(®Ambarcadero

Product Documentation

InterBase 2020
Update 1

Language Reference Guide

© 2020 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other
Embarcadero Technologies product or service names are trademarks or registered trademarks of Embar-
cadero Technologies, Inc. All other trademarks are property of their respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application developers.
Embarcadero enables developers to design systems right, build them faster and run them better, regard-
less of their platform or programming language. Ninety of the Fortune 100 and an active community of
more than three million users worldwide rely on Embarcadero products to increase productivity, reduce
costs and accelerate innovation. The company's flagship tools include: Embarcadero® RAD Studio™, Del-
phi®, C++Builder®, JBuilder®, and the loT Award winning InterBase®. Founded in 1993, Embarcadero
is headquartered in Austin, with offices located around the world. Embarcadero is online at www.embar-
cadero.com.

April, 2020

http://www.embarcadero.com
http://www.embarcadero.com

Table of Contents

TABLE OF CONTENTS

LANGUAGE REFERENCE GUIDE

1. Using the InterBase Language Refer-
EINCE ettt
1.1. Who Should Use this Book

SQL STATEMENT AND FUNCTION REFER-
[[TN

1. SQL Flavorsccoooveeeeeeeeeeeceeeeeeeeee
2. SQL Dialectsooovvveeiiiiiiciicieeeeeeeeee
3. Database Object Naming Conven-
L4[0] o SRR
4. Statement Listooovviiviiiiiiieee
5. Function List ...coooiviiiiiiiiiieeeeee e
6. Data TYPesS ..cocooieieeieeeeeeee
7. Exact NUMENICS ...oooveeviiiiiiicieeeee e
7.1. Addition and Subtraction
7.2. Multiplication ..o,
7.3, DIVISION oo
8. Error Handlingcccccvvveieiiieeeeeee,
9. Statement and Function Reference
9.1. ALTER DATABASE ...
9.2. ALTER DESCRIPTION ..o
9.3. ALTER DOMAIN ...
9.4. ALTER EXCEPTION ...
9.5 ALTER INDEX ..o
9.6. ALTER PROCEDURE ...
9.7. ALTER TABLE ..o,

9.8. ALTER TRIGGERcoooiiii, 24
9.9 ALTER USER ..o 25

9.70. AVG() wvoiieiiie e

9.1 BASED ON oo 27
9.12. BEGIN DECLARE SECTIONccoooe 28

9.3, CASE
9714, CAST() wovoiieiieeee e
9.15. CLOSE oo,
9.16. CLOSE (BLOB) ..o,
9.17. COALESCE() i

9.18. COMMIT Lo 32
9.19. CONNECT .o 33

9.20. COUNT() oo,

9.21. CREATE DATABASE ... 36
9.22. CREATE DOMAIN ..o 39
9.23. CREATE ENCRYPTIONccooviiiiiin 42
9.24. CREATE EXCEPTION ..o 43
9.25. CREATE GENERATOR ..o 44
9.26. CREATE INDEX ..o 44
9.27. CREATE JOURNAL ..o 45

9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.
9.75.
9.76.
9.77.
9.78.
9.79.

CREATE JOURNAL ARCHIVE 47
CREATE PROCEDURE ..o, 49
CREATE ROLE ..o, 54
CREATE SHADOW ..o, 54
CREATE SUBSCRIPTION ..o 56
CREATE TABLE ..o, 57
CREATE TRIGGER ..o 65
CREATE USER ..o 70
CREATE VIEW ..o, 71
DECLARE CURSOR ..o 73
DECLARE CURSOR (BLOB)c....... 75
DECLARE EXTERNAL FUNCTION 75
DECLARE FILTER oo, 77
DECLARE STATEMENT ... 78
DECLARE TABLE ..o, 79
DELETE oo 79
DESCRIBE ..o 81
DISCONNECT ..o, 82
DROP DATABASE ..o, 83
DROP DOMAIN ..o, 83
DROP ENCRYPTION ..o, 84
DROP EXCEPTION ..o 85
DROP EXTERNAL FUNCTION 85
DROP FILTER oo, 86
DROP GENERATORccoiviiiiiie, 86
DROP INDEX ..o 87
DROP JOURNAL ..o 87
DROP JOURNAL ARCHIVE 87
DROP PROCEDUREcccooviiiin 88
DROP ROLE ..o 88
DROP SHADOWcccciviiiiiiiin, 89
DROP SUBSCRIPTION ..o, 89
DROP TABLE ..o 89
DROP TRIGGER ..o 90
DROP USER ..., 91
DROP VIEW ..o 91
END DECLARE SECTIONccooovein, 91
EVENT INIT Lo 92
EVENT WAIT 92
EXECUTE Lo 93
EXECUTE IMMEDIATE ..o 94
EXECUTE PROCEDUREccoccovenie. 95
EXTRACT() oo 96
FETCH o 97
FETCH (BLOB) oo 98
GENID() oo, 99
GRANT o 99
GRANT SUBSCRIBE ..., 102
GRANT TEMPORARY SUBSCRIBE 103
INSERT oo 104
INSERT CURSOR (BLOB) ..coveveiin 106
MAX() oo 106

Table of Contents

9.80. MIN() oo 107 20. WHEN ... DO ..o, 162
9.81 NULLIF() wovoiiiiieiieee 108 20.1. Handling Exceptions 162
9.82. OPEN ..o 108 20.2. Handling SQL Errors ... 163
9.83. OPEN (BLOB) ..coviooiioiiiiiei 109 20.3. Handling InterBase Error Codes 163
9.84. PREPARE ... 109 21T WHILE ... DO ..o 163
9.85. RELEASE SAVEPOINT ..o 11
9.86. REVOKE ..o oooooooooo 111 KEYWORDS 165
9.87. ROLLBACK ..o 113
988 SAVEPOINT .. 14 1. InterBase Keywordsccccoceviveeninene. 165
9.89. SELECT o 14
9.90 SET DATABASE . 1 ERROR CODES AND MESSAGES 170
9.91. SET GENERATOR ... 123 T. ErrOr SOUICES ...oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 170
9.92. SET NAMES ..o 124 2. Error Reporting and Handling 170
993 SET SQL DlALECT 125 2’] Trapplng Errors Wlth WHENE\/ER ’]70
9.94. SET STATISTICS 125 2.2. Checking SQLCODE Value Directly 171
9.95. SET SUBSCRIPTION ..., 126 2.3. InterBase Status Array ... 171
9.96. SET TRANSACTION ..., 127 2.4. For More Information ... 172
997 SHOW SQL D|A|_ECT 4444444444444444444444444 131 3 SQLCODE Error Codes and Mes_
9.98. SHOW SUBSCRIPTION ... 132 SAGES .o 172
999 SUM() .. 133 3'] SQLCODE Error Messages Summa_
9.100. TRUNCATE TABLE ... 133y 173
9901 UPDATE oo 141 3.2. SQLCODE Codes and Messages 173
9.102. UPPER() 44 143 4. InterBase Status Array Error Codes 183
9.103. WHENEVER ... 143
9.104. RECONNECT ..o 144 SYSTEM TABLES, TEMPORARY TABLES,
AND VIEWSeeeiereeecceenneeeccessseccssessnes 195
PROCEDURES AND TRIGGERS 146
1. Overview of System Tables, Temporary
1. Creating Triggers and Stored Proce- Tables, and VIEWS ...o.oeveeeeeeeeeeeeeeeeeeeeeeean 195
(o [0 LTS 146 2. System Tables oo 195
2. Statement Types Not Supported 146 2.1. RDB$CHARACTER SETS oo 197
3. Nomenclature Conventions 147 2.2. RDB$JOURNAL ARCHIVES ..o 198
4. Assighment Statement ... 147 2.3. RDB$CHECK CONSTRAINTS oo 199
5. BEGIN ... END oo 148 2.4. RDB$COLLATIONS oo, 200
0. COMMENT oo eeeeeeee e 149 2.5. RDBSPAGES oo 201
7. DECLARE VARIABLEooiiiriiiiriiinne. 151 2.6. RDBSDATABASE oo 202
8. EXCEPT'ON ... 152 27 RDB$PROCEDURE PARAMETERS 203
9. EXECUTE PROCEDURE 152 28 RDB$DEPENDENC|ES 204
10. EXECUTE STATEMENT ..oooviiieieee. 153 29. RDB$PROCEDURES 206
101 NO ROWS or Data Returﬂed 154 2/]0 RDB$ENCRYPT|ONS 207
102 Oﬂe ROW Of Data Returﬂed 154 2/]/] . RDB$REF CONSTRA'NTS ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 209
103 Aﬂy Numbel’ Of Data ROWS Re_ 2/]2 RDB$EXCEPT|ONS ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 210
turned ‘‘‘‘‘ SRR SRR 154 2/]3 RDB$RELAT|ON CONSTRA'NTS 2/]/]
10.4. Requirements and Constraints 155 214. RDBSFIELD DIMENSIONS o1
11. FOR SELECT..DO ..o 155 e BRDEDEl AN Elol ~e T
2.15. RDB$RELATION FIELDS ..o 213
12. IF.THEN ... ELSE ..ooeeeeeeeeeeeeeee 156
13, Input Parameters 156 2.16. RDBSFIELDS oo 215
14. NEW Context Variables ... ™ 157 217. RDBSRELATIONS .o, 218
) 218 RDBSFILES oo 221
15. OLD Context Variablescccoeevuueenn. 158
219 RDBSROLES oo, 222
16. Output Parameterscoceevvvenennnne. 158
17. POST EVENT 159 2.20. RDBSFILTERS ..o, 223
18. SELECT .. 159 2.21. RDB$SECURITY CLASSES ..o 224
19, SUSPEND oo 160 2.22. RDBSFORMATS i 225

