROP SHADOW 89
9.59. DROP SUBSCRIPTION 89
9.60. DROP TABLE 89
9.61. DROP TRIGGER 90
9.62. DROP USER ... 91
9.63. DROP VIEW ... 91
9.64. END DECLARE SECTION 91
9.65. EVENT INIT .. 92
9.66. EVENT WAIT .. 92
9.67. EXECUTE .. 93
9.68. EXECUTE IMMEDIATE 94
9.69. EXECUTE PROCEDURE 95
9.70. EXTRACT() .. 96
9.71. FETCH ... 97
9.72. FETCH (BLOB) 98
9.73. GEN ID() ... 99
9.74. GRANT ... 99
9.75. GRANT SUBSCRIBE 102
9.76. GRANT TEMPORARY SUBSCRIBE 103
9.77. INSERT .. 104
9.78. INSERT CURSOR (BLOB) 106
9.79. MAX() .. 106

iii

Table of Contents

9.80. MIN() ... 107
9.81. NULLIF() ... 108
9.82. OPEN .. 108
9.83. OPEN (BLOB) 109
9.84. PREPARE .. 109
9.85. RELEASE SAVEPOINT 111
9.86. REVOKE ... 111
9.87. ROLLBACK .. 113
9.88. SAVEPOINT .. 114
9.89. SELECT .. 114
9.90. SET DATABASE 121
9.91. SET GENERATOR 123
9.92. SET NAMES .. 124
9.93. SET SQL DIALECT 125
9.94. SET STATISTICS 125
9.95. SET SUBSCRIPTION 126
9.96. SET TRANSACTION 127
9.97. SHOW SQL DIALECT 131
9.98. SHOW SUBSCRIPTION 132
9.99. SUM() .. 133
9.100. TRUNCATE TABLE 133
9.101. UPDATE ... 141
9.102. UPPER() .. 143
9.103. WHENEVER 143
9.104. RECONNECT 144

PROCEDURES AND TRIGGERS 146

1. Creating Triggers and Stored Proce-
dures .. 146
2. Statement Types Not Supported 146
3. Nomenclature Conventions 147
4. Assignment Statement 147
5. BEGIN … END ... 148
6. Comment .. 149
7. DECLARE VARIABLE 151
8. EXCEPTION ... 152
9. EXECUTE PROCEDURE 152
10. EXECUTE STATEMENT 153

10.1. No Rows or Data Returned 154
10.2. One Row of Data Returned 154
10.3. Any Number of Data Rows Re-
turned .. 154
10.4. Requirements and Constraints 155

11. FOR SELECT…DO 155
12. IF…THEN … ELSE 156
13. Input Parameters 156
14. NEW Context Variables 157
15. OLD Context Variables 158
16. Output Parameters 158
17. POST EVENT ... 159
18. SELECT ... 159
19. SUSPEND .. 160

20. WHEN … DO .. 162
20.1. Handling Exceptions 162
20.2. Handling SQL Errors 163
20.3. Handling InterBase Error Codes 163

21. WHILE … DO .. 163

KEYWORDS .. 165

1. InterBase Keywords 165

ERROR CODES AND MESSAGES 170

1. Error Sources .. 170
2. Error Reporting and Handling 170

2.1. Trapping Errors with WHENEVER 170
2.2. Checking SQLCODE Value Directly 171
2.3. InterBase Status Array 171
2.4. For More Information 172

3. SQLCODE Error Codes and Mes-
sages .. 172

3.1. SQLCODE Error Messages Summa-
ry .. 173
3.2. SQLCODE Codes and Messages 173

4. InterBase Status Array Error Codes 183

SYSTEM TABLES, TEMPORARY TABLES,
AND VIEWS ... 195

1. Overview of System Tables, Temporary
Tables, and Views .. 195
2. System Tables .. 195

2.1. RDB$CHARACTER SETS 197
2.2. RDB$JOURNAL ARCHIVES 198
2.3. RDB$CHECK CONSTRAINTS 199
2.4. RDB$COLLATIONS 200
2.5. RDB$PAGES .. 201
2.6. RDB$DATABASE 202
2.7. RDB$PROCEDURE PARAMETERS 203
2.8. RDB$DEPENDENCIES 204
2.9. RDB$PROCEDURES 206
2.10. RDB$ENCRYPTIONS 207
2.11. RDB$REF CONSTRAINTS 209
2.12. RDB$EXCEPTIONS 210
2.13. RDB$RELATION CONSTRAINTS 211
2.14. RDB$FIELD DIMENSIONS 212
2.15. RDB$RELATION FIELDS 213
2.16. RDB$FIELDS .. 215
2.17. RDB$RELATIONS 218
2.18. RDB$FILES ... 221
2.19. RDB$ROLES 222
2.20. RDB$FILTERS 223
2.21. RDB$SECURITY CLASSES 224
2.22. RDB$FORMATS 225

iv

Table of Contents

2.23. RDB$TRANSACTIONS 226
2.24. RDB$FUNCTION ARGUMENTS 227
2.25. RDB$TRIGGER MESSAGES 228
2.26. RDB$FUNCTIONS 229
2.27. RDB$TRIGGERS 230
2.28. RDB$GENERATORS 232
2.29. RDB$TYPES 233
2.30. RDB$INDEX SEGMENTS 234
2.31. RDB$USER PRIVILEGES 235
2.32. RDB$INDICES 236
2.33. RDB$USERS 237
2.34. RDB$VIEW RELATIONS 238
2.35. RDB$SUBSCRIBERS 239
2.36. RDB$SUBSCRIPTIONS 240

3. System Temporary Tables 241
3.1. TMP$ATTACHMENTS 242
3.2. TMP$DATABASE 244
3.3. TMP$HEAPS .. 247
3.4. TMP$POOL BLOCKS 248
3.5. TMP$POOLS 250
3.6. TMP$PROCEDURES 251
3.7. TMP$RELATIONS 253
3.8. TMP$STATEMENTS 255
3.9. TMP$TRANSACTIONS 256
3.10. TMP$TRIGGERS 258
3.11. TMP$INDICES 260

4. System Views ... 262
4.1. CHECK CONSTRAINTS 263
4.2. CONSTRAINTS COLUMN USAGE 263
4.3. REFERENTIAL CONSTRAINTS 264
4.4. TABLE CONSTRAINTS 264

5. Change Views ... 264
5.1. Using Change Views 264
5.2. Creating Subscriptions to Change
Views ... 265
5.3. Statement Execution 265
5.4. Change View API Support 265
5.5. Change View SQL Language Sup-
port ... 265
5.6. Metadata Support 266

CHARACTER SETS AND COLLATION OR-
DERS ... 267

1. InterBase Character Sets and Collation
Orders .. 267

1.1. Character Set Storage Require-
ments ... 271
1.2. Support for Paradox and dBASE 271
1.3. Additional Character Sets and Colla-
tions .. 272

2. Specifying Character Sets 273

2.1. Default Character Set for a
Database ... 273
2.2. Character Set for a Column in a Ta-
ble ... 273
2.3. Character Set for a Client Attach-
ment .. 274
2.4. Collation Order for a Column 274
2.5. Collation Order in Comparison 274
2.6. Collation Order in ORDER BY 275
2.7. Collation Order in a GROUP BY
clause .. 275

v

Language Reference Guide

Language Reference Guide

This reference guide covers the InterBase elements.
For a listing of functions provided in the InterBase UDF library, see Working with UDFs and Blob Filters.

1. Using the InterBase Language Reference
The InterBase Language Reference details the syntax and semantics of SQL and Dynamic SQL (DSQL)
statements for embedded applications programming and for isql, the InterBase interactive SQL utility. It
also describes additional language and syntax that is specific to InterBase stored procedures and triggers.

1.1. Who Should Use this Book
The Language Reference assumes a general familiarity with SQL, data definition, data manipulation, and
programming practice. It is a syntax and usage resource for:

• Programmers writing embedded SQL and DSQL database applications.
• Programmers writing directly to the InterBase applications programming interface (API), who need

to know supported SQL syntax.
• Database designers who create and maintain databases and tables with isql.
• Users who perform queries and data manipulation operations through isql.

For a listing of functions provided in the InterBase UDF library, see the “Working with UDFs and Blob
Filters” chapter in the Developer's Guide.

Embarcadero Technologies 1

http://docwiki.embarcadero.com/InterBase/2017/en/Working_with_UDFs_and_Blob_Filters
http://docwiki.embarcadero.com/InterBase/2017/en/Developer%27s_Guide

SQL Statement and Function Reference

SQL Statement and Function Reference

This chapter provides the syntax and usage for InterBase SQL language elements. It includes the following
topics:

• SQL variants and dialects
• Database object naming conventions
• Lists of SQL statements and functions
• A description of each InterBase data type
• An introduction to using SQLCODE to handle errors
• How to use statement and function definitions
• A reference entry for each SQL statement supported by InterBase

1. SQL Flavors
Although InterBase SQL follows the ISO/IEC 9075:1992 standard closely, there are small differences. Dif-
ferences also exist among the three major flavors of InterBase SQL: embedded SQL, dynamic SQL (DSQL),
and the procedure and trigger language.

Embedded SQL (ESQL)

The embedded form of SQL is used in programs written in traditional languages such as C and Pascal. A
preprocessor turns SQL statements into host language data structures and calls to the InterBase server.
The embedded language is written into the program; its statements cannot be generated dynamically.
Statements in embedded SQL are terminated with a semicolon.

Dynamic SQL (DSQL)

DSQL allows a program to create statements at run time. It can be used from conventional languages
through the InterBase API. More often, it is used from modern development environments such as Delphi,
which hide the nuts and bolts of the API. A completed DSQL statement is very much like the “embedded”
language, without the “EXEC SQL” and without the terminating semicolon.

Stored Procedure and Trigger Language

Triggers and stored procedures are written in a variant of the embedded language, extended to provide
flow control, conditional expressions, and error handling. Certain constructs, including all DDL (Data Defi-
nition Language) statements, are omitted. Within a trigger or stored procedure, statements are separated
by semicolons.

Interactive SQL (isql)

The interactive query language, isql, is very similar to DSQL, with some omissions (cursors, for example)
and a few additions (SET and SHOW statements). Like embedded SQL, isql statements must be terminated
with a semicolon.

2. SQL Dialects
Starting with version 6, InterBase is closer to the ISO/IEC 9075:1992 standard than previous versions in
several ways. Some of those ways are incompatible with earlier implementations of SQL. In the current

Embarcadero Technologies 2

SQL Statement and Function Reference

InterBase, each client and database has a SQL dialect: an indicator that instructs an InterBase server how
to interpret transition features: those features whose meanings have changed between InterBase versions.
See the Migration appendix in the Operations Guide for information about using dialects and transition
features.

 Dialects

• Dialect 1: transition features are interpreted as in InterBase version 5.6 and earlier.
• Dialect 2: diagnostic mode, where transition features are recognized and flagged with a warning.
• Dialect 3: transition features are interpreted as SQL-92 compliant.

Transition Features

• Double quote (“): changed from a synonym for the single quote (‘) to the delimiter for an object name.
• Large exact numerics: DECIMAL and NUMERIC data types with precision greater than 9 are stored at INT64

instead of DOUBLE PRECISION.
• DATE, TIME, and TIMESTAMP data types:
• DATE has changed from a 64-bit quantity containing both date and time information to a 32-bit quan-

tity containing only date information.
• TIME is a 32-bit quantity containing only time information.
• TIMESTAMP is a 64-bit quantity containing both date and time information (same as DATE in InterBase

5 and older).

3. Database Object Naming Conventions
 When an applications programmer or end user creates a database object or refers to it by name, case is
unimportant. The following limitations on naming database objects must be observed:

• Start each name with an alphabetic character (A–Z or a–z).
• Restrict object names to 67 characters, including dollar signs ($), underscores (_), 0 to 9, A to Z, and

a to z. Some objects, such as constraint names, are restricted to 27 bytes in length.
• Keep object names unique. In all cases, objects of the same type–all tables, for example–must be

unique. In most cases, object names must also be unique within the database.

To use keywords, ASCII characters, case-sensitive strings, or spaces (except for trailing spaces) in an object
name, enclose the name in double quotes. It is then a delimited identifier. Delimited identifiers must always
be referenced in double quotes. In InterBase dialect 3, names enclosed in double quotes are case sensitive.
For example:

SELECT “CodAR” FROM MyTable

is different from:

SELECT “CODAR” FROM MyTable

This behavior conforms to ANSI SQL semantics for delimited identifiers.

Embarcadero Technologies 3

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

For more information about naming database objects with CREATE or DECLARE statements, see the Language
Reference Guide.

4. Statement List
This chapter describes the following SQL statements:

A

ALTER DATABASE ALTER DOMAIN ALTER EXCEPTION

ALTER INDEX ALTER PROCEDURE ALTER TABLE

ALTER TRIGGER ALTER USER

B

BASED ON BEGIN DECLARE SECTION

C

CASE CLOSE CLOSE (BLOB)

COALESCE() COMMIT CONNECT

CREATE DATABASE CREATE DOMAIN CREATE ENCRYPTION

CREATE EXCEPTION CREATE GENERATOR CREATE INDEX

CREATE JOURNAL CREATE JOURNAL ARCHIVE CREATE PROCEDURE

CREATE ROLE CREATE SHADOW CREATE SUBSCRIPTION

CREATE TABLE CREATE TRIGGER CREATE USER

CREATE VIEW

D

DECLARE CURSOR DECLARE CURSOR (BLOB) DECLARE EXTERNAL FUNCTION

DECLARE FILTER DECLARE STATEMENT DECLARE TABLE

DELETE DESCRIBE DISCONNECT

DROP DATABASE DROP DOMAIN DROP ENCRYPTION

DROP EXCEPTION DROP EXTERNAL FUNCTION DROP FILTER

DROP GENERATOR DROP INDEX DROP JOURNAL

DROP JOURNAL ARCHIVE DROP PROCEDURE DROP ROLE

DROP SUBSCRIPTION* DROP SHADOW DROP TRIGGER

DROP VIEW DROP USER

E

END DECLARE SECTION EVENT INIT EVENT WAIT

EXECUTE EXECUTE IMMEDIATE EXECUTE PROCEDURE

F

FETCH FETCH (BLOB)

G

GRANT GRANT SUBSCRIBE GRANT TEMPORARY SUBSCRIBE

I

INSERT INSERT CURSOR (BLOB)

N

NULLIF()

Embarcadero Technologies 4

SQL Statement and Function Reference

O

OPEN OPEN (BLOB)

P

PREPARE

R

RELEASE SAVEPOINT REVOKE ROLLBACK

S

SAVEPOINT SELECT SET DATABASE

SET GENERATOR SET NAMES (Reference) SET SQL DIALECT

SET STATISTICS SET SUBSCRIPTION SET TRANSACTION

SHOW SQL DIALECT

T

Truncate Table

U

UPDATE

W

WHENEVER

* For more information about creating subscriptions, see the Change View chapter in the Data Definition
Guide.

5. Function List
 The following table lists the SQL functions described in this chapter:

Function Type Purpose

AVG() Aggregate Calculates the average of a set of values.

CAST() Conversion Converts a column from one data type to another.

COUNT() Aggregate Returns the number of rows that satisfy a query’s search condition.

EXTRACT() Conversion Extracts date and time information from DATE, TIME, and TIMESTAMP values.

GEN_ID() Numeric Returns a system-generated value.

MAX() Aggregate Retrieves the maximum value from a set of values.

MIN() Aggregate Retrieves the minimum value from a set of values

SUM() Aggregate Totals the values in a set of numeric values.

UPPER() Conversion Converts a string to all uppercase.

Aggregate functions perform calculations over a series of values, such as the columns retrieved with a
SELECT statement.

Conversion functions transform data types, either converting them from one type to another, or by chang-
ing the scale or precision of numeric values, or by converting CHARACTER data types to all uppercase.

The numeric function, GEN_ID(), produces a system-generated number that can be inserted into a column
requiring a numeric data type.

Embarcadero Technologies 5

SQL Statement and Function Reference

6. Data Types
InterBase supports most SQL data types, a dynamically sizable data type called a Blob, and arrays of
data types. It does not support arrays of Blobs. The following table lists the data types available to SQL
statements in InterBase:

Data types supported by InterBase

Name Size Range/Precision Description

BLOB Variable
• None

• Blob segment size is limited to 64K.

• Dynamically sizable data type for storing large data
such as graphics, text, and digitized voice.

• Basic structural unit is the segment.

• Blob subtype describes Blob contents.

BOOLEAN 16 bits
• TRUE

• FALSE

• UNKNOWN

• Represents truth values TRUE, FALSE, and UNKNOWN.

• Requires ODS 11 or higher, any dialect.

CHAR(<n>) <n> characters
• 1 to 32,767 bytes

• Character set character size determines the maximum
number of characters that can fit in 32K.

• Fixed length CHAR or text string type

• Alternate keyword: CHARACTER

DATE 32 bits, signed1 1 Jan 100 a.d. to 29 Feb 32768 a.d. ISC_DATE; stores
a date as a 32-bit
longword.

DECIMAL (<preci-
sion>, <scale>)

Variable
(16, 32, or
64 bits)

• <precision> = 1 to 18; specifies at least <precision>
digits of precision to store.

• <scale> = 1 to 18; specifies number of decimal places
for storage.

• Must be less than or equal to <precision>.

• Number with
a decimal
point <scale>
digits from
the right

• Example:
DECIMAL(10,
3) holds num-
bers accu-
rately in the
following for-
mat: pppppp-
p.sss

DOUBLE PRECISION 64 bits2 2.225 x 10–308 to 1.797 x 10308 IEEE double preci-
sion: 15 digits

FLOAT 32 bits 1.175 x 10–38 to 3.402 x 1038 IEEE single preci-
sion: 7 digits

Embarcadero Technologies 6

SQL Statement and Function Reference

Data types supported by InterBase

Name Size Range/Precision Description

INTEGER 32 bits –2,147,483,648 to 2,147,483,647 Signed long (long-
word)

NUMERIC (<preci-
sion>, <scale>)

Variable

(16, 32, or
64 bits)

• <precision> = 1 to 18; specifies exactly <precision>
digits of precision to store.

• <scale> = 1 to 18; specifies number of decimal places
for storage.

• Must be less than or equal to <precision>.

O Number with a decimal point <scale> digits from
the right

O Example: NUMERIC(10,3) holds numbers accurately
in the following format: ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767 Signed short
(word)

TIME 32 bits, un-
signed

0:00 AM to 23:59.9999 PM ISC_TIME

TIMESTAMP 64 bits 1 Jan 100 a.d. to 29 Feb 32768 a.d. Also includes time
information.

VARCHAR (<n>) <n> characters
• 1 to 32,765 bytes

• Character set character size determines the maximum
number of characters that can fit in 32K.

O Variable length CHAR or text string type

O Alternate keywords: CHAR VARYING, CHARACTER
VARYING

1. InterBase version 5 had a DATE data type that was 64 bits long and included both the date and time.
InterBase version 6 and later recognizes that type if you have specified dialect 1; in dialect 3, that
type is called TIMESTAMP.

2. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

7. Exact Numerics
 All NUMERIC and DECIMAL data types are stored as exact numerics: 16, 32, or 64 bits, depending on the
precision. NUMERIC and DECIMAL data types with precision greater than 9 are referred to as large exact
numerics.

• If one operand is an approximate numeric, the result of any dyadic operation (addition, subtraction,
multiplication, division) is DOUBLE PRECISION.

• Any value that can be stored in a DECIMAL(18,S) can also be specified as the default value for a column
or a domain.

7.1. Addition and Subtraction
If both operands are exact numeric, adding or subtracting the operands produces an exact numeric with
a precision of 18 and a scale equal to the larger of the two. For example:

Embarcadero Technologies 7

SQL Statement and Function Reference

CREATE TABLE t1 (n1 NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

The following query returns the integer 135.243. The largest scale of the two operands is 3; therefore, the
scale of the sum is 3.

SELECT n1 + n2 FROM t1;

Similarly, the following query returns the integer -111.003:

SELECT n1 - n2 FROM t1;

If either of the operands is approximate numeric (FLOAT, REAL, or DOUBLE PRECISION), the result is DOUBLE
PRECISION.

7.2. Multiplication
If both operands are exact numeric, multiplying the operands produces an exact numeric with a precision
of 18 and a scale equal to the sum of the scales of the operands. For example:

CREATE TABLE t1 (n1 NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

The following query returns the integer 1492.25076 because n1 has a scale of 2 and n2 has a scale of 3.
the sum of the scales is 5.

SELECT n1*n2 FROM t1

If one of the operands is approximate numeric (FLOAT, REAL, or DOUBLE PRECISION), the result is DOUBLE
PRECISION.

7.3. Division
If both operands are exact numeric, dividing the operands produces an exact numeric with a precision of
18 and a scale equal to the sum of the scales of the operands. If at least one operand of a division operator
has an approximate numeric type (FLOAT, REAL, or DOUBLE PRECISION), the result is DOUBLE PRECISION.

For example, in the following table, division operations produce a variety of results:

CREATE TABLE t1 (i1 INTEGER), i2 INTEGER, n1 NUMERIC(16,2)
n2 NUMERIC(16,2));
INSERT INTO t1 VALUES (1, 3, 1.00, 3.00);
COMMIT;

The following query returns the integer 0 because each operand has a scale of 0, so the sum of the scales
is 0:

Embarcadero Technologies 8

SQL Statement and Function Reference

SELECT i1/i2 FROM t1

The following query returns the NUMERIC(18,2) value 0.33, because the sum of the scales 0 (operand 1)
and 2 (operand 2) is 2:

SELECT i1/n2 FROM t1

The following query returns the NUMERIC(18,4) value 0.3333, because the sum of the two operand scales
is 4:

SELECT n1/n2 FROM t1

In InterBase 5 and earlier, any of the above division operations would have returned the DOUBLE PRECISION
value 0.3333333333333333.

8. Error Handling
Every time an executable SQL statement is executed, the SQLCODE variable is set to indicate its success
or failure. No SQLCODE is generated for declarative statements that are not executed, such as DECLARE
CURSOR, DECLARE TABLE, and DECLARE STATEMENT.

The following table lists values that are returned to SQLCODE:

SQLCODE and message summary

SQLCODE Message Meaning

< 0 SQLERROR Error occurred; statement did not execute

0 SUCCESS Successful execution

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND No qualifying rows found, or end of current active set of rows
reached

When an error occurs in isql, InterBase displays an error message.

In embedded applications, the programmer must provide error handling by checking the value of SQL-
CODE.

To check SQLCODE, use one or a combination of the following approaches:

• Test for SQLCODE values with the WHENEVER statement.
• Check SQLCODE directly.
• Use the isc_print_sqlerror() routine to display specific error messages.

For more information about error handling, see the Embedded SQL Guide.

9. Statement and Function Reference
The following is the reference of SQL statements and functions available in InterBase.

Embarcadero Technologies 9

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

Each statement and function definition includes the following elements:

Element Description

Title Statement name

Definition The main purpose and availability of the statement

Syntax Diagram of the statement and its parameters

Argument Parameters available for use with the statement

Description Information about using the statement

Examples Examples of using the statement in a program and in isql

See also Where to find more information about the statement or others related to it

Most statements can be used in SQL, DSQL, and isql. In many cases, the syntax is nearly identical, except
that embedded SQL statements must always be preceded by the EXECSQL keywords. EXECSQL is omitted
from syntax statements for clarity.

In other cases there are small, but significant differences among SQL, DSQL, and isql syntax. In these
cases, separate syntax statements appear under the statement heading.

9.1. ALTER DATABASE
Changes the characteristics of the current database. Available in gpre, DSQL, and isql, but not in the
trigger or stored procedure language.

ALTER {DATABASE | SCHEMA}

 {ADD <add_clause> | DROP <drop_clause> | ENCRYPT <key_name> | DECRYPT
<key_name> | SET <set_clause>};

<add_clause> = FILE 'filespec' [fileinfo] [add_clause] | ADMIN OPTION

fileinfo = LENGTH [=] INT [PAGE[S]]
| STARTING [AT [PAGE]] INT [fileinfo]

<drop_clause> = ADMIN OPTION

<key_name> = ENCRYPT <|> DECRYPT

<set_clause> = {FLUSH INTERVAL <number> | NO FLUSH INTERVAL | GROUP COMMIT
| NO GROUP COMMIT |
LINGER INTERVAL <number> | NO LINGER INTERVAL | PAGE CACHE <number> |
RECLAIM INTERVAL <number> | NO RECLAIM INTERVAL | SYSTEM ENCRYPTION
PASSWORD <255-character_string> | NO SYSTEM ENCRYPTION PASSWORD} | PASSWORD
DIGEST '<digest_name>'}

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

SCHEMA Alternative keyword for DATABASE

Embarcadero Technologies 10

SQL Statement and Function Reference

Argument Description

ADD FILE '<filespec>' Adds one or more secondary files to receive database pages after the primary file is
filled; for a remote database, associate secondary files with the same node.

LENGTH[=]<int>[PAGE
[S]]

Specifies the range of pages for a secondary file by providing the number of pages in
each file.

STARTING [AT
[PAGE]]<int>

Specifies a range of pages for a secondary file by providing the starting page number.

ADD ADMIN OPTION Enables embedded user authentication.

DROP ADMIN OPTION Disables embedded user authentication.

ENCRYPT <key_name> Uses the named encryption key to encrypt the database. Encrypting a database causes
all pages to be encrypted. Only the database owner can encrypt a database.

DECRYPT <key_name> Uses the named encryption key to decrypt the database. Decrypting a database causes
all pages to be decrypted and rewritten in plaintext. Only the database owner can de-
crypt a database.

SET FLUSH INTERVAL<number> Enables database flush. The interval <number> is interpreted in units of seconds.

SET NO FLUSH INTERVAL Disables database flush.

SET GROUP COMMIT Allows transactions to be committed by a background cache writer thread.

SET NO GROUP COMMIT Disables group commit.

SET LINGER INTERVAL Allows a database to remain in memory after the last user detaches. Interval is seconds.

SET NO LINGER INTERBAL Disables database linger.

SET RECLAIM INTERVAL Reclaims the interval is in seconds. Determines how often the garbage collector thread
will run to release memory from unused procedures, triggers, and internal system
queries back to InterBase memory heap.

SET NO RECLAIM INTERVAL Disables memory reclamation.

SET SYSTEM ENCRYPTION
PASSWORD

Necessary to create encryption keys and perform encryption. InterBase uses a System
Encryption Password (SEP) to protect the encryption keys that are used to encrypt the
database and/or database columns. For more information about using InterBase en-
cryption, see “Encrypting Your Data” in the Data Definition Guide.

Note: Only the SYSDSO (Data Security Owner) can create this password.

SET NO SYSTEM ENCRYPTION
PASSWORD

Deletes the password if there are no existing encryption keys.

Note: Only SYSDSO can delete a password.

SET PAGE CACHE Sets database page buffer cache limit. Also, tries to expand cache to that limit.

SET PASSWORD DIGEST '<di-
gest_name>'

Sets the password hash function. The default value is 'DES-CRYPT'. See Implementing
Stronger Password Protection for more information.

Description: ALTER DATABASE adds secondary files to an existing database. Secondary files permit databas-
es to spread across storage devices, but they must remain on the same node as the primary database
file. A database can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges.

ALTER DATABASE requires exclusive access to the database.
InterBase dynamically expands the last file in a database as needed. The maximum size of the last file is
system-dependent. You should be aware that specifying a LENGTH for such files has no effect.

You cannot use ALTER DATABASE to split an existing database file. For example, if your existing database is
80,000 pages long and you add a secondary file STARTING AT 50000, InterBase starts the new database
file at page 80,001.

Embarcadero Technologies 11

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Implementing_Stronger_Password_Protection
http://docwiki.embarcadero.com/InterBase/2017/en/Implementing_Stronger_Password_Protection

SQL Statement and Function Reference

TIP

To split an existing database file into smaller files, back it up and restore it. When you restore a database, you are free
to specify secondary file sizes at will, without reference to the number and size of the original files.

Example: The following isql statement adds two secondary files to an existing database. The command
creates a secondary database file called employee2.ib that is 10,000 pages long and another called employ-
ee3.ib. InterBase starts using employee2.ib only when the primary file reaches 10,000 pages.

ALTER DATABASE
ADD FILE 'employee2.ib'
STARTING AT PAGE 10001 LENGTH 10000
ADD FILE 'employee3.ib';

9.2. ALTER DESCRIPTION
InterBase 2020 introduces support for modifying an entity's description in the database schema.
InterBase defines and stores each entity type in various database system tables. Many of the InterBase
system tables tracking various database entities, have a column/field called RDB$DESCRIPTION. The ALTER
DESCRIPTION syntax allows an authenticated user to modify the description comment stored in this field
(as a text blob) for a specific database entity like a table, column, stored procedure etc. The description
value/state can also be reset to NULL for any database entity.
In addition to the above, this feature also enables tracking in ODS version 18 databases, RDB$DESCRIPTION
for Constraint, Role and Generator. Older ODS versions cannot track descriptions for these entity types.
This documentation describes support for modifying an entity's description in the database schema. Since
each database entity type is defined and stored in various database system tables by InterBase, the DDL
usage is not part of the SQL standard. Such data dictionary comments are often edited/stored along with
the database schema for database designers and developers to convey some meaningful information
about the entity to users of the database. Database tools can greatly benefit from a standard DDL syntax
they can use to apply various descriptions to document the user's database schema.

9.2.1. Use
Users of InterBase prior to this new DDL syntax being available would execute a UPDATE <system_table>
SET RDB$DESCRIPTION=<blob_text> WHERE <entity_name>=<user_entity>, for each entity type. This requires
the user to know the database system schema in detail for each entity type. The new DDL syntax takes
away this complexity, and provides a new ALTER DESCRIPTION FOR syntax that is standard across all database
entities supported by InterBase.
syntax:

ALTER DESCRIPTION FOR <object> SET {'sometext' | NULL}

<object> ::= DATABASE
 | <basic-type> object_name
 | COLUMN relation_name.field_name
 | PARAMETER procedure_name.parameter_name

<basic-type> ::= CHARACTER SET | COLLATION | CONSTRAINT | DOMAIN |
ENCRYPTION
 | EXCEPTION | EXTERNAL FUNCTION | FILTER
 | GENERATOR | INDEX | PROCEDURE | ROLE
 | SUBSCRIPTION | TABLE | TABLESPACE | TRIGGER

Embarcadero Technologies 12

SQL Statement and Function Reference

 | USER | VIEW

Sample definitions with text:

/* Use ALTER DESCRIPTION command with description set to text */
alter description for database set 'Database description sample';
alter description for exception customer_check set 'Exception msg: Checking
on customer sample';
alter description for filter desc_filter set 'Filter description sample';
alter description for index custnamex set 'Index description sample';
alter description for procedure add_emp_proj set 'Stored Procedure
description sample';
alter description for table employee set 'Table description sample';
alter description for table "MyTableDelim" set 'Table delimited identifier
description sample';
alter description for trigger set_cust_no set 'Trigger description sample';
alter description for external function abs set 'UDF description sample';
alter description for user sysdso set 'User description sample';
alter description for subscription sub_ceo_multidevice set 'Subscription
description sample';
alter description for encryption backup_key set 'Encryption key description
sample';
alter description for role role1 set 'Role description sample';
alter description for generator emp_no_gen set 'Generator description
sample';
alter description for character set utf8 set 'character set description
sample';
alter description for collation en_us set 'collation description sample';
alter description for domain lastname set 'domain description sample';
alter description for view phone_list set 'view description sample';
alter description for parameter add_emp_proj.emp_no set 'procedure parameter
description sample';
alter description for column employee.last_name set 'column description
sample';
alter description for column "MyTableDelim".f1 set 'delim table normal
column description sample';
alter description for column "MyTableDelim"."MyFieldDelim1" set 'delim table
delim column 1 description sample';
alter description for column "MyTableDelim"."My Field Delim 2" set 'delim
table delim column 2 description sample';
alter description for column phone_list.phone_ext set 'view column
description sample';
alter description for tablespace tspace_one set 'tablespace description
sample';
alter description for constraint CC_PK set 'Primary Key Constraint
description sample';

commit;

Sample definitions with NULL:

/* Use ALTER DESCRIPTION command with description set to NULL */

Embarcadero Technologies 13

SQL Statement and Function Reference

alter description for database set NULL;
alter description for exception customer_check set NULL;
alter description for filter desc_filter set NULL;
alter description for index custnamex set NULL;
alter description for procedure add_emp_proj set NULL;
alter description for table employee set NULL;
alter description for table "MyTableDelim" set NULL;
alter description for trigger set_cust_no set NULL;
alter description for external function abs set NULL;
alter description for user sysdso set NULL;
alter description for subscription sub_ceo_multidevice set NULL;
alter description for encryption backup_key set NULL;
alter description for role role1 set NULL;
alter description for generator emp_no_gen set NULL;
alter description for character set utf8 set NULL;
alter description for collation en_us set NULL;
alter description for domain lastname set NULL;
alter description for view phone_list set NULL;
alter description for parameter add_emp_proj.emp_no set NULL;
alter description for column employee.last_name set NULL;
alter description for column "MyTableDelim".f1 set NULL;
alter description for column "MyTableDelim"."MyFieldDelim1" set NULL;
alter description for column "MyTableDelim"."My Field Delim 2" set NULL;
alter description for column phone_list.phone_ext set NULL;
alter description for constraint CC_PK set NULL;

commit;

9.2.2. ISQL extract
ISQL command's "extract" function (-a) should generate ALTER DESCRIPTION lines for each basic-type en-
tity's description.
Requirements and Constraints
The ALTER DESCRIPTION syntax only works with InterBase 2020 and later versions.
For pre-existing (historic) entity types such as Constraints, Roles and Generators, descriptions can only be
tracked when using ODS version 18 or later databases.

Migration issues

The ANSI/SQL keyword COLLATION is now a reserved keyword in InterBase. Should you have the need to
define any database entities with the name "COLLATION", please delimit the name with double-quotes by
using a database with dialect version 3 or above. ALTER DESCRIPTION for Constraints, Roles and Generators
can only be set if you are using ODS version 18 or later.

9.3. ALTER DOMAIN
 Changes a domain definition. Available in gpre, DSQL, and isql, but not in the stored procedure or
trigger language.

ALTER DOMAIN { name |

Embarcadero Technologies 14

SQL Statement and Function Reference

old_name TO new_name }
SET DEFAULT {literal | NULL | USER}
| DROP DEFAULT
| ADD [CONSTRAINT] CHECK (dom_search_condition)
| DROP CONSTRAINT
| new_col_name
| TYPE data_type;
dom_search_condition =
VALUE operator val
| VALUE [NOT] BETWEEN val AND val
| VALUE [NOT] LIKE val [ESCAPE val]
| VALUE [NOT] IN (val [, val …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING val
| VALUE [NOT] STARTING [WITH] val
| (dom_search_condition)
| NOT dom_search_condition
| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator = {= | < | > | <= | >= | !< | !> | <> | !=}

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Represents the name of an existing domain.

SET DEFAULT Specifies a default column value that is entered when no other entry is made. Values:

• <literal>—Inserts a specified string, numeric value, or date value.

• NULL—Enters a NULL value.

• USER—Enters the user name of the current user; the olumn must be of compati-
ble text type to use the default.

• Defaults set at the column level overrides defaults set at the domain level.

DROP DEFAULT Drops an existing default.

ADD [CONSTRAINT] CHECK
<dom_search_condition>

Adds a CHECK constraint to the domain definition; a domain definition can include on-
ly one CHECK constraint.

DROP CONSTRAINT Drops the CHECK constraint from the domain definition.

<new_col_name> Changes the domain name.

TYPE <data_type> Changes the domain data type.

Description: ALTER DOMAIN changes any aspect of an existing domain except its NOT NULL setting. Changes
made to a domain definition affect all column definitions based on the domain that have not been over-
ridden at the table level.

NOTE

To change the NOT NULL setting of a domain, drop the domain and recreate it with the desired combination of features.

Embarcadero Technologies 15

SQL Statement and Function Reference

The TYPE clause of ALTER DOMAIN does not allow you to make data type conversions that could lead to
data loss.

A domain can be altered by its creator, the SYSDBA user, and any users with operating system root priv-
ileges.

Example: The following isql statements create a domain that must have a value > 1,000, then alter it
by setting a default of 9,999:

CREATE DOMAIN CUSTNO
AS INTEGER
CHECK (VALUE > 1000);
ALTER DOMAIN CUSTNO SET DEFAULT 9999;

9.4. ALTER EXCEPTION
Changes the message associated with an existing exception. Available in DSQL and isql, but not in the
embedded language or stored procedure and trigger language.

ALTER EXCEPTION name 'message'

Argument Description

<name> Name of an existing exception message

‘message’ Quoted string containing ASCII values

Description: ALTER EXCEPTION changes the text of an exception error message.

An exception can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges.

Example: This isql statement alters the message of an exception:

ALTER EXCEPTION CUSTOMER_CHECK 'Hold shipment for customer remittance.';

9.5. ALTER INDEX
Activates or deactivates an index. Available in embedded SQL, DSQL, and isql, but not in the stored
procedure or trigger language.

 ALTER INDEX <name> {ACTIVE | INACTIVE};

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Embarcadero Technologies 16

SQL Statement and Function Reference

Argument Description

name Name of an existing index.

ACTIVE Changes an INACTIVE index to an ACTIVE one.

INACTIVE Changes an ACTIVE index to an INACTIVE one.

Description: ALTER INDEX makes an inactive index available for use, or disables the use of an active index.
Deactivating an index is exactly like dropping it, except that the index definition remains in the database.
Activating an index creates a new index structure.

Before inserting, updating, or deleting a large number of rows, deactivate a table’s indexes to avoid altering
the index incrementally. When finished, reactivate the index. A reasonable metric is that if you intend to
add or delete more than 15% of the rows in a table, or update an indexed column in more than 10% of
the rows, you should consider deactivating and reactivating the index.

If an index is in use, ALTER INDEX does not take effect until the index is no longer in use.

ALTER INDEX fails and returns an error if the index is defined for a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. To alter such an index, use DROP INDEX to delete the index, then recreate it with CREATE INDEX.

An index can be altered by its creator, the SYSDBA user, and any users with operating system root privileges.

NOTE

To add or drop index columns or keys, use DROP INDEX to delete the index, then recreate it with CREATE INDEX.

Example: The following isql statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;
ALTER INDEX BUDGETX ACTIVE;

9.6. ALTER PROCEDURE
Changes the definition of an existing stored procedure. Available in DSQL and isql but not in the embedded
language or in the stored procedures or triggers.

ALTER PROCEDURE'' ''<name> [(<param>'' ''data_type [,'' ''<param>''
''data_type …])]
[RETURNS (<param>'' ''data_type [, <param> data_type …])]
AS ''procedure_body'' ;

Argument Description

<name> Name of an existing procedure.

<param data_type> Input parameters used by the procedure; legal data types are listed under CREATE
PROCEDURE.

RETURNS param data_type Output parameters used by the procedure; legal data types are listed under CREATE
PROCEDURE.

<procedure_body> The procedure body includes:

• Local variable declarations

• A block of statements in procedure and trigger language

Embarcadero Technologies 17

SQL Statement and Function Reference

See CREATE PROCEDURE for a complete description.

Description: ALTER PROCEDURE changes an existing stored procedure without affecting its dependencies.
It can modify the input parameters, output parameters, and body of a procedure.

The complete procedure header and body must be included in the ALTER PROCEDURE statement. The syntax
is exactly the same as CREATE PROCEDURE, except CREATE is replaced by ALTER.

IMPORTANT

 Be careful about changing the type, number, and order of input and output parameters to a procedure, because existing
application code may assume the procedure has its original format. Check for dependencies between procedures before
changing parameters. Should you change parameters and find that another procedure can neither be altered to accept
the new parameters or deleted, change the original procedure back to its original parameters, fix the calling procedure,
then change the called procedure.

A procedure can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges. Procedures in use are not altered until they are no longer in use. ALTER PROCEDURE changes take
effect when they are committed. Changes are then reflected in all applications that use the procedure
without recompiling or relinking.

Example: The following isql statements alter the GET_EMP_PROJ procedure, changing the return param-
eter to have a data type of VARCHAR(20):

ALTER PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID VARCHAR(20)) AS
BEGIN
FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :emp_no
INTO :proj_id
DO
SUSPEND;
END;

9.7. ALTER TABLE
Changes a table by adding, dropping, or modifying columns or integrity constraints. Available in gpre,
DSQL, and isql.

IMPORTANT

To alter a global temporary table, see: "Altering a global temporary table" in the Data Definition Guide.

 ALTER TABLE <table> operation [, operation …];
operation = ADD col_def
| ADD tconstraint
| ALTER [COLUMN] column_name alt_col_clause
| DROP col
| DROP CONSTRAINT constraint
| [ON COMMIT {PRESERVE | DELETE} ROWS [RESTRICT
| CASCADE]] | [SET [NO] RESERVE SPACE]
alt_col_clause = TO new_col_name

Embarcadero Technologies 18

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

| TYPE new_col_data_type
| POSITION new_col_position
col_def = col {data_type | COMPUTED [BY] (expr) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[col_constraint]
[COLLATE collation]
data_type =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [array_dim]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]array_dim = [[x:]y [, [x:]y …]]
| BOOLEAN
expr = A valid SQL expression that results in a single value.
col_constraint = [CONSTRAINT constraint]
{ UNIQUE
| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
tconstraint = [CONSTRAINT constraint]
{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …])
REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val
| val [NOT] LIKE val [ESCAPE val]
| val [NOT] IN (val [, val …] | select_list)
| val IS [NOT] NULL
| val {>= | <=}
| val [NOT] {= | < | >}
| {ALL | SOME | ANY} (select_list)
| EXISTS (select_expr)
| SINGULAR (select_expr)
| val [NOT] CONTAINING val
| val [NOT] STARTING [WITH] val
| (search_condition)
| NOT search_condition
| search_condition OR search_condition
| search_condition AND search_condition
val = { col [array_dim] | :variable
| constant | expr | function
| udf ([val [, val …]])

Embarcadero Technologies 19

SQL Statement and Function Reference

| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]
constant = num | 'string' | charsetname 'string'
function = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
| CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)
operator = {= | < | > | <= | >= | !< | !> | <> | !=}
select_one = SELECT on a single column; returns exactly one value.
select_list = SELECT on a single column; returns zero or more values.
select_expr = SELECT on a list of values; returns zero or more values.

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Notes on ALTER TABLE syntax:

• The column constraints for referential integrity were new in InterBase 5.
• You cannot specify a COLLATE clause for Blob columns.
• When declaring arrays, you must include the outermost brackets, shown below in bold. For example,

the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters
long:

my_array = varchar(6)[5,5]

• Use the colon (:) to specify an array with a starting point other than 1. The following example creates
an array of integers that begins at 20 and ends at 30:

my_array = integer[20:30]

• For the full syntax of search_condition, see CREATE TABLE.

Argument Description

<table> Name of an existing table to modify.

<operation> Action to perform on the table. Valid options are:

• ADD a new column or table constraint to a table

• DROP an existing column or constraint from a table

<col_def> Description of a new column to add.

• Must include a column name and <data_type>.

• Can also include default values, column constraints, and a specific collation order.

<col> Name of the column to add or drop; column name must be unique within the table.

Embarcadero Technologies 20

SQL Statement and Function Reference

Argument Description

<data_type> Data type of the column; see Data Types.

ALTER [COLUMN] Modifies column names, data types, and positions. Can also be used with ENCRYPT
and DECRYPT options to encrypt and decrypt a column. For more information about
encrypting databases and columns, see “Encrypting Your Data” in the Data Definition
Guide.

COMPUTED [BY]<expr> Specifies that the value of the column’s data is calculated from expr at runtime and is
therefore not allocated storage space in the database.

• <expr> can be any arithmetic expression valid for the data types in the expres-
sion.

• Any columns referenced in <expr> must exist before they can be used in <expr>.

• <expr> cannot reference Blob columns.

• <expr> must return a single value, and cannot return an array.

<domain> Name of an existing domain.

DEFAULT Specifies a default value for column data; this value is entered when no other entry is
made; possible values are:

• <literal>: Inserts a specified string, numeric value, or date value.

• NULL: Enters a NULL value; this is the default DEFAULT.

• USER: Enters the user name of the current user; column must be of compatible
text type to use the default.

Defaults set at column level override defaults set at domain level.

CONSTRAINT <constraint> Name of a column or table constraint; the constraint name must be unique within the
table.

<constraint_def> Specifies the kind of column constraint; valid options are UNIQUE, PRIMARY KEY, CHECK,
and REFERENCES.

CHECK <search_condition> An attempt to enter a new value in the column fails if the value does not meet the
<search_condition>.

REFERENCES Specifies that the column values are derived from column values in another table; if
you do not specify column names, InterBase looks for a column with the same name as
the referencing column in the referenced table.

ON DELETE|ON UPDATE Used with REFERENCES: Changes a foreign key whenever the referenced primary key
changes; valid options are:

• [Default] NO ACTION: Does not change the foreign key; may cause the primary key
update to fail due to referential integrity checks.

• CASCADE: For ON DELETE, deletes the corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the new value of the primary key.

• SET NULL: Sets all the columns of the corresponding foreign key to NULL.

• SET DEFAULT: Sets every column of the corresponding foreign key to its default
value in effect when the referential integrity constraint is defined; when the de-
fault for a foreign column change after the referential integrity constraint is de-
fined, the change does not have an effect on the default value used in the referen-
tial integrity constraint.

NOTNULL Specifies that a column cannot contain a NULL value.

• If a table already has rows, a new column cannot be NOT NULL.

• NOT NULL is a column attribute only.

DROP CONSTRAINT Drops the specified table constraint.

Embarcadero Technologies 21

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

Argument Description

<table_constraint> Description of the new table constraint; constraints can be PRIMARY KEY, UNIQUE, FOR-
EIGN KEY, or CHECK.

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and Collation
Orders for more information.

Description: ALTER TABLE modifies the structure of an existing table. A single ALTER TABLE statement can
perform multiple adds and drops.

• A table can be altered by its creator, the SYSDBA user, and any users with operating system superuser
privileges.

• ALTER TABLE fails if the new data in a table violates a PRIMARY KEY or UNIQUE constraint definition added
to the table. Dropping or altering a column fails if any of the following are true:

• The column is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint.
• The column is used in a CHECK constraint.
• The column is used in the <value> expression of a computed column.
• The column is referenced by another database object such as a view.

IMPORTANT

When a column is dropped, all data stored in it is lost.

Constraints:

• Referential integrity constraints include optional ON UPDATE and ON DELETE clauses. They define the
change to be made to the referencing column when the referenced column is updated or deleted.

• To delete a column referenced by a computed column, you must drop the computed column before
dropping the referenced column. To drop a column referenced in a FOREIGN KEY constraint, you must
drop the constraint before dropping the referenced column. To drop a PRIMARY KEY or UNIQUE con-
straint on a column that is referenced by FOREIGN KEY constraints, drop the FOREIGN KEY constraint
before dropping the PRIMARY KEY or UNIQUE key it references.

• You can create a FOREIGN KEY reference to a table that is owned by someone else only if that owner
has explicitly granted you the REFERENCES privilege on that table using GRANT. Any user who updates
your foreign key table must have REFERENCES or SELECT privileges on the referenced primary key table.

• You can add a check constraint to a column that is based on a domain but be aware that changes to
tables that contain CHECK constraints with subqueries may cause constraint violations.

• Naming column constraints is optional. If you do not specify a name, InterBase assigns a system-gen-
erated name. Assigning a descriptive name can make a constraint easier to find for changing or drop-
ping, and more descriptive when its name appears in a constraint violation error message.

• When creating new columns in tables with data, do not use the UNIQUE constraint. If you use the NOT
NULL constraint on a table with data, you should also specify a default value.

Example: The following isql statement adds a column to a table and drops a column:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25),
DROP CURRENCY;

Embarcadero Technologies 22

SQL Statement and Function Reference

This statement results in the loss of all data in the dropped CURRENCY column.

The next isql statement changes the name of the LARGEST_CITY column to BIGGEST_CITY:

ALTER TABLE COUNTRY ALTER LARGEST_CITY TO BIGGEST_CITY;

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in nature. An
archival table means that the rows of a table are infrequently or never UPDATED or DELETED; have complex
queries, such as aggregates and analytics that process a high percentage of rows; and where indexes are
rebuilt and the database is backed and/or restored frequently. These database operations could see a
performance improve of 20% or more with a savings in storage space.

By default, InterBase reserves a small amount of space in each data page of a table to optimize UPDATE
and DELETE operations on resident rows. This reserve space can amount to 20% or more of the total space
occupied by all of the rows of the table. Some tables archive historical data or data that are UPDATED
infrequently or not at all and their rows may never be deleted. Database operations that process most
or all of the rows, such as backup, restore, index creation, aggregate computation have always suffered
performance penalties proportional to this reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and maxi-
mizes row packing for the most efficient fill ratio. At the database level, it has been possible to restore
a database with the -USE_ALL_SPACE switch so that no space is reserved for any table. To change the
storage behavior in a like manner for new or existing databases, the same clause is introduced for CRE-
ATE/ALTER DATABASE.

User Interface

To effect the new storage behavior, a non-standard SQL clause is added:

Clause is presented before the secondary file specification.

Clause is presented in any order with other SET elements.

ALTER DATABASE ... SET [NO] RESERVE SPACE

 Clause is presented in any order with other ADD, DROP, ALTER elements.

ALTER TABLE <TABLE name> ... SET [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record version stub,
as would normally be the case. Over many row insertions, a decrease in storage size should be observed
relative to what the table size would be in the absence of this feature. The optional NO keyword when used
with ALTER TABLE toggles the behavior to the alternate state of the current storage behavior for the table.

The NO RESERVE storage modifier is preserved across database backup and restore. This state is stored
as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the system table RDB
$RELATIONS.

Embarcadero Technologies 23

SQL Statement and Function Reference

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's column
definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner for the CREATE
TABLE output of the respective table listing. The state for database-wide storage behavior is stored in a
like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A temporary table can be altered in the same way as a permanent base table although there is no official
support to toggle the behavior of the ON COMMIT clause. The specification offers an ALTER TABLE syntax
to toggle that behavior.

ALTER TABLE <table> ON COMMIT {PRESERVE | DELETE} ROWS [{RESTRICT |
CASCADE}]

RESTRICT will report an error if there are dependencies by other temporary tables on the current table
scope. CASCADE will automatically propagate this table scope change to other temporary tables to main-
tain compliance. The default action is RESTRICT.

For example, assume that TT1 is a temporary table with ON COMMIT PRESERVE and has a foreign reference
to temporary table TT2 which is also ON COMMIT PRESERVE. If an attempt is made to modify TT2 to ON
COMMIT DELETE, an error is raised because an ON COMMIT PRESERVE table is not allowed by the SQL
standard to have a referential constraint on an ON COMMIT DELETE table. RESTRICT returns this error
while CASCADE would also alter TT1 to have ON COMMIT DELETE. Thus, CASCADE implements transitive
closure when ON COMMIT behavior is modified.

Note: This specification of ALTER TABLE extension does not allow a table to be toggled between temporary
and persistent.

9.8. ALTER TRIGGER
Changes an existing trigger. Available in DSQL and isql.

 ALTER TRIGGER <name> [ACTIVE | INACTIVE]
[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION <number>]
[AS trigger_body] ;

Argument Description

<name> Name of an existing trigger.

ACTIVE [Default] Specifies that a trigger action takes effect when fired.

INACTIVE Specifies that a trigger action does not take effect.

BEFORE Specifies the trigger fires before the associated operation takes place.

AFTER Specifies the trigger fires after the associated operation takes place.

DELETE|INSERT|UPDATE Specifies the table operation that causes the trigger to fire.

POSITION <number> Specifies order of firing for triggers before the same action or after the same action.

• <number> must be an integer between 0 and 32,767, inclusive.

• Lower-number triggers fire first.

Embarcadero Technologies 24

SQL Statement and Function Reference

Argument Description

• Triggers for a table need not be consecutive; triggers on the same action with the
same position number fire in random order.

<trigger_body> Body of the trigger: a block of statements in procedure and trigger language.

• See CREATE TRIGGER. for a complete description.

Description: ALTER TRIGGER changes the definition of an existing trigger. If any of the arguments to ALTER
TRIGGER are omitted, then they default to their current values, that is the value specified by CREATE TRIGGER,
or the last ALTER TRIGGER.

ALTER TRIGGER can change:

• Header information only, including the trigger activation status, when it performs its actions, the event
that fires the trigger, and the order in which the trigger fires compared to other triggers.

• Body information only, the trigger statements that follow the AS clause.
• Header and trigger body information. In this case, the new trigger definition replaces the old trigger

definition.

A trigger can be altered by its creator, the SYSDBA user, and any users with operating system root privileges.

NOTE

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE to change the constraint
definition.

Examples: The following statement modifies the trigger, SET_CUST_NO, to be inactive:

ALTER TRIGGER SET_CUST_NO INACTIVE;

The next statement modifies the trigger, SET_CUST_NO, to insert a row into the table, NEW_CUSTOMERS,
for each new customer.

ALTER TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS
BEGIN
NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
INSERT INTO NEW_CUSTOMERS(NEW.CUST_NO, TODAY)
END ;

9.9. ALTER USER
Change an existing user. Available in DSQL and isql.

ALTER USER <name> SET
[PASSWORD <password>]
[[NO] DEFAULT ROLE <name>]
[[NO] SYSTEM USER NAME <name>]
[[NO] GROUP NAME <name>]
[[NO] UID <number>]

Embarcadero Technologies 25

SQL Statement and Function Reference

[[NO] GID <number>]
[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]
[ACTIVE]
[INACTIVE];

Argument Description

PASSWORD Password of user.

[NO]DEFAULT ROLE Default role.

[NO] SYSTEM USER NAME System user name for target user.

[NO]GROUP NAME Group name for target user.

[NO] UID Target user ID.

[NO] GID Group ID for target user.

[NO] DESCRIPTION Description

[NO]FIRST NAME First name for target user.

[NO] MIDDLE NAME Middle name for target user.

[NO]LAST NAME Last name for target user.

ACTIVE Default. After inactive, reinstates selected user.

INACTIVE Prevents a user from logging into database.

Description: Alter user changes the definition of an existing user. Only used with database under em-
bedded user authentication.

If you choose to set more than one property value for the user, include a comma between each proper-
ty-value pair.

NOTE

When NO is specified, an argument to the option must not be supplied. No sets the option to a NULL state.

Examples: The following statement modifies the user, JDOE, to be inactive:

ALTER USER JDOE SET INACTIVE;

The next statement modifies the user, JDOE, to be active:

ALTER USER JDOE SET ACTIVE;

9.10. AVG()
Calculates the average of numeric values in a specified column or expression. Available in gpre, DSQL,
and isql.

 AVG ([ALL] VALUE | DISTINCT VALUE)

Embarcadero Technologies 26

SQL Statement and Function Reference

Argument Description

ALL Returns the average of all values.

DISTINCT Eliminates duplicate values before calculating the
average.

<value> A column or expression that evaluates to a numeric
data type.

Description: AVG() is an aggregate function that returns the average of the values in a specified column
or expression. Only numeric data types are allowed as input to AVG().

If a field value involved in a calculation is NULL or unknown, it is automatically excluded from the calculation.
Automatic exclusion prevents averages from being skewed by meaningless data.

AVG() computes its value over a range of selected rows. If the number of rows returned by a SELECT is
zero, AVG() returns a NULL value.

Examples: The following embedded SQL statement returns the average of all rows in a table:

EXEC SQL
SELECT AVG (BUDGET) FROM DEPARTMENT INTO :avg_budget;

The next embedded SQL statement demonstrates the use of SUM(), AVG(), MIN(), and MAX() over a subset
of rows in a table:

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.11. BASED ON
Declares a host-language variable based on a column. Available in gpre.

 BASED [ON] [<dbhandle>.]<table>.<col>[.SEGMENT] <variable>;

Argument Description

<dbhandle> Handle for the database in which a table resides in a multi-database program; <dbhandle> must be pre-
viously declared in a SET DATABASE statement.

<table.col> Name of table and name of column on which the variable is based.

.SEGMENT Bases the local variable size on the segment length of the Blob column during BLOB FETCH operations;
use only when <table.col> refers to a column of BLOB data type.

<variable> Name of the host-language variable that inherits the characteristics of a database column.

Description: BASED ON is a preprocessor directive that creates a host-language variable based on a column
definition. The host variable inherits the attributes described for the column and any characteristics that
make the variable type consistent with the programming language in use. For example, in C, BASED ON adds
one byte to CHAR and VARCHAR variables to accommodate the NULL character terminator.

Embarcadero Technologies 27

SQL Statement and Function Reference

Use BASED ON in a variable declaration section of a program.

NOTE

BASED ON does not require the EXEC SQL keywords.

To declare a host-language variable large enough to hold a Blob segment during FETCH operations, use
the SEGMENT option of the BASED ON clause. The size of the variable is derived from the segment length
of a Blob column. If the segment length for the Blob column is changed in the database, recompile the
program to adjust the size of host variables created with BASED ON.

Examples: The following embedded statements declare a host variable based on a column:

EXEC SQL
BEGIN DECLARE SECTION
BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

9.12. BEGIN DECLARE SECTION
Identifies the start of a host-language variable declaration section. Available in gpre.

BEGIN DECLARE SECTION;

Description: BEGIN DECLARE SECTION is used in embedded SQL applications to identify the start of host-
language variable declarations for variables that will be used in subsequent SQL statements. BEGIN DECLARE
SECTION is also a preprocessor directive that instructs gpre to declare SQLCODE automatically for the
applications programmer.

IMPORTANT

BEGIN DECLARE SECTION must always appear within a module’s global variable declaration section.

Example: The following embedded SQL statements declare a section and a host-language variable:

EXEC SQL
BEGIN DECLARE SECTION;
BASED ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

9.13. CASE
The CASE function allows you to evaluate a column value on a row against multiple criteria, where each
criterion might return a different value.

CASE <expression>
WHEN <expression> THEN <expression> | NULL
[ELSE <expression> | NULL]
[COALESCE <expression>]

Embarcadero Technologies 28

SQL Statement and Function Reference

[NULLIF <expression, expression, ...>]
END

Description: The CASE expression is a conditional value expression that consists of a list of value expres-
sions, each of which is associated with a conditional expression. A CASE expression evaluates to the first
value expression in the list for which its associated conditional expression evaluates to TRUE. The CASE ex-
pression has simple and searched forms of syntax.

The COALESCE and NULLIF expressions are common, shorthand forms of use for the CASE expression involving
the NULL state. A COALESCE expression consists of a list of value expressions. It evaluates to the first value
expression in the list that evaluates to non-NULL. If none of the value expressions in the list evaluates to
non-NULL, then the COALESCE expression evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are unequal then
the NULLIF expression evaluates to the first value expression in the list. Otherwise, it evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib database:

SELECT emp.first_name || ' ' || emp.last_name AS NAME,
CASE proj.proj_name
 WHEN 'DigiPizza' THEN 'Digital Pizza'
 WHEN 'AutoMap' THEN 'AutoMobile Map'
 WHEN 'Translator upgrade' THEN 'Universal Language Translator'
 ELSE 'Other'
END
AS project
FROM employee emp
 INNER JOIN employee_project emp_proj
 ON emp.emp_no = emp_proj.emp_no
 INNER JOIN project proj
 ON emp_proj.proj_id = proj.proj_id

9.14. CAST()
Converts a column from one data type to another. Available in gpre, DSQL, and isql.

 CAST (VALUE AS <data_type>)

Argument Description

<val> A column, constant, or expression; in SQL, <val> can also be a host-language variable, function, or UDF.

<data_type> Data type to which to convert.

Description: CAST() allows mixing of numerics and characters in a single expression by converting val
to a specified data type.

Normally, only similar data types can be compared in search conditions. CAST() can be used in search
conditions to translate one data type into another for comparison purposes.

Data types can be converted as shown in the following table:

Embarcadero Technologies 29

SQL Statement and Function Reference

From data type class To data type class

Numeric character, varying character, numeric

Character, varying character numeric, date, time, timestamp

Date character, varying character, timestamp

Time character, varying character, timestamp

Timestamp character, varying character, date, time

Blob, arrays —

Boolean character, varying character

An error results if a given data type cannot be converted into the data type specified in CAST(). For example,
you will get a string conversion error if you attempt to cast from a numeric type which is unable to represent
in a date type to a date (e.g. a numeric type attempting to represent "year 99/12/31"(December) or "year
32768/3/1"(March)).

Example: In the following WHERE clause, CAST() is used to translate a CHARACTER data type, INTERVIEW_DATE,
to a DATE data type to compare against a DATE data type, HIRE_DATE:

. . .
WHERE HIRE_DATE = CAST (INTERVIEW_DATE AS DATE);

To cast a VARCHAR data type, you must specify the length of the string, for example:

UPDATE client SET charef = CAST (clientref AS VARCHAR(20));

9.15. CLOSE
Closes an open cursor. Available in gpre.

 CLOSE <cursor>;

Argument Description

<cursor> Name of an open cursor

Description: CLOSE terminates the specified cursor, releasing the rows in its active set and any associat-
ed system resources. A cursor is a one-way pointer into the ordered set of rows retrieved by the select
expression in the DECLARE CURSOR statement. A cursor enables sequential access to retrieved rows in turn
and update in place.

There are four related cursor statements:

Stage Statement Purpose

1 DECLARE CUR-
SOR

Declares the cursor; the SELECT statement determines rows retrieved for the cursor.

2 OPEN Retrieves the rows specified for retrieval with DECLARECURSOR; the resulting rows become the
active set of the cursor.

3 FETCH Retrieves the current row from the active set, starting with the first row; subsequent FETCH
statements advance the cursor through the set.

Embarcadero Technologies 30

SQL Statement and Function Reference

4 CLOSE Closes the cursor and releases system resources.

FETCH statements cannot be issued against a closed cursor. Until a cursor is closed and reopened, InterBase
does not reevaluate values passed to the search conditions. Another user can commit changes to the
database while a cursor is open, making the active set different the next time that cursor is reopened.

NOTE

In addition to CLOSE, COMMIT and ROLLBACK automatically close all cursors in a transaction.

Example: The following embedded SQL statement closes a cursor:

EXEC SQL
CLOSE BC;

9.16. CLOSE (BLOB)
Terminates a specified Blob cursor and releases associated system resources. Available in gpre.

 CLOSE <blob_cursor>;

Argument Description

<blob_cursor> Name of an open Blob cursor

Description:CLOSE closes an opened read or insert Blob cursor. Generally a Blob cursor should be closed
only after:

• Fetching all the Blob segments for BLOB READ operations.
• Inserting all the segments for BLOB INSERT operations.

Example: The following embedded SQL statement closes a Blob cursor:

EXEC SQL
CLOSE BC;

9.17. COALESCE()
The COALESCE function evaluates to the first value expression in a list that evaluates to non-NULL. If none of
the value expressions in the list evaluates to non-NULL, then the COALESCE expression evaluates to NULL.

 COALESCE(<expression1>,<expression2>,...<expression_n>)

Description: The COALESCE and NULLIF expressions are common, shorthand forms of use for the CASE
expression involving the NULL state. A COALESCE expression consists of a list of value expressions. It evaluates
to the first value expression in the list that evaluates to non-NULL. If none of the value expressions in the
list evaluates to non-NULL, then the COALESCE expression evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib database:

Embarcadero Technologies 31

SQL Statement and Function Reference

select coalesce(department, head_dept, location) from department

9.18. COMMIT
Makes changes of a transaction to the database permanent, and ends the transaction. Available in gpre,
DSQL, and isql.

 COMMIT [WORK] [TRANSACTION <name>] [RELEASE] [RETAIN [SNAPSHOT]];

IMPORTANT

 In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

WORK An optional word used for compatibility with other relational databases that require it

TRANSACTION <name> Commits transaction name to database. Without this option, COMMIT affects the default
transaction.

RELEASE Available for compatibility with earlier versions of InterBase.

RETAIN [SNAPSHOT] Commits changes and retains current transaction context.

Description: COMMIT is used to end a transaction and:

• Write all updates to the database.
• Make the changes of transaction visible to subsequent SNAPSHOT transactions or READ COMMITTED trans-

actions.
• Close open cursors, unless the RETAIN argument is used.

A transaction ending with COMMIT is considered a successful termination. Always use COMMIT or ROLLBACK
to end the default transaction.

TIP

After read-only transactions, which make no database changes, use COMMIT rather than ROLLBACK. The effect is the
same, but the performance of subsequent transactions is better and the system resources used by them are reduced.

IMPORTANT

The RELEASE argument is only available for compatibility with previous versions of InterBase. To detach from a database
use DISCONNECT.

Examples: The following isql statement makes permanent the changes to the database made by the
default transaction:

COMMIT;

The next embedded SQL statement commits a named transaction:

Embarcadero Technologies 32

SQL Statement and Function Reference

EXEC SQL
COMMIT TR1;

The following embedded SQL statement uses COMMIT RETAIN to commit changes while maintaining the
current transaction context:

EXEC SQL
COMMIT RETAIN;

9.19. CONNECT
Attaches to one or more databases. Available in gpre. A subset of CONNECT options is available in isql.

isql:

CONNECT 'filespec' [USER 'username'][PASSWORD 'password']
[CACHE INT] [ROLE 'rolename']

SQL:

CONNECT [TO] {ALL | DEFAULT} <config_opts>
| <db_specs> <config_opts> [, <db_specs> <config_opts>...];
<db_specs> = dbhandle
| {'filespec' | :variable} AS dbhandle
<config_opts> = [USER {'username' | :variable}]
[PASSWORD {'password' | :variable}]
[ROLE {'rolename' | :variable}]
[CACHE INT [BUFFERS]]

Argument Description

{ALL|DEFAULT} Connects to all databases specified with SET DATABASE; options specified with
CONNECT TO ALL affect all databases.

<'filespec>' Database file name; can include path specification and node. The filespec must
be in quotes if it includes spaces.

<dbhandle> Database handle declared in a previous SET DATABASE statement;
available in embedded SQL but not in isql.

<:variable> Host-language variable specifying a database, user name, or password; avail-
able in embedded SQL but not in isql.

AS<dbhandle> Attaches to a database and assigns a previously-declared handle to it; avail-
able in embedded SQL but not in isql.

USER {'<username>' | :<variable>} String or host-language variable that specifies a user name for use when at-
taching to the database. The server checks the user name against the security
database. User names are case insensitive on the server.

PASSWORD{‘<password>’ | :<vari-
able>}

String or host-language variable, up to 8 characters in size, that specifies pass-
word for use when attaching to the database. The server checks the user name
and password against the security database. Case sensitivity is retained for the
comparison.

Embarcadero Technologies 33

SQL Statement and Function Reference

Argument Description

ROLE{‘<rolename>’ | :<variable>} String or host-language variable, up to 67 characters in size, which specifies
the role that the user adopts on connection to the database. The user must
have previously been granted membership in the role to gain the privileges of
that role. Regardless of role memberships granted, the user has the privileges
of a role at connect time only if a ROLE clause is specified in the connection.
The user can adopt at most one role per connection, and cannot switch roles
except by reconnecting.

CACHE <int> [BUFFERS] Sets the number of cache buffers for a database, which determines the num-
ber of database pages a program can use at the same time. Values for <int>:

• Default: 256

• Maximum value: system-dependent

Do not use the <filespec> form of database name with cache assignments.

Description: The CONNECT statement:

• Initializes database data structures.
• Determines if the database is on the originating node (a local database) or on another node (a remote

database). An error message occurs if InterBase cannot locate the database.
• Optionally specifies one or more of a user name, password, or role for use when attaching to the

database. PC clients must always send a valid user name and password. InterBase recognizes only
the first 8 characters of a password.

If an InterBase user has ISC_USER and ISC_PASSWORD environment variables set and the user defined by those
variables is not in the InterBase security database (admin.ib by default), the user receives the following
error when attempting to view users from the local server manager connection: “undefined user name
and password.” This applies only to the local connection; the automatic connection made through Server
Manager bypasses user security.

• Attaches to the database and verifies the header page. The database file must contain a valid database,
and the on-disk structure (ODS) version number of the database must be the one recognized by the
installed version of InterBase on the server, or InterBase returns an error.

• Optionally establishes a database handle declared in a SET DATABASE statement.
• Specifies a cache buffer for the process attaching to a database.

In SQL programs before a database can be opened with CONNECT, it must be declared with the SET DATABASE
statement. isql does not use SET DATABASE.

In SQL programs while the same CONNECT statement can open more than one database, use separate
statements to keep code easy to read.

When CONNECT attaches to a database, it uses the default character set (NONE), or one specified in a previous
SET NAMES statement.

In SQL programs, the CACHE option changes the database cache size count (the total number of available
buffers) from the default of 75. This option can be used to:

• Set a new default size for all databases listed in the CONNECT statement that do not already have a
specific cache size.

• Specify a cache for a program that uses a single database.

Embarcadero Technologies 34

SQL Statement and Function Reference

• Change the cache for one database without changing the default for all databases used by the pro-
gram.

The size of the cache persists as long as the attachment is active. If a database is already attached through
a multi-client server, an increase in cache size due to a new attachment persists until all the attachments
end. A decrease in cache size does not affect databases that are already attached through a server.

A subset of CONNECT features is available in isql: database file name, USER, and PASSWORD. isql can only
be connected to one database at a time. Each time CONNECT is used to attach to a database, previous
attachments are disconnected.

Examples: The following statement opens a database for use in isql. It uses all the CONNECT options
available to isql:

CONNECT 'employee.ib' USER 'ACCT_REC' PASSWORD 'peanuts';

The next statements, from an embedded application, attach to a database file stored in the host-language
variable and assign a previously-declared database handle to it:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';
EXEC SQL
CONNECT :db_file AS DB1;

The following embedded SQL statement attaches to employee.ib and allocates 150 cache buffers:

EXEC SQL
CONNECT 'accounts.ib' CACHE 150;

The next embedded SQL statement connects the user to all databases specified with previous SET DATABASE
statements:

EXEC SQL
CONNECT ALL USER 'ACCT_REC' PASSWORD 'peanuts'
CACHE 50;

The following embedded SQL statement attaches to the database, employee.ib, with 80 buffers and
database employee2.ib with the default of 75 buffers:

EXEC SQL
CONNECT 'employee.ib' CACHE 80, 'employee2.ib';

The next embedded SQL statement attaches to all databases and allocates 50 buffers:

EXEC SQL
CONNECT ALL CACHE 50;

The following embedded SQL statement connects to EMP1 and v, setting the number of buffers for each
to 80:

Embarcadero Technologies 35

SQL Statement and Function Reference

EXEC SQL
CONNECT EMP1 CACHE 80, EMP2 CACHE 80;

The next embedded SQL statement connects to two databases identified by variable names, setting dif-
ferent user names and passwords for each:

EXEC SQL
CONNECT
:orderdb AS DB1 USER 'ACCT_REC' PASSWORD 'peanuts',
:salesdb AS DB2 USER 'ACCT_PAY' PASSWORD 'payout';

9.20. COUNT()
Calculates the number of rows that satisfy search condition of a query. Available in gpre, DSQL, and isql.

 COUNT (* | [ALL] VALUE | DISTINCT VALUE)

Argument Description

 Retrieves the number of rows in a specified table, including NULL values

ALL Counts all non-NULL values in a column.

DISTINCT Returns the number of unique, non-NULL values for the column.

<val> A column or expression.

Description: COUNT() is an aggregate function that returns the number of rows that satisfy the search
condition of a query. It can be used in views and joins, as well as in tables.

Example: The following embedded SQL statement returns the number of unique currency values it en-
counters in the COUNTRY table:

EXEC SQL
SELECT COUNT (DISTINCT CURRENCY) INTO :cnt FROM COUNTRY;

9.21. CREATE DATABASE
Creates a new database. Available in gpre, DSQL, and isql.

 CREATE {DATABASE | SCHEMA} '<filespec>'
[USER '<username>' [PASSWORD '<password>']]
[PAGE_SIZE [=] <int>]
[LENGTH [=] <int> [PAGE[S]]]
[WITH ADMIN OPTION]
[DEFAULT CHARACTER SET <charset>]
[secondary_file];
secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = [LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }
[fileinfo]

Embarcadero Technologies 36

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

‘<filespec>’
• A new database file specification.

• File naming conventions are platform-specific.

USER ‘<username>’
• Checks the <username> against valid user name and password

combinations in the security database on the server where the
database will reside.

• Windows client applications must provide a user name when attach-
ing to a server.

PASSWORD ‘<password>’
• Checks the <password> against valid user name and password com-

binations in the security database on the server where the database
will reside; can be up to 8 characters.

• Windows client applications must provide a password when attach-
ing to a server.

PAGE_SIZE [=] <int>
• Size, in bytes, for database pages.

• int can be 1024 (default), 2048, 4096, 8129, or 16384.

PREALLOCATE [=] <number> [PAGE[S]]
• Reserves storage space in a file system for the requested number of

database pages. It guarantees that a write will not fail due to lack of
storage space over this range of pages.

WITH ADMIN OPTION
• Create new database with embedded user authentication enabled.

DEFAULT CHARACTER SET <charset>
• Sets default character set for a database.

• <charset> is the name of a character set; if omitted, character set
defaults to NONE.

FILE ‘<filespec>’
• Names one or more secondary files to hold database pages after the

primary file is filled.

• For databases created on remote servers, secondary file specifica-
tions cannot include a node name.

STARTING [AT [PAGE]] <int> Specifies the starting page number for a secondary file.

LENGTH[=]
<int> [PAGE[S]] • Specifies the length of a primary or secondary database file.

• Use for primary file only if defining a secondary file in the same
statement.

Description: CREATE DATABASE creates a new, empty database and establishes the following characteristics
for it:

• The name of the primary file that identifies the database for users.

By default, databases are contained in single files.

• The name of any secondary files in which the database is stored.

Embarcadero Technologies 37

SQL Statement and Function Reference

A database can reside in more than one disk file if additional file names are specified as secondary files. If
a database is created on a remote server, secondary file specifications cannot include a node name.

• The size of database pages.

Increasing page size can improve performance for the following reasons:

• Indexes work faster because the depth of the index is kept to a minimum.
• Keeping large rows on a single page is more efficient.
• Blob data is stored and retrieved more efficiently when it fits on a single page.

If most transactions involve only a few rows of data, a smaller page size might be appropriate, since less
data needs to be passed back and forth and less memory is used by the disk cache.

• The number of pages in each database file.
• The dialect of the database.

The initial dialect of the database is the dialect of the client that creates it. For example, if you are using
isql, either start it with the -sql_dialect <n> switch or issue the SETSQL DIALECT <n> command before
issuing the CREATE DATABASE command. Typically, you would create all databases in dialect 3. Dialect 1 exists
to ease the migration of legacy databases.

To change the dialect of a database, use gfix or the Properties dialog in IBConsole. See the Migration
appendix in the InterBase Operations Guide for information about migrating databases.

• The character set used by the database.

For a list of the character sets recognized by InterBase, see Character Sets and Collation Orders.

Choice of DEFAULT CHARACTER SET limits possible collation orders to a subset of all available collation orders.
Given a specific character set, a specific collation order can be specified when data is selected, inserted,
or updated in a column.

If you do not specify a default character set, the character set defaults to NONE. Using character set NONE
means that there is no character set assumption for columns; data is stored and retrieved just as you
originally entered it. You can load any character set into a column defined with NONE, but you cannot load
that same data into another column that has been defined with a different character set. In that case, no
transliteration is performed between the source and destination character sets, and transliteration errors
may occur during assignment.

• System tables that describe the structure of the database.

After creating the database, you define its tables, views, indexes, and system views as well as any triggers,
generators, stored procedures, and UDFs that you need.

IMPORTANT

 In DSQL, you must execute CREATE DATABASE EXECUTE IMMEDIATE. The database handle and transaction name, if
present, must be initialized to zero prior to use.

Read-only databases :

Embarcadero Technologies 38

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

Databases are always created in read-write mode. You can change a table to read-only mode in one of two
ways: you can specify mode -read_only when you restore a backup, or you can use gfix -mode read_only
to change the mode of a table to read-only. See “Database User Management” in the Operations Guide
for more information on database configuration and maintenance.

About file sizes:

InterBase dynamically expands the last file in a database as needed. The maximum file size is system-de-
pendent. This applies to single-file databases as well as to the last file of multifile databases. You should
be aware that specifying a LENGTH for such files has no effect.

The total file size is the product of the number of database pages times the page size. The default page size
is 4KB and the maximum page size is 16KB. However, InterBase files are small at creation time and increase
in size as needed. The product of number of pages times page size represents a potential maximum size,
not the size at creation.

Examples: The following isql statement creates a database in the current directory using isql:

CREATE DATABASE 'employee.ib';

The next embedded SQL statement creates a database with a page size of 2048 bytes rather than the
default of 4096:

EXEC SQL
CREATE DATABASE 'employee.ib' PAGE_SIZE 2048;

The following embedded SQL statement creates a database stored in two files and specifies its default
character set:

EXEC SQL
CREATE DATABASE 'employee.ib'
DEFAULT CHARACTER SET ISO8859_1
FILE 'employee2.ib' STARTING AT PAGE 10001;

9.22. CREATE DOMAIN
Creates a column definition that is global to the database. Available in gpre, DSQL, and isql.

CREATE DOMAIN <domain> [AS] data_type
[DEFAULT {<literal> | NULL | USER}]
[NOT NULL] [CHECK (dom_search_condition)]
[COLLATE <collation>];
data_type> =
{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION} [array_dim]
| {DATE|TIME|TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(int)] [array_dim]
| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE int]

Embarcadero Technologies 39

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
| BOOLEAN
array_dim> = [[x:]y [, [x:]y …]]
dom_search_condition> =
VALUE operator value
| VALUE [NOT] BETWEEN value AND value
| VALUE [NOT] LIKE value [ESCAPE value]
| VALUE [NOT] IN (value [, value …])
| VALUE IS [NOT] NULL
| VALUE [NOT] CONTAINING value
| VALUE [NOT] STARTING [WITH] value
| (dom_search_condition)
| NOT dom_search_condition
| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator> = {= | < | > | <= | >= | !< | !> | <> | !=}

Note on the CREATE DOMAIN syntax:

• COLLATE is useful only for text data, not for numeric types. Also, you cannot specify a COLLATE clause
for Blob columns.

• When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is six characters
long:

my_array = varchar(6)[5,5]

• Use the colon (:) to specify an array with a starting point other than 1. The following example creates
an array of INTEGER values that begins at 20 and ends at 30:

my_array = integer[20:30]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<domain> Unique name for the domain.

<data_type> SQL data type

DEFAULT Specifies a default column value that is entered when no other entry is made; possible val-
ues are:

<literal> – Inserts a specified string, numeric value, or date value.

NULL – Enters a NULL value.

USER – Enters the user name of the current user; column must be of compatible character
type to use the default.

NOTNULL Specifies that the values entered in a column cannot be NULL.

Embarcadero Technologies 40

SQL Statement and Function Reference

CHECK (<dom_search_con-
dition>)

Creates a single CHECK constraint for the domain.

VALUE Placeholder for the name of a column eventually based on the domain.

COLLATE <collation> Specifies a collation sequence for the domain.

Description: CREATE DOMAIN builds an inheritable column definition that acts as a template for columns
defined with CREATE TABLE or ALTER TABLE. The domain definition contains a set of characteristics, which
include:

• Data type
• An optional default value
• Optional disallowing of NULL values
• An optional CHECK constraint
• An optional collation clause

The CHECK constraint in a domain definition sets a dom_search_condition that must be true for data entered
into columns based on the domain. The CHECK constraint cannot reference any domain or column.

NOTE

Be careful not to create a domain with contradictory constraints, such as declaring a domain NOT NULL and assigning
it a DEFAULT value of NULL.

The data type specification for a CHAR or VARCHAR text domain definition can include a CHARACTER SET clause
to specify a character set for the domain. Otherwise, the domain uses the default database character set.
For a complete list of character sets recognized by InterBase, see Character Sets and Collation Orders.

If you do not specify a default character set, the character set defaults to NONE. Using character set NONE
means that there is no character set assumption for columns; data is stored and retrieved just as you
originally entered it. You can load any character set into a column defined with NONE, but you cannot load
that same data into another column that has been defined with a different character set. In these cases,
no transliteration is performed between the source and destination character sets, so errors can occur
during assignment.

The COLLATE clause enables specification of a particular collation order for CHAR, VARCHAR, and NCHAR text data
types. Choice of collation order is restricted to those supported for the domain’s given character set, which
is either the default character set for the entire database, or a different set defined in the CHARACTER SET
clause as part of the data type definition. For a complete list of collation orders recognized by InterBase,
see Character Sets and Collation Orders.

Columns based on a domain definition inherit all characteristics of the domain. The domain default, colla-
tion clause, and NOTNULL setting can be overridden when defining a column based on a domain. A column
based on a domain can add additional CHECK constraints to the domain CHECK constraint.

Examples: The following isql statement creates a domain that must have a positive value greater than
1,000, with a default value of 9,999. The keyword VALUE substitutes for the name of a column based on
this domain.

CREATE DOMAIN CUSTNO
AS INTEGER
DEFAULT 9999

Embarcadero Technologies 41

SQL Statement and Function Reference

CHECK (VALUE > 1000);

The next isql statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ('software', 'hardware', 'other', 'N/A'));

The following isql statement creates a domain that defines an array of CHAR data type:

CREATE DOMAIN DEPTARRAY AS CHAR(67) [4:5];

In the following isql example, the first statement creates a domain with USER as the default. The next
statement creates a table that includes a column, ENTERED_BY, based on the USERNAME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)
DEFAULT USER;
CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,
ORDER_AMT DECIMAL(8,2));
INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)
VALUES ('1-MAY-93', 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase automatically
inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;
1-MAY-93 JSMITH 512.36

The next isql statement creates a BLOB domain with a TEXT subtype that has an assigned character set:

CREATE DOMAIN DESCRIPT AS
BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SJIS;

9.23. CREATE ENCRYPTION
Creates encryption keys for use during the encryption process.

CREATE ENCRYPTION key-name FOR AES | FOR DES

Argument Description

Key-name Name associated with the encryption key. Name must be unique.

For AES|DES Indicates the level of encryption InterBase will apply to the encrypted data. Advanced Encryption Stan-
dard (AES) is considered a strong encryption scheme and requires a license to use with InterBase. Data
Encryption Standard (DES) is considered a weak encryption scheme that requires no special license.

Description: CREATE ENCRYPTION creates an encryption key. Only a SYSDSO (Data Security Owner) can
create an encryption key. An encryption key is used to encrypt pages and/or columns of a database. The

Embarcadero Technologies 42

SQL Statement and Function Reference

database owner uses an encryption key to perform encryption on a specific database or column. InterBase
stores encryption keys in the RDB$ENCRYPTIONS system table.

Three new columns have been added to the RDB$RELATIONS_FIELDS table: RDB$ENCRYPTION_ID, RDB$DECRYP-
T_DEFAULT_VALUE and RDB$DECRYPT_DEFAULT_SOURCE to support the database page and column-level encryp-
tion as well.

Example: The following isql statement creates an encryption key called revenue_key using the AES en-
cryption scheme and a length of 192 bits:

CREATE ENCRYPTION revenue_key FOR AES WITH LENGTH 192 BITS

9.24. CREATE EXCEPTION
Creates a used-defined error and associated message for use in stored procedures and triggers. Available
in DSQL and isql.

CREATE EXCEPTION <name> '<message>';

IMPORTANT

 In SQL statements passed to DSQL, omit the terminating semicolon. In isql, the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name associated with the exception message; must be unique among exception names in the database.

‘<message>’ Quoted string containing alphanumeric characters and punctuation; maximum length = 78 characters.

Description: CREATE EXCEPTION creates an exception, a user-defined error with an associated message.
Exceptions may be raised in triggers and stored procedures.

Exceptions are global to the database. The same message or set of messages is available to all stored
procedures and triggers in an application. For example, a database can have English and French versions
of the same exception messages and use the appropriate set as needed.

When raised by a trigger or a stored procedure, an exception:

• Terminates the trigger or procedure in which it was raised and undoes any actions performed (directly
or indirectly) by it.

• Returns an error message to the calling application. In isql, the error message appears on the screen,
unless output is redirected.

Exceptions may be trapped and handled with a WHEN statement in a stored procedure or trigger.

Examples: This isql statement creates the exception, UNKNOWN_EMP_ID:

CREATE EXCEPTION UNKNOWN_EMP_ID 'Invalid employee number or project id.';

The following statement from a stored procedure raises the previously-created exception when SQLCODE
-530 is set, which is a violation of a FOREIGN KEY constraint:

Embarcadero Technologies 43

SQL Statement and Function Reference

. . .
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;
. . .

9.25. CREATE GENERATOR
Declares a generator to the database. Available in gpre, DSQL, and isql.

CREATE GENERATOR <name>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name for the generator

Description: CREATE GENERATOR declares a generator to the database and sets its starting value to zero. A
generator is a sequential number that can be automatically inserted in a column with the GEN_ID() function.
A generator is often used to ensure a unique value in a PRIMARY KEY, such as an invoice number, that must
uniquely identify the associated row.

A database can contain any number of generators. Generators are global to the database, and can be used
and updated in any transaction. InterBase does not assign duplicate generator values across transactions.

You can use SET GENERATOR to set or change the value of an existing generator when writing triggers,
procedures, or SQL statements that call GEN_ID().

9.26. CREATE INDEX
Creates an index on one or more columns in a table. Available in gpre, DSQL, and isql.

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index>
ON <table> (<col> [, <col> …]);

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

UNIQUE Prevents insertion or updating of duplicate values into indexed columns.

ASC[ENDING] Sorts columns in ascending order, the default order if none is specified.

DESC[ENDING] Sorts columns in descending order.

<index> Unique name for the index.

<table> Name of the table on which the index is defined.

Embarcadero Technologies 44

SQL Statement and Function Reference

<col> Column in <table> to index.

Description: Creates an index on one or more columns in a table. Use CREATE INDEX to improve the speed
of data access. Using an index for columns that appear in a WHERE clause may improve search performance.

IMPORTANT

 You cannot index Blob columns or arrays.

A UNIQUE index cannot be created on a column or set of columns that already contains duplicate or NULL
values.

ASC and DESC specify the order in which an index is sorted. For faster response to queries that require sorted
values, use the index order that matches the s ORDER BY clause of the query. Both an ASC and a DESC index
can be created on the same column or set of columns to access data in different orders.

TIP

To improve index performance, use SET STATISTICS to recompute index selectivity, or rebuild the index by making it
inactive, then active with sequential calls to ALTER INDEX.

Examples: The following isql statement creates a unique index:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The next isql statement creates a descending index:

CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);

The following isql statement creates a two-column index:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

9.27. CREATE JOURNAL
Creates a journal file and activates journaling.

CREATE JOURNAL [<journal-file-specification>] [LENGTH <number-of-pages>]
[CHECKPOINT LENGTH <number-of-pages> [PAGES]]
[CHECKPOINT INTERVAL <number-of-seconds> [SECONDS]]
[PAGE SIZE <number-of-bytes> [BYTES]]
[PAGE CACHE <number-of-buffers> [BUFFERS]]
[[NO] TIMESTAMP NAME]

Argument Description

journal-file-specification Specifies a quoted string containing the full path and base file name of the journal file.
The base journal file name is used as a template for the actual journal file names as
they are created. The default is the full database path and file name.

LENGTH This clause specifies the number of pages that can be written to the journal file before
rolling over to a new journal file. The maximum length is 2GB or 4000 pages.

Embarcadero Technologies 45

SQL Statement and Function Reference

Argument Description

CHECKPOINT LENGTH This clause specifies the number of pages that can be written to the journal file before
checkpoint occurs. The default is 500.

CHECKPOINT INTERVAL Determines the number of seconds between database checkpoints. The checkpoint in-
terval determines how long it will take to recover after a server crash. The default is 0.

Note: If both CHECKPOINT LENGTH and CHECKPOINT INTERVAL are specified,
whichever event occurs first will initiate a database checkpoint.

PAGE SIZE Determines the size of a journal page in bytes. A journal page size must be at least
twice the size of a database page size. If a journal page size of less is specified, it will be
rounded up to twice the database page size and a warning will be returned. The jour-
nal page size needs not be a power of 2. The default is twice the database size.

PAGE CACHE Determines the number of journal pages that are cached to memory. This number
must be large enough to provide buffers for worker threads to write to when the cache
writer is writing other buffers. If the number is too small, the worker threads wait and
performance suffers.The default is 100 buffers.

[NO]TIMESTAMP NAME Determines whether or not to append the file creation timestamp to the base journal
file name. The default is enabled.

If used, the base journal file name will be appended with a timestamp in the following
format:

YYYY_MM_DDTHH_MM_SSZ.sequence_number.journal

[NO] PREALLOCATE Determines journal file space requirements while simultaneously guaranteeing that the
space is allocated in advance. The default is twice the database size.

Description: A journal consists of one or more journal files. A journal file records each database transaction
as it occurs. To save changed journal pages in the database cache to the hard disk, you set up journaling
checkpoints to occur automatically. A checkpoint specifies the time at which InterBase must save all the
changed pages in the database cache to the database file.

The CREATE JOURNAL statement causes all subsequent write operations on a database to be done asyn-
chronously. The journal file I/O is always synchronous and cannot be altered. All transaction changes are
safely recorded on durable storage before the transaction is committed.

Journaling can be used with journal archiving to provide more complete disaster recovery.

Example: In the following example:

CREATE JOURNAL 'e:\database\test'
LENGTH 4000
CHECKPOINT LENGTH 10000
PAGE CACHE 2500;

The LENGTH parameter of 65000 will cause rollover to a new journal file every 1GB (65000 x 16KB). A CHECK-
POINT LENGTH parameter of 10000 means the database checkpoint will occur every 160MB (10000 x 16KB).
The 2500 journal buffer configuration will leave 2000 spare buffers for the worker threads to dump their
journal changes. At the built-in PAGE CACHE default of 100, the worker threads can stall due to a high rate
of journal buffer wait states.

Embarcadero Technologies 46

SQL Statement and Function Reference

9.28. CREATE JOURNAL ARCHIVE
Activities journal archiving and performs the initial database dump to the archive directory.

CREATE JOURNAL ARCHIVE <journal archive directory>

Argument Description

journal archive
directory

The location in which InterBase stores the journal archive. If the directory does not exist or is not acces-
sible, InterBase returns an error message. The directory path can be a local drive, a mapped drive, or an
UNC path (as long as the underlying file APIs can open the file using that specification). If you do not
specify a journal archive directory in the CREATE JOURNAL ARCHIVE statement, InterBase uses the jour-
nal directory created with the CREATE JOURNAL statement.

Description: The CREATE JOURNAL ARCHIVE command performs two functions: it activates journal archiv-
ing in an InterBase database, and it automatically performs the initial full, physical dump of the database.
InterBase stores the dump in the journal archive directory you specify in the CREATE statement. A journal
archive enables you to recover to the last committed transaction in the most recently archived and com-
pleted journal file.

IMPORTANT

CREATE JOURNAL ARCHIVE creates the archive and performs an initial dump. However, you must issue a specific gbak
command to copy completed journal files to the journal archive. You use another gbak command to perform subsquent
dumps to the archive. For information about the gbak archive commands, and about how to implement journaling and
journal archiving, see the InterBase Operations Guide.

9.28.1. Journal Archive Management
You can manage the Journal Archive feature of InterBase V8. The archive is a directory that holds journal
files, which have been archived from the local journal directory associated with a database. In addition,
to storing copies of the local journal files, the archive also stores database dumps that are periodically
backed up to the archive.

Description: Archived database dumps represent the starting point from which long-term database re-
covery is initiated. A set of archive journal files are applied to a copy of the archive database in the same
way that local journal files are applied to a production database during short-term recovery. Also, an In-
terBase timestamp can be specified to indicate a point-in-time until which the journal files will be applied.

When the archive is used to recover a database, the resulting database is not a journaled database. This
means that RDBLOG_FILES, RDBJOURNAL_FILES and the log page of the database are empty. This pre-
vents the database from accidently using the journal and journal archive of an existing database. Database
recovery is usually used when the original database is corrupted or unavailable due to hardware fail-
ures. However, it could be possible to recover a database on the same machine as the working pro-
duction database or on a different machine where the journal and journal archive directories have no
similarly-named directories. Therefore, if journaling and/or journal archiving is desired for the recovered
database, it is necessary to execute the appropriate DDL commands to do so.

Examples: gbak is used to archive databases and journal files to the archive, and is also used to recover
a database from the archive back to a specified local directory of the user's choice.

To archive a database:
gbak -archive_database <dbname>

Embarcadero Technologies 47

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

To archive local journal files:
gbak -archive_journals <dbname>

To recover a database (optionally to a point-in-time)

gbak -archive_recover [-until <timestamp>] <archive_dbname> <local_dbname>

If the -until command line switch is not given, the database recover applies as many journal files as possible
to recover a database to the most recent point-in-time. If possible, the database recovery attempts to
"jump" from the archive to the local journal directory to apply the journal files that were never copied to
the archive. In this way, a database may be recovered to the most recently committed transaction of the
original database.

If allowed, the archive grows in storage size infinitely as the database and the most current journal files are
continually archived. gfix is used to manage and garbage collect archived items that are no longer required.
As the number of journal files grows in the archive without have created more recent archived database
dumps, so does the time that will be needed to recover the database from the archive. Therefore, it is
desirable to periodically create additional database dumps in the archive. At some point, you may decided
that older database dumps and the journal files on which they depend on are no longer necessary, as the
basis of recovery will be on more recent database dumps and journal files.

All archive items are denoted by an archive sequence number that corresponds to the order in which the
items were created in the archive.

To garbage collect archive items less than an archive sequence number.

gfix -archive_sweep [-force] <archive_sequence_no>

If an archive item cannot be swept for some reason, the sweep stops and returns an error status. In some
cases, this could stop the command from ever succeeding. For example, if an archive is manually deleted
with a shell OS command, the sweep always fails because it cannot find the file to drop. The -force option
continues regardless of errors to delete as much as possible. The -force switch logs errors to the InterBase
error log instead of returning an error status.

To specify how many database dumps to allow in the archive:

gfix -archive_dumps <number>

Once the number of database dumps in the archive exceeds the <number> given, all lower sequenced
archive items are deleted from the archive. Sometimes all lower sequenced items cannot be deleted. For
example, a database dump may depend on a lower sequenced journal file with which to start recovery.
In that case, InterBase automatically adjusts the given sequence number lower so that this dependency
is not lost.

To track that state of the archive, a new system table, RDB$JOURNAL ARCHIVES, has been added for ODS
12 databases. The gbak and gfix commands listed above used this system table to decide which archive
items are targets for the commands.

IMPORTANT

Listed below are the requirements and constraints for managing the Journal Archive.

Embarcadero Technologies 48

SQL Statement and Function Reference

1. The archive is platform-specific. An archive created with InterBase for Windows cannot be directly
used to recover on InterBase for Unix. Instead, an archived database dump could be logically backed
up in transportable format and then logically restored on the other platform.

2. The journal and journal archive are restricted to a single directory. The number of items allowed to
be archived will be limited to the number of files that are allowed in a directory for a give file system.

3. Only full database dumps are archived. In particular, it is not possible to archive incremental database
dumps.

4. Journaling must be enabled for a database before the database can be configured for journal archiv-
ing.

9.29. CREATE PROCEDURE
Creates a stored procedure, its input and output parameters, and its actions. Available in DSQL, and isql.

CREATE PROCEDURE'' name
'' [(<param>'' ''data_type [, <param>'' ''data_type'' ''…])]
[RETURNS param data_type'' [, ''<param>'' ''data_type …])]
AS ''procedure_body '';
procedure_body =

[variable_declaration_list]
block
variable_declaration_list =

DECLARE VARIABLE var data_type;
[DECLARE VARIABLE var data_type; …]
block =
BEGIN
compound_statement

[compound_statement …]
END
compound_statement = block | statement;
data_type = { SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}
| {DECIMAL | NUMERIC} [(PRECISION [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
[(INT)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(INT)]
| BOOLEAN

Argument Description

<name> Name of the procedure. Must be unique among procedure, table, and view names in
the database.

<param data_type> Input parameters that the calling program uses to pass values to the procedure:

<param>: Name of the input parameter, unique for variables in the procedure.

<data_type>: An InterBase data type.

RETURNS <param data_type> Output parameters that the procedure uses to return values to the calling program:

Embarcadero Technologies 49

SQL Statement and Function Reference

Argument Description
<param>: Name of the output parameter, unique for variables within the procedure.

<data_type>: An InterBase data type.

The procedure returns the values of output parameters when it reaches a SUSPEND
statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body.

DECLARE VARIABLE Declares local variables used only in the procedure; must be preceded by DECLARE
VARIABLE and followed by a semicolon (;).

is the name of the local variable, unique for variables in the procedure.

<statement> Any single statement in InterBase procedure and trigger language; must be followed
by a semicolon (;) except for BEGIN and END statements.

Description: CREATE PROCEDURE defines a new stored procedure to a database. A stored procedure is a self-
contained program written in InterBase procedure and trigger language, and stored as part of a metadata
of a database. Stored procedures can receive input parameters from and return values to applications.

InterBase procedure and trigger language includes all SQL data manipulation statements and some pow-
erful extensions, including IF … THEN … ELSE, WHILE … DO, FOR SELECT … DO, exceptions, and error handling.

There are two types of procedures:

• Select procedures that an application can use in place of a table or view in a SELECT statement. A select
procedure must be defined to return one or more values, or an error will result.

• Executable procedures that an application can call directly, with the EXECUTE PROCEDURE statement. An
executable procedure need not return values to the calling program.

A stored procedure is composed of a header and a body.

The procedure header contains:

• The name of the stored procedure, which must be unique among procedure and table names in the
database.

• An optional list of input parameters and their data types that a procedure receives from the calling
program.

• RETURNS followed by a list of output parameters and their data types if the procedure returns values
to the calling program.

The procedure body contains:

• An optional list of local variables and their data types.
• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN and END. A

block can itself include other blocks, so that there may be many levels of nesting.

InterBase does not allow database changes that affect the behavior of an existing stored procedure (for
example, DROP TABLE or DROP EXCEPTION). To see all procedures defined for the current database or the text
and parameters of a named procedure, use the isql internal commands SHOW PROCEDURES or SHOW PROCEDURE
procedure.

Embarcadero Technologies 50

SQL Statement and Function Reference

InterBase procedure and trigger language is a complete programming language for stored procedures
and triggers. It includes:

• SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
• SQL operators and expressions, including generators and UDFs that are linked with the database.
• Extensions to SQL, including assignment statements, control-flow statements, context variables (for

triggers), event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for stored procedures. For a complete description
of each statement, see Procedures and Triggers.

Language extensions for stored procedures

Statement Description

BEGIN … END Defines a block of statements that executes as one.

• The BEGIN keyword starts the block; the END keyword terminates it.

• Neither should end with a semicolon.

variable = expression Assignment statement: assigns the value of expression to variable, a local vari-
able, input parameter, or output parameter.

/* comment_text */ Programmer’s comment, where comment_text can be any number of lines of
text.

EXCEPTION <exception_name> Raises the named exception: an exception is a user-defined error that returns
an error message to the calling application unless handled by a WHEN state-
ment.

EXECUTE PROCEDURE <proc_name>
[[, …]] [RETURNING_VALUES[, …]]

Executes stored procedure, <proc_name>, with the listed input arguments, re-
turning values in the listed output arguments following RETURNING_VALUES;
input and output arguments must be local variables.

EXIT Jumps to the final END statement in the procedure.

FOR <select_statement> DO <com-
pound_statement>

Repeats the statement or block following DO for every qualifying row retrieved
by <select_statement>.

<select_statement> is like a normal SELECT statement.

<compound_statement> Either a single statement in procedure and trigger language or a block of
statements bracketed by BEGIN and END.

IF (<condition>) THEN <com-
pound_statement> [ELSE <com-
pound_statement>]

Tests <condition>, and if it is TRUE, performs the statement or block following
THEN; otherwise, performs the statement or block following ELSE, if present.

<condition>: a Boolean expression (TRUE, FALSE, or UNKNOWN), generally two
expressions as operands of a comparison operator.

NEW.<column> New context variable that indicates a new column value in an INSERT or UP-
DATE operation.

OLD.<column> Old context variable that indicates a column value before an UPDATE or
DELETE operation.

POST_EVENT <event_name> | <col> Posts the event, <event_name>, or uses the value in <col> as an event name.

SUSPEND In a SELECT procedure:

• Suspends execution of procedure until next FETCH is issued by the calling
application.

• Returns output values, if any, to the calling application.

• Not recommended for executable procedures.

Embarcadero Technologies 51

SQL Statement and Function Reference

Language extensions for stored procedures

Statement Description

WHILE (<condition>) DO <com-
pound_statement>

While <condition> is TRUE, keep performing <compound_statement>:

• Tests <condition>, and performs <compound_statement> if condition is
TRUE.

• Repeats this sequence until <condition> is no longer TRUE.

WHEN {<error> [, <error> …] |
ANY} DO <compound_statement>

Error-handling statement: when one of the specified errors occurs, performs
<compound_statement>:

• WHEN statements, if present, must come at the end of a block, just before
END.

• <error>: EXCEPTION <exception_name>, SQLCODE <errcode> or GDSCODE
errcode.

• ANY: Handles any errors.

The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

• Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE
FILTER

• Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK
• Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE
• CONNECT/DISCONNECT, and sending SQL statements to another database
• GRANT/REVOKE

• SET GENERATOR

• EVENT INIT/WAIT

• BEGIN/END DECLARE SECTION

• BASED ON

• WHENEVER

• DECLARE CURSOR

• OPEN

• FETCH

Examples: The following procedure, SUB_TOT_BUDGET, takes a department number as its input pa-
rameter, and returns the total, average, smallest, and largest budgets of departments with the specified
HEAD_DEPT.

CREATE PROCEDURE SUB_TOT_BUDGET (HEAD_DEPT CHAR(3))
RETURNS (tot_bw1udget DECIMAL(12, 2), avg_budget DECIMAL(12, 2),
min_budget DECIMAL(12, 2), max_budget DECIMAL(12, 2))
AS
BEGIN
SELECT SUM(BUDGET), AVG(BUDGET), MIN(BUDGET), MAX(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

Embarcadero Technologies 52

SQL Statement and Function Reference

EXIT;
END ;

The following SELECT procedure, ORG_CHART, displays an organizational chart that shows the department
name, the parent department, the department manager, the manager’s job title, and the number of em-
ployees in the department:

CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)
AS
DECLARE VARIABLE mngr_no INTEGER;
DECLARE VARIABLE dno CHAR(3);
BEGIN
FOR SELECT H.DEPARTMENT, D.DEPARTMENT, D.MNGR_NO, D.DEPT_NO
FROM DEPARTMENT D
LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT = H.DEPT_NO
ORDER BY D.DEPT_NO
INTO :head_dept, :department, :mngr_no, :dno
DO
BEGIN
IF (:mngr_no IS NULL) THEN
BEGIN
MNGR_NAME = '--TBH--';
TITLE = '';
END
ELSE
SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE
WHERE EMP_NO = :mngr_no
INTO :mngr_name, :title;
SELECT COUNT(EMP_NO)
FROM EMPLOYEE
WHERE DEPT_NO = :dno
INTO :emp_cnt;
SUSPEND;
END
END ;

When ORG_CHART is invoked, for example in the following isql statement:

SELECT * FROM ORG_CHART

It displays the department name for each department, which department it is in, the department manager’s
name and title, and the number of employees in the department.

Embarcadero Technologies 53

SQL Statement and Function Reference

HEAD_DEPT DEPARTMENT MGR_NAME TITLE EMP_CNT

=============== ============ ============ ==== =======

 Corporate
Headquarters

Bender, Oliver H. CEO 2

Corporate Headquarters Sales and
Marketing

MacDon-
ald, Mary S.

VP 2

Sales and Marketing Pacific Rim
Headquarters

Baldwin, Janet ? Sales 2

Pacific Rim Headquarters Field Of-
fice: Japan

Yamamoto, Takashi SRep 2

Pacific Rim Headquarters Field Office:
Singapore

—TBH— 0

ORG_CHART must be used as a select procedure to display the full organization. If called with EXECUTE PRO-
CEDURE, the first time it encounters the SUSPEND statement, it terminates, returning the information for Cor-
porate Headquarters only.

9.30. CREATE ROLE
Creates a role.

CREATE ROLE <rolename>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<rolename> Name associated with the role; must be unique among role names
in the database

Description: Roles created with CREATE ROLE can be granted privileges just as users can. These roles can be
granted to users, who then inherit the privilege list that has been granted to the role. Users must specify the
role at connect time. Use GRANT to grant privileges (ALL, SELECT, INSERT, UPDATE, DELETE, EXECUTE, REFERENCES)
to a role and to grant a role to users. Use REVOKE to revoke them.

Example: The following statement creates a role called “administrator.”

CREATE ROLE administrator;

9.31. CREATE SHADOW
Creates one or more duplicate, in-sync copies of a database. Available in gpre, DSQL, and isql.

CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]
'<filespec>' [LENGTH [=] <int> [PAGE[S]]]
[secondary_file];
secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = LENGTH [=] INT [PAGE[S]] | STARTING [AT [PAGE]] INT

Embarcadero Technologies 54

SQL Statement and Function Reference

[fileinfo]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<set_num> Positive integer that designates a shadow set to which all subsequent files listed in the
statement belong.

AUTO Specifies the default access behavior for databases in the event no shadow is available.

• All attachments and accesses succeed.

• Deletes all references to the shadow and detaches the shadow file.

MANUAL Specifies that database attachments and accesses fail until a shadow becomes avail-
able, or until all references to the shadow are removed from the database

CONDITIONAL Creates a new shadow, allowing shadowing to continue if the primary shadow be-
comes unavailable or if the shadow replaces the database due to disk failure.

‘<filespec>’ Explicit path name and file name for the shadow file; must be a local file system and
must not include a node name or be on a networked file system.

LENGTH [=] <int> [PAGE[S]] Length in database pages of an additional shadow file; page size is determined by the
page size of the database itself.

<secondary_file> Specifies the length of a primary or secondary shadow file; use for primary file only if
defining a secondary file in the same statement.

STARTING [AT [PAGE]] <int> Starting page number at which a secondary shadow file begins.

Description: CREATE SHADOW is used to guard against loss of access to a database by establishing one or
more copies of the database on secondary storage devices. Each copy of the database consists of one or
more shadow files, referred to as a shadow set. Each shadow set is designated by a unique positive integer.

Disk shadowing has three components:

• A database to shadow.
• The RDB$FILES system table, which lists shadow files and other information about the database.
• A shadow set, consisting of one or more shadow files.

When CREATE SHADOW is issued, a shadow is established for the database most recently attached by an
application. A shadow set can consist of one or multiple files. In case of disk failure, the database admin-
istrator (DBA) activates the disk shadow so that it can take the place of the database. If CONDITIONAL is
specified, then when the DBA activates the disk shadow to replace an actual database, a new shadow is
established for the database.

If a database is larger than the space available for a shadow on one disk, use the <secondary_file> option
to define multiple shadow files. Multiple shadow files can be spread over several disks.

TIP

To add a secondary file to an existing disk shadow, drop the shadow with DROP SHADOW and use CREATE SHADOW to
recreate it with the desired number of files.

Examples: The following isql statement creates a single, automatic shadow file for employee.ib:

Embarcadero Technologies 55

SQL Statement and Function Reference

CREATE SHADOW 1 AUTO 'employee.shd';

The next isql statement creates a conditional, single, automatic shadow file for employee.ib:

CREATE SHADOW 2 CONDITIONAL 'employee.shd' LENGTH 1000;

The following isql statements create a multiple-file shadow set for the employee.ib database. The first
statement specifies starting pages for the shadow files; the second statement specifies the number of pages
for the shadow files.

CREATE SHADOW 3 AUTO
'employee.sh1'
FILE 'employee.sh2'
STARTING AT PAGE 1000
FILE 'employee.sh3'
STARTING AT PAGE 2000;
CREATE SHADOW 4 MANUAL 'employee.sdw'
LENGTH 1000
FILE 'employee.sh1'
LENGTH 1000
FILE 'employee.sh2';

9.32. CREATE SUBSCRIPTION
Establishs interest in observing changed data on a set of tables beyond the natural boundary of a database
connection, a subscription must be created on a list of tables (base tables or views).

CREATE SUBSCRIPTION <subscription_name> ON
<table>[(column_comma-list)]:[FOR ROW ({INSERT, UPDATE, DELETE})
], <table>[(column-comma_list)][FOR ROW ({INSERT, UPDATE, DELETE})] ...]
[DESCRIPTION user-description];

Argument Description

FOR ROW Determines what types of row modification causes column-level changes.

<table> If a table is specified, all table columns are tracked.

column_comma-list Specifies a subset of columns to be tracked.

user-description

Description: The FOR clause tailors what types of row modifications causes column-level changes to be
tracked for the subscription. If the FOR clause is omitted then all data changing row operations cause
column data to be tracked for the subscription. If a table alone is specified then all columns of the table
are tracked. If only a subset of columns is desired to be tracked, then an optional list of columns can be
specified by the subscription.

An optional list of columns is specified for the "Employees" table so that only changes on those columns
are tracked. Since no FOR clause is specified for "Employees" the default of FOR assumes that all insert,
update, and delete changes are tracked by the subscription. The "Customer" table clause specifies that
only row deletions are tracked.

Embarcadero Technologies 56

SQL Statement and Function Reference

• If you no longer want to observe a set of changed views, the subscription must be dropped.
• If RESTRICT is specified then a check of existing subscribers is performed. If there are subscribers then

an error is returned without dropping the subscription.
• If CASCADE is specified then all subscribers of this subscription are also dropped.
• If neither RESTRICT nor CASCADE is specified then RESTRICT is assumed.

Example: If only a subset of columns is desired to be tracked, then an optional list of columns can be
specified by the subscription.

CREATE SUBSCRIPTION "Subscribed_Changes" ON "Employees" (NAME, DEPARTMENT,
SALARY), "Customers" FOR ROW (DELETE).

To create your subscriptions (the first line shows new employees, the second shows customer records that
were deleted).

CREATE SUBSCRIPTION "Subscribed_Inserts" ON "Employees" (FULL_NAME, DEP_NO,
SALARY) FOR ROW (INSERT)
CREATE SUBSCRIPTION “Customer_Deletes" ON "Customer" FOR ROW (DELETE)

9.33. CREATE TABLE
 Creates a new table in an existing database. Available in gpre, DSQL, and isql.

IMPORTANT

To create a global Temporary table, see: “global Temporary Tables” in the Data Definition Guide.

CREATE TABLE <table> [EXTERNAL [FILE] '<filespec>']
(col_def [, col_def | tconstraint …]) [ON COMMIT {PRESERVE | DELETE} ROWS]
[[NO] RESERVE SPACE];
col_def = col {data_type | COMPUTED [BY] (expr) | DOMAIN}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]
[col_constraint]
[COLLATE collation]
data_type =
{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]
| {DECIMAL | NUMERIC} [(PRECISION [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(INT)]
[array_dim] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
[VARYING] [(INT)] [array_dim]
| BLOB [SUB_TYPE {INT | subtype_name}] [SEGMENT SIZE INT]
[CHARACTER SET charname]
| BLOB [(seglen [, subtype])]
| BOOLEAN
array_dim = [[x:]y [, [x:]y …]]

Embarcadero Technologies 57

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

expr = A valid SQL expression that results IN a single VALUE.
col_constraint = [CONSTRAINT CONSTRAINT]
{ UNIQUE
| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
tconstraint = [CONSTRAINT CONSTRAINT]
{{PRIMARY KEY | UNIQUE} (col [, col …])
| FOREIGN KEY (col [, col …])
REFERENCES other_table [(other_col [, other_col …])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val
| val [NOT] LIKE val [ESCAPE val]
| val [NOT] IN (val [, val …] | select_list)
| val IS [NOT] NULL
| val {>= | <=}
| val [NOT] {= | < | >}
| {ALL | SOME | ANY} (select_list)
| EXISTS (select_expr)
| SINGULAR (select_expr)
| val [NOT] CONTAINING val
| val [NOT] STARTING [WITH] val
| (search_condition)
| NOT search_condition
| search_condition OR search_condition
| search_condition AND search_condition
val = { col [array_dim] | :variable
| constant | expr | FUNCTION
| udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation]
constant = num | 'string' | charsetname 'string'
FUNCTION = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
| CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)
operator = {= | < | > | <= | >= | !< | !> | <> | !=}
select_one = SELECT ON a single COLUMN; RETURNS exactly one VALUE.
select_list = SELECT ON a single COLUMN; RETURNS zero OR more VALUES.
select_expr = SELECT ON a list OF VALUES; RETURNS zero OR more VALUES.

Embarcadero Technologies 58

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Notes on the CREATE TABLE statement:

• When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters
long:

my_array VARCHAR(6)[5,5]

• Use the colon (:) to specify an array with a starting point other than 1. The following example creates
an array of integers that begins at 10 and ends at 20:

my_array INTEGER[10:20]

• In SQL and isql, you cannot use val as a parameter placeholder (like “?”).
• In DSQL and isql, val cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.
• expr is any complex SQL statement or equation that produces a single value.

Argument Description

<table> Name for the table; must be unique among table and procedure names in the
database.

EXTERNAL [FILE]‘<file-
spec>’.

Declares that data for the table under creation resides in a table or file outside the
database; <filespec> is the complete file specification of the external file or table.

<col> Name for the table column; unique among column names in the table. You can also
encrypt/decrypt a column when you create a table. For instructions on how to encrypt
and decrypt a column or database see “Encrypting Your Data” in the Data Definition
Guide.

<data_type> SQL data type for the column; see Data Types.

COMPUTED [BY](<expr>) Specifies that the value of the data of the coulmn is calculated from <expr> at runtime
and is therefore not allocated storage space in the database.

• <expr> can be any arithmetic expression valid for the data types in the expres-
sion.

• Any columns referenced in <expr> must exist before they can be used in <expr>.

• <expr> cannot reference Blob columns.

• <expr> must return a single value, and cannot return an array.

<domain> Name of an existing domain

DEFAULT Specifies a default column value that is entered when no other entry is made; possible
values are:

• <literal>: Inserts a specified string, numeric value, or date value.

• NULL: Enters a NULL value.

• USER: Enters the user name of the current user. Column must be of compatible
text type to use the default.

Embarcadero Technologies 59

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

Argument Description
Defaults set at column level override defaults set at the domain level.

CONSTRAINT <constraint> Name of a column or table constraint; the constraint name must be unique within the
table.

<constraint_def> Specifies the kind of column constraint; valid options are UNIQUE, PRIMARY KEY, CHECK,
and REFERENCES.

REFERENCES Specifies that the column values are derived from column values in another table; if
you do not specify column names, InterBase looks for a column with the same name as
the referencing column in the referenced table.

ON DELETE |ON UPDATE Used with REFERENCES: Changes a foreign key whenever the referenced primary key
changes; valid options are:

• [Default] NO ACTION: Does not change the foreign key; may cause the primary
key update to fail due to referential integrity checks.

• CASCADE: For ON DELETE, deletes the corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the new value of the primary key.

• SET NULL: Sets all the columns of the corresponding foreign key to NULL.

• SET DEFAULT: Sets every column of the corresponding foreign key is set to its de-
fault value in effect when the referential integrity constraint is defined. When the
default for a foreign column changes after the referential integrity constraint is
defined, the change does not have an effect on the default value used in the ref-
erential integrity constraint.

CHECK <search_condition> An attempt to enter a new value in the column fails if the value does not meet the
<search_condition>.

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and Collation
Orders for more information.

Description: CREATE TABLE establishes a new table, its columns, and integrity constraints in an existing
database. The user who creates a table is the owner of the table and has all privileges for it, including the
ability to GRANT privileges to other users, triggers, and stored procedures.

• CREATE TABLE supports several options for defining columns:
• Local columns specify the name and data type for data entered into the column.
• Computed columns are based on an expression. Column values are computed each time the table is

accessed. If the data type is not specified, InterBase calculates an appropriate one. Columns referenced
in the expression must exist before the column can be defined.

• Domain-based columns inherit all the characteristics of a domain, but the column definition can in-
clude a new default value, a NOT NULL attribute, additional CHECK constraints, or a collation clause that
overrides the domain definition. It can also include additional column constraints.

• The data type specification for a CHAR, VARCHAR, or Blob text column definition can include a CHARACTER
SET clause to specify a particular character set for the single column. Otherwise, the column uses the
default database character set. If the database character set is changed, all columns subsequently
defined have the new character set, but existing columns are not affected. For a complete list of
character sets recognized by InterBase, see Character Sets and Collation Orders.

• If you do not specify a default character set, the character set defaults to NONE. Using character set
NONE means that there is no character set assumption for columns; data is stored and retrieved just
as you originally entered it. You can load any character set into a column defined with NONE, but you
cannot load that same data into another column that has been defined with a different character set.
In this case, no transliteration is performed between the source and destination character sets, and
errors may occur during assignment.