Table of Contents

2.23. RDBSTRANSACTIONS ... 226 2.1. Default Character Set for a
2.24. RDB$FUNCTION ARGUMENTS 227 Database ..o 273
2.25. RDB$TRIGGER MESSAGES 228 2.2. Character Set for a Columnin a Ta-
2.26. RDB$FUNCTIONS ..o 229 DIE 273
2.27. RDBSTRIGGERS ..., 230 2.3. Character Set for a Client Attach-
2.28. RDB$GENERATORS ..o 232 MENT oo 274
2.29. RDBSTYPES .o 233 2.4. Collation Order for a Column 274
2.30. RDB$INDEX SEGMENTS 234 2.5. Collation Order in Comparison 274
2.31. RDB$USER PRIVILEGES 235 2.6. Collation Order in ORDER BY 275
2.32. RDBSINDICES ..o 236 2.7. Collation Order in a GROUP BY
2.33. RDBSUSERS ..o 237 Clause .o 275
2.34. RDB$VIEW RELATIONSc.c........ 238
2.35. RDB$SUBSCRIBERSooooviee, 239
2.36. RDB$SUBSCRIPTIONSooovovv 240

3. System Temporary Tables 241
3.1 TMPSATTACHMENTS ..., 242
3.2. TMPSDATABASE ..o 244
3.3. TMPSHEAPS oo 247
3.4. TMP$POOL BLOCKS ..o, 248
3.5. TMP$POOLS ..o 250
3.6. TMP$PROCEDURES ... 257
3.7. TMPSRELATIONS ..., 253
3.8. TMPSSTATEMENTS ..o, 255
3.9. TMP$TRANSACTIONS ..o, 256
3.10. TMPSTRIGGERS ..o 258
311 TMPSINDICES o, 260

4. System VIEWSccovevvvieirieieieieeienen 262
4.1. CHECK CONSTRAINTS ..., 263
4.2. CONSTRAINTS COLUMN USAGE 263
4.3. REFERENTIAL CONSTRAINTS 264
4.4. TABLE CONSTRAINTS ..o, 264

5. Change Viewsccccoeiiennineneineenne 264
5.1. Using Change Viewsccccccooveian. 264
5.2. Creating Subscriptions to Change
VIBWS oo 265
5.3. Statement Execution ... 265
5.4. Change View API Support 265
5.5. Change View SQL Language Sup-
POIT i 265
5.6. Metadata SUPPOITc.ooooiiviiiiie 266

CHARACTER SETS AND COLLATION OR-

DERSoueriierinnninnnntcsnnnesnnsesssnssssssssssnnes 267

1. InterBase Character Sets and Collation

OFEIS oo 267
1.1. Character Set Storage Require-
MENTS Lo 271
1.2. Support for Paradox and dBASE 271
1.3. Additional Character Sets and Colla-
HONS oo 272

2. Specifying Character Setsc...ccccceenue. 273

Language Reference Guide

Language Reference Guide

This reference guide covers the InterBase elements.
For a listing of functions provided in the InterBase UDF library, see Working with UDFs and Blob Filters.

1. Using the InterBase Language Reference

The InterBase Language Reference details the syntax and semantics of SQL and Dynamic SQL (DSQL)
statements for embedded applications programming and for isql, the InterBase interactive SQL utility. It
also describes additional language and syntax that is specific to InterBase stored procedures and triggers.

1.1. Who Should Use this Book

The Language Reference assumes a general familiarity with SQL, data definition, data manipulation, and
programming practice. It is a syntax and usage resource for:
» Programmers writing embedded SQL and DSQL database applications.

« Programmers writing directly to the InterBase applications programming interface (API), who need
to know supported SQL syntax.

+ Database designers who create and maintain databases and tables with isgl.

* Users who perform queries and data manipulation operations through isgl.
For a listing of functions provided in the InterBase UDF library, see the "Working with UDFs and Blob
Filters” chapter in the Developer's Guide.

Embarcadero Technologies 1

http://docwiki.embarcadero.com/InterBase/2017/en/Working_with_UDFs_and_Blob_Filters
http://docwiki.embarcadero.com/InterBase/2017/en/Developer%27s_Guide

SQL Statement and Function Reference

SQL Statement and Function Reference

This chapter provides the syntax and usage for InterBase SQL language elements. It includes the following
topics:

« SQL variants and dialects

Database object naming conventions

Lists of SQL statements and functions

+ A description of each InterBase data type

* An introduction to using SQLCODE to handle errors
+ How to use statement and function definitions

* A reference entry for each SQL statement supported by InterBase

1. SQL Flavors

Although InterBase SQL follows the ISO/IEC 9075:1992 standard closely, there are small differences. Dif-
ferences also exist among the three major flavors of InterBase SQL: embedded SQL, dynamic SQL (DSQL),
and the procedure and trigger language.

Embedded SQL (ESQL)

The embedded form of SQL is used in programs written in traditional languages such as C and Pascal. A
preprocessor turns SQL statements into host language data structures and calls to the InterBase server.
The embedded language is written into the program; its statements cannot be generated dynamically.
Statements in embedded SQL are terminated with a semicolon.

Dynamic SQL (DSQL)

DSQL allows a program to create statements at run time. It can be used from conventional languages
through the InterBase API. More often, it is used from modern development environments such as Delphi,
which hide the nuts and bolts of the API. A completed DSQL statement is very much like the “embedded”
language, without the "EXEC SQL" and without the terminating semicolon.

Stored Procedure and Trigger Language

Triggers and stored procedures are written in a variant of the embedded language, extended to provide
flow control, conditional expressions, and error handling. Certain constructs, including all DDL (Data Defi-
nition Language) statements, are omitted. Within a trigger or stored procedure, statements are separated
by semicolons.

Interactive SQL (isql)

The interactive query language, isql, is very similar to DSQL, with some omissions (cursors, for example)
and a few additions (seT and sHow statements). Like embedded SQL, isql statements must be terminated
with a semicolon.

2. SQL Dialects

Starting with version 6, InterBase is closer to the ISO/IEC 9075:1992 standard than previous versions in
several ways. Some of those ways are incompatible with earlier implementations of SQL. In the current

Embarcadero Technologies 2

SQL Statement and Function Reference

InterBase, each client and database has a SQL dialect: an indicator that instructs an InterBase server how
to interpret transition features: those features whose meanings have changed between InterBase versions.
See the Migration appendix in the Operations Guide for information about using dialects and transition
features.

Dialects

« Dialect 1: transition features are interpreted as in InterBase version 5.6 and earlier.
« Dialect 2: diagnostic mode, where transition features are recognized and flagged with a warning.

« Dialect 3: transition features are interpreted as SQL-92 compliant.

Transition Features

+ Double quote (): changed from a synonym for the single quote (') to the delimiter for an object name.

* Large exact numerics: bEcIMAL and NUMERIC data types with precision greater than 9 are stored at INT64
instead Of DOUBLE PRECISION.

* DATE, TIME, and TIMESTAMP data types:

* DATE has changed from a 64-bit quantity containing both date and time information to a 32-bit quan-
tity containing only date information.

* TIME IS a 32-bit quantity containing only time information.

* TIMESTAMP is a 64-bit quantity containing both date and time information (same as pATE in InterBase
5 and older).

3. Database Object Naming Conventions

When an applications programmer or end user creates a database object or refers to it by name, case is
unimportant. The following limitations on naming database objects must be observed:
+ Start each name with an alphabetic character (A-Z or a—z).

* Restrict object names to 67 characters, including dollar signs ($), underscores (), 0 to 9, A to Z, and
a to z. Some objects, such as constraint names, are restricted to 27 bytes in length.

+ Keep object names unique. In all cases, objects of the same type—all tables, for example-must be
unique. In most cases, object names must also be unique within the database.

To use keywords, ASCII characters, case-sensitive strings, or spaces (except for trailing spaces) in an object
name, enclose the name in double quotes. It is then a delimited identifier. Delimited identifiers must always
be referenced in double quotes. In InterBase dialect 3, names enclosed in double quotes are case sensitive.
For example:

SELECT “CodAR” FROM MyTable

is different from:

SELECT “CODAR” FROM MyTable

This behavior conforms to ANSI SQL semantics for delimited identifiers.

Embarcadero Technologies 3

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

For more information about naming database objects with cREATE Or DECLARE Statements, see the Language

Reference Guide.

4. Statement List

This chapter describes the following SQL statements:

A

ALTER DATABASE
ALTER INDEX
ALTER TRIGGER

B

BASED ON

C

CASE

COALESCE()
CREATE DATABASE
CREATE EXCEPTION
CREATE JOURNAL
CREATE ROLE
CREATE TABLE
CREATE VIEW

D

DECLARE CURSOR
DECLARE FILTER
DELETE

DROP DATABASE
DROP EXCEPTION
DROP GENERATOR
DROP JOURNAL ARCHIVE
DROP SUBSCRIPTION*
DROP VIEW

E

END DECLARE SECTION
EXECUTE

F

FETCH

G

GRANT

I

INSERT

N

NULLIF()

ALTER DOMAIN
ALTER PROCEDURE
ALTER USER

BEGIN DECLARE SECTION

CLOSE

COMMIT

CREATE DOMAIN

CREATE GENERATOR
CREATE JOURNAL ARCHIVE
CREATE SHADOW

CREATE TRIGGER

DECLARE CURSOR (BLOB)
DECLARE STATEMENT
DESCRIBE

DROP DOMAIN

DROP EXTERNAL FUNCTION
DROP INDEX

DROP PROCEDURE

DROP SHADOW

DROP USER

EVENT INIT
EXECUTE IMMEDIATE

FETCH (BLOB)

GRANT SUBSCRIBE

INSERT CURSOR (BLOB)

ALTER EXCEPTION
ALTER TABLE

CLOSE (BLOB)
CONNECT

CREATE ENCRYPTION
CREATE INDEX

CREATE PROCEDURE
CREATE SUBSCRIPTION
CREATE USER

DECLARE EXTERNAL FUNCTION
DECLARE TABLE

DISCONNECT

DROP ENCRYPTION

DROP FILTER

DROP JOURNAL

DROP ROLE

DROP TRIGGER

EVENT WAIT
EXECUTE PROCEDURE

GRANT TEMPORARY SUBSCRIBE

Embarcadero Technologies

SQL Statement and Function Reference

(o)

OPEN OPEN (BLOB)

P

PREPARE

R

RELEASE SAVEPOINT REVOKE ROLLBACK

S

SAVEPOINT SELECT SET DATABASE
SET GENERATOR SET NAMES (Reference) SET SQL DIALECT
SET STATISTICS SET SUBSCRIPTION SET TRANSACTION
SHOW SQL DIALECT

T

Truncate Table

U

UPDATE

W

WHENEVER

* For more information about creating subscriptions, see the Change View chapter in the Data Definition
Guide.

5. Function List

The following table lists the SQL functions described in this chapter:

Function Type Purpose
AVG() Aggregate Calculates the average of a set of values.
CAST() Conversion Converts a column from one data type to another.
COUNT () Aggregate Returns the number of rows that satisfy a query’s search condition.
EXTRACT () Conversion Extracts date and time information from DATE, TIME, and TIMESTAMP values.
GEN_ID() Numeric Returns a system-generated value.
MAX () Aggregate Retrieves the maximum value from a set of values.
MIN() Aggregate Retrieves the minimum value from a set of values
SUM() Aggregate Totals the values in a set of numeric values.
UPPER() Conversion Converts a string to all uppercase.

Aggregate functions perform calculations over a series of values, such as the columns retrieved with a
SELECT Statement.

Conversion functions transform data types, either converting them from one type to another, or by chang-
ing the scale or precision of numeric values, or by converting cHARACTER data types to all uppercase.

The numeric function, Gen_1p(), produces a system-generated number that can be inserted into a column
requiring a numeric data type.

Embarcadero Technologies 5

SQL Statement and Function Reference

6. Data Types

InterBase supports most SQL data types, a dynamically sizable data type called a Blob, and arrays of
data types. It does not support arrays of Blobs. The following table lists the data types available to SQL
statements in InterBase:

Data types supported by InterBase

Name Size Range/Precision Description
BLOB Variable
* None
* Blob segment size is limited to 64K.
« Dynamically sizable data type for storing large data
such as graphics, text, and digitized voice.
* Basic structural unit is the segment.
« Blob subtype describes Blob contents.
BOOLEAN 16 bits
« TRUE
« FALSE
« UNKNOWN
« Represents truth values TRUE, FALSE, and UNKNOWN.
» Requires ODS 11 or higher, any dialect.
CHAR(<n>) <n> characters
« 1to 32,767 bytes
« Character set character size determines the maximum
number of characters that can fit in 32K.
- Fixed length CHAR or text string type
« Alternate keyword: CHARACTER
DATE 32 bits, signed1 1Jan 100 a.d. to 29 Feb 32768 a.d. ISC_DATE; stores
a date as a 32-bit
longword.
DECIMAL (<preci- |Variable .))
sion>, <scale>) (16, 32, or + <precision> = 1 to 18; specifies at least <precision>
64 bits) digits of precision to store. « Number with
+ <scale> = 1 to 18; specifies number of decimal places a decimal
for storage. point <scale>
o digits from
« Must be less than or equal to <precision>. the right
« Example:
DECIMAL(10,
3) holds num-
bers accu-
rately in the
following for-
mat: pppppp-
p.sss
DOUBLE PRECISION |64 bits? 2.225 x 10°% t0 1.797 x 10°%8 IEEE double preci-
sion: 15 digits
FLOAT 32 bits 1.175 x 10-38 to 3.402 x 10% IEEE single preci-

sion: 7 digits

Embarcadero Technologies

SQL Statement and Function Reference

Data types supported by InterBase

Name Size Range/Precision Description
INTEGER 32 bits -2,147,483,648 to 2,147,483,647 Signed long (long-
word)
NUMERIC (<preci- |Variable o . o
sion>, <scale>) « <precision> = 1 to 18; specifies exactly <precision>
(16, 32, or digits of precision to store.
64 bits) « <scale> = 1 to 18; specifies number of decimal places
for storage.
« Must be less than or equal to <precision>.
0 Number with a decimal point <scale> digits from
the right
0 Example: NUMERIC(10,3) holds numbers accurately
in the following format: ppppppp.>
SMALLINT 16 bits —-32,768 to 32,767 Signed short
(word)
TIME 32 bits, un- 0:00 AM to 23:59.9999 PM ISC_TIME
sighed
TIMESTAMP 64 bits 1Jan 100 a.d. to 29 Feb 32768 a.d. Also includes time

information.