Embarcadero Technologies 60

SQL Statement and Function Reference

• The COLLATE clause enables specification of a particular collation order for CHAR, VARCHAR, and Blob text
data types. Choice of collation order is restricted to those supported for the given character set of
the column, which is either the default character set for the entire database, or a different set defined
in the CHARACTER SET clause as part of the data type definition. For a complete list of collation orders
recognized by InterBase, see Character Sets and Collation Orders.

• NOT NULL is an attribute that prevents the entry of NULL or unknown values in column. NOT NULL affects
all INSERT and UPDATE operations on a column.

IMPORTANT

A DECLARE TABLE must precede CREATE TABLE in embedded applications if the same SQL program both creates a
table and inserts data in the table.

• The EXTERNAL FILE option creates a table whose data resides in an external file, rather than in the
InterBase database. Use this option to:

• Define an InterBase table composed of data from an external source, such as data in files managed
by other operating systems or in non-database applications.

• Transfer data to an existing InterBase table from an external file.

External files must either be placed in <InterBase_home>/ext or their location must be specified in the
ibconfig configuration file using the EXTERNAL_FILE_DIRECTORY entry.

Referential integrity constraints:

• You can define integrity constraints at the time you create a table. These constraints are rules that
validate data entries by enforcing column-to-table and table-to-table relationships. They span all
transactions that access the database and are automatically maintained by the system. CREATE TABLE
supports the following integrity constraints:

• A PRIMARY KEY is one or more columns whose collective contents are guaranteed to be unique. A
PRIMARY KEY column must also define the NOT NULL attribute. A table can have only one primary key.

• UNIQUE keys ensure that no two rows have the same value for a specified column or ordered set of
columns. A unique column must also define the NOT NULL attribute. A table can have one or more
UNIQUE keys. A UNIQUE key can be referenced by a FOREIGN KEY in another table.

• Referential constraints (REFERENCES) ensure that values in the specified columns (known as the foreign
key) are the same as values in the referenced UNIQUE or PRIMARY KEY columns in another table. The
UNIQUE or PRIMARY KEY columns in the referenced table must be defined before the REFERENCES con-
straint is added to the secondary table. REFERENCES has ON DELETE and ON UPDATE clauses that define
the action on the foreign key when the referenced primary key is updated or deleted. The values for
ON UPDATE and ON DELETE are as follows:

Action specified Effect on foreign key

NO ACTION [Default] The foreign key does not change. This may cause the primary key update or delete to
fail due to referential integrity checks.

CASCADE The corresponding foreign key is updated or deleted as appropriate to the new value of the
primary key.

SET DEFAULT Every column of the corresponding foreign key is set to its default value. If the default value of
the foreign key is not found in the primary key, the update or delete on the primary key fails.

The default value is the one in effect when the referential integrity constraint was defined.
When the default for a foreign key column is changed after the referential integrity constraint is

Embarcadero Technologies 61

SQL Statement and Function Reference

Action specified Effect on foreign key
set up, the change does not have an effect on the default value used in the referential integrity
constraint.

SET NULL Every column of the corresponding foreign key is set to NULL.

• You can create a FOREIGN KEY reference to a table that is owned by someone else only if that owner
has explicitly granted you REFERENCES privilege on that table. Any user who updates your foreign key
table must have REFERENCES or SELECT privileges on the referenced primary key table.

• CHECK constraints enforce a <search_condition> that must be true for inserts or updates to the spec-
ified table. <search_condition> can require a combination or range of values or can compare the
value entered with data in other columns.

NOTE

Specifying USER as the value for a <search_condition> references the login of the user who is attempting to write to
the referenced table.

• Creating PRIMARY KEY and FOREIGN KEY constraints requires exclusive access to the database.
• For unnamed constraints, the system assigns a unique constraint name stored in the RDB$RELA-

TION_CONSTRAINTS system table.

NOTE

Constraints are not enforced on expressions.

Examples: The following isql statement creates a simple table with a PRIMARY KEY:

CREATE TABLE COUNTRY (COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

The next isql statement creates both a column-level and a table-level UNIQUE constraint:

CREATE TABLE STOCK (
MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

The following isql statement illustrates table-level PRIMARY KEY, FOREIGN KEY, and CHECK constraints. The
PRIMARY KEY constraint is based on three columns. This example also illustrates creating an array column
of VARCHAR.

CREATE TABLE JOB (
JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
JOB_TITLE VARCHAR(25) NOT NULL,
MIN_SALARY SALARY NOT NULL,
MAX_SALARY SALARY NOT NULL,
JOB_REQUIREMENT BLOB(400,1),
LANGUAGE_REQ VARCHAR(15) [5],

Embarcadero Technologies 62

SQL Statement and Function Reference

PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY),
CHECK (MIN_SALARY < MAX_SALARY));

In the next example, the F2 column in table T2 is a foreign key that references table T1 through the primary
key P1 of T1. When a row in T1 changes, that change propagates to all affected rows in table T2. When a
row in T1 is deleted, all affected rows in the F2 column of table T2 are set to NULL.

CREATE TABLE T1 (P1 INTEGER NOT NULL PRIMARY KEY);
CREATE TABLE T2 (F2 INTEGER FOREIGN KEY (F2) REFERENCES T1 (P1)
ON UPDATE CASCADE
ON DELETE SET NULL);

The next isql statement creates a table with a calculated column:

CREATE TABLE SALARY_HISTORY (
EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECISION
DEFAULT 0
NOT NULL
CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),
NEW_SALARY COMPUTED BY
(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO));

In the following isql statement the first column retains the default collating order for the default character
set of the dataset. The second column has a different collating order, and the third column definition
includes a character set and a collating order.

CREATE TABLE BOOKADVANCE (
BOOKNO CHAR(6),
TITLE CHAR(50) COLLATE ISO8859_1,
EUROPUB CHAR(50) CHARACTER SET ISO8859_1 COLLATE FR_FR);

Creates a trigger, including when it fires, and what actions it performs. Available in DSQL, and isql.

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in nature. An
archival table means that the rows of a table are infrequently or never UPDATED or DELETED; have complex
queries, such as aggregates and analytics that process a high percentage of rows; and where indexes are
rebuilt and the database is backed and/or restored frequently. These database operations could see a
performance improve of 20% or more with a savings in storage space.

Embarcadero Technologies 63

SQL Statement and Function Reference

By default, InterBase reserves a small amount of space in each data page of a table to optimize UPDATE
and DELETE operations on resident rows. This reserve space can amount to 20% or more of the total space
occupied by all of the rows of the table. Some tables archive historical data or data that are UPDATED
infrequently or not at all and their rows may never be deleted. Database operations that process most
or all of the rows, such as backup, restore, index creation, aggregate computation have always suffered
performance penalties proportional to this reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and maxi-
mizes row packing for the most efficient fill ratio. At the database level, it has been possible to restore
a database with the -USE_ALL_SPACE switch so that no space is reserved for any table. To change the
storage behavior in a like manner for new or existing databases, the same clause is introduced for CRE-
ATE/ALTER DATABASE.

User Interface To effect the new storage behavior, a non-standard SQL clause is added:

Clause is presented before the secondary file specification.

 CREATE DATABASE <file name> ... [NO] RESERVE SPACE

Clause is presented after the column list specification and optional ON COMMIT clause for temporary
tables.

 CREATE TABLE <TABLE name> ... [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record version stub,
as would normally be the case. Over many row insertions, a decrease in storage size should be observed
relative to what the table size would be in the absence of this feature. The optional NO keyword when used
with ALTER TABLE toggles the behavior to the alternate state of the current storage behavior for the table.

The NO RESERVE storage modifier is preserved across database backup and restore. This state is stored
as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the system table RDB
$RELATIONS.

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's column
definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner for the CREATE
TABLE output of the respective table listing. The state for database-wide storage behavior is stored in a
like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A global temporary table is declared to a database schema via the normal CREATE TABLE statement with
the following syntax:

 CREATE GLOBAL TEMPORARY TABLE {{Placeholder|TABLE}}
({{Placeholder|<col_def>}} [, {{Placeholder|<col_def>}} |
{{Placeholder|<tconstraint>}} ...])
 [ON COMMIT
{PRESERVE | DELETE} ROWS];

Embarcadero Technologies 64

SQL Statement and Function Reference

The first argument that you supply CREATE GLOBAL TEMPORARY TABLE is the temporary table name,
which is required and must be unique among all table and procedure names in the database. You must
also supply at least one column definition.

The ON COMMIT clause describes whether the rows of the temporary table are deleted on each trans-
action commit (ON COMMIT DELETE) or are left in place (ON COMMIT PRESERVE) to be used by other
transactions in the same database attachment. If the ON COMMIT is not specified then the default behav-
ior is to DELETE ROWS on transaction commit.

There is a change in behavior in the GLOBAL TEMPORARY TABLE Support with the InterBase XE3 Up-
date 2 release. When an SQL script is executed ISQL reported a "deadlock" if EXIT is called without COM-
MIT/ROLLBACK on a global temporary table. To resolve this issue, the GLOBAL TEMPORARY TABLES func-
tion has been redesigned which changes the behavior and corrects the deadlock error.
It is no longer possible for transactions emanating from the same connection to see each other's rows in
a transaction-specific (ON COMMIT DELETE) temporary table. To do that, you must use a session-specific
(ON COMMIT PRESERVE) temporary table that makes all rows visible to transactions starting in the same
session. This is still not the same in that the rows will persist until the connection is finished.

A Global temporary table is dropped from a database schema using the normal DROP TABLE statement.

CREATE TABLE <table> [EXTERNAL [FILE] '<filespec>']
(col_def [, col_def | tconstraint …]) [ON COMMIT {PRESERVE | DELETE} ROWS]
[[NO] RESERVE SPACE];

9.34. CREATE TRIGGER

CREATE TRIGGER name FOR TABLE
[ACTIVE | INACTIVE]
{BEFORE | AFTER}
{DELETE | INSERT | UPDATE}
[POSITION NUMBER]
AS trigger_body ;
trigger_body = [variable_declaration_list] block
variable_declaration_list =
DECLARE VARIABLE variable data_type;
[DECLARE VARIABLE variable data_type; …]
block =
BEGIN
compound_statement
[compound_statement …]
END
data_type = SMALLINT
| INTEGER
| FLOAT
| DOUBLE PRECISION
| {DECIMAL | NUMERIC} [(PRECISION [, scale])]
| {DATE | TIME | TIMESTAMP)
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
[(INT)] [CHARACTER SET charname]
| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(INT)]

Embarcadero Technologies 65

SQL Statement and Function Reference

| BOOLEAN
compound_statement = block | statement;

Argument Description

<name> Name of the trigger; must be unique in the database.

<table> Name of the table or view that causes the trigger to fire when the specified operation
occurs on the table or view.

ACTIVE|INACTIVE Optional. Specifies trigger action at transaction end:

• ACTIVE: [Default] Trigger takes effect.

• INACTIVE: Trigger does not take effect.

BEFORE|AFTER Required. Specifies whether the trigger fires:

• BEFORE: Before the associated operation.

• AFTER: After the associated operation.

Associated operations are DELETE, INSERT, or UPDATE.

DELETE|INSERT |UPDATE Specifies the table operation that causes the trigger to fire.

POSITION <number> Specifies the firing order for triggers before the same action or after the same action;
<number> must be an integer between 0 and 32,767, inclusive.

• Lower-number triggers fire first.

• Default: 0 = first trigger to fire.

• Triggers for a table need not be consecutive; triggers on the same action with the
same position number will fire in random order.

DECLARE VARIABLE Declares local variables used only in the trigger. Each declaration must be preceded by
DECLARE VARIABLE and followed by a semicolon (;).

• : Local variable name, unique in the trigger.

• <data_type>: The data type of the local variable.

<statement> Any single statement in InterBase procedure and trigger language; each statement ex-
cept BEGIN and END must be followed by a semicolon (;).

Description: CREATE TRIGGER defines a new trigger to a database. A trigger is a self-contained program
associated with a table or view that automatically performs an action when a row in the table or view is
inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT, UPDATE, or DELETE
a row in a table, any triggers associated with that table and operation automatically execute, or fire. Triggers
defined for UPDATE on non-updatable views fire even if no update occurs.

A trigger is composed of a header and a body.

The trigger header contains:

• A trigger name, unique within the database, that distinguishes the trigger from all others.
• A table name, identifying the table with which to associate the trigger.
• Statements that determine when the trigger fires.

The trigger body contains:

Embarcadero Technologies 66

SQL Statement and Function Reference

• An optional list of local variables and their data types.
• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN and END.

These statements are performed when the trigger fires. A block can itself include other blocks, so that
there may be many levels of nesting.

A trigger is associated with a table. The table owner and any user granted privileges to the table automat-
ically have rights to execute associated triggers.

Triggers can be granted privileges on tables, just as users or procedures can be granted privileges. Use the
GRANT statement, but instead of using TO <username>, use TO TRIGGER <trigger_nam>e. Triggers privileges
can be revoked similarly using REVOKE.

When a user performs an action that fires a trigger, the trigger will have privileges to perform its actions
if one of the following conditions is true:

• The trigger has privileges for the action.
• The user has privileges for the action.

InterBase procedure and trigger language is a complete programming language for stored procedures
and triggers. It includes:

• SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
• SQL operators and expressions, including generators and UDFs that are linked with the calling appli-

cation.
• Powerful extensions to SQL, including assignment statements, control-flow statements, context vari-

ables, event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for triggers. For a complete description of each state-
ment, see Procedures and Triggers.

Language extensions for triggers

Statement Description

BEGIN …END Defines a block of statements that executes as one.

• The BEGIN keyword starts the block; the END keyword terminates
it.

• Neither should it be followed by a semicolon.

<variable> = <expression> Assignment statement that assigns the value of <expression> to
<variable>, a local variable, input parameter, or output parameter.

/* <comment_text> */ Programmer’s comment, where <comment_text> can be any number
of lines of text.

EXCEPTION <exception_name> Raises the named exception; an exception is a user-defined error that
returns an error message to the calling application unless handled by
a WHEN statement.

EXECUTE PROCEDURE < proc_name> [[, …]]
[RETURNING_VALUES[, …]]

Executes the stored procedure, <proc_name>, with the listed input ar-
guments.

• Returns values in the listed output arguments following RETURN-
ING_VALUES.

• Input and output arguments must be local variables.

EXIT Jumps to the final END statement in the procedure.

Embarcadero Technologies 67

SQL Statement and Function Reference

Language extensions for triggers

Statement Description

FOR <select_statement> DO <compound_s-
tatement>

Repeats the statement or block following DO for every qualifying row
retrieved by <select_statement>.

<select_statement> A normal SELECT statement.

<compound_statement> Either a single statement in procedure and trigger language or a
block of statements bracketed by BEGIN and END.

IF (condition) THEN compound_statement
[ELSE compound_statement]

Tests <condition>, and if it is TRUE, performs the statement or block
following THEN; otherwise, performs the statement or block following
ELSE, if present.

<condition> A Boolean expression (TRUE, FALSE, or UNKNOWN), generally two ex-
pressions as operands of a comparison operator.

NEW.<column> New context variable that indicates a new column value in an INSERT
or UPDATE operation.

OLD.<column> Old context variable that indicates a column value before an UPDATE
or DELETE operation.

POST_EVENT <event_name> | <col> Posts the event, <event_name>, or uses the value in <col> as an
event name.

WHILE (<condition>) DO <compound_state-
ment>

While condition is TRUE, keep performing <compound_statement>.

• Tests <condition>, and performs <compound_statement> if
<condition> is TRUE.

• Repeats this sequence until <condition> is no longer TRUE.

WHEN {<error> [, <error> …] | ANY} DO
<compound_statement>

Error-handling statement. When one of the specified errors occurs,
performs <compound_statement>. WHEN statements, if present, must
come at the end of a block, just before END.

• ANY: Handles any errors

<error> EXCEPTION <exception_name>, SQLCODE <errcode> or GDSCODE
errcode

The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

• Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE
FILTER

• Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK
• Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE
• CONNECT/DISCONNECT, and sending SQL statements to another database
• GRANT/REVOKE
• SET GENERATOR
• EVENT INIT/WAIT

• BEGIN/END DECLARE SECTION
• BASED ON
• WHENEVER
• DECLARE CURSOR

Embarcadero Technologies 68

SQL Statement and Function Reference

• OPEN
• FETCH

Examples: The following trigger, SAVE_SALARY_CHANGE, makes correlated updates to the SALARY_HIS-
TORY table when a change is made to an employee’s salary in the EMPLOYEE table:

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'now', USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

The following trigger, SET_CUST_NO, uses a generator to create unique customer numbers when a new
customer record is inserted in the CUSTOMER table.

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS
BEGIN
NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END ;

The following trigger, POST_NEW_ORDER, posts an event named “new_order” whenever a new record is
inserted in the SALES table.

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS
BEGIN
POST_EVENT 'new_order';
END ;

The following four fragments of trigger headers demonstrate how the POSITION option determines trigger
firing order:

CREATE TRIGGER A FOR accounts
BEFORE UPDATE
POSITION 5 … /*Trigger body follows*/
CREATE TRIGGER B FOR accounts
BEFORE UPDATE
POSITION 0 … /*Trigger body follows*/
CREATE TRIGGER C FOR accounts
AFTER UPDATE
POSITION 5 … /*Trigger body follows*/
CREATE TRIGGER D FOR accounts
AFTER UPDATE
POSITION 3 … /*Trigger body follows*/

Embarcadero Technologies 69

SQL Statement and Function Reference

When this update takes place:

UPDATE accounts SET account_status = 'on_hold'
WHERE account_balance < 0;

The triggers fire in this order:

1. Trigger B fires.
2. Trigger A fires.
3. The update occurs.
4. Trigger D fires.
5. Trigger C fires.

9.35. CREATE USER
Create a new user. Available in DSQL and isql.

CREATE USER <name> SET
[PASSWORD <password>]
[[NO] DEFAULT ROLE <name>]
[[NO] SYSTEM USER NAME <name>]
[[NO] GROUP NAME <name>]
[[NO] UID <number>]
[[NO] GID <number>]
[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]
[ACTIVE]
[INACTIVE];

Argument Description

PASSWORD Password of user

[NO]DEFAULT ROLE Default role

[NO] SYSTEM USER NAME System user name for target user

[NO]GROUP NAME Group name for target user

[NO] UID Target user ID

[NO] GID Group ID for target user

[NO] DESCRIPTION Description

[NO]FIRST NAME First name for target user

[NO] MIDDLE NAME Middle name for target user

[NO]LAST NAME Last name for target user

ACTIVE Default. After inactive, reinstates selected user.

INACTIVE Prevents a user from logging into database.

Embarcadero Technologies 70

SQL Statement and Function Reference

Description: CREATE USER creates a new user. Only used with database under embedded user authenti-
cation. If you choose to set more than one property value for the user, include a comma between each
property value pair.

NOTE

When NO is specified, an argument to the option must not be supplied. NO sets the option to a NULL state.

Examples: The following statement creates the user, JDOE and set password, jdoe:

CREATE USER JDOE SET PASSWORD ‘jdoe’;

The next statement creates the user, JDOE, and set password, first name and last name:

CREATE USER JDOE SET PASSWORD ‘jdoe’, FIRST NAME ‘Jane’, LAST NAME ‘Doe’;

9.36. CREATE VIEW
Creates a new view of data from one or more tables. Available in gpre, DSQL, and isql.

CREATE VIEW name [(view_col [, view_col …])]
AS SELECT [WITH CHECK OPTION];

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name for the view; must be unique among all view, table, and procedure names in the
database.

<view_col> Names the columns for the view:

• Column names must be unique among all column names in the view.

• Required if the view includes columns based on expressions; otherwise optional.

• Default: Column name from the underlying table.

<select> Specifies the selection criteria for rows to be included in the view.

WITH CHECK OPTION Prevents INSERT or UPDATE operations on an updatable view if the INSERT or UPDATE vio-
lates the search condition specified in the WHERE clause of the SELECT clause of the view.

Description: CREATE VIEW describes a view of data based on one or more underlying tables in the database.
The rows to return are defined by a SELECT statement that lists columns from the source tables. Only the
view definition is stored in the database; a view does not directly represent physically stored data. It is
possible to perform select, project, join, and union operations on views as if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability to GRANT privileges
to other users, roles, triggers, views, and stored procedures. A user may have privileges to a view without
having access to its base tables. When creating views:

• A read-only view requires SELECT privileges for any underlying tables.

Embarcadero Technologies 71

SQL Statement and Function Reference

• An updatable view requires ALL privileges to the underlying tables.

The <view_col> option ensures that the view always contains the same columns and that the columns
always have the same view-defined names.

View column names correspond in order and number to the columns listed in the SELECT clause, so specify
all view column names or none.

A <view_col> definition can contain one or more columns based on an expression that combines the
outcome of two columns. The expression must return a single value, and cannot return an array or array
element. If the view includes an expression, the view-<column> option is required.

NOTE

Any columns used in the value expression must exist before the expression can be defined.

A SELECT statement clause cannot include the ORDER BY clause.

When SELECT * is used rather than a column list, order of display is based on the order in which columns
are stored in the base table.

WITH CHECK OPTION enables InterBase to verify that a row added to or updated in a view is able to be
seen through the view before allowing the operation to succeed. Do not use WITH CHECK OPTION for read-
only views.

NOTE

You cannot select from a view that is based on the result set of a stored procedure.

An updatable view cannot have UNION clauses. To create such a view, use embedded SQL.

A view is updatable if:

• It is a subset of a single table or another updatable view.
• All base table columns excluded from the view definition allow NULL values.
• The SELECT statement of the view does not contain subqueries, a DISTINCT predicate, a HAVING clause,

aggregate functions, joined tables, user-defined functions, or stored procedures.

If the view definition does not meet these conditions, it is considered read-only.

NOTE

Read-only views can be updated by using a combination of user-defined referential constraints, triggers, and unique
indexes.

Examples: The following isql statement creates an updatable view:

CREATE VIEW SNOW_LINE (CITY, STATE, SNOW_ALTITUDE) AS
SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 5000;

The next isql statement uses a nested query to create a view:

Embarcadero Technologies 72

SQL Statement and Function Reference

CREATE VIEW RECENT_CITIES AS
SELECT STATE, CITY, POPULATION
FROM CITIES WHERE STATE IN
(SELECT STATE FROM STATES WHERE STATEHOOD > '1-JAN-1850');

In an updatable view, the WITH CHECK OPTION prevents any inserts or updates through the view that do not
satisfy the WHERE clause of the CREATE VIEW SELECT statement:

CREATE VIEW HALF_MILE_CITIES AS
SELECT CITY, STATE, ALTITUDE
FROM CITIES
WHERE ALTITUDE > 2500
WITH CHECK OPTION;

The WITH CHECK OPTION clause in the view would prevent the following insertion:

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Chicago', 'Illinois', 250);

On the other hand, the following UPDATE would be permitted:

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Truckee', 'California', 2736);

The WITH CHECK OPTION clause does not allow updates through the view which change the value of a row
so that the view cannot retrieve it. For example, the WITH CHECK OPTION in the HALF_MILE_CITIES view
prevents the following update:

UPDATE HALF_MILE_CITIES
SET ALTITUDE = 2000
WHERE STATE = 'NY';

The next isql statement creates a view that joins two tables, and so is read-only:

CREATE VIEW PHONE_LIST AS
SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

9.37. DECLARE CURSOR
Defines a cursor for a table by associating a name with the set of rows specified in a SELECT statement.
Available in gpre and DSQL.

SQL form:

DECLARE cursor CURSOR FOR SELECT [FOR UPDATE OF col [, col…]];

Embarcadero Technologies 73

SQL Statement and Function Reference

DSQL form:

DECLARE cursor CURSOR FOR statement_id

Blob form: See DECLARE CURSOR (BLOB).

Argument Description

<cursor> Name for the cursor.

<select> Determines which rows to retrieve. SQL only.

FOR UPDATE OF <col> [, <col>
…]

Enables UPDATE and DELETE of specified column for retrieved rows.

<statement_id> SQL statement name of a previously-prepared statement, which in this case must
be a SELECT statement. DSQL only.

Description: DECLARE CURSOR defines the set of rows that can be retrieved using the cursor it names. It is
the first member of a group of table cursor statements that must be used in sequence.

Select specifies a SELECT statement that determines which rows to retrieve. The SELECT statement cannot
include INTO or ORDER BY clauses.

The FOR UPDATE OF clause is necessary for updating or deleting rows using the WHERE CURRENT OF clause
with UPDATE and DELETE.

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in the DECLARE
CURSOR statement. It enables sequential access to retrieved rows in turn. There are four related cursor
statements:

Stage Statement Purpose

1 DECLARE CURSOR Declares the cursor; the SELECT statement determines rows retrieved for the cursor.

2 OPEN Retrieves the rows specified for retrieval with DECLA RECURSOR; the resulting rows become
the active set of the cursor.

3 FETCH Retrieves the current row from the active set, starting with the first row; subsequent FETCH
statements advance the cursor through the set.

4 CLOSE Closes the cursor and releases the system resources.

Examples: The following embedded SQL statement declares a cursor with a search condition:

EXEC SQL
DECLARE C CURSOR FOR
SELECT CUST_NO, ORDER_STATUS
FROM SALES
WHERE ORDER_STATUS IN ('open', 'shipping');

The next DSQL statement declares a cursor for a previously-prepared statement, QUERY1:

DECLARE Q CURSOR FOR QUERY1

Embarcadero Technologies 74

SQL Statement and Function Reference

9.38. DECLARE CURSOR (BLOB)
Declares a Blob cursor for read or insert. Available in gpre.

DECLARE cursor CURSOR FOR
{READ BLOB COLUMN FROM TABLE
| INSERT BLOB COLUMN INTO TABLE}
[FILTER [FROM subtype] TO subtype]
[MAXIMUM_SEGMENT LENGTH];

Argument Description

<cursor> Name for the Blob cursor

<column> Name of the Blob column

<table> Table name

READ BLOB Declares a read operation on the Blob

INSERT BLOB Declares a write operation on the Blob

[FILTER [FROM <subtype>] TO <subtype>] Specifies optional Blob filters used to translate a Blob from one us-
er-specified format to another; <subtype> determines which filters
are used for translation

MAXIMUM_SEGMENT <length> Length of the local variable to receive the Blob data after a FETCH op-
eration

Description: Declares a cursor for reading or inserting Blob data. A Blob cursor can be associated with
only one Blob column.

To read partial Blob segments when a host-language variable is smaller than the segment length of a Blob,
declare the Blob cursor with the MAXIMUM_SEGMENT clause. If length is less than the Blob segment, FETCH
returns length bytes. If the same or greater, it returns a full segment (the default).

Examples: The following embedded SQL statement declares a READ BLOB cursor and uses the MAXIMUM_SEG-
MENT option:

EXEC SQL
DECLARE BC CURSOR FOR
READ BLOB JOB_REQUIREMENT FROM JOB MAXIMUM_SEGMENT 40;

The next embedded SQL statement declares an INSERT BLOB cursor:

EXEC SQL
DECLARE BC CURSOR FOR
INSERT BLOB JOB_REQUIREMENt INTO JOB;

9.39. DECLARE EXTERNAL FUNCTION
Declares an existing user-defined function (UDF) to a database. Available in gpre, DSQL, and isql.

DECLARE EXTERNAL FUNCTION name [data_type
| CSTRING (<int>) [, data_type | CSTRING (<int>) …]]

Embarcadero Technologies 75

SQL Statement and Function Reference

RETURNS {data_type [BY VALUE] | CSTRING (<int>) | PARAMETER <n}> [FREE_IT]
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

NOTE

Whenever a UDF returns a value by reference to dynamically allocated memory, you must declare it using the FREE_IT
keyword in order to free the allocated memory.

Argument Description

<name> Name of the UDF to use in SQL statements; can be different from the name of the function specified
after the ENTRY_POINT keyword.

<data_type> Data type of an input or return parameter.

• All input parameters are passed to a UDF by reference.

• Return parameters can be passed by value.

• Cannot be an array element.

CSTRING (<int>) Specifies a UDF that returns a null-terminated string <int> bytes in length.

RETURNS Specifies the return value of a function.

BYVALUE Specifies that a return value should be passed by value rather than by reference.

PARAMETER <n>
• Specifies that the <n>th input parameter is to be returned.

• Used when the return data type is BLOB.

FREE_IT Frees memory of the return value after the UDF finishes running.

• Use only if the memory is allocated dynamically in the UDF

• See also Error Codes and Messages.

'<entryname>' Quoted string that contains the function name as it is stored in the library that is referenced by the
UDF.

'<modulename>' Quoted specification identifying the library that contains the UDF.

• The library must reside on the same machine as the InterBase server.

• On any platform, the module can be referenced with no path name if it is in <<Inter-
Base_home>>/UDF or <<InterBase_home>>/intl

• If the library is in a directory other than <<InterBase_home>>/UDF or <<Inter-
Base_home>>/intl, you must specify its location in configuration file (ibconfig) of InterBase us-
ing the EXTERNAL_FUNCTION_DIRECTORY parameter.

• It is not necessary to supply the extension to the module name.

Description: DECLARE EXTERNAL FUNCTION provides information about a UDF to a database: where to find
it, its name, the input parameters it requires, and the single value it returns. Each UDF in a library must be
declared once to each database where it will be used. As long as the entry point and module name do
not change, there is no need to redeclare a UDF, even if the function itself is modified.

entryname is the actual name of the function as stored in the UDF library. It does not have to match the
name of the UDF as stored in the database.

Embarcadero Technologies 76

SQL Statement and Function Reference

IMPORTANT

The module name does not need to include a path. However, the module must either be placed in <<Inter-
Base_home>>/UDF or be listed in the InterBase configuration file using the EXTERNAL_FUNCTION_DIRECTORY param-
eter.

To specify a location for UDF libraries in the InterBase configuration file, enter a line of the following form
for Windows platforms:

EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase

For UNIX, the line does not include a drive letter:

EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase

The InterBase configuration file is called ibconfig on all platforms.

Examples: The following isql statement declares the TOPS() UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS
CHAR(256), INTEGER, BLOB
RETURNS INTEGER BY VALUE
ENTRY_POINT 'te1' MODULE_NAME 'tm1';

This example does not need the FREE_IT keyword because only cstrings, CHAR, and VARCHAR return types
require memory allocation.

The next example declares the LOWERS() UDF and frees the memory allocated for the return value:

DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

9.40. DECLARE FILTER
Declares an existing Blob filter to a database. Available in gpre, DSQL, and isql.

DECLARE FILTER FILTER
INPUT_TYPE subtype OUTPUT_TYPE subtype
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Embarcadero Technologies 77

SQL Statement and Function Reference

Argument Description

<filter> Name of the filter; must be unique among filter names in the database.

INPUT_TYPE <subtype> Specifies the Blob subtype from which data is to be converted.

OUTPUT_TYPE <subtype> Specifies the Blob subtype into which data is to be converted.

‘<entryname>’ Quoted string specifying the name of the Blob filter as stored in a linked library.

‘<modulename>’ Quoted file specification identifying the object module in which the filter is stored.

Description: DECLARE FILTER provides information about an existing Blob filter to the database: where to
find it, its name, and the Blob subtypes it works with. A Blob filter is a user-written program that converts
data stored in Blob columns from one subtype to another.

INPUT_TYPE and OUTPUT_TYPE together determine the behavior of the Blob filter. Each filter declared to
the database should have a unique combination of INPUT_TYPE and OUTPUT_TYPE integer values. InterBase
provides a built-in type of 1, for handling text. User-defined types must be expressed as negative values.

<entryname> is the name of the Blob filter stored in the library. When an application uses a Blob filter,
it calls the filter function with this name.

Example: The following isql statement declares a Blob filter:

DECLARE FILTER DESC_FILTER
INPUT_TYPE 1
OUTPUT_TYPE -4
ENTRY_POINT 'desc_filter'
MODULE_NAME 'FILTERLIB';

9.41. DECLARE STATEMENT
Identifies dynamic SQL statements before they are prepared and executed in an embedded program.
Available in gpre.

DECLARE statement STATEMENT;

Argument Description

<statement> Name of a SQL variable for a user-supplied SQL statement to prepare and execute at run time.

Description: DECLARE STATEMENT names a SQL variable for a user-supplied SQL statement to prepare
and execute at run time. DECLARE STATEMENT is not executed, so it does not produce run-time errors. The
statement provides internal documentation.

Example: The following embedded SQL statement declares Q1 to be the name of a string for preparation
and execution.

EXEC SQL
DECLARE Q1 STATEMENT;

Embarcadero Technologies 78

SQL Statement and Function Reference

9.42. DECLARE TABLE
Describes the structure of a table to the preprocessor, gpre, before it is created with CREATE TABLE. Available
in gpre.

DECLARE TABLE TABLE (table_def);

Argument Description

<table> Name of the table; table names must be unique within the database.

<table_def> Definition of the table; for complete table definition syntax, see CREATE TABLE.

Description: DECLARE TABLE causes gpre to store a table description. You must use it if you both create
and populate a table with data in the same program. If the declared table already exists in the database
or if the declaration contains syntax errors, gpre returns an error.

When a table is referenced at run time, the column descriptions and data types are checked against the
description stored in the database. If the table description is not in the database and the table is not
declared, or if column descriptions and data types do not match, the application returns an error.

DECLARE TABLE can include an existing domain in a column definition, but must give the complete column
description if the domain is not defined at compile time.

DECLARE TABLE cannot include integrity constraints and column attributes, even if they are present in a
subsequent CREATE TABLE statement.

IMPORTANT

DECLARE TABLE cannot appear in a program that accesses multiple databases.

Example: The following embedded SQL statements declare and create a table:

EXEC SQL
DECLARE STOCK TABLE
(MODEL SMALLINT,
MODELNAME CHAR(10),
ITEMID INTEGER);
EXEC SQL
CREATE TABLE STOCK
(MODEL SMALLINT NOT NULL UNIQUE,
MODELNAME CHAR(10) NOT NULL,
ITEMID INTEGER NOT NULL,
CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

9.43. DELETE
Removes rows in a table or in the active set of a cursor. Available in gpre, DSQL, and isql.

SQL and DSQL form:

Embarcadero Technologies 79

SQL Statement and Function Reference

IMPORTANT

Omit the terminating semicolon for DSQL.

DELETE [TRANSACTION TRANSACTION] FROM TABLE
{[WHERE search_condition] | WHERE CURRENT OF cursor}
[ORDER BY order_list]
[ROWS VALUE [TO upper_value] [BY step_value][PERCENT][WITH TIES]];
search_condition = SEARCH condition AS specified IN SELECT.

isql form:

DELETE FROM TABLE [WHERE search_condition];

Argument Description

TRANSACTION<transaction> Name of the transaction under control of which the statement is executed; SQL only

<table> Name of the table from which to delete rows

WHERE<search_condition> Search condition that specifies the rows to delete; without this clause, DELETE affects
all rows in the specified table or view

WWHERE CURRENT OF <cursor> Specifies that the current row in the active set of <cursor> is to be deleted

ORDER BY <order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows

ROWS <value>
[TO <upper_value>]
[BY <step_value>]
[PERCENT][WITH TIES]

• <value> is the total number of rows to return if used by itself

• <value> is the starting row number to return if used with TO

• <value> is the percent if used with PERCENT

• <upper_value> is the last row or highest percent to return

• If <step_value> = <n>, returns every <n>th row, or <n> percent rows

• PERCENT causes all previous ROWS values to be interpreted as percents

• WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY

DELETE specifies one or more rows to delete from a table or updatable view. DELETE is one of the database
privileges controlled by the GRANT and REVOKE statements.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction
controls the DELETE operation. The TRANSACTION clause is not available in DSQL or isql.

For searched deletions, the optional WHERE clause can be used to restrict deletions to a subset of rows in
the table.

IMPORTANT

Without a WHERE clause, a searched delete removes all rows from a table.

When performing a positioned delete with a cursor, the WHERE CURRENT OF clause must be specified to
delete one row at a time from the active set.

Embarcadero Technologies 80

SQL Statement and Function Reference

Examples: The following isql statement deletes all rows in a table:

DELETE FROM EMPLOYEE_PROJECT;

The next embedded SQL statement is a searched delete in an embedded application. It deletes all rows
where a host-language variable equals a column value.

EXEC SQL
DELETE FROM SALARY_HISTORY
WHERE EMP_NO = :emp_num;

The following embedded SQL statements use a cursor and the WHERE CURRENTOF option to delete rows from
CITIES with a population less than the host variable, min_pop. They declare and open a cursor that finds
qualifying cities, fetch rows into the cursor, and delete the current row pointed to by the cursor.

EXEC SQL
DECLARE SMALL_CITIES CURSOR FOR
SELECT CITY, STATE
FROM CITIES
WHERE POPULATION < :min_pop;
EXEC SQL
OPEN SMALL_CITIES;
EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;
WHILE (!SQLCODE)
{EXEC SQL
DELETE FROM CITIES
WHERE CURRENT OF SMALL_CITIES;
EXEC SQL
FETCH SMALL_CITIES INTO :cityname, :statecode;}
EXEC SQL
CLOSE SMALL_CITIES;

9.44. DESCRIBE
 Provides information about columns that are retrieved by a dynamic SQL (DSQL) statement, or information
about the dynamic parameters that statement passes. Available in gpre.

DESCRIBE [OUTPUT | INPUT] statement
{INTO | USING} SQL DESCRIPTOR xsqlda;

Argument Description

OUTPUT [Default] Indicates that column information should be returned in the
XSQLDA.

INPUT Indicates that dynamic parameter information should be stored in the
XSQLDA.

<statement>
• A previously defined alias for the statement to DESCRIBE.

• Use PREPARE to define aliases.

Embarcadero Technologies 81

SQL Statement and Function Reference

Argument Description

{INTO|USING}SQL DESCRIPTOR <xsqlda> Specifies the XSQLDA to use for the DESCRIBE statement.

Description: DESCRIBE has two uses:

• As a describe output statement, DESCRIBE stores into an XSQLDA a description of the columns that
make up the select list of a previously-prepared statement. If the PREPARE statement included an INTO
clause, it is unnecessary to use DESCRIBE as an output statement.

• As a describe input statement, DESCRIBE stores into an XSQLDA a description of the dynamic param-
eters that are in a previously-prepared statement.

DESCRIBE is one of a group of statements that process DSQL statements.

Statement Purpose

PREPARE Readies a DSQL statement for execution.

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously-prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

Separate DESCRIBE statements must be issued for input and output operations. The INPUT keyword must
be used to store dynamic parameter information.

IMPORTANT

When using DESCRIBE for output, if the value returned in the sqld field in the XSQLDA is larger than the sqln field,
you must:

• Allocate more storage space for XSQLVAR structures.

• Reissue the DESCRIBE statement.

NOTE

The same XSQLDA structure can be used for input and output if desired.

Example: The following embedded SQL statement retrieves information about the output of a SELECT
statement:

EXEC SQL
DESCRIBE Q INTO xsqlda

The next embedded SQL statement stores information about the dynamic parameters passed with a state-
ment to be executed:

EXEC SQL
DESCRIBE INPUT Q2 USING SQL DESCRIPTOR xsqlda;

9.45. DISCONNECT
Detaches an application from a database. Available in gpre.

Embarcadero Technologies 82

SQL Statement and Function Reference

DISCONNECT {{ALL | DEFAULT} | dbhandle [, dbhandle] …]};

Argument Description

ALL|DEFAULT Either keyword detaches all open databases.

<dbhandle> Previously-declared database handle specifying a database to detach.

Description: DISCONNECT closes a specific database identified by a database handle or all databases, re-
leases resources used by the attached database, zeroes database handles, commits the default transac-
tion if the gpre-manual option is not in effect, and returns an error if any non-default transaction is not
committed.

Before using DISCONNECT, commit or roll back the transactions affecting the database to be detached.

To reattach to a database closed with DISCONNECT, reopen it with a CONNECT statement.

Examples: The following embedded SQL statements close all databases:

EXEC SQL
DISCONNECT DEFAULT;
EXEC SQL
DISCONNECT ALL;

The next embedded SQL statements close the databases identified by their handles:

EXEC SQL
DISCONNECT DB1;
EXEC SQL
DISCONNECT DB1, DB2;

9.46. DROP DATABASE
Deletes the currently attached database. Available in isql.

DROP DATABASE;

Description: DROP DATABASE deletes the currently attached database, including any associated secondary,
shadow, and log files. Dropping a database deletes any data it contains.

A database can be dropped by its creator, the SYSDBA user, and any users with operating system root
privileges.

Example: The following isql statement deletes the current database:

DROP DATABASE;

9.47. DROP DOMAIN
Deletes a domain from a database. Available in gpre, DSQL, and isql.

Embarcadero Technologies 83

SQL Statement and Function Reference

DROP DOMAIN name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing domain

Description: DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP operation fails. To prevent
failure, use ALTER TABLE to delete the columns based on the domain before executing DROP DOMAIN.

A domain may be dropped by its creator, the SYSDBA, and any users with operating system root privileges.

Example: The following isql statement deletes a domain:

DROP DOMAIN COUNTRYNAME;

9.48. DROP ENCRYPTION
Used to delete an encryption key from a database.

DROP ENCRYPTION key-name [RESTRICT | cascade]

Argument Description

key-name Specifies the name of the encryption key to drop from the database.

restrict This is the sub-command which is the default drop behavior.

cascade Decrypts all fields in all relations encrypted by it.

Description: An encryption key can be dropped (deleted) from the database. Only the SYSDSO can
execute this command. The command fails if the encryption key is still being used to encrypt the database.
If any table columns are encrypted when "restrict" is specified, which is the default drop behavior, the
command also fails. If "cascade" is specified, then all columns using that encryption are decrypted and the
encryption is dropped “Restrict” and “Cascade” are the only options available for this command.

In the case of Column-level Encryption use, although DROP ENCRYPTION CASCADE decrypts all fields in all
relations encrypted by it, that decryption process makes back versions of the decrypted records, which
remain dependent on the existence of the encryption. The encryption is only marked for deletion.

The next time the database is swept, database sweep completion checks for any record formats that still
depend on a “marked for deletion” encryption. If there are none, the encryption is fully deleted at that time.

If you are trying to completely remove all encryption from your database and are presented with an
"unsuccessful metadata update encryptions still exist", you need to sweep the database after the DROP
ENCRYPTION CASCADE and before ALTER DATABASE SET NO SYSTEM PASSWORD.

Embarcadero Technologies 84

SQL Statement and Function Reference

Example: The following example uses the cascade option to decrypt all columns using the revenue_key
and to delete the key:

drop encryption revenue_key cascade

9.49. DROP EXCEPTION
Deletes an exception from a database. Available in DSQL and isql.

DROP EXCEPTION name

Argument Description

<name> Name of an existing exception message

Description: DROP EXCEPTION removes an exception from a database.

Exceptions used in existing procedures and triggers cannot be dropped.

TIP

In isql, SHOW EXCEPTION displays a list of exceptions’ dependencies, the procedures and triggers that use the exceptions.

An exception can be dropped by its creator, the SYSDBA user, and any user with operating system root
privileges.

Example: This isql statement drops an exception:

DROP EXCEPTION UNKNOWN_EMP_ID;

9.50. DROP EXTERNAL FUNCTION
Removes a user-defined function (UDF) declaration from a database. Available in gpre, DSQL, and isql.

DROP EXTERNAL FUNCTION name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing UDF

Description: DROP EXTERNAL FUNCTION deletes a UDF declaration from a database. Dropping a UDF dec-
laration from a database does not remove it from the corresponding UDF library, but it does make the
UDF inaccessible from the database. Once the definition is dropped, any applications that depend on the
UDF will return run-time errors.

A UDF can be dropped by its declarer, the SYSDBA user, or any users with operating system root privileges.

Example: This isql statement drops a UDF:

Embarcadero Technologies 85

SQL Statement and Function Reference

DROP EXTERNAL FUNCTION TOPS;

9.51. DROP FILTER
Removes a Blob filter declaration from a database. Available in gpre, DSQL, and isql.

DROP FILTER name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing Blob filter

Description: DROP FILTER removes a Blob filter declaration from a database. Dropping a Blob filter dec-
laration from a database does not remove it from the corresponding Blob filter library, but it does make
the filter inaccessible from the database. Once the definition is dropped, any applications that depend on
the filter will return run-time errors.

DROP FILTER fails and returns an error if any processes are using the filter.

A filter can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: This isql statement drops a Blob filter:

DROP FILTER DESC_FILTER;

9.52. DROP GENERATOR
Drops a generator from the database. Available in DSQL, and isql.

DROP GENERATOR generator_name

Argument Description

generator_name Name of the generator.

Description: This command checks for any existing dependencies on the generator (as in triggers or UDFs)
and fails if such dependencies exist. The statement fails if generator_name is not the name of a generator
defined on the database. An application that tries to call a deleted generator returns runtime errors.

NOTE

In previous versions of InterBase that lacked the DROP GENERATOR command, users issued a SQL statement to delete
the generator from the appropriate system table. This approach is strongly discouraged now that the DROP GENERATOR
command is available, since modifying system tables always carries with it the possibility of rendering the entire database
unusable as a result of even a slight error or miscalculation.

Embarcadero Technologies 86

SQL Statement and Function Reference

9.53. DROP INDEX
Removes an index from a database. Available in gpre, DSQL, and isql.

DROP INDEX name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing index

Description: DROP INDEX removes a user-defined index from a database.

An index can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

IMPORTANT

You cannot drop system-defined indexes, such as those for UNIQUE, PRIMARY KEY, and FOREIGN KEY.

An index in use is not dropped until it is no longer in use.

Example: The following isql statement deletes an index:

DROP INDEX MINSALX;

9.54. DROP JOURNAL
Discontinues the use of journaling and deletes existing journal files in the database.

DROP JOURNAL

Description: The DROP JOURNAL statement discontinues the use of write-ahead logging and deletes all
journal files. This operation does not delete any journal files in the journal archive but does discontinue
maintenance of the journal archive. Dropping journal files requires exclusive access to the database.

9.55. DROP JOURNAL ARCHIVE
Discontinues journal archiving on the database.

DROP JOURNAL ARCHIVE

Description: DROP JOURNAL ARCHIVE disables journal archiving for the database. It causes all journal files and
database file dumps to be deleted in all journal archive directories. The file system directories themselves
are not deleted.

Embarcadero Technologies 87

SQL Statement and Function Reference

IMPORTANT

This command does not discontinue journaling and the creation of journal files.

9.56. DROP PROCEDURE
Deletes an existing stored procedure from a database. Available in DSQL, and isql.

DROP PROCEDURE name

Argument Description

<name> Name of an existing stored procedure

Description: DROP PROCEDURE removes an existing stored procedure definition from a database.

Procedures used by other procedures, triggers, or views cannot be dropped. Procedures currently in use
cannot be dropped.

TIP

In isql, SHOW PROCEDURE displays a list of procedures’ dependencies, the procedures, triggers, exceptions, and tables
that use the procedures.

A procedure can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Example: The following isql statement deletes a procedure:

DROP PROCEDURE GET_EMP_PROJ;

9.57. DROP ROLE
Deletes a role from a database. Available in gpre, DSQL, and isql.

DROP ROLE <rolename>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<rolename> Name of an existing role

Description: DROP ROLE deletes a role that was previously created using CREATE ROLE. Any privileges that
users acquired or granted through their membership in the role are revoked.

A role can be dropped by its creator, the SYSDBA user, or any user with superuser privileges.

Example: The following isql statement deletes a role from its database:

Embarcadero Technologies 88

SQL Statement and Function Reference

DROP ROLE administrator;

9.58. DROP SHADOW
Deletes a shadow from a database. Available in gpre, DSQL, and isql.

DROP SHADOW <set_num>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<set_num> Positive integer to identify an existing shadow set

Description: DROP SHADOW deletes a shadow set and detaches from the shadowing process. The isql SHOW
DATABASE command can be used to see shadow set numbers for a database.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating system root priv-
ileges.

Example: The following isql statement deletes a shadow set from its database:

DROP SHADOW 1;

9.59. DROP SUBSCRIPTION
To eliminate interest in observing a set of change views, a subscription must be dropped.

DROP SUBSCRIPTION <subscription_name> [RESTRICT | CASCADE];

IMPORTANT

If RESTRICT is specified then a check of existing subscribers is performed. If there are subscribers then an error is
returned without dropping the subscription. If CASCADE is specified then all subscribers of this subscription are also
dropped. If neither RESTRICT nor CASCADE is specified then RESTRICT is assumed.

Argument Description

<RESTRICT> Checks existing subscribers.

CASCADE All subscribers of the subscription are dropped.

9.60. DROP TABLE
Removes a table from a database. Available in gpre, DSQL, and isql.

DROP TABLE name;

Embarcadero Technologies 89

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing table

Description: DROP TABLE removes the data, metadata, and indexes of a table from a database. It also
drops any triggers that reference the table.

A table referenced in a SQL expression, a view, integrity constraint, or stored procedure cannot be dropped.
A table used by an active transaction is not dropped until it is free.

NOTE

When used to drop an external table, DROP TABLE only removes the table definition from the database. The external
file is not deleted.

A table can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: The following embedded SQL statement drops a table:

EXEC SQL
DROP TABLE COUNTRY;

9.61. DROP TRIGGER

Deletes an existing user-defined trigger from a database. Available in DSQL and isql.

DROP TRIGGER <name>

Argument Description

<name> Name of an existing trigger

Description: DROP TRIGGER removes a user-defined trigger definition from the database. System-defined
triggers, such as those created for CHECK constraints, cannot be dropped. Use ALTER TABLE to drop the
CHECK clause that defines the trigger.

Triggers used by an active transaction cannot be dropped until the transaction is terminated.

A trigger can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

TIP

To inactivate a trigger temporarily, use ALTER TRIGGER and specify INACTIVE in the header.

Example: The following isql statement drops a trigger:

Embarcadero Technologies 90

SQL Statement and Function Reference

DROP TRIGGER POST_NEW_ORDER;

9.62. DROP USER
Deletes an existing user from an embedded user authentication database. Available in DSQL, and isql.

DROP USER <name>

9.63. DROP VIEW
Removes a view definition from the database. Available in gpre, DSQL, and isql.

DROP VIEW name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing view definition to drop

Description: DROP VIEW enables a view’s creator to remove a view definition from the database if the view
is not used in another view, stored procedure, or CHECK constraint definition.

A view can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: The following isql statement removes a view definition:

DROP VIEW PHONE_LIST;

9.64. END DECLARE SECTION
Identifies the end of a host-language variable declaration section. Available in gpre.

END DECLARE SECTION;

Description: END DECLARE SECTION is used in embedded SQL applications to identify the end of host-
language variable declarations for variables used in subsequent SQL statements.

 Example: The following embedded SQL statements declare a section, and single host-language variable:

EXEC SQL
BEGIN DECLARE SECTION;
BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL
END DECLARE SECTION;

Embarcadero Technologies 91

SQL Statement and Function Reference

9.65. EVENT INIT
Registers interest in one or more events with the InterBase event manager. Available in gpre.

EVENT INIT request_name [dbhandle]
[('string' | :variable [, 'string' | :variable …]);

Argument Description

<request_name> Application event handle

<dbhandle> Specifies the database to examine for occurrences of the events; if omitted, <dbhandle> defaults to
the database named in the most recent SET DATABASE statement.

‘<string>’ Unique name identifying an event associated with <event_name>.

<variable> Host-language character array containing a list of event names to associate with.

Description: EVENT INIT is the first step in the InterBase two-part synchronous event mechanism:

1. EVENT INIT registers an application interest in an event.
2. EVENT WAIT causes the application to wait until notified of the event occurrence.

EVENT INIT registers an application interest in a list of events in parentheses. The list should correspond
to events posted by stored procedures or triggers in the database. If an application registers interest in
multiple events with a single EVENT INIT, then when one of those events occurs, the application must
determine which event occurred.

Events are posted by a POST_EVENT call within a stored procedure or trigger.

The event manager keeps track of events of interest. At commit time, when an event occurs, the event
manager notifies interested applications.

Example: The following embedded SQL statement registers interest in an event:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('new_order');

9.66. EVENT WAIT
Causes an application to wait until notified of an event occurrence. Available in gpre.

EVENT WAIT request_name;

Argument Description

<request_name> Application event handle declared in a previous EVENT INIT statement

Description: EVENT WAIT is the second step in the InterBase two-part synchronous event mechanism. After
a program registers interest in an event, EVENT WAIT causes the process running the application to sleep
until the event of interest occurs.

Examples: The following embedded SQL statements register an application event name and indicate the
program is ready to receive notification when the event occurs:

Embarcadero Technologies 92

SQL Statement and Function Reference

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('new_order');
EXEC SQL
EVENT WAIT ORDER_WAIT;

9.67. EXECUTE
Executes a previously prepared dynamic SQL (DSQL) statement. Available in gpre.

EXECUTE [TRANSACTION TRANSACTION] statement
[USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<statement> Alias of a previously prepared statement to execute

USING SQL DESCRIPTOR Specifies that values corresponding to the prepared statement parameters should be
taken from the specified XSQLDA

INTOSQL DESCRIPTOR Specifies that return values from the executed statement should be stored in the speci-
fied XSQLDA

<xsqlda> XSQLDA host-language variable

Description: EXECUTE carries out a previously prepared DSQL statement. It is one of a group of statements
that process DSQL statements.

Statement Purpose

PREPARE Readies a DSQL statement for execution

DESCRIBE Fills in the XSQLDA with information about the statement

EXECUTE Executes a previously prepared statement

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it

Before a statement can be executed, it must be prepared using the PREPARE statement. The statement can
be any SQL data definition, manipulation, or transaction management statement. Once it is prepared, a
statement can be executed any number of times.

The TRANSACTION clause can be used in SQL applications running multiple, simultaneous transactions to
specify which transaction controls the EXECUTE operation.

USING DESCRIPTOR enables EXECUTE to extract a statement parameters from an XSQLDA structure previously
loaded with values by the application. It need only be used for statements that have dynamic parameters.

INTO DESCRIPTOR enables EXECUTE to store return values from statement execution in a specified XSQLDA
structure for application retrieval. It need only be used for DSQL statements that return values.

NOTE

If an EXECUTE statement provides both a USING DESCRIPTOR clause and an INTO DESCRIPTOR clause, then two XSQLDA
structures must be provided.

Embarcadero Technologies 93

SQL Statement and Function Reference

Example: The following embedded SQL statement executes a previously prepared DSQL statement:

EXEC SQL
EXECUTE DOUBLE_SMALL_BUDGET;

The next embedded SQL statement executes a previously prepared statement with parameters stored in
an XSQLDA:

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda;

The following embedded SQL statement executes a previously prepared statement with parameters in one
XSQLDA, and produces results stored in a second XSQLDA:

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda_1 INTO DESCRIPTOR xsqlda_2;

9.68. EXECUTE IMMEDIATE
Prepares a dynamic SQL (DSQL) statement, executes it once, and discards it. Available in gpre.

EXECUTE IMMEDIATE [TRANSACTION TRANSACTION]
{:variable | 'string'} [USING SQL DESCRIPTOR xsqlda];

 Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<variable> Host variable containing the SQL statement to execute

‘<string>’ A string literal containing the SQL statement to execute

USING SQL DESCRIPTOR Specifies that values corresponding to the statement parameters should be taken from
the specified XSQLDA

<xsqlda> XSQLDA host-language variable

Description: EXECUTE IMMEDIATE prepares a DSQL statement stored in a host-language variable or in a
literal string, executes it once, and discards it. To prepare and execute a DSQL statement for repeated use,
use PREPARE and EXECUTE instead of EXECUTE IMMEDIATE.

The TRANSACTION clause can be used in SQL applications running multiple, simultaneous transactions to
specify which transaction controls the EXECUTE IMMEDIATE operation.

The SQL statement to execute must be stored in a host variable or be a string literal. It can contain any
SQL data definition statement or data manipulation statement that does not return output.

USING DESCRIPTOR enables EXECUTE IMMEDIATE to extract the values of a statement’s parameters from an
XSQLDA structure previously loaded with appropriate values.

Example: The following embedded SQL statement prepares and executes a statement in a host variable:

EXEC SQL

Embarcadero Technologies 94

SQL Statement and Function Reference

EXECUTE IMMEDIATE :insert_date;

9.69. EXECUTE PROCEDURE
Calls a stored procedure. Available in gpre, DSQL, and isql.

SQL form:

EXECUTE PROCEDURE [TRANSACTION TRANSACTION]
name [:param [[INDICATOR]:indicator]]
[, :param [[INDICATOR]:indicator] …]
[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator] …]];

DSQL form:

EXECUTE PROCEDURE name [param [, param …]]
[RETURNING_VALUES param [, param …]]

isqlform:

EXECUTE PROCEDURE name [param [, param …]]

Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs

<name> Name of an existing stored procedure in the database

<param> Input or output parameter; can be a host variable or a constant

RETURNING_VALUES: <param> Host variable which takes the values of an output parameter

[INDICATOR] :<indicator> Host variable for indicating NULL or unknown values

Description: EXECUTE PROCEDURE calls the specified stored procedure. If the procedure requires input pa-
rameters, they are passed as host-language variables or as constants. If a procedure returns output pa-
rameters to a SQL program, host variables must be supplied in the RETURNING_VALUES clause to hold the
values returned.

In isql, do not use the RETURN clause or specify output parameters. isql will automatically display return
values.

NOTE

In DSQL, an EXECUTE PROCEDURE statement requires an input descriptor area if it has input parameters and an output
descriptor area if it has output parameters.

In embedded SQL, input parameters and return values may have associated indicator variables for tracking
NULL values. Indicator variables are integer values that indicate unknown or NULL values of return values.

An indicator variable that is less than zero indicates that the parameter is unknown or NULL. An indicator
variable that is zero or greater indicates that the associated parameter is known and not NULL.

Embarcadero Technologies 95

SQL Statement and Function Reference

Examples: The following embedded SQL statement demonstrates how the executable procedure, DEP-
T_BUDGET, is called from embedded SQL with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The next embedded SQL statement calls the same procedure using a host variable instead of a literal as
the input parameter:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

9.70. EXTRACT()
Extracts date and time information from DATE, TIME, and TIMESTAMP values. Available in gpre, DSQL, and isql.

EXTRACT (part FROM VALUE)

Argument Description

<part> YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, WEEKDAY, or YEARDAY; see the table below for data
types and ranges of values

<value> DATE, TIME, or TIMESTAMP value

Description: The value passed to the EXTRACT() expression must be a DATE, a TIME, or a TIMESTAMP.
Extracting a part that does not exist in a data type results in an error. For example, a statement such as
tEXTRACT (YEAR from aTime) would fail.