VARCHAR (<n>)

<n> characters

« 1to 32,765 bytes

« Character set character size determines the maximum
number of characters that can fit in 32K.

0 Variable length CHAR or text string type

O Alternate keywords: CHAR VARYING, CHARACTER
VARYING

1. InterBase version 5 had a pATE data type that was 64 bits long and included both the date and time.
InterBase version 6 and later recognizes that type if you have specified dialect 1; in dialect 3, that
type is called TIMESTAMP.

2. Actual size of pousLE is platform-dependent. Most platforms support the 64-bit size.

/. Exact Numerics

All NnumerIc and pecIMAL data types are stored as exact numerics: 16, 32, or 64 bits, depending on the
precision. NuMERIC and DECIMAL data types with precision greater than 9 are referred to as large exact

NUMeErics.

« If one operand is an approximate numeric, the result of any dyadic operation (addition, subtraction,
multiplication, division) is DOUBLE PRECISION.

 Any value that can be stored in a becIMAL (18,5) can also be specified as the default value for a column

or a domain.

7.1. Addition and Subtraction

If both operands are exact numeric, adding or subtracting the operands produces an exact numeric with
a precision of 18 and a scale equal to the larger of the two. For example:

Embarcadero Technologies

SQL Statement and Function Reference

CREATE TABLE tl1 (nl NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

The following query returns the integer 135.243. The largest scale of the two operands is 3; therefore, the
scale of the sumis 3.

SELECT nl1 + n2 FROM t1;

Similarly, the following query returns the integer -111.003:

SELECT nl1 - n2 FROM t1;

If either of the operands is approximate numeric (FLOAT, REAL, Or DOUBLE PRECISION), the result is DOUBLE
PRECISION.

/7.2. Multiplication

If both operands are exact numeric, multiplying the operands produces an exact numeric with a precision
of 18 and a scale equal to the sum of the scales of the operands. For example:

CREATE TABLE t1 (nl NUMERIC(16,2), n2 NUMERIC(16,3));
INSERT INTO t1 VALUES (12.12, 123.123);
COMMIT;

The following query returns the integer 1492.25076 because n1 has a scale of 2 and n2 has a scale of 3.
the sum of the scales is 5.

SELECT nlx*n2 FROM t1

If one of the operands is approximate numeric (FLOAT, REAL, Or DOUBLE PRECISION), the result is DOUBLE
PRECISION.

/.3. Division

If both operands are exact numeric, dividing the operands produces an exact numeric with a precision of
18 and a scale equal to the sum of the scales of the operands. If at least one operand of a division operator
has an approximate numeric type (FLOAT, REAL, OF DOUBLE PRECISION), the resultis DOUBLE PRECISION.

For example, in the following table, division operations produce a variety of results:

CREATE TABLE t1 (i1 INTEGER), +i2 INTEGER, nl NUMERIC(16,2)
n2 NUMERIC(16,2));

INSERT INTO t1 VALUES (1, 3, 1.00, 3.00);

COMMIT;

The following query returns the integer O because each operand has a scale of 0, so the sum of the scales
is O

Embarcadero Technologies 8

SQL Statement and Function Reference

SELECT 1l1l/i2 FROM t1

The following query returns the NuMeERIC(18,2) value 0.33, because the sum of the scales O (operand 1)
and 2 (operand 2) is 2:

SELECT 1il1/n2 FROM t1

The following query returns the NuMERIC(18,4) value 0.3333, because the sum of the two operand scales
is 4:

SELECT nl/n2 FROM t1

In InterBase 5 and earlier, any of the above division operations would have returned the pouBLE PRECISION
value 0.3333333333333333.

8. Error Handling

Every time an executable SQL statement is executed, the SQLCODE variable is set to indicate its success
or failure. No SQLCODE is generated for declarative statements that are not executed, such as DECLARE
CURSOR, DECLARE TABLE, and DECLARE STATEMENT.

The following table lists values that are returned to SQLCODE:

SQLCODE and message summary
SQLCODE Message Meaning
<0 SQLERROR Error occurred; statement did not execute
0 SUCCESS Successful execution
+1-99 SQLWARNING | System warning or informational message
+100 NOT FOUND No qhuz;Iifying rows found, or end of current active set of rows
reache

When an error occurs in isql, InterBase displays an error message.

In embedded applications, the programmer must provide error handling by checking the value of SQL-
CODE.

To check SQLCODE, use one or a combination of the following approaches:

« Test for SQLCODE values with the wHENEVER Sstatement.
+ Check SQLCODE directly.

* Use the isc_print_sqlerror() routine to display specific error messages.

For more information about error handling, see the Embedded SQL Guide.

9. Statement and Function Reference

The following is the reference of SQL statements and functions available in InterBase.

Embarcadero Technologies 9

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

Each statement and function definition includes the following elements:

Element Description
Title Statement name
Definition The main purpose and availability of the statement
Syntax Diagram of the statement and its parameters
Argument Parameters available for use with the statement
Description Information about using the statement
Examples Examples of using the statement in a program and in isql
See also Where to find more information about the statement or others related to it

Most statements can be used in SQL, DSQL, and isqtl. In many cases, the syntax is nearly identical, except
that embedded SQL statements must always be preceded by the EXECSQL keywords. EXECSQL is omitted
from syntax statements for clarity.

In other cases there are small, but significant differences among SQL, DSQL, and 1isql syntax. In these
cases, separate syntax statements appear under the statement heading.

9.1. ALTER DATABASE

Changes the characteristics of the current database. Available in gpre, DSQL, and 1isql, but not in the
trigger or stored procedure language.

ALTER {DATABASE | SCHEMA}

{ADD <add_clause> | DROP <drop_clause> | ENCRYPT <key_name> | DECRYPT
<key_name> | SET <set_clause>};
<add_clause> = FILE 'filespec' [fileinfo] [add_clause] | ADMIN OPTION

fileinfo = LENGTH [=] INT [PAGE[S]]
| STARTING [AT [PAGE]] INT [fileinfo]

<drop_clause> = ADMIN OPTION

<key_name> = ENCRYPT <|> DECRYPT

<set_clause> = {FLUSH INTERVAL <number> | NO FLUSH INTERVAL | GROUP COMMIT
| NO GROUP COMMIT |

LINGER INTERVAL <number> | NO LINGER INTERVAL | PAGE CACHE <number> |
RECLAIM INTERVAL <number> | NO RECLAIM INTERVAL | SYSTEM ENCRYPTION
PASSWORD <255-character_string> | NO SYSTEM ENCRYPTION PASSWORD} | PASSWORD

DIGEST '<digest_name>'}

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

SCHEMA Alternative keyword for DATABASE

Embarcadero Technologies 10

SQL Statement and Function Reference

Argument Description

ADD FILE '<filespec>' Adds one or more secondary files to receive database pages after the primary file is
filled; for a remote database, associate secondary files with the same node.

LENGTH[=]<int>[PAGE Specifies the range of pages for a secondary file by providing the number of pages in
[S]] each file.
STARTING [AT Specifies a range of pages for a secondary file by providing the starting page number.
[PAGE]]<int>
ADD ADMIN OPTION Enables embedded user authentication.
DROP ADMIN OPTION Disables embedded user authentication.
ENCRYPT <key_name> Uses the named encryption key to encrypt the database. Encrypting a database causes

all pages to be encrypted. Only the database owner can encrypt a database.

DECRYPT <key_name> Uses the named encryption key to decrypt the database. Decrypting a database causes
all pages to be decrypted and rewritten in plaintext. Only the database owner can de-
crypt a database.

SET FLUSH INTERVAL<number> |Enables database flush. The interval <number> is interpreted in units of seconds.

SET NO FLUSH INTERVAL Disables database flush.

SET GROUP COMMIT Allows transactions to be committed by a background cache writer thread.

SET NO GROUP COMMIT Disables group commit.

SET LINGER INTERVAL Allows a database to remain in memory after the last user detaches. Interval is seconds.
SET NO LINGER INTERBAL Disables database linger.

SET RECLAIM INTERVAL Reclaims the interval is in seconds. Determines how often the garbage collector thread

will run to release memory from unused procedures, triggers, and internal system
queries back to InterBase memory heap.

SET NO RECLAIM INTERVAL Disables memory reclamation.
SET SYSTEM ENCRYPTION Necessary to create encryption keys and perform encryption. InterBase uses a System
PASSWORD Encryption Password (SEP) to protect the encryption keys that are used to encrypt the

database and/or database columns. For more information about using InterBase en-
cryption, see "Encrypting Your Data” in the Data Definition Guide.

Note: Only the SYSDSO (Data Security Owner) can create this password.

SET NO SYSTEM ENCRYPTION Deletes the password if there are no existing encryption keys.
PASSWORD
Note: Only SYSDSO can delete a password.

SET PAGE CACHE Sets database page buffer cache limit. Also, tries to expand cache to that limit.

SET PASSWORD DIGEST '<di- |Sets the password hash function. The default value is 'DES-CRYPT'. See Implementing
gest_name>' Stronger Password Protection for more information.

Description: ALTER DATABASE adds secondary files to an existing database. Secondary files permit databas-
es to spread across storage devices, but they must remain on the same node as the primary database
file. A database can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges.

ALTER DATABASE requires exclusive access to the database.
InterBase dynamically expands the last file in a database as needed. The maximum size of the last file is
system-dependent. You should be aware that specifying a LENeTH for such files has no effect.

You cannot use ALTER DATABASE tO split an existing database file. For example, if your existing database is
80,000 pages long and you add a secondary file sTarTING AT 50000, InterBase starts the new database
file at page 80,001.

Embarcadero Technologies 11

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Implementing_Stronger_Password_Protection
http://docwiki.embarcadero.com/InterBase/2017/en/Implementing_Stronger_Password_Protection

SQL Statement and Function Reference

TIP

To split an existing database file into smaller files, back it up and restore it. When you restore a database, you are free
to specify secondary file sizes at will, without reference to the number and size of the original files.

Example: The following isgl statement adds two secondary files to an existing database. The command
creates a secondary database file called employee2.ib that is 10,000 pages long and another called employ-
ee3.ib. InterBase starts using employee2.1ib only when the primary file reaches 10,000 pages.

ALTER DATABASE

ADD FILE ‘'employee2.ib'

STARTING AT PAGE 10001 LENGTH 10000
ADD FILE 'employee3.ib';

9.2. ALTER DESCRIPTION

InterBase 2020 introduces support for modifying an entity's description in the database schema.
InterBase defines and stores each entity type in various database system tables. Many of the InterBase
system tables tracking various database entities, have a column/field called RDB$DESCRIPTION. The ALTER
DESCRIPTION Syntax allows an authenticated user to modify the description comment stored in this field
(as a text blob) for a specific database entity like a table, column, stored procedure etc. The description
value/state can also be reset to nuLL for any database entity.

In addition to the above, this feature also enables tracking in ODS version 18 databases, RDB$SDESCRIPTION
for Constraint, Role and Generator. Older ODS versions cannot track descriptions for these entity types.
This documentation describes support for modifying an entity's description in the database schema. Since
each database entity type is defined and stored in various database system tables by InterBase, the DDL
usage is not part of the SQL standard. Such data dictionary comments are often edited/stored along with
the database schema for database designers and developers to convey some meaningful information
about the entity to users of the database. Database tools can greatly benefit from a standard DDL syntax
they can use to apply various descriptions to document the user's database schema.

9.2.1. Use

Users of InterBase prior to this new DDL syntax being available would execute a UPDATE <system_table>
SET RDB$DESCRIPTION=<blob_text> WHERE <entity_name>=<user_entity>, for each entity type. This requires
the user to know the database system schema in detail for each entity type. The new DDL syntax takes
away this complexity, and provides a new ALTER DESCRIPTION FOR Syntax thatis standard across all database
entities supported by InterBase.

syntax:
ALTER DESCRIPTION FOR <object> SET {'sometext' | NULL}
<object> 388 DATABASE
| <basic-type> object_name
| COLUMN relation_name.field_name
| PARAMETER procedure_name.parameter_name
<basic-type> 388 CHARACTER SET | COLLATION | CONSTRAINT | DOMAIN |
ENCRYPTION

| EXCEPTION | EXTERNAL FUNCTION | FILTER
| GENERATOR | INDEX | PROCEDURE | ROLE
| SUBSCRIPTION | TABLE | TABLESPACE | TRIGGER

Embarcadero Technologies 12

SQL Statement and Function Reference

| USER | VIEW

Sample definitions with text:

/* Use ALTER DESCRIPTION command with description set to text x/

alter description for database set 'Database description sample';

alter description for exception customer_check set 'Exception msg: Checking
on customer sample';

alter description for filter desc_filter set 'Filter description sample';
alter description for 1dindex custnamex set 'Index description sample';

alter description for procedure add_emp_proj set 'Stored Procedure
description sample';

alter description for table employee set 'Table description sample';

alter description for table "MyTableDelim" set 'Table delimited -identifier
description sample';

alter description for trigger set_cust_no set 'Trigger description sample';
alter description for external function abs set 'UDF description sample';
alter description for user sysdso set 'User description sample';

alter description for subscription sub_ceo_multidevice set 'Subscription
description sample';

alter description for encryption backup_key set 'Encryption key description
sample';

alter description for role rolel set 'Role description sample';

alter description for generator emp_no_gen set 'Generator description
sample';

alter description for character set utf8 set 'character set description
sample';

alter description for collation en_us set 'collation description sample';
alter description for domain lastname set 'domain description sample';
alter description for view phone_list set 'view description sample';

alter description for parameter add_emp_proj.emp_no set 'procedure parameter
description sample';

alter description for column employee.last_name set 'column description
sample';

alter description for column "MyTableDelim".fl set 'delim table normal
column description sample';

alter description for column "MyTableDelim"."MyFieldDeliml" set 'delim table
delim column 1 description sample';

alter description for column "MyTableDelim"."My Field Delim 2" set 'delim
table delim column 2 description sample';

alter description for column phone_list.phone_ext set 'view column
description sample';

alter description for tablespace tspace_one set 'tablespace description
sample';

alter description for constraint CC_PK set 'Primary Key Constraint
description sample';

commit;

Sample definitions with NULL:

/* Use ALTER DESCRIPTION command with description set to NULL x/

Embarcadero Technologies 13

SQL Statement and Function Reference

alter description for database set NULL;

alter description for exception customer_check set NULL;

alter description for filter desc_filter set NULL;

alter description for 1index custnamex set NULL;

alter description for procedure add_emp_proj set NULL;

alter description for table employee set NULL;

alter description for table "MyTableDelim" set NULL;

alter description for trigger set_cust_no set NULL;

alter description for external function abs set NULL;

alter description for user sysdso set NULL;

alter description for subscription sub_ceo_multidevice set NULL;
alter description for encryption backup_key set NULL;

alter description for role rolel set NULL;

alter description for generator emp_no_gen set NULL;

alter description for character set utf8 set NULL;

alter description for collation en_us set NULL;

alter description for domain Tlastname set NULL;

alter description for view phone_list set NULL;

alter description for parameter add_emp_proj.emp_no set NULL;
alter description for column employee.last_name set NULL;

alter description for column "MyTableDelim".fl set NULL;

alter description for column "MyTableDelim"."MyFieldDeliml" set NULL;
alter description for column "MyTableDelim"."My Field Delim 2" set NULL;
alter description for column phone_list.phone_ext set NULL;
alter description for constraint CC_PK set NULL;

commit;

9.2.2. ISQL extract

ISQL command's "extract" function (-a) should generate ALTER DESCRIPTION lines for each basic-type en-
tity's description.