NOTE

The data type of part depends on which part is extracted.

Part extracted Data type Range

YEAR SMALLINT 0–5400

MONTH SMALLINT 1–12

DAY SMALLINT 1–31

HOUR SMALLINT 0–23

MINUTE SMALLINT 0–59

SECOND DECIMAL(6,4) 0–59.9999

WEEKDAY SMALLINT 0–6

(0 = Sunday, 1 = Monday, etc.)

YEARDAY SMALLINT 0–365

Example:

EXTRACT(HOUR FROM StartTime);

Embarcadero Technologies 96

SQL Statement and Function Reference

9.71. FETCH
Retrieves the next available row from the active set of an opened cursor. Available in gpre and DSQL.

SQL form:

FETCH cursor
[INTO :hostvar [[INDICATOR] :indvar]
[, :hostvar [[INDICATOR] :indvar] …]];

DSQL form:

FETCH cursor {INTO | USING} SQL DESCRIPTOR xsqlda

Blob form: See FETCH (BLOB).

Argument Description

<cursor> Name of the opened cursor from which to fetch rows.

<hostvar> A host-language variable for holding values retrieved with the FETCH.

• Optional if FETCH gets rows for DELETE or UPDATE.

• Required if row is displayed before DELETE or UPDATE.

<indvar> Indicator variable for reporting that a column contains an unknown or NULL val-
ue.

[INTO|USING] SQL DESCRIPTOR Specifies that values should be returned in the specified XSQLDA.

<xsqlda> XSQLDA host-language variable

Description: FETCH retrieves one row at a time into a program from the active set of a cursor. The
first FETCH operates on the first row of the active set. Subsequent FETCH statements advance the cursor
sequentially through the active set one row at a time until no more rows are found and SQLCODE is set
to 100.

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in the DECLARE
CURSOR statement. A cursor enables sequential access to retrieved rows. There are four related cursor
statements:

Stage Statement Purpose

1 DECLARE CURSOR Declare the cursor; the SELECT statement determines rows retrieved for the cursor.

2 OPEN Retrieve the rows specified for retrieval with DECLARE CURSOR; the resulting rows be-
come the cursor active set.

3 FETCH Retrieve the current row from the active set, starting with the first row; subsequent
FETCH statements advance the cursor through the set.

4 CLOSE Close the cursor and release system resources.

The number, size, data type, and order of columns in a FETCH must be the same as those listed in the query
expression of its matching DECLARE CURSOR statement. If they are not, the wrong values can be assigned.

Examples: The following embedded SQL statement fetches a column from the active set of a cursor:

Embarcadero Technologies 97

SQL Statement and Function Reference

EXEC SQL
FETCH PROJ_CNT INTO :department, :hcnt;

9.72. FETCH (BLOB)
Retrieves the next available segment of a Blob column and places it in the specified local buffer. Available
in gpre.

FETCH cursor INTO
[:buffer [[INDICATOR] :segment_length];

Argument Description

<cursor> Name of an open Blob cursor from which to retrieve segments

<buffer> Host-language variable for holding segments fetched from the Blob column; user must declare the
buffer before fetching segments into it

INDICATOR Optional keyword indicating that a host-language variable for indicating the number of bytes re-
turned by the FETCH follows

<segment_length> Host-language variable used to indicate the number of bytes returned by the FETCH

Description: FETCH retrieves the next segment from a Blob and places it into the specified buffer.

The host variable, segment_length, indicates the number of bytes fetched. This is useful when the number
of bytes fetched is smaller than the host variable, for example, when fetching the last portion of a Blob.

FETCH can return two SQLCODE values:

• SQLCODE = 100 indicates that there are no more Blob segments to retrieve.
• SQLCODE = 101 indicates that a partial segment was retrieved and placed in the local buffer variable.

NOTE

To ensure that a host variable buffer is large enough to hold a Blob segment buffer during FETCH operations, use the
SEGMENT option of the BASED ON statement.

Example: The following code, from an embedded SQL application, performs a BLOB FETCH:

while (SQLCODE != 100)
{
EXEC SQL
OPEN BLOB_CUR USING :blob_id;
EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;
while (SQLCODE !=100 || SQLCODE == 101)
{
blob_segment{blob_seg_len + 1] = '\0';
printf("%*.*s",blob_seg_len,blob_seg_len,blob_segment);
blob_segment{blob_seg_len + 1] = ‘ ’;
EXEC SQL
FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;

Embarcadero Technologies 98

SQL Statement and Function Reference

}
. . .
}

9.73. GEN ID()
Produces a system-generated integer value. Available in gpre, DSQL, and isql.

gen_id (generator, step)

Argument Description

<generator> Name of an existing generator

<step> Integer or expression specifying the increment for increasing or decreasing the current generator value.
Values can range from –(263) to 263 – 1

Description: The GEN_ID() function:

1. Increments the current value of the specified generator by step.
2. Returns the new value of the specified generator.

GEN_ID() is useful for automatically producing unique values that can be inserted into a UNIQUE or PRIMARY
KEY column. To insert a generated number in a column, write a trigger, procedure, or SQL statement that
calls GEN_ID().

NOTE

A generator is initially created with CREATE GENERATOR. By default, the value of a generator begins at zero. It can be
set to a different value with SET GENERATOR.

Examples: The following isql trigger definition includes a call to GEN_ID():

CREATE TRIGGER CREATE_EMPNO FOR EMPLOYEES
BEFORE INSERT
POSITION 0
AS BEGIN
NEW.EMPNO = GEN_ID (EMPNO_GEN, 1);
END

The first time the trigger fires, NEW.EMPNO is set to 1. Each subsequent firing increments NEW.EMPNO
by 1.

9.74. GRANT
Assigns privileges to users for specified database objects. Available in gpre, DSQL, and isql.

GRANT <privileges> ON [TABLE] {<tablename> | <viewname}>
TO {object|userlist [WITH GRANT OPTION]|GROUP <UNIX_group}>
| EXECUTE ON PROCEDURE procname TO {object | userlist}
| <role_granted> TO {PUBLIC | <role_grantee_list}>[WITH ADMIN OPTION];
privileges = ALL [PRIVILEGES] | privilege_list

Embarcadero Technologies 99

SQL Statement and Function Reference

privilege_list = {
 SELECT
| DELETE
| INSERT
| ENCRYPT ON ENCRYPTION
| DECRYPT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
}[, privilege_list …]
object = {
 PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}[, object …]
userlist = {
 [USER] username
| rolename
| UNIX_user
}[,userlist …]
role_granted = rolename [, rolename …]
role_grantee_list = [USER] username [, [USER] username …]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<privilege_list> Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, UPDATE, EN-
CRYPT ON ENCRYPTION, DECRYPT, and REFERENCES.

<col> Column to which the granted privileges apply

<tablename> Name of an existing table for which granted privileges apply

<viewname> Name of an existing view for which granted privileges apply

GROUP <unix_group> On a UNIX system, the name of a group defined in /etc/group

<object> Name of an existing procedure, trigger, or view; PUBLIC is also a permitted value.

<userlist> A user in the InterBase security database (admin.ib by default) or a rolename created with
CREATE ROLE

WITH GRANT OPTION Passes GRANT authority for privileges listed in the GRANT statement to userlist.

<rolename> An existing role created with the CREATE ROLE statement

<role_grantee_list> A list of users to whom <rolename> is granted; users must be in the InterBase security
database.

WITH ADMIN OPTION Passes grant authority for roles listed to <role_grantee_list>.

Description: GRANT assigns privileges and roles for database objects to users, roles, or other database
objects. When an object is first created, only its creator has privileges to it and only its creator can GRANT
privileges for it to other users or objects.

The following table summarizes available privileges:

Embarcadero Technologies 100

SQL Statement and Function Reference

Privilege Enables users to …

ALL Perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES

SELECT Retrieve rows from a table or view

DELETE Remove rows from a table or view

DECRYPT After encrypting a column, the database owner or the individual table owner can grant decrypt
permission to users who need to access the values in an encrypted column.

ENCRYPT ON ENCRYP-
TION

Enables the database owner or individual table owner to use a specific encryption key to en-
crypt a database or column. Only the SYSDSO (Data Security Owner) can grant encrypt permis-
sion.

INSERT Store new rows in a table or view

UPDATE Change the current value in one or more columns in a table or view; can be restricted to a spec-
ified subset of columns.

EXECUTE Execute a stored procedure

REFERENCES Reference the specified columns with a foreign key; at a minimum, this must be granted to all
the columns of the primary key if it is granted at all.

NOTE

ALL does not include REFERENCES in code written for InterBase 4.0 or earlier.

• To access a table or view, a user or object needs the appropriate SELECT, INSERT, UPDATE, DELETE, or
REFERENCES privileges for that table or view. SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges
can be assigned as a unit with ALL.

• A user or object must have EXECUTE privilege to call a stored procedure in an application.
• For more information about the GRANT ENCRYPT ON ENCRYPTION and GRANT DECRYPT permissions, see

“Encrypting Your Data” in the Data Definition Guide.
• To grant privileges to a group of users, create a role using CREATE ROLE. Then use GRANT <privilege>

TO <rolename> to assign the desired privileges to that role and use GRANT <rolename> TO <user> to
assign that role to users. Users can be added or removed from a role on a case-by-case basis using
GRANT and REVOKE. A user must specify the role at connection time to actually have those privileges.
See “ANSI SQL 3 roles” in the Operations Guide for more information about invoking a role when
connecting to a database.

• On UNIX systems, privileges can be granted to groups listed in /etc/groups and to any UNIX user
listed in /etc/passwd on both the client and server, as well as to individual users and to roles.

• To allow another user to reference a column from a foreign key, grant REFERENCES privileges on the
primary key table or on the primary key columns of the table to the owner of the foreign key table.
You must also grant REFERENCES or SELECT privileges on the primary key table to any user who needs
to write to the foreign key table.

TIP

Make it easy, if read security is not an issue, GRANT REFERENCES on the primary key table to PUBLIC.

• If you grant the REFERENCES privilege, it must, at a minimum, be granted to all columns of the primary
key. When REFERENCES is granted to the entire table, columns that are not part of the primary key
are not affected in any way.

• When a user defines a foreign key constraint on a table owned by someone else, InterBase checks
that the user has REFERENCES privileges on the referenced table.

Embarcadero Technologies 101

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

• The privilege is used at run time to verify that a value entered in a foreign key field is contained in
the primary key table.

• You can grant REFERENCES privileges to roles.
• To give users permission to grant privileges to other users, provide a userlist that includes the WITH

GRANT OPTION. Users can grant to others only the privileges that they themselves possess.
• To grant privileges to all users, specify PUBLIC in place of a list of user names. Specifying PUBLIC grants

privileges only to users, not to database objects.

Privileges can be removed only by the user who assigned them, using REVOKE. If ALL privileges are assigned,
then ALL privileges must be revoked. If privileges are granted to PUBLIC, they can be removed only for
PUBLIC.

Examples: The following isql statement grants SELECT and DELETE privileges to a user. The WITH GRANT
OPTION gives the user GRANT authority.

GRANT SELECT, DELETE ON COUNTRY TO CHLOE WITH GRANT OPTION;

The next embedded SQL statement, from an embedded program, grants SELECT and UPDATE privileges to
a procedure for a table:

EXEC SQL
GRANT SELECT, UPDATE ON JOB TO PROCEDURE GET_EMP_PROJ;

This embedded SQL statement grants EXECUTE privileges for a procedure to another procedure and to
a user:

EXEC SQL
GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
TO PROCEDURE ADD_EMP_PROJ, LUIS;

The following example creates a role called “administrator”, grants UPDATE privileges on table1 to that
role, and then grants the role to user1, user2, and user3. These users then have UPDATE and REFERENCES
privileges on table1.

CREATE ROLE administrator;
GRANT UPDATE ON table1 TO administrator;
GRANT administrator TO user1, user2, user3;

9.75. GRANT SUBSCRIBE
A user is granted SUBSCRIBE privilege to subscribe to the subscription in order to track changes on the
listed tables:

GRANT SUBSCRIBE ON SUBSCRIPTION <subscription_name> TO <user_name>;
REVOKE SUBSCRIBE ON SUBSCRIPTION <subscription_name> FROM <user_name>;

Embarcadero Technologies 102

SQL Statement and Function Reference

IMPORTANT

To set a subscription as active, an application issues a SET SUBSCRIPTION statement.

Argument Description

<subscription_name> Implied by the user identity of the database

<user_name> User identify of the database connection

Description: This SET SUBSCRIPTION statement allows multiple subscriptions to be activated and includes an
AT clause to denote a destination or device name as a recipient of the subscribed changes. The subscriber
user name is implied by the user identity of the database connection. Multiple subscriptions against the
same schema object for a user, via the AT clause, are available for two reasons:

First, each subscription for a user may connote a separate device among many that have a disconnected
interest in a change set that is queried independently at different times for different purposes.

Second, some multiuser applications use pooled database connections under the umbrella of a single user
name (for example CRM_User or even SYSDBA). In these cases, an alternate identifier must be provided
to distinguish which subscription should be used to query a change set. That additional identifier can be
thought of as a destination or a "device name".

Example: This is to grant subscribe privileges to that user:

GRANT SUBSCRIBE ON SUBSCRIPTION Subscribed_Inserts TO smartphone_user;
GRANT SUBSCRIBE ON SUBSCRIPTION Customer_Deletes TO smartphone_user;

9.76. GRANT TEMPORARY SUBSCRIBE

GRANT TEMPORARY SUBSCRIBE[(<column_comma-list>)] ON <table_name> TO
<user_name>;
REVOKE TEMPORARY SUBSCRIBE[(<column_comma-list>)]ON <table_name> FROM
<user_name>;TO SET a subscription AS active, an application issues a SET
SUBSCRIPTION statement.

IMPORTANT

The user issues a SET SUBSCRIPTION command as usual giving the name of the base table instead of a subscription
name.

Argument Description

<column_comma-list>

<table_name>

user_name

Description:

Example: Retrieving Changed Views from ISQL

SET SUBSCRIPTION ":Employees" ACTIVE;
SELECT NAME, DEPARTMENT, SALARY :FROM "Employees";

Embarcadero Technologies 103

SQL Statement and Function Reference

COMMIT;
<Another USER reassigns an existing employee TO another department AND
gives another employee a raise>
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<CHANGE> NAME DEPARTMENT SALARY
UPDATE joe sales 50000
UPDATE mary finance 75000
SET SAME;
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<CHANGE> NAME DEPARTMENT SALARY
UPDATE <same> sales <same>
UPDATE <same> <same> 75000
COMMIT;
SET SUBSCRIPTION "Employees" INACTIVE;

ISQL has a collection of SET statements that toggle a display set. The SET SAME display toggle alternates
between showing the column data value or its changes state of <same> or the changed data value. The
CHANGE column is a pseudo column that shows the type of DML statement that modified the column value(s).
All of this change state is returned by the XSQLVAR.SQLIND member of the new XSQLDA structure.

Minimal support for changed data views is provided by InterBase SQL with the addition of a IS SAME or
IS NOT SAME clause as the following example illustrates:

IMPORTANT

Using IS NOT SAME in SELECT queries

SELECT NAME, DEPARTMENT, SALARY FROM "Employees" WHERE SALARY IS NOT SAME;
<CHANGE> NAME DEPARTMENT SALARY
UPDATE mary finance 75000

We see that Joe's department reassignment is not returned since he received no compensation adjustment
for a lateral move.

9.77. INSERT
Adds one or more new rows to a specified table. Available in gpre, DSQL, and isql.

INSERT [TRANSACTION TRANSACTION] INTO object [(<col> [, <col> …])]
{VALUES (val [, val …]) | select_expr};
object = tablename | viewname
val = {:variable | constant | expr
| FUNCTION | udf ([val [, val …]])
| NULL | USER | RDB$DB_KEY | ?
} [COLLATE collation]
constant = num | 'string' | charsetname 'string'
FUNCTION = CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)

Embarcadero Technologies 104

SQL Statement and Function Reference

Argument Description

<expr> A valid SQL expression that results in a single column value

<select_expr> A SELECT that returns zero or more rows and where the number of columns in each row is the same as
the number of items to be inserted

Notes on the INSERT statement:

• In SQL and isql, you cannot use val as a parameter placeholder (like “?”).
• In DSQL and isql, val cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

TRANSACTION <transaction> Name of the transaction that controls the execution of the INSERT

INTO <object> Name of an existing table or view into which to insert data

<col> Name of an existing column in a table or view into which to insert values

VALUES (<val> [, <val> …]) Lists values to insert into the table or view; values must be listed in the same order as
the target columns

<select_expr> Query that returns row values to insert into target columns

Description: INSERT stores one or more new rows of data in an existing table or view. INSERT is one of the
database privileges controlled by the GRANT and REVOKE statements.

Values are inserted into a row in column order unless an optional list of target columns is provided. If the
target list of columns is a subset of available columns, default or NULL values are automatically stored in
all unlisted columns.

If the optional list of target columns is omitted, the VALUES clause must provide values to insert into all
columns in the table.

To insert a single row of data, the VALUES clause should include a specific list of values to insert.

To insert multiple rows of data, specify a select_expr that retrieves existing data from another table to insert
into this one. The selected columns must correspond to the columns listed for insert.

IMPORTANT

It is legal to select from the same table into which insertions are made, but this practice is not advised because it may
result in infinite row insertions.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction
controls the INSERT operation. The TRANSACTION clause is not available in DSQL or isql.

Examples: The following statement, from an embedded SQL application, adds a row to a table, assigning
values from host-language variables to two columns:

EXEC SQL

Embarcadero Technologies 105

SQL Statement and Function Reference

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:emp_no, :proj_id);

The next isql statement specifies values to insert into a table with a SELECT statement:

INSERT INTO PROJECTS
SELECT * FROM NEW_PROJECTS
WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

9.78. INSERT CURSOR (BLOB)
Inserts data into a Blob cursor in units of a Blob segment-length or less in size. Available in gpre.

INSERT CURSOR cursor
VALUES (:buffer [INDICATOR] :bufferlen);

Argument Description

<cursor> Name of the Blob cursor

VALUES Clause containing the name and length of the buffer variable to in-
sert

<buffer> Name of host-variable buffer containing information to insert

INDICATOR Indicates that the length of data placed in the buffer follows

<bufferlen> Length, in bytes, of the buffer to insert

Description: INSERT CURSOR writes Blob data into a column. Data is written in units equal to or less than
the segment size for the Blob. Before inserting data into a Blob cursor:

• Declare a local variable, <buffer>, to contain the data to be inserted.
• Declare the length of the variable, <bufferlen>.
• Declare a Blob cursor for INSERT and open it.

Each INSERT into the Blob column inserts the current contents of <buffer>. Between statements fill <buffer>
with new data. Repeat the INSERT until each existing <buffer> is inserted into the Blob.

IMPORTANT

INSERT CURSOR requires the INSERT privilege, a table privilege controlled by the GRANT and REVOKE statements.

Example: The following embedded SQL statement shows an insert into the Blob cursor:

EXEC SQL
INSERT CURSOR BC VALUES (:line INDICATOR :len);

9.79. MAX()
Retrieves the maximum value in a column. Available in gpre, DSQL, and isql.

Embarcadero Technologies 106

SQL Statement and Function Reference

MAX ([ALL] val | DISTINCT val)

Argument Description

ALL Searches all values in a column

DISTINCT Eliminates duplicate values before finding the largest

<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF

Description: MAX() is an aggregate function that returns the largest value in a specified column, excluding
NULL values. If the number of qualifying rows is zero, MAX() returns a NULL value.

When MAX() is used on a CHAR, VARCHAR, or Blob text column, the largest value returned varies depending
on the character set and collation in use for the column. A default character set can be specified for an
entire database with the DEFAULT CHARACTER SET clause in CREATE DATABASE, or specified at the column level
with the COLLATE clause in CREATE TABLE.

Example: The following embedded SQL statement demonstrates the use of SUM(), AVG(), MIN(), and MAX():

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.80. MIN()
Retrieves the minimum value in a column. Available in gpre, DSQL, and isql.

MIN ([ALL] val | DISTINCT val)

Argument Description

ALL Searches all values in a column

DISTINCT Eliminates duplicate values before finding the smallest

<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF

Description: MIN() is an aggregate function that returns the smallest value in a specified column, excluding
NULL values. If the number of qualifying rows is zero, MIN() returns a NULL value.

When MIN() is used on a CHAR, VARCHAR, or Blob text column, the smallest value returned varies depending
on the character set and collation in use for the column. Use the DEFAULT CHARACTER SET clause in CREATE
DATABASE TO specify a default character set for an entire database, or the COLLATE clause in CREATE TABLE
to specify a character set at the column level.

Example: The following embedded SQL statement demonstrates the use of SUM(), AVG(), MIN(), and MAX():

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept

Embarcadero Technologies 107

SQL Statement and Function Reference

INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.81. NULLIF()
The NULLIF function returns a null value if the arguments are equal, otherwise it returns the value of the
first argument.

NULLIF (<expression1>, <expression2>)

Description: The COALESCE and NULLIF expressions are common, shorthand forms of use for the CASE
expression involving the NULL state. A COALESCE expression consists of a list of value expressions. It evaluates
to the first value expression in the list that evaluates to non-NULL. If none of the value expressions in the
list evaluates to non-NULL then the COALESCE expression evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are unequal then
the NULLIF expression evaluates to the first value expression in the list. Otherwise, it evaluates to NULL.

Example: The following example demonstrates the use of CASE using the sample employee.ib database:

SELECT NULLIF(department, head_dept) FROM department

9.82. OPEN
Retrieve specified rows from a cursor declaration. Available in gpre and DSQL.

SQL form:

OPEN [TRANSACTION TRANSACTION] cursor;

DSQL form:

OPEN [TRANSACTION TRANSACTION] cursor [USING SQL DESCRIPTOR xsqlda]

Blob form: See OPEN (BLOB).

Argument Description

TRANSACTION <transaction> Name of the transaction that controls execution of OPEN

<cursor> Name of a previously declared cursor to open

USING DESCRIPTOR <xsqlda> Passes the values corresponding to the prepared statement’s parameters through the
extended descriptor area (XSQLDA)

Description: OPEN evaluates the search condition specified in a cursor’s DECLARE CURSOR statement. The
selected rows become the active set for the cursor.

A cursor is a one-way pointer into the ordered set of rows retrieved by the SELECT in a DECLARE CURSOR
statement. It enables sequential access to retrieved rows in turn. There are four related cursor statements:

Stage Statement Purpose

Embarcadero Technologies 108

SQL Statement and Function Reference

1 DECLARE CUR-
SOR

Declares the cursor; the SELECT statement determines rows retrieved for the cursor

2 OPEN Retrieves the rows specified for retrieval with DECLARE CURSOR; the resulting rows become
the cursor’s active set

3 FETCH Retrieves the current row from the active set, starting with the first row

• Subsequent FETCH statements advance the cursor through the set

4 CLOSE Closes the cursor and release system resources

Examples: The following embedded SQL statement opens a cursor:

EXEC SQL
OPEN C;

9.83. OPEN (BLOB)
Opens a previously declared Blob cursor and prepares it for reading or inserting. Available in gpre.

OPEN [TRANSACTION name] cursor
{INTO | USING} :blob_id;

Argument Description

TRANSACTION <name> Specifies the transaction under which the cursor is opened Default: The default transaction

<cursor> Name of the Blob cursor

INTO|USING Depending on Blob cursor type, use one of these:

INTO: For INSERT BLOB

USING: For READ BLOB

<blob_id> Identifier for the Blob column

Description: OPEN prepares a previously declared cursor for reading or inserting Blob data. Depending
on whether the DECLARE CURSOR statement declares a READ or INSERT BLOB cursor, OPEN obtains the value
for Blob ID differently:

• For a READ BLOB, the <blob_id> comes from the outer TABLE cursor.
• For an INSERT BLOB, the <blob_id> is returned by the system.

Examples: The following embedded SQL statements declare and open a Blob cursor:

EXEC SQL
DECLARE BC CURSOR FOR
INSERT BLOB PROJ_DESC INTO PRJOECT;
EXEC SQL
OPEN BC INTO :blob_id;

9.84. PREPARE
Prepares a dynamic SQL (DSQL) statement for execution. Available in gpre.

Embarcadero Technologies 109

SQL Statement and Function Reference

PREPARE [TRANSACTION TRANSACTION] statement
[INTO SQL DESCRIPTOR xsqlda] FROM {:variable | 'string'};

Argument Description

TRANSACTION <transaction> Name of the transaction under control of which the statement is executed.

<statement> Establishes an alias for the prepared statement that can be used by subsequent DE-
SCRIBE and EXCUTE statements.

INTO <xsqlda> Specifies an XSQLDA to be filled in with the description of the select-list columns in the
prepared statement.

<variable> | `<string>’ DSQL statement to PREPARE; can be a host-language variable or a string literal.

Description: PREPARE readies a DSQL statement for repeated execution by:

• Checking the statement for syntax errors.
• Determining data types of optionally specified dynamic parameters.
• Optimizing statement execution.
• Compiling the statement for execution by EXECUTE.

PREPARE is part of a group of statements that prepare DSQL statements for execution.

Statement Purpose

PREPARE Readies a DSQL statement for execution.

DESCRIBE Fills in the XSQLDA with information about the statement.

EXECUTE Executes a previously prepared statement.

EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

After a statement is prepared, it is available for execution as many times as necessary during the current
session. To prepare and execute a statement only once, use EXECUTE IMMEDIATE.

<statement> establishes a symbolic name for the actual DSQL statement to prepare. It is not declared
as a host-language variable. Except for C programs, gpre does not distinguish between uppercase and
lowercase in <statement>, treating “B” and “b” as the same character. For C programs, use the gpre-
either_case switch to activate case sensitivity during preprocessing.

If the optional INTO clause is used, PREPARE also fills in the extended SQL descriptor area (XSQLDA) with
information about the data type, length, and name of select-list columns in the prepared statement. This
clause is useful only when the statement to prepare is a SELECT.

NOTE

The DESCRIBE statement can be used instead of the INTO clause to fill in the XSQLDA for a select list.

The FROM clause specifies the actual DSQL statement to PREPARE. It can be a host-language variable, or a
quoted string literal. The DSQL statement to PREPARE can be any SQL data definition, data manipulation,
or transaction-control statement.

Embarcadero Technologies 110

SQL Statement and Function Reference

Examples: The following embedded SQL statement prepares a DSQL statement from a host-variable
statement. Because it uses the optional INTO clause, the assumption is that the DSQL statement in the host
variable is a SELECT.

EXEC SQL
PREPARE Q INTO xsqlda FROM :buf;

NOTE

The previous statement could also be prepared and described in the following manner:

EXEC SQL
PREPARE Q FROM :buf;
EXEC SQL
DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

9.85. RELEASE SAVEPOINT

RELEASE SAVEPOINT <savepoint_name>

Description: Releasing a savepoint destroys savepoint named by the identifier without affecting any work
that has been performed subsequent to its creation.

9.86. REVOKE
Withdraws privileges from users for specified database objects. Available in -either_case, DSQL, and isql.

REVOKE [GRANT OPTION FOR] privilege ON [TABLE] {tablename | viewname}
FROM {object | userlist | rolelist | GROUP UNIX_group}
| EXECUTE ON PROCEDURE procname FROM {object | userlist}
| role_granted FROM {PUBLIC | role_grantee_list}};
privileges = ALL [PRIVILEGES] | privilege_list
privilege_list = {
SELECT
| DELETE
| INSERT
| ENCRYPT ON ENCRYPTION
| DECRYPT
| UPDATE [(col [, col …])]
| REFERENCES [(col [, col …])]
}[, privilege_list …]
object = {
 PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}[, object …]
userlist = [USER] username [, [USER] username …]
rolelist = rolename [, rolename …]
role_granted = rolename [, rolename …]

Embarcadero Technologies 111

SQL Statement and Function Reference

role_grantee_list = [USER] username [, [USER] username …]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<privilege_list> Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, ENCRYPT ON
ENCRYPTION, DECRYPT, UPDATE, and REFERENCES.

GRANT OPTION FOR Removes grant authority for privileges listed in the REVOKE statement from <userlist>;
cannot be used with <object>.

<col> Column for which the privilege is revoked.

<tablename> Name of an existing table for which privileges are revoked.

<viewname> Name of an existing view for which privileges are revoked.

GROUP <unix_group> On a UNIX system, the name of a group defined in /etc/group.

<object> Name of an existing database object from which privileges are to be revoked.

<userlist> A list of users from whom privileges are to be revoked.

<rolename> An existing role created with the CREATE ROLE statement.

<role_grantee_list> A list of users to whom <rolename> is granted; users must be in the InterBase security
database (admin.ib by default).

Description: REVOKE removes privileges from users or other database objects. Privileges are operations
for which a user has authority.

The following table lists SQL privileges:

SQL privileges

Privilege Removes a user’s privilege to …

ALL Perform SELECT, DELETE, INSERT, UPDATE, REFERENCES, and EXECUTE.

SELECT Retrieve rows from a table or view.

DELETE Remove rows from a table or view.

DECRYPT After encrypting a column, the database owner or the individual table owner can grant decrypt permis-
sion to users who need to access the values in an encrypted column.

ENCRYPT ON
ENCRYPTION

Enables the database owner or individual table owner to use a specific encryption key to encrypt a
database or column. Only the SYSDSO (Data Security Owner) can grant encrypt permission.

INSERT Store new rows in a table or view.

UPDATE Change the current value in one or more columns in a table or view; can be restricted to a specified sub-
set of columns.

REFERENCES Reference the specified columns with a foreign key; at a minimum, this must be granted to all the
columns of the primary key if it is granted at all.

EXECUTE Execute a stored procedure.

GRANT OPTION FOR revokes a user right to GRANT privileges to other users.

The following limitations should be noted for REVOKE:

• Only the user who grants a privilege can revoke that privilege.

Embarcadero Technologies 112

SQL Statement and Function Reference

• A single user can be assigned the same privileges for a database object by any number of other users.
A REVOKE issued by a user only removes privileges previously assigned by that particular user.

• Privileges granted to all users with PUBLIC can only be removed by revoking privileges from PUBLIC.
• When a role is revoked from a user, all privileges that granted by that user to others because of

authority gained from membership in the role are also revoked.
• For more information about the REVOKE ENCRYPT ON ENCRYPTION and REVOKE DECRYPT permissions, see

“Encrypting Your Data” in the Data Definition Guide.

Examples: The following isql statement takes the SELECT privilege away from a user for a table:

REVOKE SELECT ON COUNTRY FROM MIREILLE;

The following isql statement withdraws EXECUTE privileges for a procedure from another procedure and
a user:

REVOKE EXECUTE ON PROCEDURE GET_EMP_PROJ
FROM PROCEDURE ADD_EMP_PROJ, LUIS;

9.87. ROLLBACK
Restores the database to its state prior to the start of the current transaction or savepoint. Available in
gpre, DSQL, and isql.

ROLLBACK [TRANSACTION name] [TO SAVEPOINT <name>][WORK][RELEASE];

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

TRANSACTION <name> Specifies the transaction to roll back in a multiple-transaction application. [Default: roll
back the default transaction].

TOSAVEPOINT <name> Specifies the savepoint to roll back to.

WORK Optional word allowed for compatibility.

RELEASE Detaches from all databases after ending the current transaction; SQL only.

Description: ROLLBACK undoes changes made to a database by the current transaction, then ends the
transaction. It breaks the program connection to the database and frees system resources. Use RELEASE
in the last ROLLBACK to close all open databases. Wait until a program no longer needs the database to
release system resources.

The TRANSACTION clause can be used in multiple-transaction SQL applications to specify which transaction to
roll back. If omitted, the default transaction is rolled back. The TRANSACTION clause is not available in DSQL.

Embarcadero Technologies 113

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

NOTE

RELEASE, available only in SQL, detaches from all databases after ending the current transaction. In effect, this option
ends database processing. RELEASE is supported for backward compatibility with older versions of InterBase. The pre-
ferred method of detaching is with DISCONNECT.

Examples: The following isql statement rolls back the default transaction:

ROLLBACK;

The next embedded SQL statement rolls back a named transaction:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

9.88. SAVEPOINT

SAVEPOINT <savepoint_name>

Description: A savepoint allows a transaction to be partially rolled back. Updates that are made after a
named savepoint is established can be rolled back by issuing a ROLLBACK command of the following form:

ROLLBACK [TRANSACTION transaction_name] TO SAVEPOINT savepoint_name;

If no transaction name is specified, the default transaction is used.

A savepoint name can be any valid SQL identifier. Savepoint names must be unique within their atomic
execution context. If you assign a name that is already in use, the existing savepoint is released and the
name is applied to the current savepoint. An application, for example, is an execution context, as is each
trigger and stored procedure. Thus, if you have an application with several triggers, you can have a save-
point named SV1 within the application and also within each trigger and stored procedure.

9.89. SELECT
Retrieves data from one or more tables. Available in gpre, DSQL, and isql.

9.89.1. Syntax

SELECT [TRANSACTION transact] [DISTINCT | ALL] {* | <val> [, <val> …]}
[INTO :var [, :var …]]
FROM <tableref> [, <tableref> …]
[WHERE <search_condition>]
[GROUP BY col [COLLATE collation] [, col [COLLATE collation] …] [HAVING
<search_condition>]
[UNION [ALL] select_expr][PLAN <plan_expr>]
[ORDER BY <order_list>]
[ROWS VALUE [TO upper_value] [BY step_value][PERCENT][WITH TIES]]
[FOR UPDATE [OF col [, col …]]];
val = {col [array_dim]
 | :variable | constant | expr

Embarcadero Technologies 114

SQL Statement and Function Reference

 | funct | udf ([val [, val …]])
 | NULL | USER | RDB$DB_KEY | ? }
 [COLLATE collation] [AS alias]

array_dim = [[x:]y [, [x:]y …]]

constant = num | 'string' | charsetname 'string'

funct = COUNT (* | [ALL] val | DISTINCT val)
 | SUM ([ALL] val | DISTINCT val)
 | AVG ([ALL] val | DISTINCT val)
 | MAX ([ALL] val | DISTINCT val)
 | MIN ([ALL] val | DISTINCT val)
 | CAST (val AS data_type)
 | UPPER (val)
 | GEN_ID (generator, val)

tableref = <joined_table> | <table_primary>

joined_table = tableref join_type JOIN tableref
 ON search_condition | (joined_table)

join_type = [INNER] JOIN
 | {LEFT | RIGHT | FULL } [OUTER]}

search_condition = val operator {val | (select_one)}
 | val [NOT] BETWEEN val AND val
 | val [NOT] LIKE val [ESCAPE val]
 | val [NOT] IN (val [, val …] | select_list)
 | val IS [NOT] NULL
 | val {>= | <=} val
 | val [NOT] {= | < | >} val
 | {ALL | SOME | ANY} (select_list)
 | EXISTS (select_expr)
 | SINGULAR (select_expr)
 | val [NOT] CONTAINING val
 | val [NOT] STARTING [WITH] val
 | (search_condition)
 | NOT search_condition
 | search_condition OR search_condition
 | search_condition AND search_condition

operator = {= | < | > | <= | >= | !< | !> | <> | !=}

table_primary = [{TABLE | VIEW | PROCEDURE} [[AS] alias]] |
<derived_table>

derived_table = query_expression [AS] alias

plan_expr = [JOIN | [SORT] [MERGE]] ({plan_item | plan_expr}
 [, {plan_item | plan_expr} …])

plan_item = {TABLE | alias}
 {NATURAL | INDEX (INDEX [, INDEX …]) | ORDER INDEX}

Embarcadero Technologies 115

SQL Statement and Function Reference

order_list = {col | INT} [COLLATE collation]
 [ASC[ENDING] | DESC[ENDING]]
 [, order_list …]

Argument Description

<expr> A valid SQL expression that results in a single value.

<select_one> A SELECT on a single column that returns exactly one value.

<select_list> A SELECT on a single column that returns zero or more rows.

<select_expr> A SELECT on a list of values that returns zero or more rows.

 Argument Description

TRANSACTION transact Name of the transaction under control of which the statement is executed; SQL only.

SELECT[DISTINCT|ALL] Specifies data to retrieve

• DISTINCT prevents duplicate values from being returned.

• ALL, the default, retrieves every value.

{*|<val>[,<val> …]} The asterisk (*) retrieves all columns for the specified tables.

<val>[,<val> …] retrieves a list of specified columns, values, and expressions.

INTO :<var>[,<var> …] Singleton select in embedded SQL only; specifies a list of host-language variables into
which to retrieve values.

FROM<tableref>[,<tableref>
…]

List of tables, views, stored procedures or derived tables from which to retrieve data;
list can include joins and joins can be nested.

<joined_table> A table reference consisting of a JOIN.

<join_type> Type of join to perform. Default: INNER.

<table_primary> Name of an existing table, view, stored procedure or a derived table.

alias Alternate name for a table, view, or column.

<derived_table> A result set of a SELECT query that you can use in the FROM clause. See Derived Tables
(SELECT FROM SELECT) for more information and examples.

WHERE<search_condition>
• Specifies a condition that limits rows retrieved to a subset of all available rows.

• A WHERE clause can contain its own SELECT statement, referred to as a subquery.

GROUP BY col [, col …] Groups related rows based on common column values; used in conjunction with HAV-
ING.

COLLATE collation Specifies the collation order for the data retrieved by the query.

HAVING<search_condition> Used with GROUP BY; specifies a condition that limits the grouped rows returned.

UNION[ALL]
• Combines the results of two or more SELECT statements to produce a single, dy-

namic table without duplicate rows.

• The ALL option keeps identical rows separate instead of folding them together in-
to one.

PLAN <plan_expr> Specifies the query plan that should be used by the query optimizer instead of one it
would normally choose.

Embarcadero Technologies 116

SQL Statement and Function Reference

 Argument Description

<plan_item> Specifies a table and index method for a plan.

ORDER BY<order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows.

ROWS<value>

 [TO<upper_value>]

 [BY<step_value>]

 [PERCENT][WITH TIES]

• <value> is the total number of rows to return if used by itself.

• <value> is the starting row number to return if used with TO.

• <value> is the percent if used with PERCENT.

• <upper_value> is the last row or highest percent to return.

• If <step_value>=<n>, returns every <n>th row, or <n> percent rows.

• PERCENT causes all previous ROWS values to be interpreted as percents.

• WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY.

FOR UPDATE Specifies columns listed after the SELECT clause of a DECLARE CURSOR statement that
can be updated using a WHERE CURRENT OF clause.

9.89.2. Description
SELECT retrieves data from tables, views, or stored procedures. Variations of the SELECT statement make
it possible to:

• Retrieve a single row or part of a row from a table. This operation is referred to as a singleton select.

NOTE

In embedded applications, all SELECT statements that occur outside the context of a cursor must be singleton selects.

• Retrieve multiple rows, or parts of rows, from a table.
O In embedded applications, multiple row retrieval is accomplished by embedding a SELECT within

a DECLARE CURSOR statement.
O In isql, SELECT can be used directly to retrieve multiple rows.

• Retrieve related rows, or parts of rows, from a join of two or more tables.
• Retrieve all rows, or parts of rows, from union of two or more tables.
• Return portions or sequential portions of a larger result set; useful for Web developers, among others.

All SELECT statements consist of two required clauses (SELECT, FROM), and possibly others (INTO, WHERE,
GROUP BY, HAVING, UNION, PLAN, ORDER BY, ROWS).

For more information on how to use SELECT in isql, see the Operations Guide. For a complete explanation
of SELECT and its clauses, see the Embedded SQL Guide.

9.89.2.1. Derived Tables (SELECT FROM SELECT)

A derived table is the result set of a SELECT query that you can use in the FROM clause. You may find
it useful to think of a derived table as a view with statement-level scope. This allows you the expressive
flexibility to use a view-like structure without defining a database schema view, or allows the user to obtain
the same benefit in an ad-hoc query without requiring a database administer to create a view definition.

Embarcadero Technologies 117

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

You can use derived tables in triggers and stored procedures as well as user applications, but you must
have proper access privileges on the underlying base tables and views accessed by a derived table.

Dynamic SQL and isql support derived table syntax, Embedded SQL does not support derived table
syntax. For further info on Derived Tables refer to SQL Derived Table Support

Examples With Derived Tables

1. The following simple example shows how you can use derived tables:

SELECT elj.job_code,
 elj.job_title
FROM (SELECT job_code,
 job_title
 FROM job
 WHERE max_salary < 50000) AS elj;

The statement queries the EMPLOYEE table for entry-level jobs.

2. The following is a more complex statement using derived tables:

SELECT emp.emp_no,
 emp.full_name,
 emp.job_code,
 job.job_grade,
 job.job_title
FROM (SELECT emp_no,
 full_name,
 job_code,
 job_grade,
 job_country
 FROM employee) AS emp,
 (SELECT job_code,
 job_grade,
 job_country,
 job_title
 FROM job) AS job
WHERE (emp.job_code = job.job_code) AND
 (emp.job_grade = job.job_grade) AND
 (emp.job_country = job.job_country) AND
 (emp.job_country = 'USA');

3. The following example shows a derived table with a subquery:

SELECT eid,
 ename
FROM (SELECT e.emp_no,
 e.full_name
 FROM employee e
 WHERE e.job_country =
 (SELECT e1.job_country
 FROM employee e1

Embarcadero Technologies 118

http://docwiki.embarcadero.com/InterBase/2017/en/SQL_Derived_Table_Support

SQL Statement and Function Reference

 WHERE emp_no = 144)) AS emp (eid, ename);

Additional Notes on Derived Tables

• Derived tables can be nested.
• Derived tables can be unions and can be used in unions. They can contain aggregate functions,

subselects and joins, and can themselves be used in aggregate functions, subselects and joins. They
can also be or contain queries on selectable stored procedures.

9.89.2.2. Additional Notes on SELECT

• When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters
long:

my_array = VARCHAR(6)[5,5]

• Use the colon (:) to specify an array with a starting point other than 1. The following example creates
an array of INTEGER that begins at 10 and ends at 20:

my_array = INTEGER[20:30]

• In SQL and isql, you cannot use val as a parameter placeholder (like ?).
• In DSQL and isql, val cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.
• You cannot specify a GROUP BY clause for Blob and array columns.

9.89.2.3. Examples

1. The following isql statement selects columns from a table:

SELECT job_grade,
 job_code,
 job_country,
 max_salary
FROM project;

2. The next isql statement uses the * wildcard to select all columns and rows from a table:

SELECT *
FROM countries;

3. The following embedded SQL statement uses an aggregate function to count all rows in a table that
satisfy a search condition specified in the WHERE clause:

EXEC SQL
SELECT COUNT (*)
INTO :cnt
FROM country

Embarcadero Technologies 119

SQL Statement and Function Reference

WHERE population > 5000000;

4. The next isql statement establishes a table alias in the SELECT clause and uses it to identify a column
in the WHERE clause:

SELECT c.city
FROM cities c
WHERE c.population < 1000000;

5. The following isql statement selects two columns and orders the rows retrieved by the second of
those columns:

SELECT city,
 state
FROM cities
ORDER BY state;

6. The next isql statement performs a left join:

SELECT city,
 state_name
FROM cities c
LEFT JOIN states s
ON s.state = c.state
WHERE c.city starting WITH 'San';

7. The following isql statement specifies a query optimization plan for ordered retrieval, utilizing an
index for ordering:

SELECT *
FROM cities
PLAN (cities ORDER cities_1)
ORDER BY city;

8. The next isql statement specifies a query optimization plan based on a three-way join with two
indexed column equalities:

SELECT *
FROM cities c,
 states s,
 mayors m
WHERE c.city = m.city
AND c.state = m.state PLAN
JOIN (state NATURAL, cities INDEX dupe_city, mayors INDEX mayors_1);

9. The next example queries two of the system tables, RDB$CHARACTER_SETS and RDB$COLLATIONS
to display all the available character sets, their ID numbers, number of bytes per character, and col-
lations. Note the use of ordinal column numbers in the ORDER BY clause.

Embarcadero Technologies 120

SQL Statement and Function Reference

SELECT rdb$character_set_name,
 rdb$character_set_id,
 rdb$bytes_per_character,
 rdb$collation_name
FROM rdb$character_sets
 JOIN rdb$collations
 ON rdb$character_sets.rdb$character_set_id =
rdb$collations.rdb$character_set_iefd
ORDER BY 1,4;

10.The following examples reward the best performing sales people and terminate the least performing
members of the sales team. The examples show how a Web developer, for example, could split the
result set in half for display purposes.

SELECT salesman,
 sales_dollars,
 sales_region
FROM salespeople
ORDER BY sales_dollars DESC
ROWS 1 TO 50;
SELECT salesman,
 sales_dollars,
 sales_region
FROM salespeople
ORDER BY sales_dollars DESC
ROWS 50 TO 100 WITH ties;

11. Reward the best 100 performing salesmen with a 15 percent bonus:

UPDATE salespeople
SET sales_bonus = 0.15 * sales_dollars
ORDER BY sales_dollars DESC
ROWS 100 WITH ties;

12.Eliminate the worst five percent of the sales force:

DELETE
FROM salespeople
ORDER BY sales_dollars
ROWS 5 percent WITH ties;

9.90. SET DATABASE
Declares a database handle for database access. Available in gpre.

SET {DATABASE | SCHEMA} dbhandle =
[GLOBAL | STATIC | EXTERN][COMPILETIME][FILENAME] 'dbname'
[USER 'name' PASSWORD 'string']
[RUNTIME [FILENAME]

Embarcadero Technologies 121

SQL Statement and Function Reference

{'dbname' | :<var}>
[USER {'name' | :<var}> PASSWORD {'string' |:<var}>]];

Argument Description

<dbhandle> An alias for a specified database

• Must be unique within the program.

• Used in subsequent SQL statements that support database handles.

GLOBAL [Default] Makes this database declaration available to all modules.

STATIC Limits scope of this database declaration to the current module.

EXTERN References a database declaration in another module, rather than actually declaring a new han-
dle.

COMPILETIME Identifies the database used to look up column references during preprocessing.

• If only one database is specified in SET DATABASE, it is used both at run time and compile
time.

‘<dbname>’ Location and path name of the database associated with <dbhandle>; platform-specific.

RUNTIME Specifies a database to use at run time if different than the one specified for use during prepro-
cessing.

<var> Host-language variable containing a database specification, user name, or password.

USER ‘<name>’ A valid user name on the server where the database resides

• Used with PASSWORD to gain database access on the server.

• Required for PC client attachments, optional for all others.

PASSWORD‘<string>’ A valid password on the server where the database resides

• Used with USER to gain database access on the server.

• Required for PC client attachments, optional for all others.

Description: SET DATABASE declares a database handle for a specified database and associates the handle
with that database. It enables optional specification of different compile-time and run-time databases.
Applications that access multiple databases simultaneously must use SET DATABASE statements to establish
separate database handles for each database.

dbhandle is an application-defined name for the database handle. Usually handle names are abbreviations
of the actual database name. Once declared, database handles can be used in subsequent CONNECT, COMMIT,
and ROLLBACK statements. They can also be used within transactions to differentiate table names when two
or more attached databases contain tables with the same names.

dbname is a platform-specific file specification for the database to associate with dbhandle. It should follow
the file syntax conventions for the server where the database resides.

GLOBAL, STATIC, and EXTERN are optional parameters that determine the scope of a database declaration.
The default scope, GLOBAL, means that a database handle is available to all code modules in an application.
STATIC limits database handle availability to the code module where the handle is declared. EXTERN refer-
ences a global database handle in another module.

The optional COMPILETIME and RUNTIME parameters enable a single database handle to refer to one database
when an application is preprocessed, and to another database when an application is run by a user. If

Embarcadero Technologies 122

SQL Statement and Function Reference

omitted, or if only a COMPILETIME database is specified, InterBase uses the same database during prepro-
cessing and at run time.

The USER and PASSWORD parameters are required for all PC client applications, but are optional for all other
remote attachments. The user name and password are verified by the server in the security database
before permitting remote attachments to succeed.

Examples: The following embedded SQL statement declares a handle for a database:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';

The next embedded SQL statement declares different databases at compile time and run time. It uses a
host-language variable to specify the run-time database.

EXEC SQL
SET DATABASE EMDBP = 'employee.ib' RUNTIME :db_name;

9.91. SET GENERATOR
Sets a new value for an existing generator. Available in gpre, DSQL, and isql.

SET GENERATOR name TO <int>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing generator

<int> Value to which to set the generator, an integer from –263 to 263 – 1

Description: SET GENERATOR initializes a starting value for a newly created generator, or resets the value
of an existing generator. A generator provides a unique, sequential numeric value through the GEN_ID()
function. If a newly created generator is not initialized with SET GENERATOR, its starting value defaults to zero.

<int> is the new value for the generator. When the GEN_ID() function inserts or updates a value in a
column, that value is <int> plus the increment specified in the GEN_ID() step parameter. Any value that
can be stored in a DECIMAL(18,0) can be specified as the value in a SET GENERATOR statement.

Generators return a 64-bit value, and wrap around only after 264 invocations (assuming an increment of
1). Use an ISC-INT64 variable to hold the value returned by a generator.

TIP

To force a generator’s first insertion value to 1, use SET GENERATOR to specify a starting value of 0, and set the step
value of the GEN_ID() function to 1.

Embarcadero Technologies 123

SQL Statement and Function Reference

IMPORTANT

When resetting a generator that supplies values to a column defined with PRIMARY KEY or UNIQUE integrity constraints,
be careful that the new value does not enable duplication of existing column values, or all subsequent insertions and
updates will fail.

Example: The following isql statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

If GEN_ID() now calls this generator with a step value of 1, the first number it returns is 1,001.

9.92. SET NAMES
Specifies an active character set to use for subsequent database attachments. Available in gpre, and isql.

SET NAMES [charset | :var];

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<charset> Name of a character set that identifies the active character set for a given process; default: NONE.

<var> Host variable containing string identifying a known character set name

• Must be declared as a character set name.

• SQL only.

Description: SET NAMES specifies the character set to use for subsequent database attachments in an
application. It enables the server to translate between the default character set for a database on the server
and the character set used by an application on the client.

SET NAMES must appear before the SET DATABASE and CONNECT statements are affected.

TIP

Use a host-language variable with SET NAMES in an embedded application to specify a character set interactively.

For a complete list of character sets recognized by InterBase, see Character Sets and Collation Orders.
Choice of character sets limits possible collation orders to a subset of all available collation orders. Given a
specific character set, a specific collation order can be specified when data is selected, inserted, or updated
in a column.

IMPORTANT

If you do not specify a default character set, the character set defaults to NONE. Using character set NONE means that
there is no character set assumption for columns; data is stored and retrieved just as you originally entered it. You can
load any character set into a column defined with NONE, but you cannot load that same data into another column that
has been defined with a different character set. No transliteration is performed between the source and destination
character sets, so in most cases, errors occur during assignment.

Embarcadero Technologies 124

SQL Statement and Function Reference

Example: The following statements demonstrate the use of SET NAMES in an embedded SQL application:

EXEC SQL
SET NAMES ISO8859_1;
EXEC SQL
SET DATABASE DB1 = 'employee.ib';
EXEC SQL
CONNECT;

The next statements demonstrate the use of SET NAMES in isql:

SET NAMES LATIN1;
CONNECT 'employee.ib';

9.93. SET SQL DIALECT
Declares the SQL Dialect for database access. Available in gpre and isql.

SET SQL DIALECT n;

Argument Description

<n> The SQL Dialect type, either 1, 2, or 3

Description: SET SQL DIALECT declares the SQL Dialect for database access.

n is the SQL Dialect type 1, 2, or 3. If no dialect is specified, the default dialect is set to that of the specified
compile-time database. If the default dialect is different than the one specified by the user, a warning is
generated and the default dialect is set to the user-specified value.

Set SQL Dialects for Database Access

SQL Dialect Used for

1 InterBase 5 and earlier compatibility.

2 Transitional dialect used to flag changes when migrating from dialect 1 to dialect 3.

3 Current InterBase; allows you to use delimited identifiers, exact numerics, and DATE, TIME, and TIMES-
TAMP data types.

 Examples: The following embedded SQL statement sets the SQL Dialect to 3:

EXEC SQL
SET SQL DIALECT 3;

9.94. SET STATISTICS
Recomputes the selectivity of a specified index. Available in gpre, DSQL, and isql.

SET STATISTICS INDEX name;

Embarcadero Technologies 125

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing index for which to recompute selectivity

Description: SET STATISTICS enables the selectivity of an index to be recomputed. Index selectivity is a
calculation, based on the number of distinct rows in a table, that is made by the InterBase optimizer when
a table is accessed. It is cached in memory, where the optimizer can access it to calculate the optimal
retrieval plan for a given query. For tables where the number of duplicate values in indexed columns
radically increases or decreases, periodically recomputing index selectivity can improve performance.

Only the creator of an index can use SET STATISTICS.

NOTE

SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

Example: The following embedded SQL statement recomputes the selectivity for an index:

EXEC SQL
SET STATISTICS INDEX MINSALX;

9.95. SET SUBSCRIPTION
A user is then granted SUBSCRIBE privilege to subscribe to the subscription in order to track changes on
the listed tables:

SET SUBSCRIPTION [<subscription_name> [, <subscription_name> ...]] [AT
<destination>] {ACTIVE | INACTIVE};

Argument Description

<subscription_name> Implied by the user identity of the
database

<user_name> User identify of the database connection

Description: The following example activates two subscriptions and returns changed data sets from the
subscribed tables.

• The COMMIT updates all subscriptions for schema objects referenced during the transaction to set the
last observed timestamp and transaction context.

• The COMMIT RETAIN does not change the last observed state and maintains the current snapshot as
always.

• The subscription is deactivated for the connection, which makes any subsequent queries against the
subscribed schema objects return normal data sets, without regard to the changed data status.

• Any number of subscriptions can be activated simultaneously during a database connection.

Example: SET SUBSCRIPTION "Employee_Changes", "Customer_Deletes" AT 'smartphone_123'

Embarcadero Technologies 126

SQL Statement and Function Reference

ACTIVE;
SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
SELECT * FROM "Customers";
COMMIT or COMMIT RETAIN;
SET SUBSCRIPTION "Employee_Changes", "Customer_Deletes" AT 'smartphone_123'
INACTIVE;

9.96. SET TRANSACTION
Starts a transaction and optionally specifies its behavior. Available in ESQL (GPRE), DSQL, and ISQL.

SET TRANSACTION [NAME TRANSACTION]
[READ WRITE | READ ONLY]
[WAIT | NO WAIT]
[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]
| READ COMMITTED [[NO] RECORD_VERSION]}]
[RESERVING reserving_clause
| USING dbhandle [, dbhandle …]]
[[NO] SAVEPOINT];
reserving_clause = TABLE [, TABLE …]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, reserving_clause]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

NAME <transaction> Specifies the name for this transaction.

• <transaction> is a previously declared and initialized host-language vari-
able.

• SQL only.

READ WRITE [Default] Specifies that the transaction can read and write to tables.

READ ONLY Specifies that the transaction can only read tables.

WAIT [Default] Specifies that a transaction wait for access if it encounters a lock con-
flict with another transaction.

NO WAIT Specifies that a transaction immediately return an error if it encounters a lock
conflict.

ISOLATION LEVEL Specifies the isolation level for this transaction when attempting to access the
same tables as other simultaneous transactions; default: SNAPSHOT.

RESERVING<reserving_clause> Reserves lock for tables at transaction start.

USING <dbhandle> [, <dbhandle> …] Limits database access to a subset of available databases; SQL only.

NO SAVEPOINT If NO SAVEPOINT is mentioned, the transaction is executed without starting an
implicit savepoint for any SQL statements that execute within the context of
that transaction. By default, InterBase starts an implicit savepoint to guaran-
tee the atomicity of an SQL statement. For more information, see Chapter 5,
"Working with Transactions" section on "Working with the NO SAVEPOINT Op-
tion" in the API Guide.

Embarcadero Technologies 127

SQL Statement and Function Reference

Description: SET TRANSACTION starts a transaction, and optionally specifies its database access, lock conflict
behavior, and level of interaction with other concurrent transactions accessing the same data. It can also
reserve locks for tables. As an alternative to reserving tables, multiple database SQL applications can restrict
a transaction access to a subset of connected databases.

IMPORTANT

Applications preprocessed with the gpre-manual switch must explicitly start each transaction with a SET TRANSACTION
statement.

SET TRANSACTION affects the default transaction unless another transaction is specified in the optional NAME
clause. Named transactions enable support for multiple, simultaneous transactions in a single application.
All transaction names must be declared as host-language variables at compile time. In DSQL, this restriction
prevents dynamic specification of transaction names.

By default a transaction has READ WRITE access to a database. If a transaction only needs to read data,
specify the READ ONLY parameter.

When simultaneous transactions attempt to update the same data in tables, only the first update succeeds.
No other transaction can update or delete that data until the controlling transaction is rolled back or
committed. By default, transactions WAIT until the controlling transaction ends, then attempt their own
operations. To force a transaction to return immediately and report a lock conflict error without waiting,
specify the NO WAIT parameter.

ISOLATION LEVEL determines how a transaction interacts with other simultaneous transactions accessing the
same tables. The default ISOLATION LEVEL is SNAPSHOT. It provides a repeatable-read view of the database
at the moment the transaction starts. Changes made by other simultaneous transactions are not visible.

SNAPSHOT TABLE STABILITY provides a repeatable read of the database by ensuring that transactions cannot
write to tables, though they may still be able to read from them.

READ COMMITTED enables a transaction to see the most recently committed changes made by other simul-
taneous transactions. It can also update rows as long as no update conflict occurs. Uncommitted changes
made by other transactions remain invisible until committed. READ COMMITTED also provides two optional
parameters:

• NO RECORD_VERSION, the default, reads only the latest version of a row. If the WAIT lock resolution option
is specified, then the transaction waits until the latest version of a row is committed or rolled back,
and retries its read.

• RECORD_VERSION reads the latest committed version of a row, even if more recent uncommitted version
also resides on disk.

The RESERVING clause enables a transaction to register its desired level of access for specified tables when
the transaction starts instead of when the transaction attempts its operations on that table. Reserving tables
at transaction start can reduce the possibility of deadlocks.

The USING clause, available only in SQL, can be used to conserve system resources by limiting the number
of databases a transaction can access.

Examples: The following embedded SQL statement sets up the default transaction with an isolation level
of READ COMMITTED. If the transaction encounters an update conflict, it waits to get control until the first
(locking) transaction is committed or rolled back.