Requirements and Constraints

The ALTER DESCRIPTION syntax only works with InterBase 2020 and later versions.

For pre-existing (historic) entity types such as Constraints, Roles and Generators, descriptions can only be
tracked when using ODS version 18 or later databases.

Migration issues

The ANSI/SQL keyword coLLATION is now a reserved keyword in InterBase. Should you have the need to
define any database entities with the name "COLLATION", please delimit the name with double-quotes by
using a database with dialect version 3 or above. ALTER DESCRIPTION for Constraints, Roles and Generators
can only be set if you are using ODS version 18 or later.

9.3. ALTER DOMAIN

Changes a domain definition. Available in gpre, DSQL, and 4sql, but not in the stored procedure or
trigger language.

ALTER DOMAIN { name |

Embarcadero Technologies 14

SQL Statement and Function Reference

old_name TO new_name }

SET DEFAULT {literal | NULL | USER}

| DROP DEFAULT

| ADD [CONSTRAINT] CHECK (dom_search_condition)
| DROP CONSTRAINT

| new_col_name

| TYPE data_type;

dom_search_condition =

VALUE operator val

| VALUE [NOT] BETWEEN val AND val

| VALUE [NOT] LIKE val [ESCAPE val]

| VALUE [NOT] IN (val [, val ..])

| VALUE IS [NOT] NULL

| VALUE [NOT] CONTAINING val

| VALUE [NOT] STARTING [WITH] val

| (dom_search_condition)

| NOT dom_search_condition

| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator = {= | < | > | <= | >= | !< | > <> | 1=}

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,

and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument

Description

<name>

Represents the name of an existing domain.

SET DEFAULT

Specifies a default column value that is entered when no other entry is made. Values:

« <literal>—Inserts a specified string, numeric value, or date value.
* NULL—Enters a NULL value.

» USER—Enters the user name of the current user; the olumn must be of compati-
ble text type to use the default.

« Defaults set at the column level overrides defaults set at the domain level.

DROP DEFAULT

Drops an existing default.

ADD [CONSTRAINT] CHECK
<dom_search_condition>

Adds a CHECK constraint to the domain definition; a domain definition can include on-
ly one CHECK constraint.

DROP CONSTRAINT

Drops the CHECK constraint from the domain definition.

<new_col_name>

Changes the domain name.

TYPE <data_type>

Changes the domain data type.

Description: ALTER DOMAIN changes any aspect of an existing domain except its NoT NULL setting. Changes
made to a domain definition affect all column definitions based on the domain that have not been over-

ridden at the table level.

NOTE

To change the NOT NULL setting of a domain, drop the domain and recreate it with the desired combination of features.

Embarcadero Technologies

15

SQL Statement and Function Reference

The TYPE clause of ALTER pomMaIN does not allow you to make data type conversions that could lead to
data loss.

A domain can be altered by its creator, the SYSDBA user, and any users with operating system root priv-
ileges.

Example: The following isql statements create a domain that must have a value > 1,000, then alter it
by setting a default of 9,999:

CREATE DOMAIN CUSTNO

AS INTEGER

CHECK (VALUE > 1000);

ALTER DOMAIN CUSTNO SET DEFAULT 9999;

9.4. ALTER EXCEPTION

Changes the message associated with an existing exception. Available in DSQL and isgl, but not in the
embedded language or stored procedure and trigger language.

ALTER EXCEPTION name 'message'

Argument Description
<name> Name of an existing exception message
‘message’ Quoted string containing ASCII values

Description: ALTER EXCEPTION changes the text of an exception error message.

An exception can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges.

Example: This isql statement alters the message of an exception:

ALTER EXCEPTION CUSTOMER_CHECK 'Hold shipment for customer remittance.';

9.5. ALTER INDEX

Activates or deactivates an index. Available in embedded SQL, DSQL, and 4sqt, but not in the stored
procedure or trigger language.

ALTER INDEX <name> {ACTIVE | INACTIVE};

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Embarcadero Technologies 16

SQL Statement and Function Reference

Argument Description
name Name of an existing index.
ACTIVE Changes an INACTIVE index to an ACTIVE one.
INACTIVE Changes an ACTIVE index to an INACTIVE one.

Description: ALTER INDEx makes an inactive index available for use, or disables the use of an active index.
Deactivating an index is exactly like dropping it, except that the index definition remains in the database.
Activating an index creates a new index structure.

Before inserting, updating, or deleting a large number of rows, deactivate a table’s indexes to avoid altering
the index incrementally. When finished, reactivate the index. A reasonable metric is that if you intend to
add or delete more than 15% of the rows in a table, or update an indexed column in more than 10% of
the rows, you should consider deactivating and reactivating the index.

If an index is in use, ALTER INDEX does not take effect until the index is no longer in use.

ALTER INDEX fails and returns an error if the index is defined for a UNIQUE, PRIMARY KEY, Or FOREIGN KEY
constraint. To alter such an index, use prop INDEX tO delete the index, then recreate it with CREATE INDEX.

Anindex can be altered by its creator, the SYSDBA user, and any users with operating system root privileges.

NOTE

To add or drop index columns or keys, use DROP INDEX to delete the index, then recreate it with CREATE INDEX.

Example: The following isql statements deactivate and reactivate an index to rebuild it:

ALTER INDEX BUDGETX INACTIVE;
ALTER INDEX BUDGETX ACTIVE;

9.6. ALTER PROCEDURE

Changes the definition of an existing stored procedure. Available in DSQL and isgl but not in the embedded
language or in the stored procedures or triggers.

ALTER PROCEDURE'' ''<name> [(<param>'' ''data_type [,'' ''<param>''
''data_type ..]1)]
[RETURNS (<param>'' !''data_type [, <param> data_type ..])]

AS ''procedure_body''

Argument Description
<name> Name of an existing procedure.
<param data_type> Input parameters used by the procedure; legal data types are listed under CREATE
PROCEDURE.
RETURNS param data_type Output parameters used by the procedure; legal data types are listed under CREATE
PROCEDURE.
<procedure_body> The procedure body includes:
* Local variable declarations
+ A block of statements in procedure and trigger language

Embarcadero Technologies 17

SQL Statement and Function Reference

| ’ See CREATE PROCEDURE for a complete description.

Description: ALTER PROCEDURE Changes an existing stored procedure without affecting its dependencies.
It can modify the input parameters, output parameters, and body of a procedure.

The complete procedure header and body must be included in the ALTER PROCEDURE statement. The syntax
is exactly the same as CREATE PROCEDURE, except CREATE is replaced by ALTER.

IMPORTANT)

Be careful about changing the type, number, and order of input and output parameters to a procedure, because existing
application code may assume the procedure has its original format. Check for dependencies between procedures before
changing parameters. Should you change parameters and find that another procedure can neither be altered to accept

the new parameters or deleted, change the original procedure back to its original parameters, fix the calling procedure,
then change the called procedure.

A procedure can be altered by its creator, the SYSDBA user, and any users with operating system root
privileges. Procedures in use are not altered until they are no longer in use. ALTER PROCEDURE Cchanges take

effect when they are committed. Changes are then reflected in all applications that use the procedure
without recompiling or relinking.

Example: The following isgl statements alter the GET_EMP_PROJ procedure, changing the return param-
eter to have a data type Of VARCHAR(20):

ALTER PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID VARCHAR(20)) AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :emp_no

INTO :proj_id

DO

SUSPEND;

END;

9.7. ALTER TABLE

Changes a table by adding, dropping, or modifying columns or integrity constraints. Available in gpre,
DSQL, and isql.

IMPORTANT

To alter a global temporary table, see: "Altering a global temporary table" in the Data Definition Guide.

ALTER TABLE <table> operation [, operation ..];
operation = ADD col_def

ADD tconstraint

ALTER [COLUMN] column_name alt_col_clause
DROP col

DROP CONSTRAINT constraint

[ON COMMIT {PRESERVE | DELETE} ROWS [RESTRICT
CASCADE]] | [SET [NO] RESERVE SPACE]
alt_col_clause = TO new_col_name

Embarcadero Technologies 18

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

| TYPE new_col_data_type
| POSITION new_col_position

col_def = col {data_type | COMPUTED [BY] (expr) | domain}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]

[col_constraint]

[COLLATE collation]

data_type =

{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]

| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [array_dim]

| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE -int]
[CHARACTER SET charname]

| BLOB [(seglen [, subtypel)larray_dim = [[x:]y [, [x:]y .J]

| BOOLEAN

expr = A valid SQL expression that results in a single value.
col_constraint = [CONSTRAINT constraint]

{ UNIQUE

| PRIMARY KEY
| REFERENCES other_table [(other_col [, other_col ..])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
tconstraint = [CONSTRAINT constraint]
{{PRIMARY KEY | UNIQUE} (col [, col ..])
| FOREIGN KEY (col [, col ..])
REFERENCES other_table [(other_col [, other_col ..])]
[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (search_condition)}
search_condition = val operator {val | (select_one)}

val [NOT] BETWEEN val AND val

val [NOT] LIKE val [ESCAPE val]

val [NOT] IN (val [, val .. | select_list)
val IS [NOT] NULL

val {>= | <=}

val [NOT] {= | < | >}

|

|

|

|

|

|

| {ALL | SOME | ANY} (select_list)

| EXISTS (select_expr)

| SINGULAR (select_expr)

| val [NOT] CONTAINING val

| val [NOT] STARTING [WITH] val

| (search_condition)

| NOT search_condition

| search_condition OR search_condition
| search_condition AND search_condition
val = { col [array_dim] | :variable
| constant | expr | function

| udf ([val [, val ..J11)

Embarcadero Technologies 19

SQL Statement and Function Reference

| NULL | USER | RDB$DB_KEY | ? }

[COLLATE collation]

constant = num | ‘'string' | charsetname 'string'
function = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
|
|
|

CAST (val AS data_type)
UPPER (val)
GEN_ID (generator, val)

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

operator = {= | < | > | <= | >= | < | > | < | !=}

select_one = SELECT on a single column; returns exactly one value.

select_list = SELECT on a single column; returns zero or more values.

select_expr = SELECT on a 1list of values; returns zero or more values.
IMPORTANT

Notes on ALTER TABLE Syntax:

The column constraints for referential integrity were new in InterBase 5.
You cannot specify a COLLATE clause for Blob columns.

When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters
long:

my_array = varchar(6)[5,5]

Use the colon () to specify an array with a starting point other than 1. The following example creates
an array of integers that begins at 20 and ends at 30:

my_array = ‘nteger[20:30]

For the full syntax of search_condition, see CREATE TABLE.

Argument Description
<table> Name of an existing table to modify.
<operation> Action to perform on the table. Valid options are:
« ADD a new column or table constraint to a table
« DROP an existing column or constraint from a table
<col_def> Description of a new column to add.
« Must include a column name and <data_type>.
« Can also include default values, column constraints, and a specific collation order.
<col> Name of the column to add or drop; column name must be unique within the table.

Embarcadero Technologies

20

SQL Statement and Function Reference

Argument

Description

<data_type>

Data type of the column; see Data Types.

ALTER [COLUMN]

Modifies column names, data types, and positions. Can also be used with ENCRYPT
and DECRYPT options to encrypt and decrypt a column. For more information about
encrypting databases and columns, see “Encrypting Your Data” in the Data Definition
Guide.

COMPUTED [BY]<expr>

Specifies that the value of the column’s data is calculated from expr at runtime and is
therefore not allocated storage space in the database.

« <expr> can be any arithmetic expression valid for the data types in the expres-
sion.

« Any columns referenced in <expr> must exist before they can be used in <expr>.

« <expr> cannot reference Blob columns.

« <expr> must return a single value, and cannot return an array.

<domain>

Name of an existing domain.

DEFAULT

Specifies a default value for column data; this value is entered when no other entry is
made; possible values are:

« <literal>: Inserts a specified string, numeric value, or date value.

* NULL: Enters a NULL value; this is the default DEFAULT.

« USER: Enters the user name of the current user; column must be of compatible

text type to use the default.

Defaults set at column level override defaults set at domain level.

CONSTRAINT <constraint>

Name of a column or table constraint; the constraint name must be unique within the
table.

<constraint_def>

Specifies the kind of column constraint; valid options are UNIQUE, PRIMARY KEY, CHECK,
and REFERENCES.

CHECK <search_condition>

An attempt to enter a new value in the column fails if the value does not meet the
<search_condition>.

REFERENCES

Specifies that the column values are derived from column values in another table; if
you do not specify column names, InterBase looks for a column with the same name as
the referencing column in the referenced table.

ON DELETE|ON UPDATE

Used with REFERENCES: Changes a foreign key whenever the referenced primary key
changes; valid options are:

« [Default] NO ACTION: Does not change the foreign key; may cause the primary key
update to fail due to referential integrity checks.

e CASCADE: For ON DELETE, deletes the corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the new value of the primary key.

* SET NULL: Sets all the columns of the corresponding foreign key to NULL.

¢ SET DEFAULT: Sets every column of the corresponding foreign key to its default
value in effect when the referential integrity constraint is defined; when the de-
fault for a foreign column change after the referential integrity constraint is de-
fined, the change does not have an effect on the default value used in the referen-
tial integrity constraint.

NOTNULL

Specifies that a column cannot contain a NULL value.

« If a table already has rows, a new column cannot be NOT NULL.

e NOT NULL is a column attribute only.

DROP CONSTRAINT

Drops the specified table constraint.

Embarcadero Technologies

21

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

Argument Description

<table_constraint> Description of the new table constraint; constraints can be PRIMARY KEY, UNIQUE, FOR-
EIGN KEY, or CHECK.

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and Collation
Orders for more information.

Description: ALTER TABLE modifies the structure of an existing table. A single ALTER TABLE statement can
perform multiple adds and drops.

+ Atable can be altered by its creator, the SYSDBA user, and any users with operating system superuser
privileges.

« ALTER TABLE fails if the new data in a table violates a PRIMARY KEY Or UNIQUE constraint definition added
to the table. Dropping or altering a column fails if any of the following are true:

« The column is part of a UNIQUE, PRIMARY, OF FOREIGN KEY constraint.
+ The column is used in a cHECK constraint.
* The column is used in the <value> expression of a computed column.

* The column is referenced by another database object such as a view.

IMPORTANT

When a column is dropped, all data stored in it is lost.

Constraints:

* Referential integrity constraints include optional on uppATE and on DELETE clauses. They define the
change to be made to the referencing column when the referenced column is updated or deleted.

+ To delete a column referenced by a computed column, you must drop the computed column before
dropping the referenced column. To drop a column referenced in a FOREIGN KEY constraint, you must
drop the constraint before dropping the referenced column. To drop a PRIMARY KEY Or UNIQUE CON-
straint on a column that is referenced by FOREIGN KEY constraints, drop the FOREIGN KEY constraint
before dropping the PRIMARY KEY Or UNIQUE key it references.

* You can create a FOREIGN KEY reference to a table that is owned by someone else only if that owner
has explicitly granted you the REFERENCES privilege on that table using GranT. Any user who updates
your foreign key table must have REFERENCES Or SELECT privileges on the referenced primary key table.

* You can add a check constraint to a column that is based on a domain but be aware that changes to
tables that contain cHEck constraints with subqueries may cause constraint violations.