Embarcadero Technologies 128

SQL Statement and Function Reference

EXEC SQL
SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:

EXEC SQL
SET TRANSACTION NAME T1 READ COMMITTED;

The following embedded SQL statement reserves three tables:

EXEC SQL
SET TRANSACTION NAME TR1
ISOLATION LEVEL READ COMMITTED
NO RECORD_VERSION WAIT
RESERVING TABLE1, TABLE2 FOR SHARED WRITE,
TABLE3 FOR PROTECTED WRITE;

9.96.1. Exclusive Isolation Level
Introduction

A Tool performing online reorganization of tables may need temporary exclusive table access to perform
its functions. Transactions use exclusive table access to acquire an exclusive lock on a target table, and
they are the only ones able to execute SELECT, INSERT, UPDATE, and DELETE on a table. When a transaction
acquires an exclusive lock, other transactions with lock requests must wait until the lock is released or
downgraded to a compatible level. Transactions that maintain exclusive table access can modify data on
a table without interference from other transactions. This isolation level is different from TABLE STABILITY
and PROTECTED access because it does not allow other transactions to select from the table.

Usage

Use the SET TRANSACTION statement to specify the TABLE EXCLUSIVITY clause, or use the existing RESERVING
clause to request exclusive access to one or more tables. TABLE EXCLUSIVITY acquires exclusive access to
every table that a transaction accesses during statement execution. The RESERVING clause acquires exclu-
sive access to a list of tables at transaction startup. To use the RESERVING clause, specify FOR <table_list>
EXCLUSIVE [READ | WRITE]. Note that there is no difference between READ and WRITE because both modes
do not allow other transactions to access the table. As with TABLE STABILITY, there is an increased likelihood
of lock conflicts and waits when this isolation level is used. In addition to isc_tpb_shared and isc_tpb_pro-
tected, you can use isc_tpb_exclusive in a transaction parameter block (TPB) to specify exclusive table
access when calling isc_start_transaction() at the API level.

Requirements and Constraints

• It is possible to acquire exclusive table access even if one or more statements or requests that access
the table have been prepared.

• It is possible to acquire exclusive table access even if one or more statements or requests that access
the table have been executed as long as they have not yet accessed the table.

Migration issues

Embarcadero Technologies 129

SQL Statement and Function Reference

Prior to InterBase 2017, isc_tpb_exclusive could be used, but it allowed select access by concurrent trans-
actions. Starting with InterBase 2017, a transaction has to wait until those readers terminate and subsequent
readers block until the transaction with exclusive access terminates or downgrades the exclusive lock.

 ALTER TABLE ... ALTER COLUMN for encryption and TRUNCATE TABLE acquire exclusive table access to perform
their function.

InterBase 2017 introduced the InterBase-specific SQL reserved keywords EXCLUSIVITY and EXCLUSIVE.

9.96.2. Wait time
Introduction

To acquire lockable resources, InterBase transaction lock can wait indefinitely, wait an specified period of
time, or do not wait and return an error immediately. When a transaction holds a lock on a resource at a
level incompatible with the requested lock level, this resource is inaccessible to other transactions. lockable
resources can be tables, rows, or transaction entities.

Usage

This is the SQL syntax to specify a lock resolution mode:

SET TRANSACTION {[NO] WAIT};

WAIT implies wait indefinitely until a resource lock is acquired.

To specify a wait period use an optional WAIT clause in seconds. This is the time a transaction waits for
a lock on a resource:

SET TRANSACTION WAIT [<number> [SECONDS]];

An isc_lock_timeout error code returns if the lock on the resource cannot be acquired during the wait
period.

For example, consider attempting to Truncate Table. Table truncate attempts to acquire an exclusive lock
on the target table and referencing tables that have a foreign key constraint on the target table. It is
desirable to specify a wait time for the transaction if other transactions are using the table actively.

SQL> set transaction wait 10 seconds;
SQL> truncate table salary_history;
Statement failed, SQLCODE = -901

lock time-out on wait transaction
-unsuccessful metadata update
-object SALARY_HISTORY is in use
SQL>

There is a new transaction parameter block (TPB) parameter called isc_tpb_wait_time for use with InterBase
transaction APIs: isc_start_transaction(), isc_reconnect_transaction(), and isc_start_multiple(). It is
followed by the literal "4" denoting a byte count and four bytes in little endian format denoting the wait
period in seconds. Here are two examples specifying a 30 second and 300 second (5 minute) wait period,
respectively:

Embarcadero Technologies 130

SQL Statement and Function Reference

isc_tpb_wait_time, 4, 30, 0, 0, 0
isc_tpb_wait_time, 4, 44, 1, 0, 0

There is an InterClient/JDBC extension API method for class interbase.interclient.Connection: setLock-
Resolution(int mode, int waitTime) The existing method setLockResolution(int mode) is equivalent
to setLockResolution(int mode, 0).

/* Set transaction timeout to 1 minute */

Driver driver = interbase.interclient.Driver();
Connection connection = driver.connect(url, properties);
(interbase.interclient.Connection
connection).setLockResolution(LOCK_RESOLUTION_WAIT, 60);

It is expected that FireDAC, IBX and ODBC frameworks will provide low-level integrated support for the
feature.

Requirements and Constraints

• The WAIT period is a positive integer between 1 and 32,767, inclusive. This is the equivalent of about
9 hours.

• Underlying remote and local protocols pass a 32-bit integer so that this limit can be increased without
modifying the protocols.

• The feature is available through Dynamic SQL but not Static (Embedded) SQL.
• The feature is available through InterClient/JDBC API.
• The feature may not be visible as a transaction property by FireDAC, IBX or ODBC frameworks, but

should be available as pass-through DSQL.

Migration issues

• The WAIT optional clause is not recognized by SQL parsers in InterBase versions older than 2017.
• The isc_tpb_wait_time TPB parameter is not recognized at the API level by InterBase versions older

than 2017.

9.97. SHOW SQL DIALECT
Returns the current client SQL Dialect setting and the database SQL Dialect value. Available in gpre and
isql.

SHOW SQL DIALECT;

Description: SHOW SQL DIALECT returns the current client SQL Dialect setting and the database SQL Dialect
value, either 1, 2, or 3.

SQL Di-
alect

Used for

1 InterBase 5 and earlier compatibility

2 Transitional dialect used to flag changes when migrating from dialect 1 to dialect 3.

Embarcadero Technologies 131

SQL Statement and Function Reference

3 Current InterBase; allows you to use delimited identifiers, exact numerics, and DATE, TIME, and TIMESTAMP
data types.

Examples: The following embedded SQL statement returns the SQL Dialect:

EXEC SQL
SHOW SQL DIALECT;

9.98. SHOW SUBSCRIPTION
Syntax

SHOW {SUBSCRIPTION [<subscription_name>] | SUBSCRIPTIONS};

Argument Description

<subscription_name> The name of the subscription that you want to display.

Description

To display a list of all subscriptions, use the SHOW SUPSCRIPTIONS command. If you only want to display one
supscription, use the SHOW SUPSCRIPTION <subscription_name> command.

Example

SHOW SUBSCRIPTIONS;

Subscription Name
===
SUB_CUSTOMER_DELETES
SUB_EMPLOYEE_CHANGES
SUB_VARIOUS_CHANGES

SHOW SUBSCRIPTION sub_employee_changes;
Subscription name: SUB_EMPLOYEE_CHANGES
Owner: SYSDBA
Description: Subscribe TO changes IN EMPLOYEE TABLE
 EMPLOYEE (SALARY, DEPT_NO, EMP_NO)

SHOW SUBSCRIPTION sub_customer_deletes;
Subscription name: SUB_CUSTOMER_DELETES

Owner: SYSDBA
Description: Subscribe TO deletes IN CUSTOMER TABLE
 CUSTOMER FOR ROW (DELETE)

SHOW SUBSCRIPTION sub_various_changes;
Subscription name: SUB_VARIOUS_CHANGES
Owner: SYSDBA
Description: Subscribe TO various changes ON multiple TABLES
 EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE),
 CUSTOMER FOR ROW (INSERT, UPDATE, DELETE),
 SALES FOR ROW (UPDATE),

Embarcadero Technologies 132

SQL Statement and Function Reference

 DEPARTMENT (LOCATION) FOR ROW (UPDATE)

9.99. SUM()
Totals the numeric values in a specified column. Available in gpre, DSQL, and isql.

SUM ([ALL] val | DISTINCT val)

Argument Description

ALL Totals all values in a column

DISTINCT Eliminates duplicate values before calculating the total

<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF that evaluates
to a numeric data type

Description: SUM() is an aggregate function that calculates the sum of numeric values for a column. If the
number of qualifying rows is zero, SUM() returns a NULL value.

Example: The following embedded SQL statement demonstrates the use of SUM(),AVG(), MIN(), and MAX():

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.100. TRUNCATE TABLE
Introduction

InterBase 2017 introduced the SQL reserved keyword TRUNCATE. The Truncate Table command allows users
and applications to empty the contents of a database table. This feature is useful for tables where rows
require frequent deletion. The Truncate Table command performs faster, requires less I/O, and journals
and archives much less information than an equivalent DELETE FROM table command. ETL applications or
other applications can benefit from the combination of TRUNCATE TABLE with the NO RESERVE SPACE table
allocation option when they stage large amounts of data that are deleted after use or moved to a more
permanent location such as a history table.

Requirements and Constraints

1. The Truncate Table command obtains exclusive and protected write locks, this can have a visible
effect on concurrent transactions that try to access tables being truncated. Although the table is being
truncated anyways, all layers of the dependent table tree hierarchy in a TRUNCATE CASCADE are locked,
and in a TRUNCATE DEFERRED these locks are held until the transaction terminates.

2. As a consequence of the previous point, users may run Truncate Table commands using a transaction
with NO WAIT or a WAIT TIME limit.This way the transaction could rollback the operation if a timeout
occurs or retry a limited number of times.

3. It is not possible to truncate system tables, temporary tables, and views. For optimization and perfor-
mance reasons the engine truncates physically some of these tables types, users don't have access
to this functionality. However, users might perceive better performance.

Embarcadero Technologies 133

SQL Statement and Function Reference

4. External tables can be truncated.
5. It's not possible to track who executed a Truncate Table command. FOR EACH STATEMENT triggers that

enable users to write a triggered action for a Truncate Table command are not supported in InterBase.

How it works

Truncate Table operates at table level rather than at row level, it acts on the stored data inside a table
instead of the metadata. Truncate Table deletes all the rows of a table in similar way to a DELETE FROM
<table> command, but it doesn't perform row level actions like DELETE triggers, check constrains, and
index maintenance. Truncate Table is usually faster than row-level deletion.

The Truncate Table command is not under transaction control. When you empty a table, it is not possible
to undo the action even if you roll back the transaction that executed it. Only a point-in-time recovery
can recover the data from InterBase journal archives. Truncated tables don't have storage allocated for
row data, indexes, or blobs.

The Truncate Table command is sensitive to other tables' foreign key constraints that reference the table
being truncated. In it's simplest form, foreign key constrains disallow table truncation. InterBase Truncate
Table provides several non-SQL and run-time extensions to override this restriction. This enables a more
liberal interpretation of the command enable execution in situations that do not compromise existing
foreign key constraints. Although Truncate Table is not under transaction control, it is possible to make it
behave as if it were by deferring its execution until after the effects of the transaction in which it is contained
have been committed or rolled back.

9.100.1. Truncate Table syntax

TRUNCATE TABLE <table_name> [IMMEDIATE | DEFERRED] [RESTRICT | CASCADE]

When using the truncate Table command, please consider these points:

• IMMEDIATE is implicit if neither IMMEDIATE nor DEFERRED are specified. IMMEDIATE and DEFERRED are un-
reserved keywords.

• RESTRICT is implicit if neither RESTRICT nor CASCADE are specified.

For example:

 TRUNCATE TABLE <table_name>

is the same as:

TRUNCATE TABLE <table_name> IMMEDIATE RESTRICT

• Use the IMMEDIATE qualifier to execute the Truncate Table command immediately and to empty the
content of the table.

• Use the DEFERRED qualifier to execute the Truncate Table command when the transaction terminates
with COMMIT or ROLLBACK. COMMIT guarantees all the transactional work before emptying the target
table. ROLLBACK cancels the Truncate Table Command.

Embarcadero Technologies 134

SQL Statement and Function Reference

• When you specify the RESTRICT qualifier the Truncate Table command only succeeds if no foreign key
constrains reference the target table. The Truncate Table command only executes if the table has self-
referencing foreign key constrains.

• When you specify the CASCADE qualifier, declare all the foreign key constrains of referencing tables
with the ON CASCADE DELETE action, or the foreign key constrains not declared must reference currently
"empty" tables. This condition applies recursively to referencing tables, if any table violates this con-
dition the Truncate Table command fails with a foreign key violation error.

NOTE

In this context "empty" means the table has no data storage allocated to it. A table with no rows still has storage
allocated to it. This can happen when all rows have been deleted with one or more DELETE statements, but concurrent
transactions still have earlier versions of the row in their snapshots, or the rows and their earlier versions are not in any
transactions' snapshots but have not yet been garbage collected. To immediately make those foreign key dependent
tables empty, Truncate Table can be run against such tables if logic dictates. A Truncate Table statement is allowed to
be called from InterBase triggers and stored procedures assuming they have been granted the TRUNCATE privilege.

9.100.2. Truncate Table privilege
Execution of a Truncate Table command requires a TRUNCATE privilege. By default, this privilege is granted
only to the table owner and SYSDBA initially. The TRUNCATE privilege must be specifically granted to any
other authorization identifier as it is not considered a member of ALL privileges.

{GRANT | REVOKE} TRUNCATE ON <table_name> {TO | FROM} <grantee> [WITH
GRANT OPTION]

NOTE

The TRUNCATE privilege is not required on referencing tables with non-ON CASCADE DELETE foreign key constraints
when checking if those tables are empty. a

aIn this context "empty" means the table has no data storage allocated to it. A table with no rows still has storage allocated to it.

9.100.3. Truncate Table operation
The Truncate Table command is executed in two phases:

1. A locking phase.
2. A truncation phase.

Upon command, the returned target tables are always locked for exclusive access. If the DEFERRED qualifier is
specified, the truncation phase of the operation does not occur until transaction COMMIT. Specifically, foreign
dependent tables with non-ON CASCADE DELETE reference constraints are only locked for protected write.

Because these tables are not being physically dismantled, reads can be allowed without blocking on the
empty table. The protected write lock prevents insertion of new rows that might have a valid reference
on a table with an imminent truncation.

If the CASCADE qualifier is specified, then the target table is locked as well as referencing tables with foreign
key constraints that depend on the target table. The locking protocol works in a top-down fashion, locking
the target table first followed by the referencing tables and recursively applied to those referencing tables
with ON CASCADE DELETE foreign key constraints. This is referred to as a dependent table tree hierarchy.

Embarcadero Technologies 135

SQL Statement and Function Reference

The truncation protocol works in a bottom-up fashion. First, it truncates foreign dependent tables, this
prevents dangling foreign key references if the total execution fails unexpectedly before completion. During
this phase, all table data, index and blob storage is released back to the database for reuse. Once the
tables have been truncated, the table locks are downgraded to the level they would have acquired for
normal write access. For a consistency mode transaction this is protected write. For a concurrency mode
transaction this is shared write.

9.100.4. Truncate Table errors
A lock error returns if an exclusive table lock cannot be acquired during the locking phase. The error
returned can be a isc_deadlock error or a transaction wait error depending on the transaction's wait mode.
If a transaction waits indefinitely for lock acquisition, it can only return a isc_deadlock error due to a real
deadlock with a concurrent transaction.

If the transaction is NO WAIT, it returns an isc_lock_conflict error immediately. If the transaction requests
a WAIT TIME, it returns isc_lock_timeout when waiting the specified time for table lock acquisition.

It is also an error to execute a Truncate Table command from a READ_ONLY transaction or database. During
the truncation phase there is no expected way for an error to occur. However, unexpected errors can occur
due to extraneous circumstances.

If a transaction executing a Truncate Table command has open cursors on one or more of the truncated
tables, attempting to perform an UPDATE on those open cursors can return an isc_table_truncated. Oth-
erwise, if the fetch from the cursor is only for retrieval purposes, the fetch operation returns as if there
were no more remaining rows to fetch.

9.100.5. Truncate Table effect on Change Views
When a client database connection activates subscriptions containing one or more truncated tables, the
client receives two indications of the underlying truncate activity.

First, when a cursor opens (the SELECT operation is executed), a warning status vector indicating isc_ta-
ble_truncated returns with the name of the truncated table. A warning status vector can chain together
five separate isc_table_truncated status codes of truncated tables in a SELECT statement. Clients can use
this form of table notification to truncate one or more corresponding tables on the client. For example,
after executing the query:

if (isc_dsql_execute(status_vector, ...) == 0) /* after successful
execution check for warnings */
 {
 if (status_vector[2] == isc_arg_warning)

// A warning status vector for one or more truncated tables shall have
the following format.

status_vector[0] = isc_arg_gds
status_vector[1] = 0
status_vector[2] = isc_arg_warning

// The following sequence can be repeated up to 5 times

status_vector[3] = isc_table_truncated
status_vector[4] = isc_arg_string
status_vector[5] = name of table truncated

Embarcadero Technologies 136

SQL Statement and Function Reference

// status_vector terminator

status_vector[last element] = isc_arg_end

Second, on every fetch from the cursor, a SQLIND_TRUNCATE flag is set in the SQL indicator member of a
SQLVAR element for a column of a truncated table. Clients can use this form of column notification to
delete one or more rows in corresponding tables before using the other SQLIND flags to decide on the
appropriate row modification operation.

/* Bit flag definitions for SQLVAR.sqlind output variable */

#define SQLIND_NULL (short) (1 << 15)
#define SQLIND_INSERT (1 << 0)
#define SQLIND_UPDATE (1 << 1)
#define SQLIND_DELETE (1 << 2)
#define SQLIND_CHANGE (1 << 3)
#define SQLIND_TRUNCATE (1 << 4)
#define SQLIND_CHANGE_VIEW (1 << 5)

If the query returns no rows because there were no changes to the subscribed tables subsequent to
table truncation, then only the first method can be used. The second method will not work since the
SQLDA/SQLVAR element will not be populated because no rows have been returned.

Higher level database frameworks such as FireDAC may surface these truncate notifications with supporting
APIs (e.g., isTruncated().)

9.100.6. Truncate Table examples
Consider a lottery drawing example:

TRUNCATE TABLE PENDING_LOTTERY_TICKETS DEFERRED;
INSERT INTO CURRENT_LOTTERY_DRAWING ... SELECT FROM PENDING_LOTTERY TICKETS;
COMMIT;

The day of the lottery drawing at 9:00 PM the TRUNCATE TABLE command is executed with a DEFERRED sta-
tus. Because the Truncate Table command obtains an exclusive lock, any attempts to insert new lottery
tickets at 9:00 PM have to wait. The CURRENT_LOTTERY_DRAWING table is then populated with PENDING_LOT-
TERY_TICKETS. The PENDING_LOTTERY_TICKETS table is truncated only after a successful COMMIT, this ensures
the tickets are not lost before moving them for the current lottery drawing. Once truncation completes,
the PENDING_LOTTERY_TICKETS exclusive lock is released, allowing pending lottery ticket INSERT commands
to complete and be eligible for the next lottery drawing.

Conversely, a bulk load operation would want to ensure a table is immediately emptied before the load:

TRUNCATE TABLE CUSTOMER_ORDERS; /* IMMEDIATE is implied */
EXECUTE LOAD_CUSTOMER_ORDERS;
COMMIT;

A set of tables may form a composition hierarchy to represent the semantic notion of containment:

Embarcadero Technologies 137

SQL Statement and Function Reference

INVOICE_HEADER <-- INVOICE_DETAILS <-- {RAIN_CHECK_TICKET, DROP_SHIP_ADDRESS}

The dependent tables are all declared with ON CASCADE DELETE foreign key constraints. All the invoices can
be quickly dropped by executing:

TRUNCATE TABLE INVOICE_HEADERS CASCADE;

On the other hand, there may exist a lookup table of two-letter US State postal codes named POSTAL_CODES
that every document in an organization depends on. None of these dependent tables register an ON CAS-
CADE DELETE foreign key constraint with the lookup table.

POSTAL CODE STATE

CA California

MA Massachusetts

NC North Carolina

TX Texas

...

TRUNCATE TABLE POSTAL_CODES CASCADE;

Assuming that one or more of the foreign dependent tables are not empty, this command fails with a
FOREIGN KEY CONSTRAINT violation error. The foreign dependent tables are not ON CASCADE DELETE and have
storage allocated for their existing rows.

9.100.7. Truncate Table Tutorial
This section guides you in the use of the Truncate Table command and its qualifiers.

Creating a test database and tables

1. Create a Database.

CREATE DATABASE "truncate.ib";
COMIT;

2. Create a table named 'SOLO' that has no references from any other table.

CREATE TABLE SOLO (F1 INTEGER);
INSERT INTO SOLO VALUES (1);
COMMIT;

3. Create a table named 'SOLO_SELF_REF' and populate it with data, this table references itself.

CREATE TABLE SOLO_SELF_REF (EMP_NO INTEGER NOT NULL, MNGR_NO INTEGER,
 PRIMARY KEY (EMP_NO));
ALTER TABLE SOLO_SELF_REF ADD FOREIGN KEY (MNGR_NO) REFERENCES
SOLO_SELF_REF (EMP_NO);
INSERT INTO SOLO_SELF_REF VALUES (1, 1);

Embarcadero Technologies 138

SQL Statement and Function Reference

INSERT INTO SOLO_SELF_REF VALUES (2, 1);
INSERT INTO SOLO_SELF_REF VALUES (3, 2);
INSERT INTO SOLO_SELF_REF VALUES (4, 2);
COMMIT;

4. Next, create the primary table called PT, and add a primary key on EMP_NO.

CREATE TABLE PT (EMP_NO INTEGER NOT NULL, SSN_NO INTEGER NOT NULL);
ALTER TABLE PT ADD PRIMARY KEY (EMP_NO);
INSERT INTO PT VALUES (1, 100);
INSERT INTO PT VALUES (2, 200);
INSERT INTO PT VALUES (3, 300);
INSERT INTO PT VALUES (4, 400);
COMMIT;

5. Create a table named "FT1" and add a foreign key reference, this references to PT with ON DELETE
CASCADE.

CREATE TABLE FT1 (MNGR_NO INTEGER NOT NULL, EMP_COUNT INTEGER, PRIMARY KEY
(MNGR_NO));
ALTER TABLE FT1 ADD FOREIGN KEY (MNGR_NO) REFERENCES PT (EMP_NO) ON DELETE
CASCADE;
INSERT INTO FT1 VALUES (1, 1);
INSERT INTO FT1 VALUES (2, 2);
COMMIT;

Truncate a table with no references from other tables

1. First check the number of records on each table.

SELECT COUNT(*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

2. Next, truncate the SOLO table.

TRUNCATE TABLE SOLO;
COMMIT;

3. Next, truncate the SOLO_SELF_REF table with reference to self.

TRUNCATE TABLE SOLO_SELF_REF;
COMMIT;

4. Finally, check count of records on each table.

SELECT COUNT(*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate a table with no references from other tables using the DEFERRED qualifier

Embarcadero Technologies 139

SQL Statement and Function Reference

1. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

2. Truncate the SOLO_SELF_REF table with DEFERRED qualifier. We now have exclusive access to the table.
No other requests allowed to read/write to the table.

TRUNCATE TABLE SOLO_SELF_REF DEFERRED;

3. We still have access to the table. Do new DML requests.

SELECT * FROM SOLO_SELF_REF;
INSERT INTO SOLO_SELF_REF VALUES (5, 2);
SELECT * FROM SOLO_SELF_REF;

4. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

5. COMMIT will truncate now due to DEFERRED action

COMMIT;

6. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate on a primary table cascades to table references with ON CASCADE DELETE definition

1. Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

2. TRUNCATE PT table with default RESTRICT qualifier

TRUNCATE TABLE PT;
COMMIT;

3. Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

4. TRUNCATE PT table with CASCADE qualifier

TRUNCATE TABLE PT CASCADE;

Embarcadero Technologies 140

SQL Statement and Function Reference

COMMIT;

5. Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

9.101. UPDATE
Changes the data in all or part of an existing row in a table, view, or active set of a cursor. Available in
gpre, DSQL, and isql.

SQL form:

UPDATE [TRANSACTION <transaction>] {TABLE | VIEW}
SET col = val [, col = val …]
[WHERE search_condition | WHERE CURRENT OF cursor]
[ORDER BY order_list]
[ROWS VALUE [TO upper_value] [BY step_value][PERCENT][WITH TIES]];

DSQL and isql form:

UPDATE {TABLE | VIEW}
SET col = val [, col = val …]
[WHERE search_condition
[ORDER BY order_list]
[ROWS VALUE [TO upper_value] [BY step_value][PERCENT][WITH TIES]]
val = {
col [array_dim]
| :variable
| constant
| expr
| FUNCTION
| udf ([val [, val …]])
| NULL
| USER
| ?}
[COLLATE collation]
array_dim = [[x:]y [, [x:]y …]]
constant = num | 'string' | charsetname 'string'
FUNCTION = CAST (val AS data_type)
| UPPER (val)
| GEN_ID (generator, val)

<expr> = A valid SQL expression that results in a single value.

<search_condition> = See CREATE TABLE. for a full description.

Notes on the UPDATE statement:

• In SQL and isql, you cannot use <val> as a parameter placeholder (like “?”).

Embarcadero Technologies 141

SQL Statement and Function Reference

• In DSQL and isql, <val> cannot be a variable.
• You cannot specify a COLLATE clause for Blob columns.

Argument Description

TRANSACTION <transaction> Name of the transaction under control of which the statement is executed

<table> | <view> Name of an existing table or view to update.

SET <col> = <val> Specifies the columns to change and the values to assign to those columns

WHERE <search_condition> Searched update only; specifies the conditions a row must meet to be modified

WHERE CURRENT OF <cursor> Positioned update only; specifies that the current row of a cursor active set is to be
modified

• Not available in DSQL and isql

ORDER BY <order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows

ROWS <value>
[TO <upper_value>]
[BY <step_value>]
[PERCENT][WITH TIES]

• <value> is the total number of rows to return if used by itself

• <value> is the starting row number to return if used with TO

• <value> is the percent if used with PERCENT

• <upper_value> is the last row or highest percent to return

• If <step_value> = <n>, returns every <n>th row, or <n> percent rows

• PERCENT causes all previous ROWS values to be interpreted as percents

• WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY

Description: UPDATE modifies one or more existing rows in a table or view. UPDATE is one of the database
privileges controlled by GRANT and REVOKE.

For searched updates, the optional WHERE clause can be used to restrict updates to a subset of rows in the
table. Searched updates cannot update array slices.

IMPORTANT

Without a WHERE clause, a searched update modifies all rows in a table.

When performing a positioned update with a cursor, the WHERE CURRENT OF clause must be specified to
update one row at a time in the active set.

NOTE

When updating a Blob column, UPDATE replaces the entire Blob with a new value.

Examples: The following isql statement modifies a column for all rows in a table:

UPDATE CITIES
SET POPULATION = POPULATION * 1.03;

The next embedded SQL statement uses a WHERE clause to restrict column modification to a subset of rows:

Embarcadero Technologies 142

SQL Statement and Function Reference

EXEC SQL
UPDATE PROJECT
SET PROJ_DESC = :blob_id
WHERE PROJ_ID = :proj_id;

9.102. UPPER()
Converts a string to all uppercase. Available in gpre, DSQL, and isql.

UPPER (val)

Argument Description

<val> A column, constant, host-language variable, expression, function, or UDF that evaluates to a character data
type

Description:UPPER() converts a specified string to all uppercase characters. If applied to character sets
that have no case differentiation, UPPER() has no effect.

Examples: The following isql statement changes the name, BMatthews, to BMATTHEWS:

UPDATE EMPLOYEE
SET EMP_NAME = UPPER (BMatthews)
WHERE EMP_NAME = 'BMatthews';

The next isql statement creates a domain called PROJNO with a CHECK constraint that requires the value
of the column to be all uppercase:

CREATE DOMAIN PROJNO
AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

9.103. WHENEVER
Traps SQLCODE errors and warnings. Available in gpre.

WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
{GOTO label | CONTINUE};

Argument Description

NOT FOUND Traps SQLCODE = 100, no qualifying rows found for the executed statement

SQLERROR Traps SQLCODE < 0, failed statement

SQLWARNING Traps SQLCODE > 0 AND < 100, system warning or informational message

GOTO <label> Jumps to program location specified by <label> when a warning or error occurs

CONTINUE Ignores the warning or error and attempts to continue processing

Embarcadero Technologies 143

SQL Statement and Function Reference

Description: WHENEVER traps for SQLCODE errors and warnings. Every executable SQL statement returns
a SQLCODE value to indicate its success or failure. If SQLCODE is zero, statement execution is successful.
A non-zero value indicates an error, warning, or not found condition.

If the appropriate condition is trapped for, WHENEVER can:

• Use GOTO label to jump to an error-handling routine in an application.
• Use CONTINUE to ignore the condition.

WHENEVER can help limit the size of an application, because the application can use a single suite of routines
for handling all errors and warnings.

WHENEVER statements should precede any SQL statement that can result in an error. Each condition to trap
for requires a separate WHENEVER statement. If WHENEVER is omitted for a particular condition, it is not trapped.

TIP

Precede error-handling routines with WHENEVER … CONTINUE statements to prevent the possibility of infinite looping
in the error-handling routines.

Example: In the following code from an embedded SQL application, three WHENEVER statements determine
which label to branch to for error and warning handling:

EXEC SQL
WHENEVER SQLERROR GO TO Error; /* Trap all errors. */
EXEC SQL
WHENEVER NOT FOUND GO TO AllDone; /* Trap SQLCODE = 100 */
EXEC SQL
WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings. */

For a complete discussion of error-handling methods and programming, see the Embedded SQL Guide.

9.104. RECONNECT
Reconnects to the latest successfully connected database. RECONNECT is only available in isql and in SQL
scripts that you run in isql.

Syntax

isql:

RECONNECT [USER <username>] [PASSWORD <password>] [ROLE <rolename>] [CACHE
<number>] [lc_ctype <charset> DIALECT <dialect_number>];

Argument Description

USER <username> String or host-language variable that specifies a user name for the database. The server
checks the user name against the security database. User names are case-insensitive.

PASSWORD <password> String or host-language variable, that specifies a password for the database. The server
checks the password against the security database. Passwords are case-sensitive.

ROLE <rolename> String or host-language variable up to 67 characters in size, that specifies the role that the
user adopts for this connection to the database. The user can adopt at most one role per
connection, and cannot switch roles (except by reconnecting).

Embarcadero Technologies 144

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

CACHE <number> Sets the number of cache buffers for a database, which determines the number of database
pages a program can use at the same time. Values for <number>:

• Default: 256

• Maximum value: system-dependent

Note: a value of 256 or NONE clears the cache parameter.

lc_type <character
set>

Sets the character set, Use NONE to remove the character set.

DIALECT <dialect num-
ber>

Sets the Dialect number, available values are: 1, 2, 3

Description

The RECONNECT statement connects to the last successfully connected database. All parameters for the
RECONNECT statement are optional. If you do not specify a parameter, RECONNECT uses the value that you
pass via Command-line Options.

Examples

RECONNECT;
RECONNECT USER 'sysdba' PASSWORD 'masterkey';
RECONNECT USER 'sysdba' PASSWORD 'masterkey' ROLE 'DBA';

Embarcadero Technologies 145

docwiki.embarcadero.com/InterBase/2020/en/Invoking_isql#Command-line_Options

Procedures and Triggers

Procedures and Triggers

InterBase procedure and trigger language is a complete programming language for writing stored pro-
cedures and triggers in isql and DSQL. It includes:

• SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
• Powerful extensions to SQL, including assignment statements, control-flow statements, context vari-

ables, event-posting, exceptions, and error handling.

Although stored procedures and triggers are used in entirely different ways and for different purposes, they
both use procedure and trigger language. Both triggers and stored procedures can use any statements
in procedure and trigger language, with some exceptions:

• OLD and NEW context variables are unique to triggers.
• Input and output parameters, and the SUSPEND and EXIT statements are unique to stored procedures.

The Data Definition Guide explains how to create and use stored procedures and triggers. This chapter
is a reference for the statements that are unique to trigger and procedure language or that have special
syntax when used in triggers and procedures.

1. Creating Triggers and Stored Procedures
Stored procedures and triggers are defined with the CREATE PROCEDURE and CREATE TRIGGER statements,
respectively. Each of these statements is composed of a header and a body.

The header contains::

• The name of the procedure or trigger, unique within the database.
• For a trigger:
• A table name, identifying the table that causes the trigger to fire.
• Statements that determine when the trigger fires.
• For a stored procedure:
• An optional list of input parameters and their data types.
• If the procedure returns values to the calling program, a list of output parameters and their data types.

The body contains: :

• An optional list of local variables and their data types.
• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN and END. A

block can itself include other blocks, so that there may be many levels of nesting.

2. Statement Types Not Supported
The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

• Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE
FILTER

Embarcadero Technologies 146

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

Procedures and Triggers

• Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK
• Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE
• CONNECT/DISCONNECT, and sending SQL statements to another database
• GRANT/REVOKE

• SET GENERATOR

• EVENT INIT/WAIT

• BEGIN/END DECLARE SECTION

• BASED ON

• WHENEVER

• DECLARE CURSOR

• OPEN

• FETCH

3. Nomenclature Conventions
This chapter uses the following nomenclature:

• A block is one or more compound statements enclosed by BEGIN and END.
• A compound statement is either a block or a statement.
• A statement is a single statement in procedure and trigger language.

To illustrate in a syntax diagram:

<block> =
BEGIN
<compound_statement>
[<compound_statement> …]
END
<compound_statement> = <block> | statement;

4. Assignment Statement
Assigns a value to an input or output parameter or local variable. Available in triggers and stored proce-
dures.

<variable> = <expression>;

Argument Description

<variable> A local variable, input parameter, or output parameter.

<expression> Any valid combination of variables, SQL operators, and expressions, including user-defined functions
(UDFs) and generators.

Description: An assignment statement sets the value of a local variable, input parameter, or output pa-
rameter. Variables must be declared before they can be used in assignment statements.

Embarcadero Technologies 147

Procedures and Triggers

Example: The first assignment statement below sets the value of x to 9. The second statement sets the
value of y at twice the value of x. The third statement uses an arithmetic expression to assign z a value of 3.

DECLARE VARIABLE x INTEGER;
DECLARE VARIABLE y INTEGER;
DECLARE VARIABLE z INTEGER;
x = 9;
y = 2 * x;
z = 4 * x / (y - 6);

5. BEGIN … END
Defines a block of statements executed as one. Available in triggers and stored procedures.

<block> =
BEGIN
 <compound_statement>
[<compound_statement> <…>]
END
<compound_statement> = {<block> | statement;}

Description: Each block of statements in the procedure body starts with a BEGIN statement and ends with
an END statement. As shown in the above syntax diagram, a block can itself contain other blocks, so there
may be many levels of nesting.

BEGIN and END are not followed by a semicolon. In isql, the final END in the procedure body is followed
by the semicolon.

The final END statement in a trigger terminates the trigger. The final END statement in a stored procedure
operates differently, depending on the type of procedure:

• In a select procedure, the final END statement returns control to the application and sets SQLCODE to
100, which indicates there are no more rows to retrieve.

• In an executable procedure, the final END statement returns control and current values of output pa-
rameters, if any, to the calling application.

Example: The following isql fragment of the DELETE_EMPLOYEE procedure shows two examples of BEGIN
… END blocks.

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN
ANY_SALES = 0;
. . .
IF (ANY_SALES > 0) THEN
BEGIN
EXCEPTION REASSIGN_SALES;
EXIT;
END
. . .

Embarcadero Technologies 148

Procedures and Triggers

END
;

6. Comment
Comment syntax allows programmers to add comments to procedure and trigger code or SQL scripts.

There are two different types of comments that you can use:

1. The simple comment: A comment that starts with a special symbol and ends with a new line.

NOTE

The simple comment syntax is only available starting with database engine version InterBase 2017.

-- comment text

2. The bracketed comment: A comment that starts and ends with a special symbol. It may be mul-
ti-line.

/* comment text
more comment text
another line of comment text
*/

Regardless of the type of comment that you use, you may start a comment anywhere in a line, but with
a simple comment you need to keep in mind that the comment area stops after new line. In order to use
the simple comment syntax for a multi-line comment, you need to start each line with the special symbol.

 For example:

• A multi-line bracketed comment:

/* my multi-line
comment is this
text */

• A multi-line simple comment:

-- my multi-line

-- comment is this

-- text

You can place comments on the same line as code, which makes them inline comments.

It is good programming practice to state the input and output parameters of a procedure in a comment
preceding the procedure. It is also often useful to comment local variable declarations to indicate what
each variable is used for.

Embarcadero Technologies 149

Procedures and Triggers

Examples The following isql samples illustrate some ways to use comments:

/*
* Procedure DELETE_EMPLOYEE : Delete an employee.
*
* Parameters:
* employee number
* Returns:
* --
*/
CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER; -- Number of sales for emp.
BEGIN
. . .

/* This script sets up Change Views Subscriptions
 on the EMPLOYEE table.
*/
CONNECT "emp.ib" USER 'SYSDBA' password 'masterkey';
COMMIT;
CREATE SUBSCRIPTION sub ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

-- Create a subscription on Employee table
CREATE SUBSCRIPTION sub1 ON EMPLOYEE FOR ROW (INSERT, UPDATE);
COMMIT;

• Simple comment followed by another SLC

-- One more comment

CREATE SUBSCRIPTION sub2 ON EMPLOYEE FOR ROW (INSERT);
COMMIT;

• Simple comment followed by another SLC with leading whitespace

 -- One more comment followed by leading whitespace before CREATE
below

CREATE SUBSCRIPTION sub3 ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

SHOW SUBSCRIPTIONS;
SELECT COUNT(*)
 -- inline comment 1
 FROM RDB$DATABASE;

SELECT COUNT(*) -- inline comment 2
 FROM RDB$DATABASE;
COMMIT;

Embarcadero Technologies 150

Procedures and Triggers

SET TERM ^;

• Create a stored procedure with inline comments

CREATE PROCEDURE test_proc (
 p1 INTEGER, -- Param 1
 p2 VARCHAR(68) -- Param 2
)
RETURNS (op1 INTEGER) -- Output param
AS
DECLARE variable v1 INTEGER;
DECLARE variable v2 VARCHAR(150); -- Variable 2
BEGIN
 -- sample comment 1
 -- sample comment 2
 -- return input value multiplied by 10
 v1 = p1 * 10;
 op1 = v1;
SUSPEND;
END^
SET TERM ;^
COMMIT;
SHOW PROCEDURE test_proc;
SELECT op1 FROM test_proc (2, NULL);

7. DECLARE VARIABLE
Declares a local variable. Available in triggers and stored procedures.

DECLARE VARIABLE var data_type;

Argument Description

<var> Name of the local variable, unique within the trigger or procedure

<data_type> Data type of the local variable; can be any InterBase data type except arrays.

Description: Local variables are declared and used within a stored procedure. They have no effect outside
the procedure.

Local variables must be declared at the beginning of a procedure body before they can be used. Each
local variable requires a separate DECLARE VARIABLE statement, followed by a semicolon (;).

Example: The following header declares the local variable, ANY_SALES:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS
DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN
. . .

Embarcadero Technologies 151

Procedures and Triggers

8. EXCEPTION
Raises the specified exception. Available in triggers and stored procedures.

EXCEPTION name;

Argument Description

<name> Name of the exception being raised

Description: An exception is a user-defined error that has a name and an associated text message. When
raised, an exception:

• Terminates the procedure or trigger in which it was raised and undoes any actions performed (directly
or indirectly) by the procedure or trigger.

• Returns an error message to the calling application. In isql, the error message is displayed to the
screen.

Exceptions can be handled with the WHEN statement. If an exception is handled, it will behave differently.

Example: The following isql statement defines an exception named REASSIGN_SALES:

CREATE EXCEPTION REASSIGN_SALES
'Reassign the sales records before deleting this employee.' ;

Then these statements from a procedure body raise the exception:

IF (ANY_SALES > 0) THEN
EXCEPTION REASSIGN_SALES;

9. EXECUTE PROCEDURE
Executes a stored procedure. Available in triggers and stored procedures.

EXECUTE PROCEDURE name [:<param> [, :<param> …]]
[RETURNING_VALUES :<param> [, :<param> …]];

Argument Description

<name> Name of the procedure being executed. Must have been previously
defined to the database with CREATE PROCEDURE

[<param> [, <param> …]] List of input parameters, if the procedure requires them

• Can be constants or variables

• Precede variables with a colon, except NEW and OLD context
variables

[RETURNING_VALUES <param> [, <param> …]] List of output parameters, if the procedure returns values; precede
each with a colon, except NEW and OLD context variables

Embarcadero Technologies 152

Procedures and Triggers

Description: A stored procedure can itself execute a stored procedure. Each time a stored procedure
calls another procedure, the call is said to be nested because it occurs in the context of a previous and
still active call to the first procedure. A stored procedure called by another stored procedure is known as
a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve repetitive
steps. Each invocation of a procedure is referred to as an instance, since each procedure call is a separate
entity that performs as if called from an application, reserving memory and stack space as required to
perform its tasks.

NOTE

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite loops that can occur
when a recursive procedure provides no absolute terminating condition. Nested procedure calls may be restricted to
fewer than 1,000 levels by memory and stack limitations of the server.

Example: The following example illustrates a recursive procedure, FACTORIAL, which calculates factorials.
The procedure calls itself recursively to calculate the factorial of NUM, the input parameter.

CREATE PROCEDURE FACTORIAL (NUM INT)
RETURNS (N_FACTORIAL DOUBLE PRECISION)
AS
DECLARE VARIABLE NUM_LESS_ONE INT;
BEGIN
IF (NUM = 1) THEN
BEGIN /**** Base case: 1 factorial is 1 ****/
N_FACTORIAL = 1;
EXIT;
END
ELSE
BEGIN
/**** Recursion: num factorial = num * (num-1) factorial ****/
NUM_LESS_ONE = NUM - 1;
EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE
RETURNING_VALUES N_FACTORIAL;
N_FACTORIAL = N_FACTORIAL * NUM;
EXIT;
END
END;

10. EXECUTE STATEMENT
Embedding a variation of EXECUTE STATEMENTS within a Stored Procedure.

Description: Store procedure developers can now embed three variations of EXECUTE STATEMENT within
their Stored Procedures. The variations depend on the number of rows returned from the EXECUTE STATE-
MENT command. The variations are: No rows or data returned, One row of data returned, and Any number
of data rows returned.

Embarcadero Technologies 153

Procedures and Triggers

10.1. No Rows or Data Returned

EXECUTE STATEMENT <statement>

Argument Description

<statement> A SQL statement returning no rows of data.

Examples:

CREATE PROCEDURE EXEC_STMT_NO_RET (proc_name VARCHAR(20))
AS
DECLARE VARIABLE EMPNO INTEGER;
DECLARE VARIABLE EXECSTMT VARCHAR(150);
BEGIN
SELECT MAX(EMP_NO) FROM EMPLOYEE INTO EMPNO;
EXECSTMT = 'EXECUTE PROCEDURE' || proc_name || '(' || CAST (EMPNO AS
VARCHAR(10)) || ')';
EXECUTE STATEMENT EXECSTMT;
END

10.2. One Row of Data Returned

EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]

Argument Description

<select-statement> SQL statement returning one or no rows of data.

<var> Valid procedure variable, the ":" is optional.

Example:

CREATE PROCEDURE EXEC_STMT_SINGLETON (TABLE_NAME VARCHAR(50))
AS
DECLARE VARIABLE MAXEMPNO INTEGER;
BEGIN
EXECUTE STATEMENT 'SELECT MAX(EMP_NO) FROM ' || TABLE_NAME INTO :MAXEMPNO;
END

10.3. Any Number of Data Rows Returned

FOR EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]
DO <compound-statement>

Argument Description

<select-statement> SQL statement returning one or zero rows of data.

<var> Valid procedure variable. The : is optional.

Example:

Embarcadero Technologies 154

Procedures and Triggers

CREATE PROCEDURE EXEC_STMT_ANY (TABLE_NAME VARCHAR(50), INT_FIELD INTEGER)
RETURNS
 (INT_RETVAR INTEGER)
 AS
 DECLARE VARIABLE IFIELD INTEGER;
 BEGIN
 FOR EXECUTE STATEMENT
 'SELECT ' || INT_FIELD || ' FROM ' || TABLE_NAME INTO :IFIELD
 DO
 IF (IFIELD = 0) THEN
 INT_RETVAR = 0;
 ELSE
 INT_RETVAR = INT_RETVAR + IFIELD;
 SUSPEND;
 END

10.4. Requirements and Constraints
There are constrains and peculiarities with using EXECUTE STATEMENT:

• Starting with InterBase XE7 Update 1, there is a new requirement on FOR EXECUTE STATEMENT to match
every item in the SELECT list with a corresponding item in the INTO list.

• The Statement is "prepared" every time it is executed, which affects the performance of the Stored
Procedure.

• No checks are done on the statement when the procedure is created; dependency checks are not done
when the procedure is created, also the checks for existence of tables or column names referred in
the execute statement are not performed. All these checks are done at execute time and results in
errors if an error condition occurs.

• The feature can be used to perform DDL operations.
• All statements are executed based on the privileges of the user executing the Stored Procedure.
• SQL statements, "COMMIT:”, "COMMIT RETAIN", "ROLLBACK", "ROLLBACK RETAIN", and “CREATE DATABASE” are

not supported with “EXECUTE STATEMENT”. These statements return the code isc_exec_stmt_disallow
error.

11. FOR SELECT…DO
Repeats a block or statement for each row retrieved by the SELECT statement. Available in triggers and
stored procedures.

FOR <select_expr> DO <compound_statement>

Argument Description

<select_expr> SELECT statement that retrieves rows from the database; the INTO clause is required and
must come last

<compound_statement> Statement or block executed once for each row retrieved by the SELECT statement

Description: FOR SELECT is a loop statement that retrieves the row specified in the <select_expr> and
performs the statement or block following DO for each row retrieved.

Embarcadero Technologies 155

Procedures and Triggers

The <select_expr> is a normal SELECT, except the INTO clause is required and must be the last clause.

Example: The following isql statement selects department numbers into the local variable, RDNO, which
is then used as an input parameter to the DEPT_BUDGET procedure:

FOR SELECT DEPT_NO
FROM DEPARTMENT
WHERE HEAD_DEPT = :DNO
INTO :RDNO
DO
BEGIN
EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNING_VALUES :SUMB;
TOT = TOT + SUMB;
END

12. IF…THEN … ELSE
Conditional statement that performs a block or statement in the IF clause if the specified condition is TRUE,
otherwise performs the block or statement in the optional ELSE clause. Available in triggers and stored
procedures.

IF (<condition>)
THEN <<compound_statement>>
[ELSE <<compound_statement>>]

Argument Description

<condition> Boolean expression that evaluates to TRUE, FALSE, or UNKNOWN; must be enclosed in
parentheses

THEN <compound_statement> Statement or block executed if <condition> is TRUE

ELSE<compound_statement> Optional statement or block executed if <condition> is not TRUE

Description: The IF … THEN … ELSE statement selects alternative courses of action by testing a specified
condition.

<condition> is an expression that must evaluate to TRUE to execute the statement or block following THEN.
The optional ELSE clause specifies an alternative statement or block executed if <condition> is not TRUE.

Example: The following lines of code illustrate the use of IF… THEN, assuming the variables LINE2, FIRST,
and LAST have been previously declared:

. . .
IF (FIRST IS NOT NULL) THEN
LINE2 = FIRST || ' ' || LAST;
ELSE
LINE2 = LAST;
. . .

13. Input Parameters
Used to pass values from an application to a stored procedure. Available in stored procedures only.

Embarcadero Technologies 156

Procedures and Triggers

CREATE PROCEDURE <|name> [(<param data_type> [, <param data_type …>])]

Description: Input parameters are used to pass values from an application to a stored procedure. They are
declared in a comma-delimited list in parentheses following the procedure name in the header of CREATE
PROCEDURE. Once declared, they can be used in the procedure body anywhere a variable can appear.

Input parameters are passed by value from the calling program to a stored procedure. This means that
if the procedure changes the value of an input variable, the change has effect only within the procedure.
When control returns to the calling program, the input variable will still have its original value.

Input parameters can be of any InterBase data type. However, arrays of data types are not supported.

Example: The following procedure header, from an isql script, declares two input parameters, EMP_NO
and PROJ_ID:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
. . .

14. NEW Context Variables
Indicates a new column value in an INSERT or UPDATE operation. Available only in triggers.

NEW.COLUMN

Argument Description

<column> Name of a column in the affect-
ed row

Description: Triggers support two context variables: OLD and NEW. A NEW context variable refers to the new
value of a column in an INSERT or UPDATE operation.

Context variables are often used to compare the values of a column before and after it is modified. Context
variables can be used anywhere a regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INSERT and tries to assign
a value to NEW.column will have no effect. However, the actual column values are not altered until after the
action, so triggers that reference values from their target tables will not see a newly inserted or updated
value unless they fire after UPDATE or INSERT.

Example: The following script is a trigger that fires after the EMPLOYEE table is updated, and compares an
employee’s old and new salary. If there is a change in salary, the trigger inserts an entry in the SALARY_HIS-
TORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY,

Embarcadero Technologies 157

Procedures and Triggers

PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

15. OLD Context Variables
Indicates a current column value in an UPDATE or DELETE operation. Available in triggers only.

OLD.COLUMN

Argument Description

<column> Name of a column in the affected row

Description: Triggers support two context variables: OLD and NEW. An OLD context variable refers to the
current or previous value of a column in an INSERT or UPDATE operation.

Context variables are often used to compare the values of a column before and after it is modified. Context
variables can be used anywhere a regular variable can be used.

Example: The following script is a trigger that fires after the EMPLOYEE table is updated, and compares an
employee’s old and new salary. If there is a change in salary, the trigger inserts an entry in the SALARY_HIS-
TORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEGIN
IF (OLD.SALARY <> NEW.SALARY) THEN
INSERT INTO SALARY_HISTORY
(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, ‘NOW’, USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END ;

16. Output Parameters
Used to return values from a stored procedure to the calling application. Available in stored procedures
only.

CREATE PROCEDURE <name> [(<param DATA type> [, <param DATA TYPE …>])]
[RETURNS (<param DATA type> [, <param DATA type> …])]

Description: Output parameters are used to return values from a procedure to the calling application.
They are declared in a comma-delimited list in parentheses following the RETURNS keyword in the header
of CREATE PROCEDURE. Once declared, they can be used in the procedure body anywhere a variable can
appear. They can be of any InterBase data type. Arrays of data types are not supported.

If output parameters are declared in the header of a procedure, the procedure must assign them values
to return to the calling application. Values can be derived from any valid expression in the procedure.

Embarcadero Technologies 158

Procedures and Triggers

A procedure returns output parameter values to the calling application with a SUSPEND statement. An ap-
plication receives values of output parameters from a select procedure by using the INTO clause of the
SELECT statement. An application receives values of output parameters from an executable procedure by
using the RETURNING_VALUES clause.

In a SELECT statement that retrieves values from a procedure, the column names must match the names
and data types of the output parameters of the procedure. In an EXECUTE PROCEDURE statement, the output
parameters need not match the names of the output parameters of the procedure, but the data types
must match.

Example: The following isql script is a procedure header declares five output parameters, HEAD_DEPT,
DEPARTMENT, MNGR_NAME, TITLE, and EMP_CNT:

CREATE PROCEDURE ORG_CHART RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT
CHAR(25), MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

17. POST EVENT
Posts an event. Available in triggers and stored procedures.

POST_EVENT 'event_name' | <col | variable>;

Argument Description

<event_name> Name of the event being posted; must be enclosed in quotes

col Name of a column whose value the posting will be based on

variable Name of a string variable in the stored procedure or trigger

Description: POST_EVENT posts an event to the event manager. When an event occurs, this statement will
notify the event manager, which alerts applications waiting for the named event.

Example: The following statement posts an event named “new_order”:

POST_EVENT 'new_order';

The next statement posts an event based on the current value of a column:

POST_EVENT NEW.COMPANY;

The next statement posts an event based on a string variable previously declared:

myval = 'new_order:' || NEW.COMPANY;
POST_EVENT myval;

18. SELECT
Retrieves a single row that satisfies the requirements of the search condition. The same as standard sin-
gleton SELECT, with some differences in syntax. Available in triggers and stored procedures.

Embarcadero Technologies 159

Procedures and Triggers

<select_expr> = <select_clause> <from_clause>
[<where_clause>] [<group_by_clause>]
[<having_clause>]
[<union_expression>] [<plan_clause>]
[<ordering_clause>]
<into_clause>;

Description: In a stored procedure, use the SELECT statement with an INTO clause to retrieve a single row
value from the database and assign it to a host variable. The SELECT statement must return at most one
row from the database, like a standard singleton SELECT. The INTO clause is required and must be the last
clause in the statement.

The INTO clause comes at the end of the SELECT statement to allow the use of UNION operators. UNION is not
allowed in singleton SELECT statements in embedded SQL.

Example: The following statement is a standard singleton SELECT statement in an embedded application:

EXEC SQL
SELECT SUM(BUDGET), AVG(BUDGET)
INTO :TOT_BUDGET, :AVG_BUDGET
FROM DEPARTMENT
WHERE HEAD_DEPT = :HEAD_DEPT

To use the above SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :HEAD_DEPT
INTO :TOT_BUDGET, :AVG_BUDGET;

19. SUSPEND
Suspends execution of a select procedure until the next FETCH is issued and returns values to the calling
application. Available in stored procedures only.

SUSPEND;

Description: The SUSPEND statement:

• Suspends execution of a stored procedure until the application issues the next FETCH.
• Returns values of output parameters, if any.

A procedure should ensure that all output parameters are assigned values before a SUSPEND.

SUSPEND should not be used in an executable procedure. Use EXIT instead to indicate to the reader explicitly
that the statement terminates the procedure.

The following table summarizes the behavior of SUSPEND, EXIT, and END.

Embarcadero Technologies 160

Procedures and Triggers

SUSPEND, EXIT, and END

Proce-
dure type

SUSPEND EXIT END

Select proce-
dure • Suspends execution of procedure until

next FETCH is issued

• Returns output values

Jumps to fi-
nal END • Returns control to application

• Sets SQLCODE to 100 (end of record
stream)

Executable
procedure • Jumps to final END

• Not recommended

Jumps to fi-
nal END • Returns values

• Returns control to application

NOTE

If a SELECT procedure has executable statements following the last SUSPEND in the procedure, all of those statements
are executed, even though no more rows are returned to the calling program. The procedure terminates with the final
END statement, which sets SQLCODE to 100.

The SUSPEND statement also delimits atomic statement blocks in select procedures. If an error occurs in a
select procedure—either a SQLCODE error, GDSCODE error, or exception—the statements executed since
the last SUSPEND are undone. Statements before the last SUSPEND are never undone, unless the transaction
comprising the procedure is rolled back.

Example: The following procedure illustrates the use of SUSPEND and EXIT:

CREATE PROCEDURE P RETURNS (R INTEGER)
AS
BEGIN
R = 0;
WHILE (R < 5) DO
BEGIN
R = R + 1;
SUSPEND;
IF (R = 3) THEN
EXIT;
END
END;

If this procedure is used as a select procedure in isql, for example,

SELECT * FROM P;

then it will return values 1, 2, and 3 to the calling application, since the SUSPEND statement returns the current
value of r to the calling application until r = 3, when the procedure performs an EXIT and terminates.

If the procedure is used as an executable procedure in isql, for example,

EXECUTE PROCEDURE P;

then it will return 1, since the SUSPEND statement will terminate the procedure and return the current value
of r to the calling application. Since SUSPEND should not be used in executable procedures, EXIT would be
used instead, indicating that when the statement is encountered, the procedure is exited.

Embarcadero Technologies 161

Procedures and Triggers

20. WHEN … DO
Error-handling statement that performs the statements following DO when the specified error occurs.
Available in triggers and stored procedures.

WHEN {<error> [, <error> …] | ANY}
DO <<compound_statement>>
<error>=
{EXCEPTION exception_name | SQLCODE NUMBER | GDSCODE errcode}

Argument Description

EXCEPTION <excep-
tion_name>

The name of an exception already in the database

SQLCODE <number> A SQLCODE error code number

GDSCODE <errcode> An InterBase error code. Use Table 5.5 and strip isc_ before mentioning the error code
with GDSCODE usage. For example: GDSCODE lock_conflict.

ANY Keyword that handles any of the above types of errors.

<compound_statement> Statement or block executed when any of the specified errors occur.

IMPORTANT

If used, WHEN must be the last statement in a BEGIN…END block. It should come after SUSPEND, if present.

Description: Procedures can handle three kinds of errors with a WHEN statement:

• Exceptions raised by EXCEPTION statements in the current procedure, in a nested procedure, or in a
trigger fired as a result of actions by such a procedure.

• SQL errors reported in SQLCODE.
• InterBase error codes.

The WHEN ANY statement handles any of the three types.

20.1. Handling Exceptions
Instead of terminating when an exception occurs, a procedure can respond to and perhaps correct the
error condition by handling the exception. When an exception is raised, it:

• Terminates execution of the BEGIN … END block containing the exception and undoes any actions
performed in the block.

• Backs out one level to the next BEGIN … END block and seeks an exception-handling (WHEN) statement,
and continues backing out levels until one is found. If no WHEN statement is found, the procedure is
terminated and all its actions are undone.

• Performs the ensuing statement or block of statements specified after WHEN, if found.
• Returns program control to the block or statement in the procedure following the WHEN statement.

NOTE

An exception that is handled with WHEN does not return an error message.

Embarcadero Technologies 162

Procedures and Triggers

20.2. Handling SQL Errors
Procedures can also handle error numbers returned in SQLCODE. After each SQL statement executes,
SQLCODE contains a status code indicating the success or failure of the statement. It can also contain a
warning status, such as when there are no more rows to retrieve in a FOR SELECT loop.

20.3. Handling InterBase Error Codes
Procedures can also handle InterBase error codes. For example, suppose a statement in a procedure
attempts to update a row already updated by another transaction, but not yet committed. In this case,
the procedure might receive an InterBase error code, isc_lock_conflict. Perhaps if the procedure retries its
update, the other transaction may have rolled back its changes and released its locks. By using a WHEN
GDSCODE statement, the procedure can handle lock conflict errors and retry its operation.

Example: For example, if a procedure attempts to insert a duplicate value into a column defined as a
PRIMARY KEY, InterBase will return SQLCODE -803. This error can be handled in a procedure with the
following statement:

WHEN SQLCODE -803
DO
BEGIN
. . .

For example, the following procedure, from an isql script, includes a WHEN statement to handle errors that
may occur as the procedure runs. If an error occurs and SQLCODE is as expected, the procedure continues
with the new value of B. If not, the procedure cannot handle the error, and rolls back all actions of the
procedure, returning the active SQLCODE.

CREATE PROCEDURE NUMBERPROC (A INTEGER) RETURNS (B INTEGER) AS
BEGIN
B = 0;
BEGIN
UPDATE R SET F1 = F1 + :A;
UPDATE R SET F2 = F2 * F2;
UPDATE R SET F1 = F1 + :A;
WHEN SQLCODE -803 DO
B = 1;
END
EXIT;
END;

21. WHILE … DO
Performs the statement or block following DO as long as the specified condition is TRUE. Available in triggers
and stored procedures.

WHILE (<condition>) DO
<<compound_statement>>

Embarcadero Technologies 163

Procedures and Triggers

Argument Description

<condition> Boolean expression tested before each execution of the statement or block following DO

<compound_statement> Statement or block executed as long as <condition> is TRUE

Description: WHILE … DO is a looping statement that repeats a statement or block of statements as long
as a condition is true. The condition is tested at the start of each loop.

Example: The following procedure, from an isql script, uses a WHILE … DO loop to compute the sum of
all integers from one up to the input parameter:

CREATE PROCEDURE SUM_INT (I INTEGER) RETURNS (S INTEGER)
AS
BEGIN
S = 0;
WHILE (I > 0) DO
BEGIN
S = S + I;
I = I - 1;
END
END;

If this procedure is called from isql with the command:

EXECUTE PROCEDURE SUM_INT 4;

then the results will be:

S
==========
10

Embarcadero Technologies 164

Keywords

Keywords

The table in this chapter lists keywords, words reserved from use in SQL programs and isql (Interactive
SQL). The list includes DSQL, isql, and gpre keywords.

Keywords are defined for special purposes, and are sometimes called reserved words. A keyword cannot
occur in a user-declared identifier or as the name of a table, column, index, trigger, or constraint, unless
it is enclosed in double quotes. Keywords are:

• Part of statements
• Used as statements
• Names of standard data structures or data types

1. InterBase Keywords
These keywords are reserved words in all dialects.

• Beginning with InterBase 6, you cannot create objects in a dialect 1 database that have any of these
keywords as object names (identifiers).

• You can migrate a version 5 database that contains these keywords used as identifiers to version 6 or
later dialect 1 without changing the object names: a column could be named “YEAR”, for instance.

• Version 5 clients can access these keyword identifiers without error.
• Version 6 and later clients cannot access keywords that are used as identifiers. In a dialect 1 database,

you must change the names so that they are not keywords.
• If you migrate directly to dialect 3, you can retain the names, but you must delimit them with double

quotes. To retain accessibility for older clients, put the names in all upper case. Delimited identifiers
are case sensitive.

• Although TIME is a reserved word in version 6 and later dialect 1, you cannot use it as a data type
because such databases guarantee data type compatibility with version 5 clients.

• In dialect 3 databases and clients, any reserved word can be used as an identifier as long as it is
delimited with double quotes.

A
ACTION ACTIVE ADD ADMIN

AFTER ALL ALTER AND

ANY AS ASC ASCENDING

AT AUTO AUTODDL AVG

B
BASED BASENAME BASE_NAME BEFORE

BEGIN BETWEEN BLOB BLOBEDIT

BOOLEAN BUFFER BY

Embarcadero Technologies 165

Keywords

C
CACHE CASCADE CASE CAST

CHAR CHARACTER CHARACTER_LENGTH CHAR_LENGTH

CHECK CHECK_POINT_LEN CHECK_POINT_LENGTH COALESCE

COLLATE COLLATION COLUMN COMMIT

COMMITTED COMPILETIME COMPUTED CLOSE

CONDITIONAL CONNECT CONSTRAINT CONTAINING

CONTINUE COUNT CREATE CSTRING

CURRENT CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP

CURSOR

D
DATABASE DATE DAY DB_KEY

DEBUG DEC DECIMAL DECLARE

DECRYPT DEFAULT DELETE DESC

DESCENDING DESCRIBE DESCRIPTOR DISCONNECT

DISPLAY DISTINCT DO DOMAIN

DOUBLE DROP

E
ECHO EDIT ELSE ENCRYPT

ENCRYPTION END ENTRY_POINT ESCAPE

EVENT EXCEPTION EXECUTE EXISTS

EXIT EXTERN EXTERNAL EXTRACT

F
FALSE FETCH FILE FILTER

FLOAT FOR FOREIGN FOUND

FREE_IT FROM FULL FUNCTION

G
GDSCODE GENERATOR GEN_ID GLOBAL

GOTO GRANT GROUP GROUP_COMMIT_WAIT

GROUP_COMMIT_WAIT_TIME

H
HAVING HELP HOUR

Embarcadero Technologies 166

Keywords

I
IF IMMEDIATE IN INACTIVE

INDEX INDICATOR INIT INNER

INPUT INPUT_TYPE INSERT INT

INTEGER INTO IS ISOLATION

ISQL

J
JOIN

K
KEY

L
LC_MESSAGES LC_TYPE LEFT LENGTH

LEV LEVEL LIKE LOGFILE

LOG_BUFFER_SIZE LOG_BUF_SIZE LONG

M
MANUAL MAX MAXIMUM MAXIMUM_SEGMENT

MAX_SEGMENT MERGE MESSAGE MIN

MINIMUM MINUTE MODULE_NAME MONTH

N
NAMES NATIONAL NATURAL NCHAR

NO NOAUTO NOT NULL

NULLIF NUMERIC NUM_LOG_BUFS NUM_LOG_BUFFERS

O
OCTET_LENGTH OF ON ONLY

OPEN OPTION OR ORDER

OUTER OUTPUT OUTPUT_TYPE OVERFLOW

P
PAGE PAGELENGTH PAGES PAGE_SIZE

PARAMETERS PASSWORD PERCENT PLAN

Embarcadero Technologies 167

Keywords

POSITION POST_EVENT PRECISION PREPARE

PRESERVE PROCEDURE PROTECTED PRIMARY

PRIVILEGES PUBLIC

Q
QUIT

R
RAW_PARTITIONS RDB$DB_KEY READ REAL

RECORD_VERSION REFERENCES RELEASE RESERV

RESERVING RESTRICT RETAIN RETURN

RETURNING_VALUES RETURNS REVOKE RIGHT

ROLE ROLLBACK ROW ROWS

RUNTIME

S
SCHEMA SECOND SEGMENT SELECT

SET SHADOW SHARED SHELL

SHOW SINGULAR SIZE SMALLINT

SNAPSHOT SOME SORT SQLCODE

SQLERROR SQLWARNING STABILITY STARTING

STARTS STATEMENT STATIC SUSPEND

T
TABLE TEMPORARY TERMINATOR THEN

TIES TIME TIMESTAMP TO

TRANSACTION TRANSLATE TRANSLATION TRIGGER

TRIM TRUE TYPE

U
UNCOMMITTED UNION UNIQUE UNKNOWN

UPDATE UPPER USER USING

V
VALUE VALUES VARCHAR VARIABLE

VARYING VERSION VIEW

Embarcadero Technologies 168

Keywords

W
WAIT WEEKDAY WHEN WHENEVER

WHERE WHILE WITH WORK

WRITE

Y
YEAR YEARDAY

NOTE

The following keywords are specific to InterBase and are not part of the SQL standard.

WEEKDAY YEARDAY

Embarcadero Technologies 169

Error Codes and Messages

Error Codes and Messages

This chapter summarizes InterBase error-handling options and error codes. Tables in this chapter list SQL-
CODE and InterBase error codes and messages for embedded SQL, dynamic SQL (DSQL), and interactive
SQL (isql). For a detailed discussion of error handling, see the Embedded SQL Guide.

1. Error Sources
Run-time errors occur at points of user input or program output. When you run a program or use isql,
the following types of errors may occur:

Error type Description Action

Database error Database errors can result from any one of many
problems, such as conversion errors, arithmetic ex-
ceptions, and validation errors.

If you encounter one of these messages:

• Check any messages.

• Check the file name or path name and try
again.

Bugcheck or
internal error

Bugchecks reflect software problems you should
report.

If you encounter a bugcheck, execute a traceback
and save the output; submit output and script
along with a copy of the database to InterBase
Software Corp.

2. Error Reporting and Handling
For reporting and dealing with errors, InterBase utilizes the SQLCODE variable and InterBase codes re-
turned in the status array.

Every executable SQL statement sets the SQLCODE variable, which can serve as a status indicator. During
preprocessing, gpre declares this variable automatically. An application can test for and use the SQLCODE
variable in one of three ways:

• Use the WHENEVER statement to check the value of SQLCODE and direct the program to branch to
error-handling routines coded in the application.

• Test for SQLCODE directly.
• Combine WHENEVER and direct SQLCODE testing.

For SQL programs that must be portable between InterBase and other database management systems,
limit error-handling routines to one of these methods.

The InterBase status array displays information about errors that supplements SQLCODE messages.

InterBase applications can check both the SQLCODE message and the message returned in the status array.

2.1. Trapping Errors with WHENEVER
The WHENEVER statement traps SQL errors and warnings. WHENEVER tests SQLCODE return values and branch-
es to appropriate error-handling routines in the application. Error routines can range from:

• Simple reporting of errors and transaction rollback, or a prompt to the user to reenter a query or data.
• More sophisticated routines that react to many possible error conditions in predictable ways.

Embarcadero Technologies 170

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

Error Codes and Messages

WHENEVER helps limit the size of an application, since it can call on a single suite of routines for handling
errors and warnings.

2.2. Checking SQLCODE Value Directly
Applications can test directly for a particular SQLCODE after each SQL statement. If that SQLCODE occurs,
the program can branch to a specific routine.

To handle specific error situations, combine checking for SQLCODE with general WHENEVER statements.
These steps outline the procedure, which is described in detail in the Embedded SQL Guide:

1. Override the WHENEVER branching by inserting a WHENEVER SQL ERROR CONTINUE statement. The program
now ignores SQLCODE.

2. Use a SQLCODE-checking statement to check for a particular SQLCODE and direct the program to
an alternative procedure.

3. To return to WHENEVER branching, insert a new WHENEVER statement.

Where portability is not an issue, additional information may be available in the InterBase status array.

2.3. InterBase Status Array
Since each SQLCODE value can result from more than one type of error, the InterBase status array (isc_s-
tatus) provides additional messages that enable further inquiry into SQLCODE errors.

gpre automatically declares isc_status, an array of twenty 32-bit integers, for all InterBase applications
during preprocessing. When an error occurs, the status array is loaded with InterBase error codes, message
string addresses, and sometimes other numeric, interpretive, platform-specific error data.

This chapter lists all status array codes in SQLCODE Error Codes and Messages. To see the codes online,
display the ibase.h file. The location of this file is system-specific.

2.3.1. Access to Status Array Messages
 InterBase provides the following library functions for retrieving and printing status array codes and mes-
sages.

isc_print_sqlerror()

When SQLCODE < 0, this function prints the returned SQLCODE value, the corresponding SQL error
message, and any additional InterBase error messages in the status array to the screen. Use within an
error-handling routine.

isc_print_sqlerror (short SQLCODE, ISC_STATUS *status_vector);

isc_sql_interprete()

This function retrieves a SQL error message and stores it in a user-supplied buffer for later printing, ma-
nipulation, or display. Allow a buffer length of 256 bytes to hold the message. Use when building error
display routines or if you are using a windowing system that does not permit direct screen writes. Do not
use this function when SQLCODE > 0.

Embarcadero Technologies 171

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

Error Codes and Messages

isc_sql_interprete(short SQLCODE, char *buffer, short length);

2.3.2. Responding to Error Codes
After any error occurs, you have the following options: ignore the error, log the error and continue pro-
cessing, roll back the transaction and try again, or roll back the transaction and quit the application.

For the following errors, it is recommended that you roll back the current transaction and try the operation
again:

Status array codes that require rollback and retry

Status array code Action to take

isc_convert_error Conversion error: A conversion between data types failed; correct the input and retry the
operation.

isc_deadlock Deadlock: Transaction conflicted with another transaction; wait and try again.

isc_integ_fail Integrity check: Operation failed due to a trigger; examine the abort code, fix the error,
and try again.

isc_lock_conflict Lock conflict: Transaction unable to obtain the locks it needed; wait and try again.

isc_no_dup Duplicate index entry: Attempt to add a duplicate field; correct field with duplicate and try
again.

isc_not_valid Validation error: Row did not pass validation test; correct invalid row and try again.

2.4. For More Information
The following table is a guide to further information on planning and programming error-handling rou-
tines:

Topic To find… See…

SQLCODE and error handling Complete discussion and program-
ming instructions

Embedded SQL Guide

List of SQLCODE codes and messages SQLCODE codes and messages and as-
sociated messages for embedded SQL,
DSQL, isql

This chapter: SQLCODE Codes and
Messages.

WHENEVER syntax Usage and syntax SQL Statement and Function Refer-
ence.

Programming WHENEVER Using and programming error-han-
dling routines

Embedded SQL Guide

InterBase status array and functions Complete programming instructions Embedded SQL Guide

List of status array codes Status array error codes and associated
messages for embedded SQL, DSQL,
isql

This chapter: InterBase Status Array.

3. SQLCODE Error Codes and Messages
This section lists SQLCODE error codes and associated messages in the following tables:

• SQLCODE error messages summary
• SQLCODE codes and messages

Embarcadero Technologies 172

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

Error Codes and Messages

3.1. SQLCODE Error Messages Summary
This table summarizes the types of messages SQLCODE can pass to a program:

SQLCODE and messages summary

SQLCODE Message Meaning

<0 SQLERROR Error: The statement did not complete; table 5.4 lists SQLCODE error numbers and
messages.

0 SUCCESS Successful completion

+1–99 SQLWARNING System warning or informational message

+100 NOT FOUND No qualifying records found; end of file

3.2. SQLCODE Codes and Messages
The following table lists SQLCODEs and associated messages for SQL and DSQL. Some SQLCODE values
have more than one text message associated with them. In these cases, InterBase returns the most relevant
string message for the error that occurred.

When code messages include the name of a database object or object type, the name is represented by
a code in the SQLCODE Text column:

• <string>: String value, such as the name of a database object or object type.
• <long>: Long integer value, such as the identification number or code of a database object or object

type.
• <digit>: Integer value, such as the identification number or code of a database object or object type.
• The InterBase number in the right-hand column is the actual error number returned in the error status

vector. You can use InterBase error-handling functions to report messages based on these numbers
instead of SQL code, but doing so results in non-portable SQL programs.

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

101 Segment buffer length shorter than expected. 335544366L

100 No match for first value expression. 335544338L

100 Invalid database key. 335544354L

100 Attempted retrieval of more segments than exist. 335544367L

100 Attempt to fetch past the last record in a record stream. 335544374L

-84 Table/procedure has non-SQL security class defined. 335544554L

-84 Column has non-SQL security class defined. 335544555L

-84 Procedure <string> does not return any values. 335544668L

-103 Data Type for constant unknown. 335544571L

-104 Invalid request BLR at offset <long>. 335544343L

-104 BLR syntax error: expected <string> at offset <long>, encountered <long>. 335544390L

-104 Context already in use (BLR error). 335544425L

-104 Context not defined (BLR error). 335544426L

Embarcadero Technologies 173

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-104 Bad parameter number. 335544429L

-104 335544440L

-104 Invalid slice description language at offset <long>. 335544456L

-104 Invalid command. 335544570L

-104 Internal error. 335544579L

-104 Option specified more than once. 335544590L

-104 Unknown transaction option. 335544591L

-104 Invalid array reference. 335544592L

-104 Token unknown—line <long>, char <long>. 335544634L

-104 Unexpected end of command. 335544608L

-104 Token unknown. 335544612L

-150 Attempted update of read-only table. 335544360L

-150 Cannot update read-only view <string>. 335544362L

-150 Not updatable. 335544446L

-150 Cannot define constraints on views. 335544546L

-151 Attempted update of read-only column. 335544359L

-155 <string> is not a valid base table of the specified view. 335544658L

-157 Must specify column name for view select expression. 335544598L

-158 Number of columns does not match select list. 335544599L

-162 Dbkey not available for multi-table views. 335544685L

-170 Parameter mismatch for procedure <string>. 335544512L

-170 External functions cannot have more than10 parameters. 335544619L

-171 Function <string> could not be matched. 335544439L

-171 Column not array or invalid dimensions (expected <long>, encountered <long>). 335544458L

-171 Return mode by value not allowed for this data type. 335544618L

-172 Function <string> is not defined. 335544438L

-204 Generator <string> is not defined. 335544463L

-204 Encryption <string> has bad length of <string> bits. 336003096L

-204 Reference to invalid stream number. 335544502L

-204 CHARACTER SET <string> is not defined. 335544509L

-204 Procedure <string> is not defined. 335544511L

-204 Status code <string> unknown. 335544515L

-204 Exception <string> not defined. 335544516L

-204 Name of Referential Constraint not defined in constraints table. 335544532L

-204 Could not find table/procedure for GRANT. 335544551L

-204 Implementation of text subtype <digit> not located. 335544568L

-204 Data Type unknown. 335544573L

-204 Table unknown. 335544580L

Embarcadero Technologies 174

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-204 Procedure unknown. 335544581L

-204 COLLATION <string> is not defined. 335544588L

-204 COLLATION <string> is not valid for specified CHARACTER SET. 335544589L

-204 Trigger unknown. 335544595L

-204 Alias <string> conflicts with an alias in the same statement. 335544620L

-204 Alias <string> conflicts with a procedure in the same statement. 335544621L

-204 Alias <string> conflicts with a table in the same statement. 335544622L

-204 There is no alias or table named <string> at this scope level. 335544635L

-204 There is no index <string> for table <string>. 335544636L

-204 Invalid use of CHARACTER SET or COLLATE. 335544640L

-204 BLOB SUB_TYPE <string> is not defined. 335544662L

-204 EXECUTE STATEMENT could not prepare statement : <string>. 335544850

-204 SQL statement invalid as it returns no records. SQL : <string>. 335544851

-204 Parameter mis-match for the statement : <string>. 335544852

-204 Could not execute statement : <string>. 335544853

-204 EXECUTE STATEMENT fetch error. 335544854

-204 EXECUTE STATEMENT in this form must return single row, not multiple rows. 335544855

-204 SQL statement not allowed in EXECUTE STATEMENT : <string>. 335544857

-204 Statement evaluated to a NULL statement. EXECUTE STATEMENT cannot execute a NULL
statement.

335544858

-205 Column <string> is not defined in table <string>. 335544396L

-205 Could not find column for GRANT. 335544552L

-206 Column unknown. 335544578L

-206 Column is not a Blob. 335544587L

-206 Subselect illegal in this context. 335544596L

-208 Invalid ORDER BY clause. 335544617L

-219 Table <string> is not defined. 335544395L

-239 Cache length too small. 335544691L

-260 Cache redefined. 335544690L

-281 Table <string> is not referenced in plan. 335544637L

-282 Table <string> is referenced more than once in plan; use aliases to distinguish. 335544638L

-282 The table <string> is referenced twice; use aliases to differentiate. 335544643L

-282 Table <string> is referenced twice in view; use an alias to distinguish. 335544659L

-282 View <string> has more than one base table; use aliases to distinguish. 335544660L

-283 Table <string> is referenced in the plan but not the from list. 335544639L

-284 Index <string> cannot be used in the specified plan. 335544642L

-291 Column used in a PRIMARY/UNIQUE constraint must be NOTNULL. 335544531L

-292 Cannot update constraints (RDB$REF_CONSTRAINTS). 335544534L

Embarcadero Technologies 175

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-293 Cannot update constraints (RDB$CHECK_CONSTRAINTS). 335544535L

-294 Cannot delete CHECK constraint entry (RDB$CHECK_CONSTRAINTS) 335544536L

-295 Cannot update constraints (RDB$RELATION_CONSTRAINTS). 335544545L

-296 Internal isc software consistency check (invalid RDB$CONSTRAINT_TYPE) 335544547L

-297 Operation violates CHECK constraint <string> on view or table. 335544558L

-313 Count of column list and variable list do not match. 335544669L

-314 Cannot transliterate character between character sets. 335544565L

-401 Invalid comparison operator for find operation. 335544647L

-402 Attempted invalid operation on a Blob. 335544368L

-402 Blob and array data types are not supported for <string> operation. 335544414L

-402 Data operation not supported. 335544427L

-406 Subscript out of bounds 335544457L

-407 Null segment of UNIQUE KEY. 335544435L

-413 Conversion error from string “ <string>” 335544334L

-413 Filter not found to convert type <long> to type <long>. 335544454L

-501 Invalid request handle. 335544327L

-501 Attempt to reclose a closed cursor. 335544577L

-502 Declared cursor already exists. 335544574L

-502 Attempt to reopen an open cursor. 335544576L

-504 Cursor unknown. 335544572L

-508 No current record for fetch operation. 335544348L

-510 Cursor not updatable. 335544575L

-518 Request unknown. 335544582L

-519 The PREPARE statement identifies a prepare statement with an open cursor. 335544688L

-530 Violation of FOREIGN KEY constraint: “ <string>” 335544466L

-530 Cannot prepare a CREATE DATABASE/SCHEMA statement. 335544597L

-532 Transaction marked invalid by I/O error. 335544469L

-551 No permission for <string> access to <string> <string>. 335544352L

-552 Only the owner of a table can reassign ownership. 335544550L

-552 User does not have GRANT privileges for operation. 335544553L

-553 Cannot modify an existing user privilege. 335544529L

-595 The current position is on a crack. 335544645L

-596 Illegal operation when at beginning of stream. 335544644L

-597 Preceding file did not specify length, so <string> must include starting page number. 335544632L

-598 Shadow number must be a positive integer. 335544633L

-599 Gen.c: node not supported. 335544607L

-600 A node name is not permitted in a secondary, shadow, cache or log file name. 335544625L

-600 Sort error: corruption in data structure. 335544680L

Embarcadero Technologies 176

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-601 Database or file exists. 335544646L

-604 Array declared with too many dimensions. 335544593L

-604 Illegal array dimension range. 335544594L

-605 Inappropriate self-reference of column. 335544682L

-607 Unsuccessful metadata update. 335544351L

-607 Cannot modify or erase a system trigger. 335544549L

-607 Array/Blob/DATE/TIME/TIMESTAMP data types not allowed in arithmetic. 335544657L

-615 Lock on table <string> conflicts with existing lock. 335544475L

-615 Requested record lock conflicts with existing lock. 335544476L

-615 Refresh range number <long> already in use. 335544507L

-616 Cannot delete PRIMARY KEY being used in FOREIGN KEY definition. 335544530L

-616 Cannot delete index used by an integrity constraint. 335544539L

-616 Cannot modify index used by an integrity constraint. 335544540L

-616 Cannot delete trigger used by a CHECK Constraint. 335544541L

-616 Cannot delete column being used in an integrity constraint. 335544543L

-616 There are <long> dependencies. 335544630L

-616 Last column in a table cannot be deleted. 335544674L

-617 Cannot update trigger used by a CHECK Constraint. 335544542L

-617 Cannot rename column being used in an integrity constraint. 335544544L

-618 Cannot delete index segment used by an integrity constraint. 335544537L

-618 Cannot update index segment used by an integrity constraint. 335544538L

-625 Validation error for column <string>, value “ <string>” 335544347L

-637 Duplicate specification of <string> not supported. 335544664L

-660 Non-existent PRIMARY or UNIQUE KEY specified for FOREIGN KEY. 335544533L

-660 Cannot create index <string>. 335544628L

-663 Segment count of 0 defined for index <string>. 335544624L

-663 Too many keys defined for index <string>. 335544631L

-663 Too few key columns found for index <string> (incorrect column name?) 335544672L

-664 Key size exceeds implementation restriction for index “ <string>” 335544434L

-677

<string> extension error.

335544445L

-685 Invalid Blob type for operation. 335544465L

-685 Attempt to index Blob column in index <string>. 335544670L

-685 Attempt to index array column in index <string>. 335544671L

-689 Page <long> is of wrong type (expected <long>, found <long>) 335544403L

-689 Wrong page type. 335544650L

-690 Segments not allowed in expression index <string>. 335544679L

Embarcadero Technologies 177

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-691 New record size of <long> bytes is too big. 335544681L

-692 Maximum indexes per table (<digit>) exceeded. 335544477L

-693 Too many concurrent executions of the same request. 335544663L

-694 Cannot access column <string> in view <string>. 335544684L

-802 Arithmetic exception, numeric overflow, or string truncation. 335544321L

-803 Attempt to store duplicate value (visible to active transactions) in unique index “ <string>” 335544349L

-803 Violation of PRIMARY or UNIQUE KEY constraint: “ <string>” 335544665L

-804 Wrong number of arguments on call. 335544380L

-804 SQLDA missing or incorrect version, or incorrect number/type of variables. 335544583L

-804 Count of columns not equal count of values. 335544584L

-804 Function unknown. 335544586L

-806 Only simple column names permitted for VIEW WITH CHECK OPTION. 335544600L

-807 No where clause for VIEW WITH CHECK OPTION. 335544601L

-808 Only one table allowed for VIEW WITH CHECK OPTION. 335544602L

-809 DISTINCT, GROUP or HAVING not permitted for VIEW WITH CHECK OPTION. 335544603L

-810 No subqueries permitted for VIEW WITH CHECK OPTION. 335544605L

-811 Multiple rows in singleton select. 335544652L

-816 External file could not be opened for output. 335544651L

-817 Attempted update during read-only transaction. 335544361L

-817 Attempted write to read-only Blob. 335544371L

-817 Operation not supported. 335544444L

-820 Metadata is obsolete. 335544356L

-820 Unsupported on-disk structure for file <string>; found <long>, support <long>. 335544379L

-820 Wrong DYN version. 335544437L

-820 Minor version too high found <long> expected <long>. 335544467L

-823 Invalid bookmark handle. 335544473L

-824 Invalid lock level <digit>. 335544474L

-825 Invalid lock handle. 335544519L

-826 Invalid statement handle. 335544585L

-827 Invalid direction for find operation. 335544655L

-828 Invalid key position. 335544678L

-829 Invalid column reference. 335544616L

-830 Column used with aggregate. 335544615L

-831 Attempt to define a second PRIMARY KEY for the same table. 335544548L

-832 FOREIGN KEY column count does not match PRIMARY KEY. 335544604L

-833 Expression evaluation not supported. 335544606L

-834 Refresh range number <long> not found. 335544508L

-835 Bad checksum. 335544649L

Embarcadero Technologies 178

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-836 Exception <digit>. 335544517L

-837 Restart shared cache manager. 335544518L

-838 Database <string> shutdown in <digit> seconds 335544560L

-839 Journal file wrong format. 335544686L

-840 Intermediate journal file full. 335544687L

-841 Too many versions. 335544677L

-842 Precision should be greater than 0 335544697L

-842 Scale cannot be greater than precision. 335544698L

-842 Short integer expected. 335544699L

-842 Long integer expected. 335544700L

-842 Unsigned short integer expected. 335544701L

-901 Invalid database key. 335544322L

-901 Unrecognized database parameter block. 335544326L

-901 Invalid Blob handle. 335544328L

-901 Invalid Blob ID. 335544329L

-901 Invalid parameter in transaction parameter block. 335544330L

-901 Invalid format for transaction parameter block. 335544331L

-901 Invalid transaction handle (expecting explicit transaction start) 335544332L

-901 Attempt to start more than <long> transactions. 335544337L

-901 Information type inappropriate for object specified. 335544339L

-901 No information of this type available for object specified. 335544340L

-901 Unknown information item. 335544341L

-901 Action cancelled by trigger (<long>) to preserve data integrity. 335544342L

-901 Lock conflict on no wait transaction. 335544345L

-901 Program attempted to exit without finishing database. 335544350L

-901 Transaction is not in limbo. 335544353L

-901 Blob was not closed. 335544355L

-901 Cannot disconnect database with open transactions (<long> active) 335544357L

-901 Message length error (encountered <long>, expected <long>) 335544358L

-901 No transaction for request. 335544363L

-901 Request synchronization error. 335544364L

-901 Request referenced an unavailable database. 335544365L

-901 Attempted read of a new, open Blob. 335544369L

-901 Attempted action on blob outside transaction. 335544370L

-901 Attempted reference to Blob in unavailable database. 335544372L

-901 Table <string> was omitted from the transaction reserving list. 335544376L

-901 Request includes a DSRI extension not supported in this implementation. 335544377L

-901 Feature is not supported. 335544378L

Embarcadero Technologies 179

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-901 <string>. 335544382L

-901 Unrecoverable conflict with limbo transaction <long>. 335544383L

-901 Internal error. 335544392L

-901 Database handle not zero. 335544407L

-901 Transaction handle not zero. 335544408L

-901 Transaction in limbo. 335544418L

-901 Transaction not in limbo. 335544419L

-901 Transaction outstanding. 335544420L

-901 Undefined message number. 335544428L

-901 Blocking signal has been received. 335544431L

-901 Database system cannot read argument <long>. 335544442L

-901 Database system cannot write argument <long>. 335544443L

-901 <string>. 335544450L

-901 Transaction <long> is <string>. 335544468L

-901 Invalid statement handle. 335544485L

-901 Lock time-out on wait transaction. 335544510L

-901 Invalid service handle. 335544559L

-901 Wrong version of service parameter block. 335544561L

-901 Unrecognized service parameter block. 335544562L

-901 Service <string> is not defined. 335544563L

-901 INDEX <string>. 335544609L

-901 EXCEPTION <string>. 335544610L

-901 Column <string>. 335544611L

-901 Union not supported. 335544613L

-901 Unsupported DSQL construct. 335544614L

-901 Illegal use of keyword VALUE. 335544623L

-901 Table <string>. 335544626L

-901 Procedure <string>. 335544627L

-901 Specified domain or source column does not exist. 335544641L

-901 Variable <string> conflicts with parameter in same procedure. 335544656L

-901 Server version too old to support all CREATE DATABASE options. 335544666L

-901 Cannot delete. 335544673L

-901 Sort error. 335544675L

-902 Internal isc software consistency check (<string>) 335544333L

-902 Database file appears corrupt (<string>) 335544335L

-902 I/O error during “ <string>” operation for file “ <string>” 335544344L

-902 Corrupt system table. 335544346L

-902 Operating system directive <string> failed. 335544373L

Embarcadero Technologies 180

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-902 Internal error. 335544384L

-902 Internal error. 335544385L

-902 Internal error. 335544387L

-902 Block size exceeds implementation restriction. 335544388L

-902 Incompatible version of on-disk structure. 335544394L

-902 Internal error. 335544397L

-902 Internal error. 335544398L

-902 Internal error. 335544399L

-902 Internal error. 335544400L

-902 Internal error. 335544401L

-902 Internal error. 335544402L

-902 Database corrupted. 335544404L

-902 Checksum error on database page <long>. 335544405L

-902 Index is broken. 335544406L

-902 Transaction--request mismatch (synchronization error) 335544409L

-902 Bad handle count. 335544410L

-902 Wrong version of transaction parameter block. 335544411L

-902 Unsupported BLR version (expected <long>, encountered <long>) 335544412L

-902 Wrong version of database parameter block. 335544413L

-902 Database corrupted. 335544415L

-902 Internal error. 335544416L

-902 Internal error. 335544417L

-902 Internal error. 335544422L

-902 Internal error. 335544423L

-902 Lock manager error. 335544432L

-902 SQL error code = <long>. 335544436L

-902 335544448L

-902 335544449L

-902 Cache buffer for page <long> invalid. 335544470L

-902 There is no index in table <string> with id <digit>. 335544471L

-902 Your user name and password are not defined. Ask your database administrator to set up
an InterBase login.

335544472L

-902 Enable journal for database before starting online dump. 335544478L

-902 Online dump failure. Retry dump. 335544479L

-902 An online dump is already in progress. 335544480L

-902 No more disk/tape space. Cannot continue online dump. 335544481L

-902 Maximum number of online dump files that can be specified is 16 335544483L

-902 Database <string> shutdown in progress. 335544506L

Embarcadero Technologies 181

Error Codes and Messages

SQLCODE codes and messages

SQLCODE SQLCODE text InterBase
number.

-902 Long-term journaling already enabled. 335544520L

-902 Database <string> shutdown. 335544528L

-902 Database shutdown unsuccessful. 335544557L

-902 Cannot attach to password database. 335544653L

-902 Cannot start transaction for password database. 335544654L

-902 Long-term journaling not enabled. 335544564L

-902 Dynamic SQL Error. 335544569L

-904 Invalid database handle (no active connection) 335544324L

-904 Unavailable database. 335544375L

-904 Implementation limit exceeded. 335544381L

-904 Too many requests. 335544386L

-904 Buffer exhausted. 335544389L

-904 Buffer in use. 335544391L

-904 Request in use. 335544393L

-904 No lock manager available. 335544424L

-904 Unable to allocate memory from operating system. 335544430L

-904 Update conflicts with concurrent update. 335544451L

-904 Object <string> is in use. 335544453L

-904 Cannot attach active shadow file. 335544455L

-904 A file in manual shadow <long> is unavailable. 335544460L

-904 Cannot add index, index root page is full. 335544661L

-904 Sort error: not enough memory. 335544676L

-904 Request depth exceeded. (Recursive definition?) 335544683L

-904 Size of optimizer block exceeded. 335544762L

-906 Product <string> is not licensed. 335544452L

-909 Drop database completed with errors. 335544667L

-911 Record from transaction <long> is stuck in limbo. 335544459L

-913 Deadlock. 335544336L

-922 File <string> is not a valid database. 335544323L

-923 Connection rejected by remote interface. 335544421L

-923 Secondary server attachments cannot validate databases. 335544461L

-923 Secondary server attachments cannot start journaling. 335544462L

-924 Bad parameters on attach or create database. 335544325L

-924 Database detach completed with errors. 335544441L

-924 Connection lost to pipe server. 335544648L

-926 No rollback performed. 335544447L

-999 InterBase error. 335544689L

Embarcadero Technologies 182

Error Codes and Messages

4. InterBase Status Array Error Codes
This section lists InterBase error codes and associated messages returned in the status array in the following
tables. When code messages include the name of a database object or object type, the name is represented
by a code in the Message column:

• <string>: String value, such as the name of a database object or object type.
• <digit>: Integer value, such as the identification number or code of a database object or object type.
• <long>: Long integer value, such as the identification number or code of a database object or object

type.

The following table lists SQL Status Array codes for embedded SQL programs, DSQL, and isql.

Error code Number Message

isc_arith_except 335544321L arithmetic exception, numeric overflow, or string truncation

isc_bad_dbkey 335544322L invalid database key

isc_bad_db_format 335544323L file <string> is not a valid database

isc_bad_db_handle 335544324L invalid database handle (no active connection)

isc_bad_dpb_content 335544325L bad parameters on attach or create database

isc_bad_dpb_form 335544326L unrecognized database parameter block

isc_bad_req_handle 335544327L invalid request handle

isc_bad_segstr_handle 335544328L invalid Blob handle

isc_bad_segstr_id 335544329L invalid Blob ID

isc_bad_tpb_content 335544330L invalid parameter in transaction parameter block

isc_bad_tpb_form 335544331L invalid format for transaction parameter block

isc_bad_trans_handle 335544332L invalid transaction handle (expecting explicit transaction start)

isc_bug_check 335544333L internal isc software consistency check (<string>)

isc_convert_error 335544334L conversion error from string “<string>”

isc_db_corrupt 335544335L database file appears corrupt (<string>)

isc_deadlock 335544336L deadlock

isc_excess_trans 335544337L attempt to start more than <long> transactions

isc_from_no_match 335544338L no match for first value expression

isc_infinap 335544339L information type inappropriate for object specified

isc_infona 335544340L no information of this type available for object specified

isc_infunk 335544341L unknown information item

isc_integ_fail 335544342L action cancelled by trigger (<long>) to preserve data integrity

isc_invalid_blr 335544343L invalid request BLR at offset <long>

isc_io_error 335544344L I/O error during “<string>” operation for file “<string>”

isc_lock_conflict 335544345L lock conflict on no wait transaction

isc_metadata_corrupt 335544346L corrupt system table

isc_not_valid 335544347L validation error for column <string>, value “<string>”

Embarcadero Technologies 183

Error Codes and Messages

Error code Number Message

isc_no_cur_rec 335544348L no current record for fetch operation

isc_no_dup 335544349L attempt to store duplicate value (visible to active transactions)
in unique index “<string>”

isc_no_finish 335544350L program attempted to exit without finishing database

isc_no_meta_update 335544351L unsuccessful metadata update

isc_no_priv 335544352L no permission for <string> access to <string> <string>

isc_no_recon 335544353L transaction is not in limbo

isc_no_record 335544354L invalid database key

isc_no_segstr_close 335544355L Blob was not closed

isc_obsolete_metadata 335544356L metadata is obsolete

isc_open_trans 335544357L cannot disconnect database with open transactions (<long>
active)

isc_port_len 335544358L message length error (encountered <long>, expected <long>)

isc_read_only_field 335544359L attempted update of read-only column

isc_read_only_rel 335544360L attempted update of read-only table

isc_read_only_trans 335544361L attempted update during read-only transaction

isc_read_only_view 335544362L cannot update read-only view <string>

isc_req_no_trans 335544363L no transaction for request

isc_req_sync 335544364L request synchronization error

isc_req_wrong_db 335544365L request referenced an unavailable database

isc_segment 335544366L segment buffer length shorter than expected

isc_segstr_eof 335544367L attempted retrieval of more segments than exist

isc_segstr_no_op 335544368L attempted invalid operation on a Blob

isc_segstr_no_read 335544369L attempted read of a new, open Blob

isc_segstr_no_trans 335544370L attempted action on Blob outside transaction

isc_segstr_no_write 335544371L attempted write to read-only Blob

isc_segstr_wrong_db 335544372L attempted reference to Blob in unavailable database

isc_sys_request 335544373L operating system directive <string> failed

isc_stream_eof 335544374L attempt to fetch past the last record in a record stream

isc_unavailable 335544375L unavailable database

isc_unres_rel 335544376L Table <string> was omitted from the transaction reserving list

isc_uns_ext 335544377L request includes a DSRI extension not supported in this imple-
mentation

isc_wish_list 335544378L feature is not supported

isc_wrong_ods 335544379L unsupported on-disk structure for file <<string>>; found
<<long>>, support <<long>>

isc_wronumarg 335544380L wrong number of arguments on call

isc_imp_exc 335544381L Implementation limit exceeded

isc_random 335544382L <<string>>

isc_fatal_conflict 335544383L unrecoverable conflict with limbo transaction <<long>>

Embarcadero Technologies 184

Error Codes and Messages

Error code Number Message

isc_badblk 335544384L internal error

isc_invpoolcl 335544385L internal error

isc_nopoolids 335544386L too many requests

isc_relbadblk 335544387L internal error

isc_blktoobig 335544388L block size exceeds implementation restriction

isc_bufexh 335544389L buffer exhausted

isc_syntaxerr 335544390L BLR syntax error: expected <string> at offset <long>, encoun-
tered <long>

isc_bufinuse 335544391L buffer in use

isc_bdbincon 335544392L internal error

isc_reqinuse 335544393L request in use

isc_badodsver 335544394L incompatible version of on-disk structure

isc_relnotdef 335544395L table <string> is not defined

isc_fldnotdef 335544396L column <string> is not defined in table <string>

isc_dirtypage 335544397L internal error

isc_waifortra 335544398L internal error

isc_doubleloc 335544399L internal error

isc_nodnotfnd 335544400L internal error

isc_dupnodfnd 335544401L internal error

isc_locnotmar 335544402L internal error

isc_badpagtyp 335544403L page <long> is of wrong type (expected <long>, found
<long>)

isc_corrupt 335544404L database corrupted

isc_badpage 335544405L checksum error on database page <long>

isc_badindex 335544406L index is broken

isc_dbbnotzer 335544407L database handle not zero

isc_tranotzer 335544408L transaction handle not zero

isc_trareqmis 335544409L transaction—request mismatch (synchronization error)

isc_badhndcnt 335544410L bad handle count

isc_wrotpbver 335544411L wrong version of transaction parameter block

isc_wroblrver 335544412L unsupported BLR version (expected <long>, encountered
<long>)

isc_wrodpbver 335544413L wrong version of database parameter block

isc_blobnotsup 335544414L Blob and array data types are not supported for <string> oper-
ation

isc_badrelation 335544415L database corrupted

isc_nodetach 335544416L internal error

isc_notremote 335544417L internal error

isc_trainlim 335544418L transaction in limbo

isc_notinlim 335544419L transaction not in limbo

Embarcadero Technologies 185

Error Codes and Messages

Error code Number Message

isc_traoutsta 335544420L transaction outstanding

isc_connect_reject 335544421L connection rejected by remote interface

isc_dbfile 335544422L internal error

isc_orphan 335544423L internal error

isc_no_lock_mgr 335544424L no lock manager available

isc_ctxinuse 335544425L context already in use (BLR error)

isc_ctxnotdef 335544426L context not defined (BLR error)

isc_datnotsup 335544427L data operation not supported

isc_badmsgnum 335544428L undefined message number

isc_badparnum 335544429L bad parameter number

isc_virmemexh 335544430L unable to allocate memory from operating system

isc_blocking_signal 335544431L blocking signal has been received

isc_lockmanerr 335544432L lock manager error

isc_journerr 335544433L communication error with journal “<string>”

isc_keytoobig 335544434L key size exceeds implementation restriction for index
“<string>”

isc_nullsegkey 335544435L null segment of UNIQUE KEY

isc_sqlerr 335544436L SQL error code = <long>

isc_wrodynver 335544437L wrong DYN version

isc_funnotdef 335544438L function <string> is not defined

isc_funmismat 335544439L function <string> could not be matched

isc_bad_msg_vec 335544440L

isc_bad_detach 335544441L database detach completed with errors

isc_noargacc_read 335544442L database system cannot read argument <long>

isc_noargacc_write 335544443L database system cannot write argument <long>

isc_read_only 335544444L operation not supported

isc_ext_err 335544445L <string> extension error

isc_non_updatable 335544446L not updatable

isc_no_rollback 335544447L no rollback performed

isc_bad_sec_info 335544448L

isc_invalid_sec_info 335544449L

isc_misc_interpreted 335544450L <string>

isc_update_conflict 335544451L update conflicts with concurrent update

isc_unlicensed 335544452L product <string> is not licensed

isc_obj_in_use 335544453L object <string> is in use

isc_nofilter 335544454L filter not found to convert type <long> to type <long>

isc_shadow_accessed 335544455L cannot attach active shadow file

isc_invalid_sdl 335544456L invalid slice description language at offset <long>

isc_out_of_bounds 335544457L subscript out of bounds

Embarcadero Technologies 186

Error Codes and Messages

Error code Number Message

isc_invalid_dimension 335544458L column not array or invalid dimensions (expected <long>, en-
countered <long>)

isc_rec_in_limbo 335544459L record from transaction <long> is stuck in limbo

isc_shadow_missing 335544460L a file in manual shadow <long> is unavailable

isc_cant_validate 335544461L secondary server attachments cannot validate databases

isc_cant_start_journal 335544462L secondary server attachments cannot start journaling

isc_gennotdef 335544463L generator <string> is not defined

isc_cant_start_logging 335544464L secondary server attachments cannot start logging

isc_bad_segstr_type 335544465L invalid Blob type for operation

isc_foreign_key 335544466L violation of FOREIGN KEY constraint: “<string>”

isc_high_minor 335544467L minor version too high found <long> expected <long>

isc_tra_state 335544468L transaction <long> is <string>

isc_trans_invalid 335544469L transaction marked invalid by I/O error

isc_buf_invalid 335544470L cache buffer for page <long> invalid

isc_indexnotdefined 335544471L there is no index in table <string> with id <digit>

isc_login 335544472L Your user name and password are not defined. Ask your
database administrator to set up an InterBase login.

isc_invalid_bookmark 335544473L invalid bookmark handle

isc_bad_lock_level 335544474L invalid lock level <digit>

isc_relation_lock 335544475L lock on table <string> conflicts with existing lock

isc_record_lock 335544476L requested record lock conflicts with existing lock

isc_max_idx 335544477L maximum indexes per table (<digit>) exceeded

isc_jrn_enable 335544478L enable journal for database before starting online dump

isc_old_failure 335544479L online dump failure. Retry dump

isc_old_in_progress 335544480L an online dump is already in progress

isc_old_no_space 335544481L no more disk/tape space. Cannot continue online dump

isc_num_old_files 335544483L maximum number of online dump files that can be specified is
16

isc_bad_stmt_handle 335544485L invalid statement handle

isc_stream_not_defined 335544502L reference to invalid stream number

isc_shutinprog 335544506L database <string> shutdown in progress

isc_range_in_use 335544507L refresh range number <long> already in use

isc_range_not_found 335544508L refresh range number <long> not found

isc_charset_not_found 335544509L character set <string> is not defined

isc_lock_timeout 335544510L lock time-out on wait transaction

isc_prcnotdef 335544511L procedure <string> is not defined

isc_prcmismat 335544512L parameter mismatch for procedure <string>

isc_codnotdef 335544515L status code <string> unknown

isc_xcpnotdef 335544516L exception <string> not defined

isc_except 335544517L exception <digit>

Embarcadero Technologies 187

Error Codes and Messages

Error code Number Message

isc_cache_restart 335544518L restart shared cache manager

isc_bad_lock_handle 335544519L invalid lock handle

isc_shutdown 335544528L database <string> shutdown

isc_existing_priv_mod 335544529L cannot modify an existing user privilege

isc_primary_key_ref 335544530L Cannot delete PRIMARY KEY being used in FOREIGN KEY defi-
nition.

isc_primary_key_notnull 335544531L Column used in a PRIMARY / UNIQUE constraint must be NOT-
NULL.

isc_ref_cnstrnt_notfound 335544532L Name of Referential Constraint not defined in constraints table.

isc_foreign_key_notfound 335544533L Non-existent PRIMARY or UNIQUE KEY specified for FOREIGN
KEY.

isc_ref_cnstrnt_update 335544534L Cannot update constraints (RDB$REF_CONSTRAINTS).

isc_check_cnstrnt_update 335544535L Cannot update constraints (RDB$CHECK_CONSTRAINTS).

isc_check_cnstrnt_del 335544536L Cannot delete CHECK constraint entry (RDB$CHECK_CON-
STRAINTS)

isc_integ_index_seg_del 335544537L Cannot delete index segment used by an Integrity Constraint

isc_integ_index_seg_mod 335544538L Cannot update index segment used by an Integrity Constraint

isc_integ_index_del 335544539L Cannot delete index used by an Integrity Constraint

isc_integ_index_mod 335544540L Cannot modify index used by an Integrity Constraint

isc_check_trig_del 335544541L Cannot delete trigger used by a CHECK Constraint

isc_check_trig_update 335544542L Cannot update trigger used by a CHECK Constraint

isc_cnstrnt_fld_del 335544543L Cannot delete column being used in an Integrity Constraint.

isc_cnstrnt_fld_rename 335544544L Cannot rename column being used in an Integrity Constraint.

isc_rel_cnstrnt_update 335544545L Cannot update constraints (RDB$RELATION_CONSTRAINTS).

isc_constaint_on_view 335544546L Cannot define constraints on views

isc_invld_cnstrnt_type 335544547L internal isc software consistency check (invalid RDB$CON-
STRAINT_TYPE)

isc_primary_key_exists 335544548L Attempt to define a second PRIMARY KEY for the same table

isc_systrig_update 335544549L cannot modify or erase a system trigger

isc_not_rel_owner 335544550L only the owner of a table may reassign ownership

isc_grant_obj_notfound 335544551L could not find table/procedure for GRANT

isc_grant_fld_notfound 335544552L could not find column for GRANT

isc_grant_nopriv 335544553L user does not have GRANT privileges for operation

isc_nonsql_security_rel 335544554L table/procedure has non-SQL security class defined

isc_nonsql_security_fld 335544555L column has non-SQL security class defined

isc_shutfail 335544557L database shutdown unsuccessful

isc_check_constraint 335544558L Operation violates CHECK constraint <string> on view or table

isc_bad_svc_handle 335544559L invalid service handle

isc_shutwarn 335544560L database <string> shutdown in <digit> seconds

isc_wrospbver 335544561L wrong version of service parameter block

isc_bad_spb_form 335544562L unrecognized service parameter block

Embarcadero Technologies 188

Error Codes and Messages

Error code Number Message

isc_svcnotdef 335544563L service <string> is not defined

isc_no_jrn 335544564L long-term journaling not enabled

isc_transliteration_failed 335544565L Cannot transliterate character between character sets

isc_text_subtype 335544568L Implementation of text subtype <digit> not located.

isc_dsql_error 335544569L Dynamic SQL Error

isc_dsql_command_err 335544570L Invalid command

isc_dsql_constant_err 335544571L Datatype for constant unknown

isc_dsql_cursor_err 335544572L Cursor unknown

isc_dsql_datatype_err 335544573L Datatype unknown

isc_dsql_decl_err 335544574L Declared cursor already exists

isc_dsql_cursor_update_err 335544575L Cursor not updatable

isc_dsql_cursor_open_err 335544576L Attempt to reopen an open cursor

isc_dsql_cursor_close_err 335544577L Attempt to reclose a closed cursor

isc_dsql_field_err 335544578L Column unknown

isc_dsql_internal_err 335544579L Internal error

isc_dsql_relation_err 335544580L Table unknown

isc_dsql_procedure_err 335544581L Procedure unknown

isc_dsql_request_err 335544582L Request unknown

isc_dsql_sqlda_err 335544583L SQLDA missing or incorrect version, or incorrect number/type
of variables

isc_dsql_var_count_err 335544584L Count of columns not equal count of values

isc_dsql_stmt_handle 335544585L Invalid statement handle

isc_dsql_function_err 335544586L Function unknown

isc_dsql_blob_err 335544587L Column is not a Blob

isc_collation_not_found 335544588L COLLATION <string> is not defined

isc_collation_not_for_charset 335544589L COLLATION <string> is not valid for specified CHARACTER SET

isc_dsql_dup_option 335544590L Option specified more than once

isc_dsql_tran_err 335544591L Unknown transaction option

isc_dsql_invalid_array 335544592L Invalid array reference

isc_dsql_max_arr_dim_exceeded 335544593L Array declared with too many dimensions

isc_dsql_arr_range_error 335544594L Illegal array dimension range

isc_dsql_trigger_err 335544595L Trigger unknown

isc_dsql_subselect_err 335544596L Subselect illegal in this context

isc_dsql_crdb_prepare_err 335544597L Cannot prepare a CREATE DATABASE/SCHEMA statement

isc_specify_field_err 335544598L must specify column name for view select expression

isc_num_field_err 335544599L number of columns does not match select list

isc_col_name_err 335544600L Only simple column names permitted for VIEW WITH CHECK
OPTION

isc_where_err 335544601L No WHERE clause for VIEW WITH CHECK OPTION

isc_table_view_err 335544602L Only one table allowed for VIEW WITH CHECK OPTION

Embarcadero Technologies 189

Error Codes and Messages

Error code Number Message

isc_distinct_err 335544603L DISTINCT, GROUP or HAVING not permitted for VIEW WITH
CHECK OPTION

isc_key_field_count_err 335544604L FOREIGN KEY column count does not match PRIMARY KEY

isc_subquery_err 335544605L No subqueries permitted for VIEW WITH CHECK OPTION

isc_expression_eval_err 335544606L expression evaluation not supported

isc_node_err 335544607L gen.c: node not supported

isc_command_end_err 335544608L Unexpected end of command

isc_index_name 335544609L INDEX <string>

isc_exception_name 335544610L EXCEPTION <string>

isc_field_name 335544611L COLUMN <string>

isc_token_err 335544612L Token unknown

isc_union_err 335544613L union not supported

isc_dsql_construct_err 335544614L Unsupported DSQL construct

isc_field_aggregate_err 335544615L column used with aggregate

isc_field_ref_err 335544616L invalid column reference

isc_order_by_err 335544617L invalid ORDER BY clause

isc_return_mode_err 335544618L Return mode by value not allowed for this datatype

isc_extern_func_err 335544619L External functions cannot have more than 10 parameters

isc_alias_conflict_err 335544620L alias <string> conflicts with an alias in the same statement

isc_procedure_conflict_error 335544621L alias <string> conflicts with a procedure in the same statement

isc_relation_conflict_err 335544622L alias <string> conflicts with a table in the same statement

isc_dsql_domain_err 335544623L Illegal use of keyword VALUE

isc_idx_seg_err 335544624L segment count of 0 defined for index <string>

isc_node_name_err 335544625L A node name is not permitted in a secondary, shadow, cache
or log file name

isc_table_name 335544626L TABLE <string>

isc_proc_name 335544627L PROCEDURE <string>

isc_idx_create_err 335544628L cannot create index <string>

isc_dependency 335544630L there are <long> dependencies

isc_idx_key_err 335544631L too many keys defined for index <string>

isc_dsql_file_length_err 335544632L Preceding file did not specify length, so <string> must include
starting page number

isc_dsql_shadow_number_err 335544633L Shadow number must be a positive integer

isc_dsql_token_unk_err 335544634L Token unknown - line <long>, char <long>

isc_dsql_no_relation_alias 335544635L there is no alias or table named <string> at this scope level

isc_indexname 335544636L there is no index <string> for table <string>

isc_no_stream_plan 335544637L table <string> is not referenced in plan

isc_stream_twice 335544638L table <string> is referenced more than once in plan; use alias-
es to distinguish

isc_stream_not_found 335544639L table <string> is referenced in the plan but not the from list

Embarcadero Technologies 190

Error Codes and Messages

Error code Number Message

isc_collation_requires_text 335544640L Invalid use of CHARACTER SET or COLLATE

isc_dsql_domain_not_found 335544641L Specified domain or source column does not exist

isc_index_unused 335544642L index <string> cannot be used in the specified plan

isc_dsql_self_join 335544643L the table <string> is referenced twice; use aliases to differenti-
ate

isc_stream_bof 335544644L illegal operation when at beginning of stream

isc_stream_crack 335544645L the current position is on a crack

isc_db_or_file_exists 335544646L database or file exists

isc_invalid_operator 335544647L invalid comparison operator for find operation

isc_conn_lost 335544648L Connection lost to pipe server

isc_bad_checksum 335544649L bad checksum

isc_page_type_err 335544650L wrong page type

isc_ext_readonly_err 335544651L external file could not be opened for output

isc_sing_select_err 335544652L multiple rows in singleton select

isc_psw_attach 335544653L cannot attach to password database

isc_psw_start_trans 335544654L cannot start transaction for password database

isc_invalid_direction 335544655L invalid direction for find operation

isc_dsql_var_conflict 335544656L variable <string> conflicts with parameter in same procedure

isc_dsql_no_blob_array 335544657L Array/Blob/DATE / TIME/TIMESTAMP data types not allowed in
arithmetic

isc_dsql_base_table 335544658L <string> is not a valid base table of the specified view

isc_duplicate_base_table 335544659L table <string> is referenced twice in view; use an alias to dis-
tinguish

isc_view_alias 335544660L view <string> has more than one base table; use aliases to dis-
tinguish

isc_index_root_page_full 335544661L cannot add index, index root page is full.

isc_dsql_blob_type_unknown 335544662L BLOB SUB_TYPE <string> is not defined

isc_req_max_clones_exceeded 335544663L Too many concurrent executions of the same request

isc_dsql_duplicate_spec 335544664L duplicate specification of <string> - not supported

isc_unique_key_violation 335544665L violation of PRIMARY or UNIQUE KEY constraint: “<string>”

isc_srvr_version_too_old 335544666L server version too old to support all CREATE DATABASE op-
tions

isc_drdb_completed_with_errs 335544667L drop database completed with errors

isc_dsql_procedure_use_err 335544668L procedure <string> does not return any values

isc_dsql_count_mismatch 335544669L count of column list and variable list do not match

isc_blob_idx_err 335544670L attempt to index Blob column in index <string>

isc_array_idx_err 335544671L attempt to index array column in index <string>

isc_key_field_err 335544672L too few key columns found for index <string> (incorrect col-
umn name?)

isc_no_delete 335544673L cannot delete

isc_del_last_field 335544674L last column in a table cannot be deleted

Embarcadero Technologies 191

Error Codes and Messages

Error code Number Message

isc_sort_err 335544675L sort error

isc_sort_mem_err 335544676L sort error: not enough memory

isc_version_err 335544677L too many versions

isc_inval_key_posn 335544678L invalid key position

isc_no_segments_err 335544679L segments not allowed in expression index <string>

isc_crrp_data_err 335544680L sort error: corruption in data structure

isc_rec_size_err 335544681L new record size of <long> bytes is too big

isc_dsql_field_ref 335544682L Inappropriate self-reference of column

isc_req_depth_exceeded 335544683L request depth exceeded. (Recursive definition?)

isc_no_field_access 335544684L cannot access column <string> in view <string>

isc_no_dbkey 335544685L dbkey not available for multi-table views

isc_dsql_open_cursor_request 335544688L The prepare statement identifies a prepare statement with an
open cursor

isc_ib_error 335544689L InterBase error

isc_cache_redef 335544690L Cache redefined

isc_cache_too_small 335544691L Cache length too small

isc_precision_err 335544697L Precision should be greater than 0

isc_scale_nogt 335544698L Scale cannot be greater than precision

isc_expec_short 335544699L Short integer expected

isc_expec_long 335544700L Long integer expected

isc_expec_ushort 335544701L Unsigned short integer expected

isc_like_escape_invalid 335544702L Invalid ESCAPE sequence

isc_svcnoexe 335544703L service <string> does not have an associated executable

isc_net_lookup_err 335544704L Network lookup failure for host “<string>”

isc_service_unknown 335544705L Undefined service <string>/<string>

isc_host_unknown 335544706L Host unknown

isc_grant_nopriv_on_base 335544707L user does not have GRANT privileges on base table/view for
operation

isc_dyn_fld_ambiguous 335544708L Ambiguous column reference.

isc_dsql_agg_ref_err 335544709L Invalid aggregate reference

isc_complex_view 335544710L navigational stream <long> references a view with more than
one base table.

isc_unprepared_stmt 335544711L attempt to execute an unprepared dynamic SQL statement

isc_expec_positive 335544712L Positive value expected.

isc_dsql_sqlda_value_err 335544713L Incorrect values within SQLDA structure

isc_invalid_array_id 335544714L invalid Blob id

isc_ext_file_uns_op 335544715L operation not supported for EXTERNAL FILE table <string>

isc_svc_in_use 335544716L service is currently busy: <<string>>

isc_err_stack_limit 335544717L stack size insufficient to execute current request

isc_invalid_key 335544718L invalid key for find operation

Embarcadero Technologies 192

Error Codes and Messages

Error code Number Message

isc_net_init_error 335544719L error initializing the network software

isc_loadlib_failure 335544720L unable to load required library <<string>>

isc_network_error 335544721L unable to complete network request to host “<<string>>”

isc_net_connect_err 335544722L failed to establish a connection

isc_net_connect_listen_err 335544723L error while listening for an incoming connection

isc_net_event_connect_err 335544724L failed to establish a secondary connection for event processing

isc_net_event_listen_err 335544725L error while listening for an incoming event connection request

isc_net_read_err 335544726L error reading data from the connection

isc_net_write_err 335544727L error writing data to the connection

isc_integ_index_deactivate 335544728L cannot deactivate index used by an Integrity Constraint

isc_integ_deactivate_primary 335544729L cannot deactivate primary index

isc_unsupported_network_drive 335544732L access to databases on file servers is not supported

isc_io_create_err 335544733L error while trying to create file

isc_io_open_err 335544734L error while trying to open file

isc_io_close_err 335544735L error while trying to close file

isc_io_read_err 335544736L error while trying to read from file

isc_io_write_err 335544737L error while trying to write to file

isc_io_delete_err 335544738L error while trying to delete file

isc_io_access_err 335544739L error while trying to access file

isc_udf_exception 335544740L exception <<integer>> detected in blob filter or user defined
function

isc_lost_db_connection 335544741L connection lost to database

isc_no_write_user_priv 335544742L user cannot write to RDB$USER_PRIVILEGES

isc_token_too_long 335544743L token size exceeds limit

isc_max_att_exceeded 335544744L maximum user count exceeded; contact your database admin-
istrator

isc_login_same_as_role_name 335544745L your login <<string>> is same as one of the SQL role names;
ask your database administrator to set up a valid InterBase lo-
gin

isc_reftable_requires_pk 335544746L “REFERENCES table” without “(column)”; requires PRIMARY KEY
on referenced table

isc_usrname_too_long 335544747L the username entered is too long. Maximum length is 31 bytes.

isc_password_too_long 335544748L the password specified is too long. Maximum length is 8 bytes.

isc_usrname_required 335544749L a username is required for this operation.

isc_password_required 335544750L a password is required for this operation

isc_bad_protocol 335544751L the network protocol specified is invalid

isc_dup_usrname_found 335544752L a duplicate user name was found in the security database

isc_usrname_not_found 335544753L the user name specified was not found in the security database

isc_error_adding_sec_record 335544754L error while attempting to add the user

isc_error_modifying_sec_record 335544755L error while attempting to modify the user record

isc_error_deleting_sec_record 335544756L error while attempting to delete the user record

Embarcadero Technologies 193

Error Codes and Messages

Error code Number Message

eisc_rror_updating_sec_db 335544757L error while updating the security database

isc_sort_rec_size_err 335544758L sort record size is too big

isc_bad_default_value 335544759L cannot assign a NULL default value to a column with a NOT-
NULL constraint

isc_invalid_clause 335544760L the specified user-entered string is not valid

isc_too_many_handles 335544761L too many open handles to database

isc_optimizer_blk_exc 335544762L optimizer implementation limits are exceeded; for example,
only 256 conjuncts (AND and OR) are allowed

Embarcadero Technologies 194

System Tables, Temporary Tables, and Views

System Tables, Temporary Tables, and Views

This chapter describes the InterBase system tables, SQL system views, and Change Views.

IMPORTANT

Only InterBase system object names can begin with the characters “RDB$” or “TMP$”. No other object name in InterBase
can begin with these character sequences, including tables, views, triggers, stored procedures, indexes, generators,
domains, and roles.

1. Overview of System Tables, Temporary Tables, and Views
The InterBase system tables contain and track metadata. InterBase automatically creates system tables
when a database is created. Each time a user creates or modifies metadata through data definition, the
SQL data definition utility automatically updates the system tables.

The temporary system tables allow access to information about the database and its connections and a
degree of control over transactions. By default, all users can select from permanent system tables, but only
the database owner and the SYSDBA user can write to them. To gain access to temporary system tables,
explicit access has to be granted to them by the database owner or the SYSDBA. These users can grant
write access to others if they wish. See the Operations Guide for details about system table security.

SQL system views provide information about existing integrity constraints for a database. You must create
system views yourself by creating and running an isql script after database definition.

To see system tables, use this isql command:

SHOW SYSTEM TABLES;

The following isql command lists system views along with database views:

SHOW VIEWS;

2. System Tables
The following table lists all InterBase system tables. The names of system tables and the names of the
columns of system tables start with RDB$.

System table Description

RDB$CHARACTER SETS Describes the valid character sets available in InterBase.

RDB$JOURNAL ARCHIVES Stores information about the repository of database and journal archive files.

RDB$CHECK CONSTRAINTS Stores database integrity constraint information for CHECK constraints. In addition, the
table stores information for constraints implemented with NOTNULL.

RDB$LOG_FILES RDB$LOG_FILES is deprecated.

RDB$COLLATIONS Records the valid collating sequences available for use in InterBase.

RDB$PAGES Keeps track of each page allocated to the database.

RDB$DATABASE Defines a database.

Embarcadero Technologies 195

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

System Tables, Temporary Tables, and Views

System table Description

RDB$PROCEDURE PARAMETERS Stores information about each parameter for each of the procedures of a database.

RDB$DEPENDENCIES Keeps track of the tables and columns upon which other system objects depend. These
objects include views, triggers, and computed columns.

RDB$PROCEDURES Stores information about a stored procedures of a database.

RDB$ENCRYPTIONS Describes the characteristics of encryptions stored in the database.

RDB$REF CONSTRAINTS Stores information about referential integrity constraints.

RDB$EXCEPTIONS Describes error conditions related to stored procedures, including user-defined excep-
tions.

RDB$RELATION CONSTRAINTS Stores information about integrity constraints for tables.

RDB$FIELD DIMENSIONS Describes each dimension of an array column.

RDB$RELATION FIELDS For database tables, lists columns and describes column characteristics for domains.

RDB$FIELDS Defines the characteristics of a column.

RDB$RELATIONS Defines some of the characteristics of tables and views.

RDB$FILES Lists the secondary files and shadow files for a database.

RDB$ROLES Lists roles that have been defined in the database and the owner of each role.

RDB$FILTERS Tracks information about a blob filter.

RDB$SECURITY CLASSES Defines access control lists and associates them with databases, tables, views, and
columns in tables and views.

RDB$FORMATS Keeps track of the format versions of the columns in a table.

RDB$TRANSACTIONS Keeps track of all multi-database transactions.

RDB$FUNCTION ARGUMENTS Defines the attributes of a function argument.

RDB$TRIGGER MESSAGES Defines a trigger message and associates the message with a particular trigger.

RDB$FUNCTIONS Defines a user-defined function.

RDB$TRIGGERS Defines triggers.

RDB$GENERATORS Stores information about generators, which provide the ability to generate a unique
identifier for a table.

RDB$TYPES Records enumerated data types and alias names for InterBase character sets and colla-
tion orders.

RDB$INDEX SEGMENTS Specifies the columns that comprise an index for a table.

RDB$USER PRIVILEGES Keeps track of the privileges assigned to a user through a SQL GRANT statement.

RDB$INDICES Defines the index structures that allow InterBase to locate rows in the database more
quickly.

RDB$USERS Only permits users in that system table access to the database.

RDB$VIEW RELATIONS Not used by SQL objects.

RDB$SUBSCRIBERS Stores subscribers information.

RDB$SUBSCRIPTIONS Stores subscription information.

Embarcadero Technologies 196

RDB-FUNCTION_ARGUMENTS

System Tables, Temporary Tables, and Views

2.1. RDB$CHARACTER SETS
RDB$CHARACTER_SETS describes the valid character sets available in InterBase.

Column name Data type Length Description

RDB$CHARACTER_SET_NAME CHAR 67 Name of a character set that InterBase recognizes.

RDB$FORM_OF_USE CHAR 67 Reserved for internal use. Subtype 2.

RDB$NUMBER_OF_CHARACTERS INTEGER Number of characters in a particular character set;
for example, the set of Japanese characters.

RDB$DEFAULT_COLLATE_NAME CHAR 67 Subtype 2: default collation sequence for the char-
acter set.

RDB$CHARACTER_SET_ID SMALLINT A unique identification for the character set.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the character set is:

• User-defined (value of 0 or NULL).

• System-defined (value of 1).

RDB$DESCRIPTION BLOB Subtype text: Contains a user-written description
of the character set.

RDB$FUNCTION_NAME CHAR 67 Reserved for internal use; subtype 2.

RDB$BYTES_PER_CHARACTER SMALLINT Size of character in bytes.

Embarcadero Technologies 197

System Tables, Temporary Tables, and Views

2.2. RDB$JOURNAL ARCHIVES
RDB$JOURNAL_ARCHIVES stores information about the repository of database and journal archive files.

RDB$JOURNAL_ARCHIVES
Column name Data type Length Description

RDB$ARCHIVE_ NAME VARCHAR 1024 The name of the archived item.
RDB$ARCHIVE_ TYPE CHAR 1 The type of the archived item. 'D' indicates

a database dump. 'S' indicates a secondary
database file of a database dump. 'J' indicates
a journal file.

RDB$ARCHIVE_ LENGTH INT64 8 Length of the archived item as stored in bytes.
RDB$ARCHIVE_ SEQUENCE INTEGER 4 Sequence number of archive item.
RDB$ARCHIVE_ TIMESTAMP TIMESTAMP 8 Timestamp when item was stored in the

archive.
RDB$DEPENDED_ ON_SEQUENCE INTEGER 4 Sequence of archived item that this item de-

pends on. For 'S' archive types, it would be the
sequence number of the 'D' primary database
dump file. For 'D' archive types, it is the se-
quence number of the starting journal file for
recovering from the archive.

RDB$DEPENDED_ ON_TIMESTAMP TIMESTAMP 8 As above, but the archive timestamp for the
depended on archive item.

Embarcadero Technologies 198

System Tables, Temporary Tables, and Views

2.3. RDB$CHECK CONSTRAINTS
RDB$CHECK_CONSTRAINTS stores database integrity constraint information for CHECK constraints. In ad-
dition, the table stores information for constraints implemented with NOT NULL.

Column name Data type Length Description

RDB$CONSTRAINT_NAME CHAR 67 Subtype 2: Name of a CHECK or NOT NULL con-
straint

RDB$TRIGGER_NAME CHAR 67 Subtype 2: Name of the trigger that enforces
the CHECK constraint; for a NOT NULL con-
straint, name of the source column in RDB$RELA-
TION_FIELDS

Embarcadero Technologies 199

System Tables, Temporary Tables, and Views

2.4. RDB$COLLATIONS
RDB$COLLATIONS records the valid collating sequences available for use in InterBase.

Column name Data type Length Description

RDB$COLLATION_NAME CHAR 67 Name of a valid collation sequence in InterBase.

RDB$COLLATION_ID SMALLINT Unique identifier for the collation sequence.

RDB$CHARACTER_SET_ID SMALLINT Identifier of the underlying character set of this
collation sequence.

• Required before collation can proceed.

• Determines which character set is in
use Corresponds to the RDB$CHARAC-
TER_SET_ID column in the RDB$CHARAC-
TER_SETS table.

RDB$COLLATION_ATTRIBUTES SMALLINT Reserved for internal use.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the generator is:

• User-defined (value of 0).

• System-defined (value greater than 0).

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description
of the collation sequence.

RDB$FUNCTION_NAME CHAR 67 Reserved for internal use.

Embarcadero Technologies 200

System Tables, Temporary Tables, and Views

2.5. RDB$PAGES
RDB$PAGES keeps track of each page allocated to the database.

IMPORTANT

Modifying this table in any way corrupts a database.

RDB$PAGES

Column name Data type Length Description

RDB$PAGE_NUMBER INTEGER The physically allocated page number

RDB$RELATION_ID SMALLINT Identifier number of the table for which this page is
allocated

RDB$PAGE_SEQUENCE INTEGER The sequence number of this page in the table to
other pages allocated for the previously identified
table

RDB$PAGE_TYPE SMALLINT Describes the type of page; this information is for
system use only

Embarcadero Technologies 201

System Tables, Temporary Tables, and Views

2.6. RDB$DATABASE
RDB$DATABASE defines a database.

RDB$DATABASE

Column name Data type Length Description

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description
of the database; when a comment is included in
a CREATE, ALTER SCHEMA or ALTER DATABASE
statement, isql writes to this column.

RDB$RELATION_ID SMALLINT For internal use by InterBase

RDB$SECURITY_CLASS CHAR 67 Subtype 2: Security class defined in the RDB$SE-
CURITY_CLASSES table; the access control limits
described in the named security class apply to all
database usage.

RDB$CHARACTER_SET_NAME CHAR 67 Subtype 2; Name of character set

RDB$PAGE_CACHE INTEGER Sets database page buffer cache limit. Also, tries
to expand cache to that limit.

RDB$PROCEDURE_CACHE INTEGER

RDB$TRIGGER_CACHE INTEGER

RDB$RELATION_CACHE SMALLINT

RDB$FLUSH_INTERVAL INTEGER Enables database flush. The interval <number> is
interpreted in units of seconds.

RDB$LINGER_INTERVAL INTEGER Allows a database to remain in memory after the
last user detaches. Interval is seconds.

RDB$RECLAIM_INTERVAL INTEGER Reclaim interval is in seconds. Determines how
often the garbage collector thread will run to re-
lease memory from unused procedures, triggers,
and internal system queries back to InterBase
memory heap.

RDB$SWEEP_INTERVAL INTEGER

RDB$GROUP_COMMIT CHAR(1)

RDB$PASSWORD_DIGEST VARCHAR(16)

Embarcadero Technologies 202

System Tables, Temporary Tables, and Views

2.7. RDB$PROCEDURE PARAMETERS
RDB$PROCEDURE_PARAMETERS stores information about each parameter for each of a database’s pro-
cedures.

RDB$PROCEDURE_PARAMETERS

Column name Data type Length Description

RDB$PARAMETER_NAME CHAR 67 Parameter name

RDB$PROCEDURE_NAME CHAR 67 Name of the procedure in which the parameter is
used

RDB$PARAMETER_NUMBER SMALLINT Parameter sequence number

RDB$PARAMETER_TYPE SMALLINT Parameter data type

Values are:

• 0 = input

• 1 = output

RDB$FIELD_SOURCE CHAR 67 Global column name

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the pa-
rameter

RDB$SYSTEM_FLAG SMALLINT Indicates whether the parameter is:

• User-defined (value of 0)

• System-defined (value greater than 0)

Embarcadero Technologies 203

System Tables, Temporary Tables, and Views

2.8. RDB$DEPENDENCIES
RDB$DEPENDENCIES keeps track of the tables and columns upon which other system objects depend.
These objects include views, triggers, and computed columns. InterBase uses this table to ensure that a
column or table cannot be deleted if it is used by any other object.

RDB$DEPENDENCIES

Column name Data type Length Description

RDB$DEPENDENT_NAME CHAR 67 Subtype 2; names the object this table tracks: a
view, trigger, or computed column.

RDB$DEPENDED_ON_NAME CHAR 67 Subtype 2; names the table referenced by the ob-
ject named above.

RDB$FIELD_NAME CHAR 67 Subtype 2; names the column referenced by the
object named above.

RDB$DEPENDENT_TYPE SMALLINT Describes the object type of the object referenced
in the RDB$DEPENDENT_NAME column; type
codes (RDB$TYPES):

• 0 - table

• 1 - view

• 2 - trigger

• 3 - computed_field

• 4 - validation

• 5 - procedure

• 7 - exception

• 8 - user

• 9 - field

• 10 - index

All other values are reserved for future use.

RDB$DEPENDED_ON_TYPE SMALLINT Describes the object type of the object referenced
in the RDB$DEPENDED_ON_NAME column; type
codes (RDB$TYPES):

• 0 - table

• 1 - view

• 2 - trigger

• 3 - computed_field

• 4 - validation

• 5 - procedure

• 7 - exception

• 8 - user

• 9 - field

• 10 - index

• 11 - generator

• 14 - External Functions

• 15 - Encryption

Embarcadero Technologies 204

System Tables, Temporary Tables, and Views

RDB$DEPENDENCIES

Column name Data type Length Description
All other values are reserved for future use.

Embarcadero Technologies 205

System Tables, Temporary Tables, and Views

2.9. RDB$PROCEDURES
RDB$PROCEDURES stores information about a database’s stored procedures.

RDB$PROCEDURES

Column name Data type Length Description

RDB$PROCEDURE_NAME CHAR 67 Procedure name

RDB$PROCEDURE_ID SMALLINT Procedure number

RDB$PROCEDURE_INPUTS SMALLINT Number of input parameters

RDB$PROCEDURE_OUTPUTS SMALLINT Number of output parameters

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the pro-
cedure

RDB$PROCEDURE_SOURCE BLOB Subtype Text: Source code for the procedure

RDB$PROCEDURE_BLR BLOB Subtype BLR: BLR (Binary Language Representa-
tion) of the procedure source

RDB$SECURITY_CLASS CHAR 67 Security class of the procedure

RDB$OWNER_NAME CHAR 67 User who created the procedure (the owner for
SQL security purposes)

RDB$RUNTIME BLOB Subtype Summary: Describes procedure metadata;
used for performance enhancement

RDB$SYSTEM_FLAG SMALLINT Indicates whether the procedure is:

• User-defined (value of 0)

• System-defined (value greater than 0)

Embarcadero Technologies 206

System Tables, Temporary Tables, and Views

2.10. RDB$ENCRYPTIONS
RDB$ENCRYPTIONS describes the characteristics of encryptions stored in the database.

RDB$ENCRYPTIONS

Column name Data type Length Description

RDB$ENCRYPTION_NAME CHAR 67 A unique name for the encryption.

RDB$ENCRYPTION_TYPE CHAR 16 BASE: Defines a base encryption that has its own en-
cryption value.

COPY: Copy of a BASE encryption that shares the same
encryption value.

BACKUP: Defines an encryption used to encrypt
database backup files.

RECOVERY: Defines an encryption that can be used to
recover a password-protected encryption when the
password has been lost or forgotten. This encryption
cannot be used to perform database encryption

RDB$ENCRYPTION_CIPHER CHAR 16 Encryption cipher algorithm. This is either AES (Ad-
vanced Encryption Standard) or DES (Data Encryption
Standard).

RDB$ENCRYPTION_ LENGTH SMALLINT Encryption key length (bits) must be one of these val-
ues for AES: 128, 192 or 256. The default is 128. For
DES the default is 56.

RDB$ENCRYPTION_INIT_ VECTOR CHAR 6 RANDOM: specifies that random bytes should be used
with cipher block chaining (CBC) encryption mode.

<null>: default, specifies electronic cookbook (ECB)
encryption mode used.

RDB$ENCRYPTION_PAD CHAR 6 RANDOM: pads value to be encrypted with random
bytes.

RDB$ENCRYPTION_VALUE CHAR 68 Encrypted value of the actual encryption key value.

RDB$ENCRYPTION_SALT CHAR 68 Hash to verify decrypted value of actual encryption
key value is correct.

RDB$ENCRYPTION_ TIMESTAMP TIMESTAMP Timestamp when encryption key value was created or
refreshed.

RDB$ENCRYPTION_ID SMALLINT Unique identifier for Encryption key.

RDB$SECURITY_CLASS CHAR 67 Names a security class stored in RDB$SECURI-
TY_CLASSES.

RDB$OWNER_NAME CHAR 67 Owner of the encryption

RDB$PASSWORD2 VARCHAR 68 Password hash used to allow access to the encryption.

RDB$SYSTEM_FLAG SMALLINT 0: User-defined 1: System-defined.

RDB$FLAGS SMALLINT 2 1: random initialization vector defined for cipher block
chaining encryption mode.

2: random padding of plaintext

4: encryption is marked for deletion.

32: indicates one or more subscriptions on the relation

Embarcadero Technologies 207

System Tables, Temporary Tables, and Views

RDB$ENCRYPTIONS

Column name Data type Length Description

RDB$DESCRIPTION BLOB Subtype Text: User-written description of encryption.

Embarcadero Technologies 208

System Tables, Temporary Tables, and Views

2.11. RDB$REF CONSTRAINTS
RDB$REF_CONSTRAINTS stores referential integrity constraint information.

RDB$REF_CONSTRAINTS

Column name Data type Length Description

RDB$3CONSTRAINT_NAME CHAR 67 Name of a referential constraint

RDB$CONST_NAME_UQ CHAR 67 Name of a referenced PRIMARY KEY or UNIQUE constraint

RDB$MATCH_OPTION CHAR 7 Reserved for later use; currently defaults to FULL

RDB$UPDATE_RULE CHAR 11 Specifies the type of action on the foreign key when the
primary key is updated; values are RESTRICT, NO ACTION,
CASCADE, SET NULL, or SET DEFAULT

RDB$DELETE_RULE CHAR 11 Specifies the type of action on the foreign key when the
primary key is DELETED; values are RESTRICT, NO ACTION,
CASCADE, SET NULL, or SET DEFAULT

Embarcadero Technologies 209

System Tables, Temporary Tables, and Views

2.12. RDB$EXCEPTIONS
RDB$EXCEPTIONS describes error conditions related to stored procedures, including user-defined excep-
tions.

RDB$EXCEPTIONS

Column name Data type Length Description

RDB$EXCEPTION_NAME CHAR 67 Subtype 2; exception name

RDB$EXCEPTION_NUMBER INTEGER Number for the exception

RDB$MESSAGE VARCHAR 78 Text of exception message

RDB$DESCRIPTION BLOB Subtype Text: Text description of the exception

RDB$SYSTEM_FLAG SMALLINT Displays null

Embarcadero Technologies 210

System Tables, Temporary Tables, and Views

2.13. RDB$RELATION CONSTRAINTS
RDB$RELATION_CONSTRAINTS stores information about integrity constraints for tables.

RDB$RELATION_CONSTRAINTS

Column name Data type Length Description

RDB$CONSTRAINT_NAME CHAR 67 Name of a table constraint

RDB$CONSTRAINT_TYPE CHAR 11 Type of table constraint

Constraint types are:

• PRIMARY KEY

• UNIQUE

• FOREIGN KEY

• CHECK

• NOTNULL

RDB$RELATION_NAME CHAR 67 Name of the table for which the constraint is defined

RDB$DEFERRABLE CHAR 3 Reserved for later use; currently defaults to No

RDB$INITIALLY_DEFERRED CHAR 3 Reserved for later use; currently defaults to No

RDB$INDEX_NAME CHAR 67 Name of the index used by UNIQUE, PRIMARY KEY, or FOR-
EIGN KEY constraints

Embarcadero Technologies 211

System Tables, Temporary Tables, and Views

2.14. RDB$FIELD DIMENSIONS
RDB$FIELD_DIMENSIONS describes each dimension of an array column.

RDB$FIELD_DIMENSIONS

Column name Data type Length Description

RDB$FIELD_NAME CHAR 67 Subtype 2; names the array column described by this table;
the column name must exist in the RDB$FIELD_NAME col-
umn of RDB$FIELDS

RDB$DIMENSION SMALLINT Identifies one dimension of the ARRAY column; the first di-
mension is identified by the integer 0

RDB$LOWER_BOUND INTEGER Indicates the lower bound of the previously specified dimen-
sion

RDB$UPPER_BOUND INTEGER Indicates the upper bound of the previously specified di-
mension

Embarcadero Technologies 212

System Tables, Temporary Tables, and Views

2.15. RDB$RELATION FIELDS
For database tables, RDB$RELATION_FIELDS lists columns and describes column characteristics for do-
mains.

SQL columns are defined in RDB$RELATION_FIELDS. The column name is correlated in the RDB
$FIELD_SOURCE column to an underlying entry in RDB$FIELDS that contains a system name (“SQL$<n>”).
This entry includes information such as column type and length. For both domains and simple columns,
this table may contain default and nullability information.

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67 Column name defined by the user.

RDB$RELATION_NAME CHAR 67 Table name defined by the user.

RDB$FIELD_SOURCE CHAR 67 Internal Column name that matches up with RDB
$FIELDS.RDB$FIELD_NAME.

RDB$QUERY_NAME CHAR 67 Alternate column name for use in isql; supersedes the
value in RDB$FIELDS.

RDB$BASE_FIELD CHAR 67 Views only: The name of the column from RDB$FIELDS
in a table or view that is the base for a view column be-
ing defined; for the base column:

• RDB$BASE_FIELD provides the column name.

• RDB$VIEW_CONTEXT, a column in this table, pro-
vides the source table name.

RDB$EDIT_STRING VARCHAR 125 Not used in SQL.

RDB$FIELD_POSITION SMALLINT The position of the column in relation to other
columns:

• isql obtains the ordinal position for displaying col-
umn values when printing rows from this column.

• gpre uses the column order for SELECT and IN-
SERT statements.

If two or more columns in the same table have the
same value for this column, those columns appear in
random order.

RDB$QUERY_HEADER BLOB Not used in SQL.

RDB$UPDATE_FLAG SMALLINT Not used by InterBase; included for compatibility with
other DSRI-based systems.

RDB$FIELD_ID SMALLINT Identifier for use in BLR (Binary Language Representa-
tion) to name the column.

• Because this identifier changes during backup and
restoration of the database, try to use it in tran-
sient requests only.

• Do not modify this column.

RDB$VIEW_CONTEXT SMALLINT Alias used to qualify view columns by specifying the ta-
ble location of the base column; it must have the same
value as the alias used in the view BLR (Binary Lan-
guage Representation) for this context stream.

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the column
being defined.

Embarcadero Technologies 213

System Tables, Temporary Tables, and Views

Column name Data Type Length Description

RDB$DEFAULT_VALUE BLOB Subtype BLR: BLR (Binary Language Representation) for
default clause.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the column is:

• User-defined (value of 0)

• System-defined (value greater than 0)

RDB$SECURITY_CLASS CHAR 67 Names a security class defined in the RDB$SECURI-
TY_CLASSES table; the access restrictions defined by
this security class apply to all users of this column.

RDB$COMPLEX_NAME CHAR 67 Reserved for future use.

RDB$NULL_FLAG SMALLINT Indicates whether the column may contain NULL val-
ues.

RDB$DEFAULT_SOURCE BLOB Subtype Text: SQL source to define defaults.

RDB$COLLATION_ID SMALLINT Unique identifier for the collation sequence.

RDB$ENCRYPTION_ID SMALLINT Identifies encryption ID from RDB$ENCRYPTIONS used
to encrypt this column.

RDB$DECRYPT_DEFAULT_VALUE BLOB Subtype BLR: BLR (Binary Language Representation) for
decrypt default clause.

RDB$DECRYPT_DEFAULT_SOURCE BLOB Subtype Text: SQL to define decrypt default.

RDB$FLAGS SMALLINT 2 1 = One or more subscriptions on the field

Embarcadero Technologies 214

System Tables, Temporary Tables, and Views

2.16. RDB$FIELDS
RDB$FIELDS defines the characteristics of a column. Each domain or column has a corresponding row
in RDB$FIELDS. Columns are added to tables by means of an entry in the RDB$RELATION_FIELDS table,
which describes local characteristics.

For domains, RDB$FIELDS includes domain name, null status, and default values. SQL columns are defined
in RDB$RELATION_FIELDS. For both domains and simple columns, RDB$RELATION_FIELDS can contain
default and null status information.

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67 Unique name of a domain or system-assigned name for
a column, starting with SQL<nnn>; the actual column
names are stored in the RDB$FIELD_SOURCE column of
RDB$RELATION_FIELDS.

RDB$QUERY_NAME CHAR 67 Not used for SQL objects.

RDB$VALIDATION_BLR BLOB Not used for SQL objects.

RDB$VALIDATION_SOURCE BLOB Not used for SQL objects.

RDB$COMPUTED_BLR BLOB Subtype BLR; for computed columns, contains the BLR
(Binary Language Representation) of the expression the
database evaluates at the time of execution.

RDB$COMPUTED_SOURCE BLOB Subtype Text: For computed columns, contains the origi-
nal CHAR source expression for the column.

RDB$DEFAULT_VALUE BLOB Stores default rule; subtype BLR.

RDB$DEFAULT_SOURCE BLOB Subtype Text; SQL description of a default value.

RDB$FIELD_LENGTH SMALLINT Length in bytes of the field this row defines:

For CHAR, VARCHAR, and NCHAR data types, this is the
maximum length of the field, and InterBase uses this
length when creating indexes on columns.

For non-CHAR related data types, the column lengths
are:

• D_FLOAT - 8

• DOUBLE - 8

• DATE - 4

• BLOB - 8

• TIME - 4

• INT64 - 8

• SHORT - 2

• LONG - 4

• QUAD - 8

• FLOAT - 4

• TIMESTAMP - 8

• BOOLEAN - 2

RDB$FIELD_PRECISION SMALLINT Stores the precision for numeric and decimal types.

RDB$FIELD_SCALE SMALLINT Stores negative scale for numeric and decimal types.

Embarcadero Technologies 215

System Tables, Temporary Tables, and Views

Column name Data Type Length Description

RDB$FIELD_TYPE SMALLINT Specifies the data type of the column being defined;
changing the value of this column automatically changes
the data type for all columns based on the column being
defined.

Valid values are:

• BLOB - 261

• BLOB_ID - 45

• BOOLEAN - 17

• CHAR - 14

• CSTRING - 40

• D_FLOAT - 11

• DOUBLE - 27

• FLOAT - 10

• INT64 - 16

• INTEGER - 8

• QUAD - 9

• SMALLINT - 7

• DATE - 12
(dialect 3 DATE)

• TIME - 13

• TIMESTAMP - 35

• VARCHAR - 37

Restrictions:

• The value of this column cannot be changed to or
from BLOB.

• Non-numeric data causes a conversion error in a
column changed from CHAR to numeric.

Changing data from CHAR to numeric and back again
adversely affects index performance; for best results,
delete and re-create indexes when making this type of
change.

RDB$FIELD_SUB_TYPE SMALLINT Used to distinguish types of Blobs, CHAR values, and in-
tegers.

1 If RDB$FIELD_TYPE is 261 (Blob), predefined subtypes
can be:

• 0 - unspecified

• 1 - text

• 2 - BLR (Binary Language Representation)

• 3 - access control list

• 4 - reserved for future use

• 5 - encoded description of a table’s current metada-
ta

Embarcadero Technologies 216

System Tables, Temporary Tables, and Views

Column name Data Type Length Description

• 6 - description of multi-database transaction that
finished irregularly

2 If RDB$FIELD_TYPE is 14 (CHAR), columns can be:

• 0 - type is unspecified

• 1 - fixed BINARY data

Corresponds to the RDB$FIELD_SUB_TYPE column in the
RDB$COLLATIONS table.

3 If RDB$FIELD_TYPE is 7 (SMALLINT), 8 (INTEGER), or
16 (INT64), the original declaration was:

• 0 or NULL- RDB$FIELD_TYPE

• 1 - NUMERIC

• 2 - DECIMAL

RDB$MISSING_VALUE BLOB Not used for SQL objects.

RDB$MISSING_SOURCE BLOB Not used for SQL objects.

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description of the
column being defined.

RDB$SYSTEM_FLAG SMALLINT For system tables

RDB$QUERY_HEADER BLOB Not used for SQL objects.

RDB$SEGMENT_LENGTH SMALLINT Used for Blob columns only; a non-binding suggestion
for the length of Blob buffers.

RDB$EDIT_STRING VARCHAR 125 Not used for SQL objects.

RDB$EXTERNAL_LENGTH SMALLINT Length of the column as it exists in an external table; if
the column is not in an external table, this value is 0.

RDB$EXTERNAL_SCALE SMALLINT Scale factor for an external column of an integer data
type; the scale factor is the power of 10 by which the in-
teger is multiplied.

RDB$EXTERNAL_TYPE SMALLINT Indicates the data type of the column as it exists in an
external table; valid values are:

• BLOB - 261

• BLOB_ID - 45

• BOOLEAN - 17

• CHAR - 14

• CSTRING - 40

• D_FLOAT - 11

• DOUBLE - 27

• FLOAT - 10

• INT64 - 16

• INTEGER - 8

• QUAD - 9

• SMALLINT - 7

Embarcadero Technologies 217

System Tables, Temporary Tables, and Views

Column name Data Type Length Description

• DATE - 12
(dialect 3 DATE)

• TIME - 13

• TIMESTAMP - 35

• VARCHAR - 37

RDB$DIMENSIONS SMALLINT For an ARRAY data type, specifies the number of dimen-
sions in the array; for a non-array column, the value is 0.

RDB$NULL_FLAG SMALLINT Indicates whether a column can contain a NULL value.

Valid values are:

• Empty: Can contain NULL values.

• 1: Cannot contain NULL values.

RDB$CHARACTER_LENGTH SMALLINT Length in characters of the field this row defines:

For CHAR, VARCHAR, and NCHAR data types, this is the
quotient of RDB$FIELD_LENGTH divided by the number
of bytes per character in the character set of the field.
For other data types, this length value is not meaningful,
and should be NULL.

RDB$COLLATION_ID SMALLINT Unique identifier for the collation sequence.

RDB$CHARACTER_SET_ID SMALLINT ID indicating character set for the character or Blob
columns; joins to the CHARACTER_SET_ID column of the
RDB$CHARACTER_SETS system table.

RDB$SUBSCRIBE_FLAG SMALLINT 2 Indicates one or more subscriptions of the field.

2.17. RDB$RELATIONS
RDB$RELATIONS defines some of the characteristics of tables and views. Other characteristics, such as the
columns included in the table and a description of each column, are stored in the RDB$RELATION_FIELDS
table.

RDB$RELATIONS

Column name Data Type Length Description

RDB$VIEW_BLR BLOB Subtype BLR: For a view, contains the BLR (Binary Lan-
guage Representation) of the query InterBase evaluates
at the time of execution.

RDB$VIEW_SOURCE BLOB Subtype Text: For a view, contains the original source
query for the view definition.

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description of the
table being defined.

RDB$RELATION_ID SMALLINT Contains the internal identification number used in
BLR (Binary Language Representation) requests; do not
modify this column.

RDB$SYSTEM_FLAG SMALLINT Indicates the contents of a table, either:

• User-data (value of 0)

• System information (value greater than 0)

Embarcadero Technologies 218

System Tables, Temporary Tables, and Views

RDB$RELATIONS

Column name Data Type Length Description
Do not set this column to 1 when creating tables.

RDB$DBKEY_LENGTH SMALLINT Length of the database key.

Values are:

• For tables: 8

• For views: 8 times the number of tables referenced
in the view definition.

Do not modify the value of this column.

RDB$FORMAT SMALLINT For InterBase internal use only; do not modify.

RDB$FIELD_ID SMALLINT The number of columns in the table; this column is
maintained by InterBase: do not modify the value of
this column.

RDB$RELATION_NAME CHAR 67 The unique name of the table defined by this row

RDB$SECURITY_CLASS CHAR 67 Security class defined in the RDB$SECURITY_CLASSES
table; access controls defined in the security class apply
to all uses of this table.

RDB$EXTERNAL_FILE VARCHAR 253 The file in which the external table is stored; if this is
blank, the table does not correspond to an external file.

RDB$RUNTIME BLOB Subtype Summary: Describes table metadata; used for
performance enhancement.

RDB$EXTERNAL_DESCRIPTION BLOB Subtype EXTERNAL_FILE_DESCRIPTION; user-written
description of the external file.

RDB$OWNER_NAME CHAR 67 Identifies the creator of the table or view; the creator
is considered the owner for SQL security (GRANT/RE-
VOKE) purposes.

RDB$DEFAULT_CLASS CHAR 67 Default security class that InterBase applies to columns
newly added to a table using the SQL security system.

RDB$FLAGS SMALLINT
• 1 = SQL-defined table

• 2 = Global temporary table

• 4 = <reserved for future use>

• 8 = Delete temporary rows on commit

• 16 = Preserve temporary rows on commit; rows
are deleted on database detach

• 32 = Indicates one or more subscriptions on the
relation

RDB$DATA_BLOCKING_FACTOR SMALLINT ODS 15 creates a new column which stores a table-spe-
cific record blocking factor. It is set during GBAK re-
store based on the characteristics of the restored data.

If a table does not have a table-specific data blocking
factor, this system column queries as NULL.

RDB$BLOB_BLOCKING_FACTOR SMALLINT ODS 15 creates a new column which stores a table-spe-
cific blob blocking factor. It is set during GBAK restore
based on the characteristics of the restored blobs.

If a table does not have a table-specific blob blocking
factor, this system column queries as NULL.

Embarcadero Technologies 219

System Tables, Temporary Tables, and Views

RDB$RELATIONS

Column name Data Type Length Description
Note: If a table has Blob columns and no indexes de-
fined, then the table uses the database-wide blocking
factor as before.

Embarcadero Technologies 220

System Tables, Temporary Tables, and Views

2.18. RDB$FILES
RDB$FILES lists the secondary files and shadow files for a database.

RDB$FILES

Column name Data type Length Description

RDB$FILE_NAME VARCHAR 253 Names either a secondary file or a shadow file for the
database.

RDB$FILE_SEQUENCE SMALLINT Either the order that secondary files are to be used in the
database or the order of files within a shadow set.

RDB$FILE_START INTEGER Specifies the starting page number for a secondary file or
shadow file.

RDB$FILE_LENGTH INTEGER Specifies the file length in blocks.

RDB$FILE_FLAGS SMALLINT Reserved for system use.

RDB$SHADOW_NUMBER SMALLINT Set number: indicates to which shadow set the file belongs;
if the value of this column is 0 or missing, InterBase assumes
the file being defined is a secondary file, not a shadow file.

Embarcadero Technologies 221

System Tables, Temporary Tables, and Views

2.19. RDB$ROLES
RDB$ROLES lists roles that have been defined in the database and the owner of each role.

RDB$ROLES

Column name Data type Length Description

RDB$ROLE_NAME CHAR 67 Name of role being defined

RDB$OWNER_NAME CHAR 67 Name of InterBase user who is creating the role

Embarcadero Technologies 222

System Tables, Temporary Tables, and Views

2.20. RDB$FILTERS
RDB$FILTERS tracks information about a Blob filter.

RDB$FILTERS

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67 Unique name for the filter defined by this row

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description of the filter
being defined

RDB$MODULE_NAME VARCHAR 253 Names the library where the filter executable is stored

RDB$ENTRYPOINT CHAR 67 The entry point within the filter library for the Blob filter be-
ing defined

RDB$INPUT_SUB_TYPE SMALLINT The Blob subtype of the input data

RDB$OUTPUT_SUB_TYPE SMALLINT The Blob subtype of the output data

RDB$SYSTEM_FLAG SMALLINT Indicates whether the filter is:

• User-defined (value of 0)

• System-defined (value greater than 0)

Embarcadero Technologies 223

System Tables, Temporary Tables, and Views

2.21. RDB$SECURITY CLASSES
RDB$SECURITY_CLASSES defines access control lists and associates them with databases, tables, views,
and columns in tables and views. For all SQL objects, the information in this table is duplicated in the RDB
$USER_PRIVILEGES system table.

RDB$SECURITY_CLASSES

Column name Data type Length Description

RDB$SECURITY_CLASS CHAR 67 Security class being defined; if the value of this column
changes, change its name in the RDB$SECURITY_CLASS col-
umn in RDB$_DATABASE,RDB$RELATIONS, and RDB$RELA-
TION_FIELDS

RDB$ACL BLOB Subtype ACL: Access control list that specifies users and the
privileges granted to those users

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the security class
being defined

Embarcadero Technologies 224

System Tables, Temporary Tables, and Views

2.22. RDB$FORMATS
RDB$FORMATS keeps track of the format versions of the columns in a table. InterBase assigns the table
a new format number at each change to a column definition. Direct metadata operations such as ALTER
TABLE increment the format version; so do creating, dropping, activating, and deactivating triggers. This
table allows existing application programs to access a changed table, without needing to be recompiled.

NOTE

InterBase allows only 255 changes to a metadata of a table. Once the limit is reached, the database must be backed up
and restored before more metadata changes can be made. Only changes that affect a structure count of a row toward
this limit. Changing a trigger from active to inactive, for example, does not count toward the limit.

RDB$FORMATS

Column name Data Type Length Description

RDB$RELATION_ID SMALLINT Names a table that exists in RDB$RELATIONS.

RDB$FORMAT SMALLINT Specifies the format number of the table; a table can have
any number of different formats, depending on the number
of updates to the table.

RDB$DESCRIPTOR BLOB Subtype Format: Lists each column in the table, along with
its data type, length, and scale (if applicable).

Embarcadero Technologies 225

System Tables, Temporary Tables, and Views

2.23. RDB$TRANSACTIONS
RDB$TRANSACTIONS keeps track of all multi-database transactions.

RDB$TRANSACTIONS

Column name Data type Length Description

RDB$TRANSACTION_ID INTEGER Identifies the multi-database transaction being de-
scribed

• On ODS 15, it remains INTEGER

• On ODS 16, dialect 1 get a "double precision" type
since it cannot support dtype_int64

• On ODS 16, dialect 3 (the majority of users) gets
NUMERIC(18,0) which is the native dtype_int64
type.

RDB$TRANSACTION_STATE SMALLINT Indicates the state of the transaction

Valid values are:

• 0 - limbo

• 1 - committed

• 2 - rolled back

RDB$TIMESTAMP DATE Reserved for future use

RDB$TRANSACTION_DESCRIPTION BLOB Subtype TRANSACTION_DESCRIPTION; describes a
prepared multi-database transaction, available if the re-
connect fails

Embarcadero Technologies 226

System Tables, Temporary Tables, and Views

2.24. RDB$FUNCTION ARGUMENTS
RDB$FUNCTION_ARGUMENTS defines the attributes of a function argument.

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67 Unique name of the function with which the argu-
ment is associated; must correspond to a function
name in RDB$FUNCTIONS

RDB$ARGUMENT_POSITION SMALLINT Position of the argument described in the RDB
$FUNCTION_NAME column in relation to the other
arguments

RDB$MECHANISM SMALLINT Specifies whether the argument is passed by value
(value of 0) or by reference (value of 1)

RDB$FIELD_TYPE SMALLINT Data type of the argument being defined

Valid values are:

• BLOB - 261

• BLOB_ID - 45

• BOOLEAN - 17

• CHAR - 14

• CSTRING - 40

• D_FLOAT - 11

• DOUBLE - 27

• FLOAT - 10

• INT64 - 16

• INTEGER - 8

• QUAD - 9

• SMALLINT - 7

• DATE - 12
(dialect 3 DATE)

• TIME - 13

• TIMESTAMP - 35

• VARCHAR - 37

RDB$FIELD_SCALE SMALLINT Scale factor for an argument that has an integer
data type; the scale factor is the power of 10 by
which the integer is multiplied

RDB$FIELD_LENGTH SMALLINT The length of the argument defined in this row

Valid column lengths are:

• BLOB - 8

• BOOLEAN - 2

• D_FLOAT - 8

• DATE - 4

• DOUBLE - 8

• FLOAT - 4

Embarcadero Technologies 227

System Tables, Temporary Tables, and Views

Column name Data type Length Description

• INT64 - 8

• LONG - 4

• QUAD - 8

• SHORT - 2

• TIME - 4

• TIMESTAMP - 8

RDB$FIELD_SUB_TYPE SMALLINT If RDB$FIELD_TYPE is 7 (SMALLINT),8 (INTEGER), or
16 (INT64) the subtype can be:

• 0 or NULL - RDB$FIELD_TYPE

• 1 - NUMERIC

• 2 - DECIMAL

RDB$CHARACTER_SET_ID SMALLINT Unique numeric identifier for a character set

RDB$FIELD_PRECISION SMALLINT The declared precision of the DECIMAL or NUMER-
IC function argument

2.25. RDB$TRIGGER MESSAGES
 RDB$TRIGGER_MESSAGES defines a trigger message and associates the message with a particular trigger.

RDB$TRIGGER_MESSAGES

Column name Data type Length Description

RDB$TRIGGER_NAME CHAR 67 Names the trigger associated with this trigger
message; the trigger name must exist in RDB
$TRIGGERS

RDB$MESSAGE_NUMBER SMALLINT The message number of the trigger message be-
ing defined; the maximum number of messages is
32,767

RDB$MESSAGE VARCHAR 78 The source for the trigger message

Embarcadero Technologies 228

System Tables, Temporary Tables, and Views

2.26. RDB$FUNCTIONS
RDB$FUNCTIONS defines a user-defined function.

RDB$FUNCTIONS

Column name Data type Length Description

RDB$FUNCTION_NAME CHAR 67 Unique name for a function

RDB$FUNCTION_TYPE SMALLINT Reserved for future use

RDB$QUERY_NAME CHAR 67 Alternate name for the function that can be used in
isql

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description
of the function being defined

RDB$MODULE_NAME VARCHAR 253 Names the function library where the executable
function is stored

RDB$ENTRYPOINT CHAR 67 Entry point within the function library for the func-
tion being defined

RDB$RETURN_ARGUMENT SMALLINT Position of the argument returned to the calling
program; this position is specified in relation to
other arguments

RDB$SYSTEM_FLAG SMALLINT Indicates whether the function is:

• User-defined (value of 0)

• System-defined (value of 1)

Embarcadero Technologies 229

System Tables, Temporary Tables, and Views

2.27. RDB$TRIGGERS
RDB$TRIGGERS defines triggers.

RDB$TRIGGERS

Column name Data type Length Description

RDB$TRIGGER_NAME CHAR 67 Names the trigger being defined.

RDB$RELATION_NAME CHAR 67 Name of the table associated with the trigger be-
ing defined; this name must exist in RDB$RELA-
TIONS.

RDB$TRIGGER_SEQUENCE SMALLINT Sequence number for the trigger being defined;
determines when a trigger is executed in relation
to others of the same type.

• Triggers with the same sequence number exe-
cute in alphabetic order by trigger name.

• If this number is not assigned by the user, In-
terBase assigns a value of 0.

RDB$TRIGGER_TYPE SMALLINT The type of trigger being defined.

Values are:

• 1 - BEFORE INSERT

• 2 - AFTER INSERT

• 3 - BEFORE UPDATE

• 4 - AFTER UPDATE

• 5 - BEFORE DELETE

• 6 - AFTER DELETE

RDB$TRIGGER_SOURCE BLOB Subtype Text: Original source of the trigger defini-
tion; the isqlSHOW TRIGGERS statement displays
information from this column.

RDB$TRIGGER_BLR BLOB Subtype BLR: BLR (Binary Language Representa-
tion) of the trigger source.

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the trig-
ger being defined; when including a comment in a
CREATE TRIGGER or ALTER TRIGGER statement, isql
writes to this column.

RDB$TRIGGER_INACTIVE SMALLINT Indicates whether the trigger being defined is:

• Active (value of 0)

• Inactive (value of 1)

RDB$SYSTEM_FLAG SMALLINT Indicates whether the trigger is:

• User-defined (value of 0)

• System-defined (value greater than 0)

RDB$FLAGS SMALLINT 1 = SQL-defined trigger

2 = ignore permission checking

User-defined triggers require that the user execut-
ing them have underlying access permission to the

Embarcadero Technologies 230

System Tables, Temporary Tables, and Views

RDB$TRIGGERS

Column name Data type Length Description
objects accessed by the trigger. However, internal,
system-defined triggers occasionally need to by-
pass those permission checks to enforce database
integrity.

Embarcadero Technologies 231

System Tables, Temporary Tables, and Views

2.28. RDB$GENERATORS
RDB$GENERATORS stores information about generators, which provide the ability to generate a unique
identifier for a table.

RDB$GENERATORS

Column name Data type Length Description

RDB$GENERATOR_NAME CHAR 67 Name of the table to contain the unique identifier
produced by the number generator

RDB$GENERATOR_ID SMALLINT Unique system-assigned ID number for the gener-
ator

RDB$SYSTEM_FLAG SMALLINT Indicates whether the generator is:

• User-defined (value of 0)

• System-defined (value greater than 0)

Embarcadero Technologies 232

System Tables, Temporary Tables, and Views

2.29. RDB$TYPES
RDB$TYPES records enumerated data types and alias names for InterBase character sets and collation
orders. This capability is not available in the current release.

RDB$TYPES

Column name Data Type Length Description

RDB$FIELD_NAME CHAR 67 Column for which the enumerated data type is be-
ing defined.

RDB$TYPE SMALLINT Identifies the internal number that represents the
column specified above; type codes (same as RDB
$DEPENDENT_TYPES):

• 0 - table

• 1 - view

• 2 - trigger

• 3 - computed_field

• 4 - validation

• 5 - procedure

All other values are reserved for future use.

RDB$TYPE_NAME CHAR 67 Text that corresponds to the internal number.

RDB$DESCRIPTION BLOB Subtype Text: Contains a user-written description
of the enumerated data type being defined.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the data type is:

• User-defined (value of 0)

• System-defined (value greater than 0)

Embarcadero Technologies 233

System Tables, Temporary Tables, and Views

2.30. RDB$INDEX SEGMENTS
RDB$INDEX_SEGMENTS specifies the columns that comprise an index for a table. Modifying these rows
corrupts rather than changes an index unless the RDB$INDICES row is deleted and re-created in the same
transaction.

RDB$INDEX_SEGMENTS

Column name Data type Length Description

RDB$INDEX_NAME CHAR 67 The index associated with this index segment; if
the value of this column changes, the RDB$IN-
DEX_NAME column in RDB$INDICES must also be
changed

RDB$FIELD_NAME CHAR 67 The index segment being defined; the value of
this column must match the value of the RDB
$FIELD_NAME column in RDB$RELATION_FIELDS

RDB$FIELD_POSITION SMALLINT Position of the index segment being defined; cor-
responds to the sort order of the index

RDB$STATISTICS DOUBLE
PRECISION

 OSD 16 - Segment-specific statistics for index se-
lectivity

Embarcadero Technologies 234

System Tables, Temporary Tables, and Views

2.31. RDB$USER PRIVILEGES
RDB$USER_PRIVILEGES keeps track of the privileges assigned to a user through a SQL GRANT statement.
There is one occurrence of this table for each user/privilege intersection.

Column name Data type Length Description

RDB$USER CHAR 67 Names the user who was granted the privilege list-
ed in the RDB$PRIVILEGE column.

RDB$GRANTOR CHAR 67 Names the user who granted the privilege.

RDB$PRIVILEGE CHAR 6 Identifies the privilege granted to the user listed
in the RDB$USER column, above. The character
stored in the field corresponds to the valid values
listed below.

Valid values are:

• SELECT(S)

• DELETE(D)

• INSERT(I)

• UPDATE(U)

• REFERENCE (R)

• MEMBER OF(M) (for roles)

• DECRYPT (T)

• ENCRYPT (E)

• SUBSCRIBE (B)

• EXECUTE(X)

• TRUNCATE(Z)

RDB$GRANT_OPTION SMALLINT Indicates whether the privilege was granted with
the WITH GRANT OPTION (value of 1) or not (value
of 0).

RDB$RELATION_NAME CHAR 67 Identifies the table or role to which the privilege
applies.

RDB$FIELD_NAME CHAR 67 For update privileges, identifies the column to
which the privilege applies.

RDB$USER_TYPE SMALLINT

RDB$OBJECT_TYPE SMALLINT

Embarcadero Technologies 235

System Tables, Temporary Tables, and Views

2.32. RDB$INDICES
RDB$INDICES defines the index structures that allow InterBase to locate rows in the database more quickly.
Because InterBase provides both simple indexes (a single-key column) and multi-segment indexes (multi-
ple-key columns), each index defined in this table must have corresponding occurrences in the RDB$IN-
DEX_SEGMENTS table.

RDB$INDICES

Column name Data type Length Description

RDB$INDEX_NAME CHAR 67 Names the index being defined; if the value of this
column changes, change its value in the RDB$IN-
DEX_SEGMENTS table.

RDB$RELATION_NAME CHAR 67 Names the table associated with this index; the ta-
ble must be defined in the RDB$RELATIONS table.

RDB$INDEX_ID SMALLINT Contains an internal identifier for the index being
defined; do not write to this column.

RDB$UNIQUE_FLAG SMALLINT Specifies whether the index allows duplicate val-
ues.

Values:

• 0 - allows duplicate values

• 1 - does not allow duplicate values

Eliminate duplicates before creating a unique in-
dex.

RDB$DESCRIPTION BLOB Subtype Text: User-written description of the index.

RDB$SEGMENT_COUNT SMALLINT Number of segments in the index; a value of 1 in-
dicates a simple index.

RDB$INDEX_INACTIVE SMALLINT Indicates whether the index is:

• Active (value of 0)

• Inactive (value of 1)

This is not set for system tables.

RDB$INDEX_TYPE SMALLINT Contains an internal identifier for sort order, either
ascending (ASC) or descending (DESC):

• ASC (value of 0)

• DESC (value of 1)

RDB$FOREIGN_KEY CHAR 67 Name of FOREIGN KEY constraint for which the in-
dex is implemented.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the index is:

• User-defined (value of 0)

• System-defined (value greater than 0)

RDB$EXPRESSION_BLR BLOB Subtype BLR: Contains the BLR (Binary Language
Representation) for the expression, evaluated by
the database at execution time; used for PC se-
mantics.

Embarcadero Technologies 236

System Tables, Temporary Tables, and Views

RDB$INDICES

Column name Data type Length Description

RDB$EXPRESSION_SOURCE BLOB Subtype Text: Contains original text source for the
column; used for PC semantics.

RDB$STATISTICS DOUBLE
PRECISION

 Selectivity factor for the index; the optimizer uses
index selectivity, a measure of uniqueness for in-
dexed columns, to choose an access strategy for a
query.

RDB$INDEX_SPLIT_NULL SMALLINT Indicates if index should store NULL keys in differ-
ent buckets.

2.33. RDB$USERS
RDB$USERS only permits users in that system table access to the database.

RDB$USERS

Column name Data type Length Description

RDB$USER_NAME (RDB$US-
ER_NAME)

VARCHAR(128) CHARACTER SET UNICODE_FSS Nullable

RDB$SYSTEM_USER_NAME
(RDB$USER_NAME)

VARCHAR(128) CHARACTER SET UNICODE_FSS Nullable

RDB$GROUP_NAME (RDB$US-
ER_NAME)

VARCHAR(128) CHARACTER SET UNICODE_FSS Nullable

RDB$UID (RDB$UID) INTEGER Nullable

RDB$GID (RDB$GID) INTEGER Nullable

RDB$PASSWORD (RDB$PASS-
WORD)

VARCHAR(32) CHARACTER SET OCTETS Nullable

RDB$USER_ACTIVE (RDB$US-
ER_ACTIVE)

CHAR(2) Nullable

RDB$USER_PRIVILEGE (RDB$US-
ER_PRIVILEGE)

INTEGER Nullable

RDB$DESCRIPTION (RDB$DE-
SCRIPTION)

BLOB segment 80, subtype TEXT CHARACTER SET UNI-
CODE_FSS Nullable

RDB$FIRST_NAME (RDB
$NAME_PART)

VARCHAR(32) CHARACTER SET UNICODE_FSS Nullable

RDB$MIDDLE_NAME (RDB
$NAME_PART)

VARCHAR(32) CHARACTER SET UNICODE_FSS Nullable

RDB$LAST_NAME (RDB
$NAME_PART

VARCHAR(32) CHARACTER SET UNICODE_FSS Nullable

RDB$DEFAULT_ROLE (RDB$US-
ER)

CHAR(67) CHARACTER SET UNICODE_FSS Nullable

RDB$PASSWORD_DIGEST (RDB
$PASSWORD_DIGEST)

VARCHAR(16) Nullable

Embarcadero Technologies 237

System Tables, Temporary Tables, and Views

2.34. RDB$VIEW RELATIONS
RDB$VIEW_RELATIONS is not used by SQL objects.

RDB$VIEW_RELATIONS

Column name Data
type 7

Length Description

RDB$VIEW_NAME CHAR 67 Name of a view: The combination of RDB$VIEW_NAME and
RDB$VIEW_CONTEXT must be unique

RDB$RELATION_NAME CHAR 67 Name of a table referenced in the view definition

RDB$VIEW_CONTEXT SMALLINT Alias used to qualify view columns; must have the same val-
ue as the alias used in the view BLR (Binary Language Repre-
sentation) for this query

RDB$CONTEXT_NAME CHAR 67 Textual version of the alias identified in RDB$VIEW_CON-
TEXT

This variable must:

• Match the value of the RDB$VIEW_SOURCE column for
the corresponding table in RDB$RELATIONS

• Be unique in the view

Embarcadero Technologies 238

System Tables, Temporary Tables, and Views

2.35. RDB$SUBSCRIBERS
 The required Subscriber information is stored in a new system relation RDB$SUBSCRIBERS

RDB$SUBSCRIBERS

Column name Data type Length Description

RDB$SUBSCRIBER_NAME CHAR 31 Name of subscribing user

RDB$SUBSCRIPTION_NAME CHAR 67 Name of subscription

RDB$DESTINATION CHAR 32 Destination of subscriber

RDB$FLAGS SMALLINT 2

RDB$CHECK_OUT_TRANSACTION_ID INT64 8 Transaction ID of last subscription check
out

RDB$CHECK_OUT_TIMESTAMP TIMESTAMP 8 Date and time of last subscription check
out

RDB$CHECK_OUT_OLDEST_ TRANSACTION_ID INT64 8 Transaction of oldest active transaction at
check out

RDB$CHECK_OUT_TRANSACTIONS BLOB Set of active transaction IDs at last transac-
tion check out

RDB$CHECK_IN_TRANSACTION_ID INT64 8 Transaction ID of last subscription check in

RDB$CHECK_IN_TIMESTAMP TIMESTAMP 8 Date and time of last subscription check in

RDB$CHECK_IN_TRANSACTIONS BLOB Set of check in transaction IDs by this sub-
scription

Embarcadero Technologies 239

System Tables, Temporary Tables, and Views

2.36. RDB$SUBSCRIPTIONS
Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique key on
RDB$SUBSCRIPTION_NAME, RDB$SUBSCRIBER_NAME, RDB$DESTINATION. Additional fields store con-
trol information to facilitate "check in" and "check out" of changed data.

This includes transaction IDs, timestamps and transactional context of last observation of changed data on
the schema object. The term "check out" denotes SELECT of changed columns of rows from subscribed
tables when a subscritpion has been activated. The term "check in" refers to INSERT, UPDATE and DELETE
of changed columns of rows from subscribed tables when a subscription has been activated. A subscription
becomes activated during a database session with the execution of OPEN SUBSCRIPTION. It is deactivated
with the execution of CLOSED SUBSCRIPTION.

RDB$SUBSCRIPTION

Column name Data type Length Description

RDB$SUBSCRIPTION_NAME CHAR 67 Name of subscription

RDB$RELATION_NAME CHAR 67 Name of relation or view

RDB$FIELD_NAME CHAR 67 Name of field

RDB$DESCRIPTION BLOB Subtype text: User-written description of subscription

RDB$SECURITY CLASS CHAR 67 Security class of the subscription (the owner for SQL security
purposes)

RDB$OWNER_NAME CHAR 67 User who created the subscription

RDB$RUNTIME BLOB Runtime binary information to enhance performance

RDB$FLAGS SMALLINT 2

RDB$INSERT BOOLEAN 2 Inserts are tracked

RDB$UPDATE BOOLEAN 2 Updates are tracked

RDB$DELETE BOOLEAN 2 Deletes are tracked

RDB$CHANGE BOOLEAN 2 Tracks all operations, but returns as soon as any column
changes

Embarcadero Technologies 240

System Tables, Temporary Tables, and Views

3. System Temporary Tables
The InterBase server keeps a massive collection of information about its databases, connections, transac-
tions, and statements. This information is made available through the following system temporary tables.
For more information about using these tables, see the InterBase Operations Guide.

ODS-16: In System Temporary Tables, Performance Monitoring data counters are updated to 64-bit Integer
type for dialect 3. Dialect 1 cannot support 64-bit Integer type, so a 64-bit Integer type is internally convered
to type "double" as it is same in size (8 bytes). It also accommodates the large values for 64-bit addresses
and counter values.

ODS 15 remains the same as before and only supports 32-bit Integer counters.

• ODS <= 15 will continue to have 32-bit INTEGER counters as before (for both dialect 1 and dialect
3 databases).

• ODS >= 16 will have the counters defined as "double precision" data type for dialect 1 databases.
• ODS >= 16 will have the counters defined as "NUMERIC(18,0)" data type for dialect 3 databases. As

you know, by default, any new database is created as ODS 16, dialect 3.

Temporary table names begin with TMP$. InterBase offers the following system temporary tables:

TMP$ATTACHMENTS TMP$DATABASE TMP$HEAPS

TMP$POOL BLOCKS TMP$POOLS TMP$PROCEDURES

TMP$RELATIONS TMP$STATEMENTS TMP$TRANSACTIONS

TMP$TRIGGERS TMP$INDICES

Embarcadero Technologies 241

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

System Tables, Temporary Tables, and Views

3.1. TMP$ATTACHMENTS
The TMP$ATTACHMENTS table contains one row for each connection to a database.

TMP$ATTACHMENTS

Column name Data
type for

<=ODS 15

Data type
for >=ODS
16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$ATTACHMENT_ID INTEGER Connection identifier

TMP$DATABASE_ID INTEGER Database identifier

TMP$POOL_ID INTEGER Reserved

TMP$POOL_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Reserved

TMP$STATEMENTS SMALLINT Number of compiled statements

TMP$TRANSACTIONS SMALLINT Number of active transactions

TMP$TIMESTAMP TIMESTAMP Connection create timestamp

TMP$QUANTUM INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Units of execution

TMP$USER CHAR[67] User name

TMP$USER_IP_ADDR CHAR[31] User IP address

TMP$USER_HOST CHAR[31] User host name

TMP$USER_PROCESS CHAR[31] User process ID

TMP$STATE CHAR[31] CONNECTED,ACTIVE

TMP$PRIORITY CHAR[31] Reserved

TMP$DBKEY_ID INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Transaction ID of dbkey

TMP$ACTIVE_SORTS SMALLINT Number of active sorts

TMP$PAGE_READS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page reads all database files

TMP$PAGE_WRITES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page writes all database files

TMP$PAGE_FETCHES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page fetches all database files

TMP$PAGE_MARKS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page marks all database files

TMP$RECORD_SELECTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records selected by connection

TMP$RECORD_INSERTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records inserted by connection

TMP$RECORD_UPDATES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records updated by connection

TMP$RECORD_DELETES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records deleted by connection

TMP$RECORD_PURGES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record purges

Embarcadero Technologies 242

System Tables, Temporary Tables, and Views

TMP$ATTACHMENTS

Column name Data
type for

<=ODS 15

Data type
for >=ODS
16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record expunges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record backouts

Embarcadero Technologies 243

System Tables, Temporary Tables, and Views

3.2. TMP$DATABASE
TMP$DATABASE contains one row for each database you are attached to.

TMP$DATABASE

Column name Data type for
<=ODS 15

Data type
for >=ODS
16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$DATABASE_ID INTEGER Database identifier

TMP$DATABASE_PATH VARCHAR[253] Database pathname

TMP$ATTACHMENTS SMALLINT Number of active connec-
tions

TMP$STATEMENTS SMALLINT Number of compiled state-
ments

TMP$STATE CHAR[31] FLUSH, SWEEP, RECLAIM

TMP$ALLOCATED_PAGES INTEGER Pages allocated to all
database files

TMP$POOLS INTEGER Number of memory pools

TMP$PROCEDURES SMALLINT Number of procedures
loaded

TMP$RELATIONS SMALLINT Number of relations load-
ed

TMP$TRIGGERS SMALLINT Number of triggers loaded

TMP$ACTIVE_THREADS SMALLINT Active threads in database

TMP$SORT_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Sort buffer allocated mem-
ory

TMP$CURRENT_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Current memory allocated
database

TMP$MAXIMUM_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Maximum memory ever al-
located

TMP$PERMANENT_POOL_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Permanent pool memory
size

TMP$CACHE_POOL_MEMORY INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Buffer pool memory size

TMP$TRANSACTIONS SMALLINT Number of active transac-
tions

TMP$TRANSACTION_COMMITS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction
commits

TMP$TRANSACTION_ROLLBACKS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction roll-
backs

TMP$TRANSACTION_PREPARES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction pre-
pares

TMP$TRANSACTION_DEADLOCKS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction
deadlocks

TMP$TRANSACTION_CONFLICTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction up-
date conflicts

TMP$TRANSACTION_WAITS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of transaction wait
for

Embarcadero Technologies 244

System Tables, Temporary Tables, and Views

TMP$DATABASE

Column name Data type for
<=ODS 15

Data type
for >=ODS
16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$NEXT_TRANSACTION INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Next transaction number

TMP$OLDEST_INTERESTING INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Oldest interesting transac-
tion

TMP$OLDEST_ACTIVE INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Oldest active transaction

TMP$OLDEST_SNAPSHOT INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Oldest snapshot transac-
tion

TMP$CACHE_BUFFERS INTEGER Number of cache buffers

TMP$CACHE_PRECEDENCE INTEGER Nodes in cache prece-
dence graph

TMP$CACHE_LATCH_WAITS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Buffer latch waits

TMP$CACHE_FREE_WAITS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of waits for a free
buffer

TMP$CACHE_FREE_WRITES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Number of writes to free
buffers

TMP$SWEEP_INTERVAL INTEGER Sweep trigger interval

TMP$SWEEP_ACTIVE CHAR[1] Y (active) N (not-active)

TMP$SWEEP_RELATION CHAR[67] Relation currently being
swept

TMP$SWEEP_RECORDS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records swept in above re-
lation

TMP$PAGE_READS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page reads all database
files

TMP$PAGE_WRITES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page writes all database
files

TMP$PAGE_FETCHES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page fetches all database
files

TMP$PAGE_MARKS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Page marks all database
files

TMP$RECORD_SELECTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records selected from
database

TMP$RECORD_INSERTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records inserted into
database

TMP$RECORD_UPDATES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records updated to
database

TMP$RECORD_DELETES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Records deleted from
database

TMP$RECORD_PURGES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record
purges

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record ex-
punges

Embarcadero Technologies 245

System Tables, Temporary Tables, and Views

TMP$DATABASE

Column name Data type for
<=ODS 15

Data type
for >=ODS
16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRE-
CISION

NUMERIC (18, 0) Garbage collect record
backouts

Embarcadero Technologies 246

System Tables, Temporary Tables, and Views

3.3. TMP$HEAPS

TMP$HEAPS contains one row for each entry in the InterBase Random and Block heap.

TMP$HEAPS

Column name Data Type for
<=ODS 15

Data Type for
>=ODS 16, dialect 1

Data Type
for >=ODS
16, dialect 3

Description

TMP$HEAP_TYPE CHAR[31] RANDOM or BLOCK

TMP$HEX_ADDRESS CHAR[31] Memory address of a free block in
hex

TMP$ADDRESS DOUBLE PRECISION NUMERIC

(18,0)

Memory address of free block

TMP$FREE_MEMORY INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Amount of free memory in the block

Embarcadero Technologies 247

System Tables, Temporary Tables, and Views

3.4. TMP$POOL BLOCKS
The TMP$POOL_BLOCKS table contains one row for each block of memory in each pool.

TMP$POOL_BLOCKS

Column name Data type for
>=ODS 16, dialect 1

Data type for
>=ODS 16, dialect 1

Data type for
>=ODS 16, dialect 3

Description

TMP$POOL_ID INTEGER

TMP$ACC INTEGER

TMP$ARR INTEGER

TMP$ATT INTEGER

TMP$BCB INTEGER Buffer control block

TMP$BDB INTEGER Buffer descriptor block

TMP$BLB INTEGER Blob block

TMP$BLF INTEGER

TMP$BMS INTEGER

TMP$BTB INTEGER

TMP$BTC INTEGER

TMP$CHARSET INTEGER

TMP$CSB INTEGER Compiler scratch
block

TMP$CSCONVERT INTEGER

TMP$DBB INTEGER Database block

TMP$DCC INTEGER Data compression
control block

TMP$DFW INTEGER Deferred work block

TMP$DLS INTEGER

TMP$EXT INTEGER

TMP$FIL INTEGER File block

TMP$FLD INTEGER

TMP$FMT INTEGER Format block

TMP$FRB INTEGER Free block

TMP$FUN INTEGER

TMP$HNK INTEGER Hunk block

TMP$IDB INTEGER

TMP$IDL INTEGER

TMP$IRB INTEGER

TMP$IRL INTEGER

TMP$LCK INTEGER Lock block

TMP$LWT INTEGER

TMP$MAP INTEGER

TMP$MFB INTEGER

Embarcadero Technologies 248

System Tables, Temporary Tables, and Views

TMP$POOL_BLOCKS

Column name Data type for
>=ODS 16, dialect 1

Data type for
>=ODS 16, dialect 1

Data type for
>=ODS 16, dialect 3

Description

TMP$NOD INTEGER Node block

TMP$OPT INTEGER

TMP$PRC INTEGER

TMP$PRE INTEGER Precedence block

TMP$PRM INTEGER

TMP$REC INTEGER Record block

TMP$REL INTEGER Relation block

TMP$REQ INTEGER Request block

TMP$RIV INTEGER

TMP$RSB INTEGER Record source block

TMP$RSC INTEGER

TMP$SAV INTEGER

TMP$SBM INTEGER Sparse bitmap block

TMP$SCL INTEGER

TMP$SDW INTEGER

TMP$SMB INTEGER Sort map block

TMP$SRPB INTEGER

TMP$STR INTEGER String block

TMP$SVC INTEGER

TMP$SYM INTEGER

TMP$TEXTTYPE INTEGER

TMP$TFB INTEGER Temporary field block

TMP$TPC INTEGER

TMP$TRA INTEGER Transaction block

TMP$USR INTEGER

TMP$VCL INTEGER Vector long block

TMP$VCT INTEGER

TMP$VCX INTEGER

TMP$XCP INTEGER

Embarcadero Technologies 249

System Tables, Temporary Tables, and Views

3.5. TMP$POOLS
The TMP$POOLS table contains one row for each current memory pool. A pool is a collection of memory
to support the allocation needs of an internal system object.

TMP$POOLS

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$POOL_ID INTEGER Pool identifier

TMP$TYPE CHAR[31] Pool type

TMP$POOL_MEMORY INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Total memory in pool

TMP$FREE_MEMORY INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Free memory in pool

TMP$EXTEND_MEMORY INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Memory by which
pool extended

TMP$FREE_STACK_NODES SMALLINT Free linked list stack
nodes

TMP$FREE_BITMAP_BUCKETS SMALLINT Free bitmap buckets

TMP$FREE_BITMAP_SEGMENTS INTEGER Free bitmap segments

Embarcadero Technologies 250

System Tables, Temporary Tables, and Views

3.6. TMP$PROCEDURES
The TMP$PROCEDURES table contains one row for each procedure executed since the current connection
began.

TMP$PROCEDURES

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$PROCEDURE_ID INTEGER Procedure identifier

TMP$DATABASE_ID INTEGER Database identifier

TMP$PROCEDURE_NAME CHAR[67] Procedure name

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMORY INTEGER Pool memory size

TMP$CLONE SMALLINT Cloned instance number

TMP$TIMESTAMP TIMESTAMP Start time of procedure

TMP$USE_COUNT SMALLINT Statements compiled with
procedure

TMP$QUANTUM INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Units of execution

TMP$INVOCATIONS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Number of calls to procedure

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page reads all database files

TMP$PAGE_WRITES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page writes all database files

TMP$PAGE_FETCHES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page fetches all database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page marks all database files

TMP$RECORD_SELECTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records selected by procedure

TMP$RECORD_INSERTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records inserted by procedure

TMP$RECORD_UPDATES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records updated by proce-
dure

TMP$RECORD_DELETES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records deleted by procedure

TMP$RECORD_PURGES INTEGER DOUBLE PRECISION NUMERIC Garbage collect record purges

Embarcadero Technologies 251

System Tables, Temporary Tables, and Views

TMP$PROCEDURES

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

(18,0)

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record ex-
punges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record back-
outs

Embarcadero Technologies 252

System Tables, Temporary Tables, and Views

3.7. TMP$RELATIONS
The TMP$RELATIONS table contains one row for each relation referenced since the current connection
began.

TMP$RELATIONS

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$RELATION_ID SMALLINT Relation identifier

TMP$DATABASE_ID INTEGER Database identifier

TMP$RELATION_NAME CHAR[67] Relation name

TMP$USE_COUNT SMALLINT Statements compiled
against relation

TMP$SWEEP_COUNT SMALLINT Database sweep or
garbage collector

TMP$SCAN_COUNT INTEGER Sequential scans

TMP$FORMATS SMALLINT Number of relation for-
mats

TMP$POINTER_PAGES INTEGER Number of relation
pointer pages

TMP$DATA_PAGES INTEGER Number of relation da-
ta pages

TMP$GARBAGE_COLLECT_PAGES INTEGER Number of data pages
to garbage collect

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page reads all database
files

TMP$PAGE_WRITES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page writes all database
files

TMP$PAGE_FETCHES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page fetches all
database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page marks all database
files

TMP$RECORD_IDX_SELECTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records selected by in-
dex retrieval

TMP$RECORD_SEQ_SELECTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records selected by se-
quential scan

TMP$RECORD_INSERTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records inserted into
relation

TMP$RECORD_UPDATES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records updated in re-
lation

Embarcadero Technologies 253

System Tables, Temporary Tables, and Views

TMP$RELATIONS

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$RECORD_DELETES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records deleted from
relation

TMP$RECORD_PURGES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record
purges

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record
expunges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record
backouts

Embarcadero Technologies 254

System Tables, Temporary Tables, and Views

3.8. TMP$STATEMENTS
The TMP$STATEMENTS table contains one row for each statement currently executing for any current
connection.

TMP$STATEMENTS

Column name Data type for
<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$STATEMENT_ID INTEGER Statement identifier

TMP$ATTACHMENT_ID INTEGER Connection identifier

TMP$TRANSACTION_ID INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Transaction number

TMP$SQL VARCHAR[4094] SQL string

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMORY INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Pool memory size

TMP$CLONE SMALLINT Cloned instance number

TMP$TIMESTAMP TIMESTAMP Start time of statement

TMP$QUANTUM INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Units of execution

TMP$INVOCATIONS INTEGER Number of calls to state-
ment

TMP$STATE CHAR[31] ACTIVE,INAC-
TIVE,STALLED,CANCELLED

TMP$PRIORITY CHAR[31] Reserved

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page reads all database
files

TMP$PAGE_WRITES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page writes all database
files

TMP$PAGE_FETCHES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page fetches all database
files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Page marks all database
files

TMP$RECORD_SELECTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records selected by state-
ment

TMP$RECORD_INSERTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records inserted by state-
ment

TMP$RECORD_UPDATES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records updated by state-
ment

Embarcadero Technologies 255

System Tables, Temporary Tables, and Views

TMP$STATEMENTS

Column name Data type for
<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$RECORD_DELETES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Records deleted by state-
ment

TMP$RECORD_PURGES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record
purges

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record ex-
punges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRECISION NUMERIC

(18,0)

Garbage collect record
backouts

3.9. TMP$TRANSACTIONS
The TMP$TRANSACTIONS table contains one row for each transaction that is active or in limbo.

TMP$TRANSACTIONS

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$TRANSACTION_ID INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Transaction number

TMP$ATTACHMENT_ID INTEGER Connection identifier

TMP$POOL_ID INTEGER

TMP$POOL_MEMORY INTEGER DOUBLE PRECISION NUMERIC
(18,0)

TMP$TIMESTAMP TIMESTAMP Start time of connection

TMP$SNAPSHOT INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Snapshot transaction number

TMP$QUANTUM INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Units of execution

TMP$SAVEPOINTS INTEGER savepoint number of records

TMP$READONLY CHAR[1] Transaction is read only

TMP$WRITE CHAR[1] Transaction has written data

TMP$NOWAIT CHAR[1] Transaction is no wait

TMP$COMMIT_RETAINING CHAR[1] Commit retaining performed

TMP$STATE CHAR[31] ACTIVE, LIMBO, COMMITTING,
PRECOMMITTED

TMP$PRIORITY CHAR Reserved

TMP$TYPE CHAR[31] SNAPSHOT, READ_COMMIT-
TED

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page reads all database files

Embarcadero Technologies 256

System Tables, Temporary Tables, and Views

TMP$TRANSACTIONS

Column name Data
type for

<=ODS 15

Data type for
>=ODS 16, dialect 1

Data type
for >=ODS
16, dialect 3

Description

TMP$PAGE_WRITES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page writes all database files

TMP$PAGE_FETCHES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page fetches all database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page marks all database files

TMP$RECORD_SELECTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records selected by transac-
tion

TMP$RECORD_INSERTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records inserted by transac-
tion

TMP$RECORD_UPDATES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records updated by transac-
tion

TMP$RECORD_DELETES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records deleted by transac-
tion

TMP$RECORD_PURGES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record purges

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record ex-
punges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record back-
outs

Embarcadero Technologies 257

System Tables, Temporary Tables, and Views

3.10. TMP$TRIGGERS
The TMP$TRIGGERS table contains one row for each trigger executed since the current connection began.

TMP$TRIGGERS

Column name Data
Type for

<=ODS 15

Data Type for
>=ODS 16, dialect 1

Data Type
for >=ODS
16, dialect 3

Description

TMP$TRIGGER_ID INTEGER Trigger identifier

TMP$DATABASE_ID INTEGER Database identifier

TMP$RELATION_NAME CHAR[67] Relation name for trigger

TMP$TRIGGER_NAME CHAR[67] Trigger name

TMP$TRIGGER_TYPE SMALLINT The type of trigger being de-
fined Values are:

1 - BEFORE INSERT

2 - AFTER INSERT

3 - BEFORE UPDATE

4 - AFTER UPDATE

5 - BEFORE DELETE

6 - AFTER DELETE

TMP$TRIGGER_SEQUENCE SMALLINT Sequence number for the trig-
ger being defined; determines
when a trigger is executed in
relation to others of the same
type.

Triggers with the same se-
quence number execute in
alphabetic order by trigger
name.

If this number is not assigned
by the user, InterBase assigns
a value of 0.

TMP$TRIGGER_ORDER CHAR[31] Position of the trigger

TMP$TRIGGER_OPERATION CHAR[31] UPDATE, DELETE or INSERT

TMP$POOL_ID INTEGER Pool identifier

TMP$POOL_MEMORY INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Pool memory size

TMP$CLONE SMALLINT Cloned instance number

TMP$TIMESTAMP TIMESTAMP Start time of trigger

TMP$QUANTUM INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Units of Execution

TMP$INVOCATIONS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Number of calls to trigger

TMP$PAGE_READS INTEGER DOUBLE PRECISION NUMERIC Page reads all database file

Embarcadero Technologies 258

System Tables, Temporary Tables, and Views

TMP$TRIGGERS

Column name Data
Type for

<=ODS 15

Data Type for
>=ODS 16, dialect 1

Data Type
for >=ODS
16, dialect 3

Description

(18,0)

TMP$PAGE_WRITES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page writes all database files

TMP$PAGE_FETCHES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page fetches all database files

TMP$PAGE_MARKS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Page marks all database files

TMP$RECORD_SELECTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records selected by trigger

TMP$RECORD_INSERTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records inserted by trigger

TMP$RECORD_UPDATES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records updated by trigger

TMP$RECORD_DELETES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Records deleted by procedure

TMP$RECORD_PURGES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record purges

TMP$RECORD_EXPUNGES INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record ex-
punges

TMP$RECORD_BACKOUTS INTEGER DOUBLE PRECISION NUMERIC
(18,0)

Garbage collect record back-
out

Embarcadero Technologies 259

System Tables, Temporary Tables, and Views

3.11. TMP$INDICES
 TMP$INDICES is a new system table included as part of the Performance Monitoring system tables intro-
duced in InterBase 2020 with ODS version 18. This table tracks all loaded indices per table in the database
with key metrics for monitoring. The table structure is as follows.

NOTE

Currently, only SQL queries support TMP$INDICES. IBConsole Performance Monitoring UI does not yet enable a TMP
$INDICES tab.

Column name Datatype for ODS
>= 18, dialect 1

Datatype for ODS
>= 18, dialect 3

Description

TMP$DATABASE_ID INTEGER INTEGER Database identifier
TMP$RELATION_NAME CHAR (67) CHAR (67) Relation name
TMP$INDEX_NAME CHAR (67) CHAR (67) Index name
TMP$INDEX_TYPE CHAR (31) CHAR (31) Index Type; types include

PRIMARY KEY, FOREIGN KEY,
UNIQUE, NON-UNIQUE, EX-
PRESSION

TMP$INDEX_SEGMENTS SMALLINT SMALLINT Number of seg-
ments/columns in the index
definition

TMP$INDEX_MAX_KEYSIZE SMALLINT SMALLINT Maximum index key size al-
lowed in the index

TMP$INDEX_DEPTH SMALLINT SMALLINT Depth of the index B-tree
structure. Larger the depth,
more the time taken to fetch
a record. Consider increas-
ing database page size to
reduce depth.

TMP$INVOCATIONS DOUBLE PRECISION NUMERIC (18,0) Number of requests that
have used this index for re-
trieval

TMP$PAGE_READS DOUBLE PRECISION NUMERIC (18,0) Not used, yet.
TMP$PAGE_WRITES DOUBLE PRECISION NUMERIC (18,0) Number of index page/

buckets that have been writ-
ten to

TMP$PAGE_FETCHES DOUBLE PRECISION NUMERIC (18,0) Number of index page/
buckets that have been
fetched

TMP$PAGE_SPLITS DOUBLE PRECISION NUMERIC (18,0) Number of index page/
buckets that have been split
to accommodate a new in-
dex node insertion

TMP$PAGE_REVERSE_SPLITS DOUBLE PRECISION NUMERIC (18,0) Number of times 2 less-
populated index page/buck-
ets have been combined

TMP$PAGE_NAVIGATIONS DOUBLE PRECISION NUMERIC (18,0) Number of index page/
buckets that have been read
for a navigation request;
ORDER BY

TMP$RECORD_INSERTS DOUBLE PRECISION NUMERIC (18,0) Number of new index nodes
inserted

Embarcadero Technologies 260

System Tables, Temporary Tables, and Views

Column name Datatype for ODS
>= 18, dialect 1

Datatype for ODS
>= 18, dialect 3

Description

TMP$RECORD_UPDATES DOUBLE PRECISION NUMERIC (18,0) Number of index nodes up-
dated; updates are a com-
bination of 1 delete (of old
key) and 1 insert (of new
key)

TMP$RECORD_DELETES DOUBLE PRECISION NUMERIC (18,0) Number of index nodes
deleted; sometimes reflect a
negative number if update
related delete node have
not been garbage collected
yet

TMP$NODE_WALKS DOUBLE PRECISION NUMERIC (18,0) Number of index nodes tra-
versed in total, in all lev-
els (depth); include non-
leaf (pointer pages) and leaf
(record nodes) page nodes

TMP$NONLEAF_N-
ODE_WALKS

DOUBLE PRECISION NUMERIC (18,0) Number of nonleaf in-
dex page nodes tra-
versed/walked

TMP$LEAF_NODE_WALKS DOUBLE PRECISION NUMERIC (18,0) Number of leaf index page
nodes traversed/walked

TMP$EQUALITY_MATCHES DOUBLE PRECISION NUMERIC (18,0) Number of index nodes/
records retrieved for an
equality match; "a = b",
JOIN, IN list, etc.

TMP$RANGE_MATCHES DOUBLE PRECISION NUMERIC (18,0) Number of index nodes/
records retrieved for a range
retrieval; BETWEEN, "a > b",
etc.

Usage

List all indices for a specific relation/table

SELECT * FROM TMP$INDICES
WHERE TMP$RELATION_NAME='foo';

List all indices with depth greater than 3

SELECT * FROM TMP$INDICES
WHERE TMP$INDEX_DEPTH > 3;

List all indices with more than 10 segments

SELECT * FROM TMP$INDICES
WHERE TMP$INDEX_SEGMENTS > 10;

List all indices that are index type 'FOREIGN KEY'

SELECT * FROM TMP$INDICES

Embarcadero Technologies 261

System Tables, Temporary Tables, and Views

WHERE TMP$INDEX_TYPE='FOREIGN KEY';

List all indices with tons of delete operations leading to reverse page splits. This is a good indicator that
index selectivity needs to be recalculated.

SELECT * FROM TMP$INDICES
WHERE TMP$PAGE_REVERSE_SPLITS > 1000;

List all indices with tons of insert/update/delete operations; similar to above. This is a good indicator that
index selectivity needs to be recalculated.

SELECT * FROM TMP$INDICES
WHERE TMP$RECORD_INSERTS > 1000
OR TMP$RECORD_UPDATES > 1000
OR TMP$RECORD_DELETES > 1000;

List all indices that have very low activity; could indicate unnecessary index definitions, or, UNIQUE index on
the same table where a PRIMARY KEY exists on the same set of columns. The SQL optimizer will typically
use only one of PRIMARY KEY or UNIQUE index and seldom use the other. In this case, you may want to drop
the UNIQUE index, and let the PRIMARY KEY remain.

SELECT * FROM TMP$INDICES
WHERE TMP$PAGE_FETCHES < 100; /* set to your needs */

4. System Views
You can create a SQL script using the code provided in this section to create four views that provide
information about existing integrity constraints for a database. You must create the database prior to
creating these views. SQL system views are a subset of system views defined in the SQL-92 standard. Since
they are defined by ANSI SQL-92, the names of the system views and their columns do not start with RDB$.

• The CHECK_CONSTRAINTS view:

CREATE VIEW CHECK_CONSTRAINTS (
CONSTRAINT_NAME,
CHECK_CLAUSE
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$TRIGGER_SOURCE
FROM RDB$CHECK_CONSTRAINTS RC, RDB$TRIGGERS RT
WHERE RT.RDB$TRIGGER_NAME = RC.RDB$TRIGGER_NAME;

• The CONSTRAINTS_COLUMN_USAGE view:

CREATE VIEW CONSTRAINTS_COLUMN_USAGE (
TABLE_NAME,
COLUMN_NAME,
CONSTRAINT_NAME
) AS
SELECT RDB$RELATION_NAME, RDB$FIELD_NAME, RDB$CONSTRAINT_NAME
FROM RDB$RELATION_CONSTRAINTS RC, RDB$INDEX_SEGMENTS RI

Embarcadero Technologies 262

System Tables, Temporary Tables, and Views

WHERE RI.RDB$INDEX_NAME = RC.RDB$INDEX_NAME;

• The REFERENTIAL_CONSTRAINTS view:

CREATE VIEW REFERENTIAL_CONSTRAINTS (
CONSTRAINT_NAME,
UNIQUE_CONSTRAINT_NAME,
MATCH_OPTION,
UPDATE_RULE,
DELETE_RULE
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$CONST_NAME_UQ, RDB$MATCH_OPTION,
RDB$UPDATE_RULE, RDB$DELETE_RULE
FROM RDB$REF_CONSTRAINTS;

• The TABLE_CONSTRAINTS view:

CREATE VIEW TABLE_CONSTRAINTS (
CONSTRAINT_NAME,
TABLE_NAME,
CONSTRAINT_TYPE,
IS_DEFERRABLE,
INITIALLY_DEFERRED
) AS
SELECT RDB$CONSTRAINT_NAME, RDB$RELATION_NAME,
RDB$CONSTRAINT_TYPE, RDB$DEFERRABLE, RDB$INITIALLY_DEFERRED
FROM RDB$RELATION_CONSTRAINTS;

4.1. CHECK CONSTRAINTS
CHECK_CONSTRAINTS identifies all CHECK constraints defined in the database.

CHECK_CONSTRAINTS

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67 Unique name for the CHECK constraint; nullable

CHECK_CLAUSE BLOB Subtype Text: Nullable; original source of the trigger definition,
stored in the RDB$TRIGGER_SOURCECOLUMN in RDB$TRIGGERS

4.2. CONSTRAINTS COLUMN USAGE
CONSTRAINTS_COLUMN_USAGE identifies columns used by PRIMARY KEY and UNIQUE constraints. For
FOREIGN KEY constraints, this view identifies the columns defining the constraint.

CONSTRAINTS_COLUMN_USAGE

Column name Data type Length Description

TABLE_NAME CHAR 67 Table for which the constraint is defined; nullable

COLUMN_NAME CHAR 67 Column used in the constraint definition; nullable

CONSTRAINT_NAME CHAR 67 Unique name for the constraint; nullable

Embarcadero Technologies 263

System Tables, Temporary Tables, and Views

4.3. REFERENTIAL CONSTRAINTS
REFERENTIAL_CONSTRAINTS identifies all referential constraints defined in a database.

REFERENTIAL_CONSTRAINTS

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67 Unique name for the constraint; nullable

UNIQUE_CONSTRAINT_NAME CHAR 67 Name of the UNIQUE or PRIMARY KEY constraint corre-
sponding to the specified referenced column list; nul-
lable

MATCH_OPTION CHAR 7 Reserved for future use; always set to FULL; nullable

UPDATE_RULE CHAR 11 Reserved for future use; always set to RESTRICT; nul-
lable

DELETE_RULE CHAR 11 Reserved for future use; always set to RESTRICT; nul-
lable

4.4. TABLE CONSTRAINTS
TABLE_CONSTRAINTS identifies all constraints defined in a database.

TABLE_CONSTRAINTS

Column name Data type Length Description

CONSTRAINT_NAME CHAR 67 Unique name for the constraint; nullable

TABLE_NAME CHAR 67 Table for which the constraint is defined; nullable

CONSTRAINT_TYPE CHAR 11 Possible values are UNIQUE, PRIMARY KEY, FOREIGN KEY, and
CHECK; nullable

IS_DEFERRABLE CHAR 3 Reserved for future use; always set to No; nullable

INITIALLY_DEFERRED CHAR 3 Reserved for future use; always set to No; nullable

5. Change Views
Change Views can be subscribed to in order to view data that has changed across database connections.
The effect is a long-lived transaction spanning multiple database connections.

• Specifically, the subscription tracks all row inserts, updates, and deletes to one or more tables at a
column-level granularity over a disconnected, extended period of time.

• The InterBase SQL query language is modified to search on columns where data has changed since
the prior observation.

• These data changes are tracked at a column granularity.

5.1. Using Change Views
See Getting Started with Change Views for a complete explanation of these topics:

• OSD Platform Updates
• Migration Issues and Dependencies
• Requirements and Constraints

Embarcadero Technologies 264

http://docwiki.embarcadero.com/InterBase/2017/en/Getting_Started_with_Change_Views

System Tables, Temporary Tables, and Views

• Requirements
• Constraints
• Backup/Restore Considerations
• Deferred Constraints Checking
• Trigger Inactivation

Database Restore from a Backup

5.2. Creating Subscriptions to Change Views
To establish interest in observing changed data on a set of tables beyond the natural boundary of a
database connection, a subscription must be created on a list of tables (base tables or views).

In creating subscriptions you would

Grant Subscribe: Grants the user subscribe privileges

Set Subscription: To set a subscription as active, an application issues a SET SUBSCRIPTION statement. The
SET SUBSCRIPTION statement allows multiple subscriptions to be activated and includes an AT clause to
denote a destination or device name as a recipient of subscribed changes. The subscriber user name is
implied by the user identity of the database connection.

See Creating Subscriptions to Change Views or a complete explanation and examples of how to create
subscriptions.

5.3. Statement Execution
Once a statement is prepared, it is unnecessary to re-prepare the statement due to subscription activation
or deactivation. A statement dynamically adjusts to the subscription environment of the transaction when
it begins execution. Statement execution is also consistent in that once it begins, it returns change view
result sets even if the subscription is deactivated before the full resultset has been fetched.

See Statement Execution for a complete explanation of how the Statement Execution feature works.

5.4. Change View API Support
Change Views API support is provided through the extended SQLVAR structure, XSQLVAR, via a new inter-
pretation of the SQLIND member. To review, a developer places a pointer to a variable in XSQLVAR.SQLIND
to request NULL state. When the query is executed, InterBase places a zero at that pointer address if the
column value for the returned row is non-NULL and sets it to -1 if it is NULL.

See Change Views API Support or a complete explanation of how the Statement Execution feature works.

5.5. Change View SQL Language Support
To display a list of subscriptions defined in the database, you can execute the SHOW SUBSCRIPTIONS command.
To display details for a particular subscription, you can execute SHOW SUBSCRIPTION.

See Change Views SQL Language Support for examples showing a retooling of the ISQL command-line
utility that supports change views.

Embarcadero Technologies 265

http://docwiki.embarcadero.com/InterBase/2017/en/Creating_Subscriptions_to_Change_Views
http://docwiki.embarcadero.com/InterBase/2017/en/Statement_Execution
http://docwiki.embarcadero.com/InterBase/2017/en/Change_Views_API_Support
http://docwiki.embarcadero.com/InterBase/2017/en/Change_Views_SQL_Language_Support

System Tables, Temporary Tables, and Views

5.6. Metadata Support
Subscription information is stored in a new system relation RDB$SUBSCRIPTIONS with a unique key on RDB
$SUBSCRIPTION_NAME, RDB$SUBSCRIBER_NAME, RDB$DESTINATION. Additional fields store control in-
formation to facilitate "check in" and "check out" of changed data. This includes transaction IDs, timestamps
and transactional context of last observation of changed data on the schema object.

• The term "check out" denotes SELECT of changed columns of rows from subscribed tables when a
subscription has been activated.

• The term "check in" refers to INSERT, UPDATE and DELETE of changed columns of rows from subscribed
tables when a subscription has been activated.

• A subscription becomes activated during a database session with the execution of SET SUBSCRIPTION
ACTIVE.

• It is deactivated with the execution of SET SUBSCRIPTION INACTIVE.

RDB$SUBSCRIPTION and RDB$SUBSCRIBERS are new tables covering the subscription/subscriber ele-
ments. The other tables listed show columns that have been updated or added to an existing table.

For more information on the new and updated columns for the implementation of the Change View feature
see Metadata Support.

Embarcadero Technologies 266

http://docwiki.embarcadero.com/InterBase/2017/en/Metadata_Support

Character Sets and Collation Orders

Character Sets and Collation Orders

CHAR, VARCHAR, and text Blob columns in InterBase can use many different character sets. A character
set defines the symbols that can be entered as text in a column, and its also defines the maximum number
of bytes of storage necessary to represent each symbol. In some character sets, such as ISO8859_1, each
symbol requires only a single byte of storage. In others, such as UNICODE_FSS, each symbol requires from
1 to 3 bytes of storage.

Each character set also has an implicit collation order that specifies how its symbols are sorted and ordered.
Some character sets also support alternative collation orders. In all cases, choice of character set limits
choice of collation orders.

This chapter lists available character sets and their corresponding collation orders and describes how to
specify:

• Default character set for an entire database.
• Alternative character set and collation order for a particular column in a table.
• Client application character set that the server should use when translating data between itself and

the client.
• Collation order for a value in a comparison operation.
• Collation order in an ORDER BY or GROUP BY clause.

1. InterBase Character Sets and Collation Orders
The following table lists each character set that can be used in InterBase. For each character set, the
minimum and maximum number of bytes used to store each character is listed, and all collation orders
supported for that character set are also listed. The first collation order for a given character set is that
default collation of the set, the one that is used if no COLLATE clause specifies an alternative order.

Character sets and collation orders

Character set Char.
set ID

Max.
char. size

Min.
char. size

Collation orders

ASCII 2 1 byte 1 byte ASCII

BIG_5 56 2 bytes 1 byte BIG_5

CYRL 50 1 byte 1 byte CYRL

DB_RUS

PDOX_CYRL

DOS437 10 1 byte 1 byte DOS437

DB_DEU437

DB_ESP437

DB_FIN437

DB_FRA437

DB_ITA437

Embarcadero Technologies 267

Character Sets and Collation Orders

Character sets and collation orders

Character set Char.
set ID

Max.
char. size

Min.
char. size

Collation orders

DB_NLD437

DB_SVE437

DB_UK437

DB_US437

PDOX_ASCII

PDOX_INTL

PDOX_SWEDFIN

DOS850 11 1 byte 1 byte DOS850

DB_DEU850

DB_ESP850

DB_FRA850

DB_FRC850

DB_ITA850

DB_NLD850

DB_PTB850

DB_SVE850

DB_UK850

DB_US850

DOS852 45 1 byte 1 byte DOS852

DB_CSY

DB_PLK

DB_SLO

PDOX_CSY

PDOX_HUN

PDOX_PLK

PDOX_SLO

DOS857 46 1 byte 1 byte DOS857

DB_TRK

DOS860 13 1 byte 1 byte DOS860

DB_PTG860

Embarcadero Technologies 268

Character Sets and Collation Orders

Character sets and collation orders

Character set Char.
set ID

Max.
char. size

Min.
char. size

Collation orders

DOS861 47 1 byte 1 byte DOS861

PDOX_ISL

DOS863 14 1 byte 1 byte DOS863

DB_FRC863

DOS865 12 1 byte 1 byte DOS865

DB_DAN865

DB_NOR865

PDOX_NORDAN4

EUCJ_0208 6 2 bytes 1 byte EUJC_0208

GB_2312 57 2 bytes 1 byte GB_2312

ISO8859_1 21 1 byte 1 byte ISO8859_1

CC_ESPLAT1

CC_PTBRLAT1

DA_DA

DE_DE

DU_NL

EN_UK

EN_US

ES_ES

FI_FI

FR_CA

FR_FR

IS_IS

IT_IT

NO_NO

PT_PT

SV_SV

ISO8859_2 22 1 byte 1 byte ISO8859_2

CS_CZ

PL_PL

ISO8859_15 39 1 byte 1 byte ISO8859_15

Embarcadero Technologies 269

Character Sets and Collation Orders

Character sets and collation orders

Character set Char.
set ID

Max.
char. size

Min.
char. size

Collation orders

DA_DA9

DE_DE9

DU_NL9

EN_UK9

EN_US9

ES_ES9

FI_FI9

FR_CA9

FR_FR9

IS_IS9

IT_IT9

NO_NO9

PT_PT9

SV_SV9

KO18R 58 1 byte 1 byte RU_RU

KSC_5601 44 2 bytes 1 byte KSC_5601

KSC_DICTIONARY

NEXT 19 1 byte 1 byte NEXT

NXT_DEU

NXT_FRA

NXT_ITA

NXT_US

NONE 0 1 byte 1 byte NONE

OCTETS 1 1 byte 1 byte OCTETS

SJIS_0208 5 2 bytes 1 byte SJIS_0208

UNICODE_BE
UCS2BE

8 2 bytes 2 bytes N/A at this time

UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS

UNICODE_LE
UCS2LE

64 2 byte 2 bytes N/A

UTF_8 59 4 byte 1 bytes N/A at this time.

WIN1250 51 1 byte 1 byte WIN1250

PXW_CSY

Embarcadero Technologies 270

Character Sets and Collation Orders

Character sets and collation orders

Character set Char.
set ID

Max.
char. size

Min.
char. size

Collation orders

PXW_HUNDC

PXW_PLK

PXW_SLOV

WIN1251 52 1 byte 1 byte WIN1251

PXW_CYRL

WIN1252 53 1 byte 1 byte WIN1252

PXW_INTL

PXW_INTL850

PXW_NORDAN4

PXW_SPAN

PXW_SWEDFIN

WIN1253 54 1 byte 1 byte WIN1253

PXW_GREEK

WIN1254 55 1 byte 1 byte WIN1254

PXW_TURK

1.1. Character Set Storage Requirements
Knowing the storage requirements of a particular character set is important, because InterBase restricts the
maximum amount of storage in each field in the column to 32,767 bytes for CHAR columns and 32,765 for
VARCHAR columns. In the case of a single-byte character column, one character is stored in one byte, so
you can define 32,767 (or 32,765 for VARCHAR) characters per single-byte column without encountering
an error.

For multi-byte character sets, to determine the maximum number of characters allowed in a column def-
inition, divide the internal byte storage limit for the data type by the number of bytes for each character.
Thus, two-byte character sets have a character limit of 16,383 per field, and three-byte character sets have a
limit of 10,922 characters per field. For VARCHAR columns, the numbers are 16,382 and 10.921 respectively.

The following examples specify a CHAR data type using the UNICODE_FSS character set, which has a
maximum size of three bytes for a single character:

CHAR (10922) CHARACTER SET UNICODE_FSS; /* succeeds
*/
CHAR (10923) CHARACTER SET UNICODE_FSS; /* fails */

1.2. Support for Paradox and dBASE
Many character sets and their corresponding collations are provided to support Paradox for DOS, Paradox
for Windows, dBASE for DOS, and dBASE for Windows.

Embarcadero Technologies 271

Character Sets and Collation Orders

1.2.1. Character Sets for DOS (Support for Paradox and dBASE)
The following character sets correspond to MS-DOS code pages, and should be used to specify character
sets for InterBase databases that are accessed by Paradox for DOS and dBASE for DOS:

Character sets corresponding to DOS code pages

Character set DOS code page

DOS437 437

DOS850 850

DOS852 852

DOS857 857

DOS860 860

DOS861 861

DOS863 863

DOS865 865

The names of collation orders for these character sets that are specific to Paradox begin “PDOX”. For ex-
ample, the DOS865 character set for DOS code page 865 supports a Paradox collation order for Norwe-
gian and Danish called “PDOX_NORDAN4”.

The names of collation orders for these character sets that are specific to dBASE begin “DB”. For example,
the DOS437 character set for DOS code page 437 supports a dBASE collation order for Spanish called
“DB_ESP437”.

For more information about DOS code pages, and Paradox and dBASE collation orders, see the appropriate
Paradox and dBASE documentation and driver books.

1.2.2. Character Sets for Microsoft Windows (Support for Para-
dox and dBASE)

There are five character sets that support Windows client applications, such as Paradox for Windows. These
character sets are WIN1250, WIN1251, WIN1252, WIN1253, and WIN1254.

The names of collation orders for these character sets that are specific to Paradox for Windows begin “PXW”.
For example, the WIN1252 character set supports a Paradox for Windows collation order for Norwegian
and Danish called “PXW_NORDAN4”.

For more information about Windows character sets and Paradox for Windows collation orders, see the
appropriate Paradox for Windows documentation and driver books.

1.3. Additional Character Sets and Collations
Support for additional character sets and collation orders is constantly being added to InterBase. To see if
additional character sets and collations are available for a newly created database, connect to the database
with isql, then use the following set of queries to generate a list of available character sets and collations:

SELECT RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_ID
FROM RDB$CHARACTER_SETS
ORDER BY RDB$CHARACTER_SET_NAME;
SELECT RDB$COLLATION_NAME, RDB$CHARACTER_SET_ID

Embarcadero Technologies 272

Character Sets and Collation Orders

FROM RDB$COLLATIONS
ORDER BY RDB$COLLATION_NAME;

2. Specifying Character Sets
This section provides details on how to specify character sets. Specifically, it covers how to specify the
following:

• The default character set for a database
• A character set for a table column
• The character set for a client attachment
• The collation order for a column
• The collation order in comparisons
• The collation order for ORDER BY and GROUP BY clauses

2.1. Default Character Set for a Database
A database’s default character set designation specifies the character set the server uses to tag CHAR, VAR-
CHAR, and text Blob columns in the database when no other character set information is provided. When
data is stored in such columns without additional character set information, the server uses the tag to
determine how to store and transliterate that data. A default character set should always be specified for
a database when it is created with CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE DATABASE. For example,
the following statement creates a database that uses the ISO8859_1 character set:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;

IMPORTANT

If you do not specify a character set, the character set defaults to NONE. Using character set NONE means that there is
no character set assumption for columns; data is stored and retrieved just as you originally entered it. You can load any
character set into a column defined with NONE, but you cannot later move that data into another column that has been
defined with a different character set. In this case, no transliteration is performed between the source and destination
character sets, and errors may occur during assignment.

For the complete syntax of CREATE DATABASE, see CREATE DATABASE.

2.2. Character Set for a Column in a Table
Character sets for individual columns in a table can be specified as part of the column’s CHAR or VARCHAR
data type definition. When a character set is defined at the column level, it overrides the default character
set declared for the database. For example, the following isql statements create a database with a default
character set of ISO8859_1, then create a table where two column definitions include a different character
set specification:

CREATE DATABASE 'europe.ib' DEFAULT CHARACTER SET ISO8859_1;
CREATE TABLE RUS_NAME(
LNAME VARCHAR(30) NOT NULL CHARACTER SET CYRL,
FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,

Embarcadero Technologies 273

Character Sets and Collation Orders

);

For the complete syntax of CREATE TABLE, see CREATE TABLE.

2.3. Character Set for a Client Attachment
When a client application, such as isql, connects to a database, it may have its own character set require-
ments. The server providing database access to the client does not know about these requirements unless
the client specifies them. The client application specifies its character set requirement using the SET NAMES
statement before it connects to the database.

SET NAMES specifies the character set the server should use when translating data from the database to
the client application. Similarly, when the client sends data to the database, the server translates the data
from the client’s character set to the database’s default character set (or the character set for an individual
column if it differs from the database’s default character set).

For example, the following isql command specifies that isql is using the DOS437 character set. The next
command connects to the europe database created above, in Specifying a Character Set for a Column
in a Table:

SET NAMES DOS437;
CONNECT 'europe.ib' USER 'JAMES' PASSWORD 'U4EEAH';

For the complete syntax of SET NAMES, see SET NAMES (Reference). For the complete syntax of CONNECT,
see CONNECT.

2.4. Collation Order for a Column
When a CHAR or VARCHAR column is created for a table, either with CREATE TABLE or ALTER TABLE, the collation
order for the column can be specified using the COLLATE clause. COLLATE is especially useful for character
sets such as ISO8859_1 or DOS437 that support many different collation orders.

For example, the following isql ALTER TABLE statement adds a new column to a table, and specifies both
a character set and a collation order:

ALTER TABLE 'FR_CA_EMP'
ADD ADDRESS VARCHAR(40) CHARACTER SET ISO8859_1 NOT NULL
COLLATE FR_CA;

For the complete syntax of ALTER TABLE, see ALTER TABLE.

2.5. Collation Order in Comparison
When CHAR or VARCHAR values are compared in a WHERE clause, it can be necessary to specify a collation
order for the comparisons if the values being compared use different collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE clause after the
value. For example, in the following WHERE clause fragment from an embedded application, the value to
the left of the comparison operator is forced to be compared using a specific collation:

Embarcadero Technologies 274

http://docwiki.embarcadero.com/InterBase/2017/en/Specifying_Defaults#Specifying_a_Character_Set_for_a_Column_in_a_Table
http://docwiki.embarcadero.com/InterBase/2017/en/Specifying_Defaults#Specifying_a_Character_Set_for_a_Column_in_a_Table

Character Sets and Collation Orders

WHERE LNAME COLLATE FR_CA = :lname_search;

For the complete syntax of the WHERE clause, see SELECT.

2.6. Collation Order in ORDER BY
When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary to specify a collation
order for the ordering, especially if columns used for ordering use different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause, include a COLLATE clause
after the column name. For example, in the following ORDER BY clause, the collation order for two columns
is specified:

. . .
ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see SELECT.

2.7. Collation Order in a GROUP BY clause
When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary to specify a collation
order for the grouping, especially if columns used for grouping use different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause, include a COLLATE clause
after the column name. For example, in the following GROUP BY clause, the collation order for two columns
is specified:

. . .
GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see SELECT.

Embarcadero Technologies 275

	Language Reference Guide
	Table of Contents
	Language Reference Guide
	1. Using the InterBase Language Reference
	1.1. Who Should Use this Book

	SQL Statement and Function Reference
	1. SQL Flavors
	2. SQL Dialects
	3. Database Object Naming Conventions
	4. Statement List
	5. Function List
	6. Data Types
	7. Exact Numerics
	7.1. Addition and Subtraction
	7.2. Multiplication
	7.3. Division

	8. Error Handling
	9. Statement and Function Reference
	9.1. ALTER DATABASE
	9.2. ALTER DESCRIPTION
	9.2.1. Use
	9.2.2. ISQL extract

	9.3. ALTER DOMAIN
	9.4. ALTER EXCEPTION
	9.5. ALTER INDEX
	9.6. ALTER PROCEDURE
	9.7. ALTER TABLE
	9.8. ALTER TRIGGER
	9.9. ALTER USER
	9.10. AVG()
	9.11. BASED ON
	9.12. BEGIN DECLARE SECTION
	9.13. CASE
	9.14. CAST()
	9.15. CLOSE
	9.16. CLOSE (BLOB)
	9.17. COALESCE()
	9.18. COMMIT
	9.19. CONNECT
	9.20. COUNT()
	9.21. CREATE DATABASE
	9.22. CREATE DOMAIN
	9.23. CREATE ENCRYPTION
	9.24. CREATE EXCEPTION
	9.25. CREATE GENERATOR
	9.26. CREATE INDEX
	9.27. CREATE JOURNAL
	9.28. CREATE JOURNAL ARCHIVE
	9.28.1. Journal Archive Management

	9.29. CREATE PROCEDURE
	9.30. CREATE ROLE
	9.31. CREATE SHADOW
	9.32. CREATE SUBSCRIPTION
	9.33. CREATE TABLE
	9.34. CREATE TRIGGER
	9.35. CREATE USER
	9.36. CREATE VIEW
	9.37. DECLARE CURSOR
	9.38. DECLARE CURSOR (BLOB)
	9.39. DECLARE EXTERNAL FUNCTION
	9.40. DECLARE FILTER
	9.41. DECLARE STATEMENT
	9.42. DECLARE TABLE
	9.43. DELETE
	9.44. DESCRIBE
	9.45. DISCONNECT
	9.46. DROP DATABASE
	9.47. DROP DOMAIN
	9.48. DROP ENCRYPTION
	9.49. DROP EXCEPTION
	9.50. DROP EXTERNAL FUNCTION
	9.51. DROP FILTER
	9.52. DROP GENERATOR
	9.53. DROP INDEX
	9.54. DROP JOURNAL
	9.55. DROP JOURNAL ARCHIVE
	9.56. DROP PROCEDURE
	9.57. DROP ROLE
	9.58. DROP SHADOW
	9.59. DROP SUBSCRIPTION
	9.60. DROP TABLE
	9.61. DROP TRIGGER
	9.62. DROP USER
	9.63. DROP VIEW
	9.64. END DECLARE SECTION
	9.65. EVENT INIT
	9.66. EVENT WAIT
	9.67. EXECUTE
	9.68. EXECUTE IMMEDIATE
	9.69. EXECUTE PROCEDURE
	9.70. EXTRACT()
	9.71. FETCH
	9.72. FETCH (BLOB)
	9.73. GEN ID()
	9.74. GRANT
	9.75. GRANT SUBSCRIBE
	9.76. GRANT TEMPORARY SUBSCRIBE
	9.77. INSERT
	9.78. INSERT CURSOR (BLOB)
	9.79. MAX()
	9.80. MIN()
	9.81. NULLIF()
	9.82. OPEN
	9.83. OPEN (BLOB)
	9.84. PREPARE
	9.85. RELEASE SAVEPOINT
	9.86. REVOKE
	9.87. ROLLBACK
	9.88. SAVEPOINT
	9.89. SELECT
	9.89.1. Syntax
	9.89.2. Description
	9.89.2.1. Derived Tables (SELECT FROM SELECT)
	9.89.2.2. Additional Notes on SELECT
	9.89.2.3. Examples

	9.90. SET DATABASE
	9.91. SET GENERATOR
	9.92. SET NAMES
	9.93. SET SQL DIALECT
	9.94. SET STATISTICS
	9.95. SET SUBSCRIPTION
	9.96. SET TRANSACTION
	9.96.1. Exclusive Isolation Level
	9.96.2. Wait time

	9.97. SHOW SQL DIALECT
	9.98. SHOW SUBSCRIPTION
	9.99. SUM()
	9.100. TRUNCATE TABLE
	9.100.1. Truncate Table syntax
	9.100.2. Truncate Table privilege
	9.100.3. Truncate Table operation
	9.100.4. Truncate Table errors
	9.100.5. Truncate Table effect on Change Views
	9.100.6. Truncate Table examples
	9.100.7. Truncate Table Tutorial

	9.101. UPDATE
	9.102. UPPER()
	9.103. WHENEVER
	9.104. RECONNECT

	Procedures and Triggers
	1. Creating Triggers and Stored Procedures
	2. Statement Types Not Supported
	3. Nomenclature Conventions
	4. Assignment Statement
	5. BEGIN … END
	6. Comment
	7. DECLARE VARIABLE
	8. EXCEPTION
	9. EXECUTE PROCEDURE
	10. EXECUTE STATEMENT
	10.1. No Rows or Data Returned
	10.2. One Row of Data Returned
	10.3. Any Number of Data Rows Returned
	10.4. Requirements and Constraints

	11. FOR SELECT…DO
	12. IF…THEN … ELSE
	13. Input Parameters
	14. NEW Context Variables
	15. OLD Context Variables
	16. Output Parameters
	17. POST EVENT
	18. SELECT
	19. SUSPEND
	20. WHEN … DO
	20.1. Handling Exceptions
	20.2. Handling SQL Errors
	20.3. Handling InterBase Error Codes

	21. WHILE … DO

	Keywords
	1. InterBase Keywords

	Error Codes and Messages
	1. Error Sources
	2. Error Reporting and Handling
	2.1. Trapping Errors with WHENEVER
	2.2. Checking SQLCODE Value Directly
	2.3. InterBase Status Array
	2.3.1. Access to Status Array Messages
	2.3.2. Responding to Error Codes

	2.4. For More Information

	3. SQLCODE Error Codes and Messages
	3.1. SQLCODE Error Messages Summary
	3.2. SQLCODE Codes and Messages

	4. InterBase Status Array Error Codes

	System Tables, Temporary Tables, and Views
	1. Overview of System Tables, Temporary Tables, and Views
	2. System Tables
	2.1. RDB$CHARACTER SETS
	2.2. RDB$JOURNAL ARCHIVES
	2.3. RDB$CHECK CONSTRAINTS
	2.4. RDB$COLLATIONS
	2.5. RDB$PAGES
	2.6. RDB$DATABASE
	2.7. RDB$PROCEDURE PARAMETERS
	2.8. RDB$DEPENDENCIES
	2.9. RDB$PROCEDURES
	2.10. RDB$ENCRYPTIONS
	2.11. RDB$REF CONSTRAINTS
	2.12. RDB$EXCEPTIONS
	2.13. RDB$RELATION CONSTRAINTS
	2.14. RDB$FIELD DIMENSIONS
	2.15. RDB$RELATION FIELDS
	2.16. RDB$FIELDS
	2.17. RDB$RELATIONS
	2.18. RDB$FILES
	2.19. RDB$ROLES
	2.20. RDB$FILTERS
	2.21. RDB$SECURITY CLASSES
	2.22. RDB$FORMATS
	2.23. RDB$TRANSACTIONS
	2.24. RDB$FUNCTION ARGUMENTS
	2.25. RDB$TRIGGER MESSAGES
	2.26. RDB$FUNCTIONS
	2.27. RDB$TRIGGERS
	2.28. RDB$GENERATORS
	2.29. RDB$TYPES
	2.30. RDB$INDEX SEGMENTS
	2.31. RDB$USER PRIVILEGES
	2.32. RDB$INDICES
	2.33. RDB$USERS
	2.34. RDB$VIEW RELATIONS
	2.35. RDB$SUBSCRIBERS
	2.36. RDB$SUBSCRIPTIONS

	3. System Temporary Tables
	3.1. TMP$ATTACHMENTS
	3.2. TMP$DATABASE
	3.3. TMP$HEAPS
	3.4. TMP$POOL BLOCKS
	3.5. TMP$POOLS
	3.6. TMP$PROCEDURES
	3.7. TMP$RELATIONS
	3.8. TMP$STATEMENTS
	3.9. TMP$TRANSACTIONS
	3.10. TMP$TRIGGERS
	3.11. TMP$INDICES

	4. System Views
	4.1. CHECK CONSTRAINTS
	4.2. CONSTRAINTS COLUMN USAGE
	4.3. REFERENTIAL CONSTRAINTS
	4.4. TABLE CONSTRAINTS

	5. Change Views
	5.1. Using Change Views
	5.2. Creating Subscriptions to Change Views
	5.3. Statement Execution
	5.4. Change View API Support
	5.5. Change View SQL Language Support
	5.6. Metadata Support

	Character Sets and Collation Orders
	1. InterBase Character Sets and Collation Orders
	1.1. Character Set Storage Requirements
	1.2. Support for Paradox and dBASE
	1.2.1. Character Sets for DOS (Support for Paradox and dBASE)
	1.2.2. Character Sets for Microsoft Windows (Support for Paradox and dBASE)

	1.3. Additional Character Sets and Collations

	2. Specifying Character Sets
	2.1. Default Character Set for a Database
	2.2. Character Set for a Column in a Table
	2.3. Character Set for a Client Attachment
	2.4. Collation Order for a Column
	2.5. Collation Order in Comparison
	2.6. Collation Order in ORDER BY
	2.7. Collation Order in a GROUP BY clause