« Naming column constraints is optional. If you do not specify a name, InterBase assigns a system-gen-
erated name. Assigning a descriptive name can make a constraint easier to find for changing or drop-
ping, and more descriptive when its name appears in a constraint violation error message.

+ When creating new columns in tables with data, do not use the uniQue constraint. If you use the NoT
NULL constraint on a table with data, you should also specify a default value.

Example: The following isql statement adds a column to a table and drops a column:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25),
DROP CURRENCY;

Embarcadero Technologies 22

SQL Statement and Function Reference

This statement results in the loss of all data in the dropped CURRENCY column.

The next isql statement changes the name of the LARGEST_CITY column to BIGGEST_CITY:

ALTER TABLE COUNTRY ALTER LARGEST_CITY TO BIGGEST_CITY;

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in nature. An
archival table means that the rows of a table are infrequently or never UPDATED or DELETED; have complex
queries, such as aggregates and analytics that process a high percentage of rows; and where indexes are
rebuilt and the database is backed and/or restored frequently. These database operations could see a
performance improve of 20% or more with a savings in storage space.

By default, InterBase reserves a small amount of space in each data page of a table to optimize UPDATE
and DELETE operations on resident rows. This reserve space can amount to 20% or more of the total space
occupied by all of the rows of the table. Some tables archive historical data or data that are UPDATED
infrequently or not at all and their rows may never be deleted. Database operations that process most
or all of the rows, such as backup, restore, index creation, aggregate computation have always suffered
performance penalties proportional to this reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and maxi-
mizes row packing for the most efficient fill ratio. At the database level, it has been possible to restore
a database with the -USE_ALL_SPACE switch so that no space is reserved for any table. To change the
storage behavior in a like manner for new or existing databases, the same clause is introduced for CRE-
ATE/ALTER DATABASE.

User Interface
To effect the new storage behavior, a non-standard SQL clause is added:
Clause is presented before the secondary file specification.

Clause is presented in any order with other SET elements.

ALTER DATABASE ... SET [NO] RESERVE SPACE

Clause is presented in any order with other ADD, DROP ALTER elements.

ALTER TABLE <TABLE name> ... SET [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record version stub,
as would normally be the case. Over many row insertions, a decrease in storage size should be observed
relative to what the table size would be in the absence of this feature. The optional NO keyword when used
with ALTER TABLE toggles the behavior to the alternate state of the current storage behavior for the table.

The NO RESERVE storage modifier is preserved across database backup and restore. This state is stored
as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the system table RDB
$RELATIONS.

Embarcadero Technologies 23

SQL Statement and Function Reference

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's column
definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner for the CREATE
TABLE output of the respective table listing. The state for database-wide storage behavior is stored in a
like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A temporary table can be altered in the same way as a permanent base table although there is no official
support to toggle the behavior of the ON COMMIT clause. The specification offers an ALTER TABLE syntax
to toggle that behavior.

ALTER TABLE <table> ON COMMIT {PRESERVE | DELETE} ROWS [{RESTRICT |
CASCADE}]

RESTRICT will report an error if there are dependencies by other temporary tables on the current table
scope. CASCADE will automatically propagate this table scope change to other temporary tables to main-
tain compliance. The default action is RESTRICT.

For example, assume that TT1is a temporary table with ON COMMIT PRESERVE and has a foreign reference
to temporary table TT2 which is also ON COMMIT PRESERVE. If an attempt is made to modify TT2 to ON
COMMIT DELETE, an error is raised because an ON COMMIT PRESERVE table is not allowed by the SQL
standard to have a referential constraint on an ON COMMIT DELETE table. RESTRICT returns this error
while CASCADE would also alter TT1to have ON COMMIT DELETE. Thus, CASCADE implements transitive
closure when ON COMMIT behavior is modified.

Note: This specification of ALTER TABLE extension does not allow a table to be toggled between temporary
and persistent.

9.8. ALTER TRIGGER

Changes an existing trigger. Available in DSQL and 4sqt.

ALTER TRIGGER <name> [ACTIVE | INACTIVE]
[{BEFORE | AFTER} {DELETE | INSERT | UPDATE}]
[POSITION <number>]

[AS trigger_body] ;

Argument Description

<name> Name of an existing trigger.

ACTIVE [Default] Specifies that a trigger action takes effect when fired.

INACTIVE Specifies that a trigger action does not take effect.

BEFORE Specifies the trigger fires before the associated operation takes place.

AFTER Specifies the trigger fires after the associated operation takes place.

DELETE | INSERT | UPDATE Specifies the table operation that causes the trigger to fire.

POSITION <number> Specifies order of firing for triggers before the same action or after the same action.
« <number> must be an integer between 0 and 32,767, inclusive.
 Lower-number triggers fire first.

Embarcadero Technologies 24

SQL Statement and Function Reference

Argument Description

- Triggers for a table need not be consecutive; triggers on the same action with the
same position number fire in random order.

<trigger_body> Body of the trigger: a block of statements in procedure and trigger language.

+ See CREATE TRIGGER. for a complete description.

Description: ALTER TRIGGER changes the definition of an existing trigger. If any of the arguments to ALTER
TRIGGER are omitted, then they default to their current values, that is the value specified by CREATE TRIGGER,
or the last ALTER TRIGGER.

ALTER TRIGGER Can change:

 Header information only, including the trigger activation status, when it performs its actions, the event
that fires the trigger, and the order in which the trigger fires compared to other triggers.

* Body information only, the trigger statements that follow the AS clause.

+ Header and trigger body information. In this case, the new trigger definition replaces the old trigger
definition.

A trigger can be altered by its creator, the SYSDBA user, and any users with operating system root privileges.

NOTE

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE to change the constraint
definition.

Examples: The following statement modifies the trigger, SET_CUST_NO, to be inactive:

ALTER TRIGGER SET_CUST_NO INACTIVE;

The next statement modifies the trigger, SET_CUST_NO, to insert a row into the table, NEW_CUSTOMERS,
for each new customer.,

ALTER TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS

BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);

INSERT INTO NEW_CUSTOMERS(NEW.CUST_NO, TODAY)
END ;

9.9. ALTER USER

Change an existing user. Available in DSQL and 4sqt.

ALTER USER <name> SET
[PASSWORD <password>]

[[NO] DEFAULT ROLE <name>]
[[NO] SYSTEM USER NAME <name>]
[[NO] GROUP NAME <name>]

[[NO] UID <number>]

Embarcadero Technologies 25

SQL Statement and Function Reference

[[NO] GID <number>]

[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]

[ACTIVE]

[INACTIVE];

Argument

Description

PASSWORD

Password of user.

[NO]JDEFAULT ROLE

Default role.

[NO] SYSTEM USER NAME

System user name for target user.

[NO]GROUP NAME

Group name for target user.

[NO] UID

Target user ID.

[NO] GID

Group ID for target user.

[NO] DESCRIPTION

Description

[NOJFIRST NAME

First name for target user.

[NO] MIDDLE NAME

Middle name for target user.

[NOJLAST NAME Last name for target user.

ACTIVE Default. After inactive, reinstates selected user.

INACTIVE Prevents a user from logging into database.

Description: Alter user changes the definition of an existing user. Only used with database under em-
bedded user authentication.

If you choose to set more than one property value for the user, include a comma between each proper-
ty-value pair.

NOTE

When No is specified, an argument to the option must not be supplied. No sets the option to a NULL state.

Examples: The following statement modifies the user, JDOE, to be inactive:

ALTER USER JDOE SET INACTIVE;

The next statement modifies the user, JDOE, to be active:

ALTER USER JDOE SET ACTIVE;

9.10. AVG()

Calculates the average of numeric values in a specified column or expression. Available in gpre, DSQL,
and isql.

AVG ([ALL] VALUE | DISTINCT VALUE)

Embarcadero Technologies 26

SQL Statement and Function Reference

Argument Description
ALL Returns the average of all values.
DISTINCT Eliminates duplicate values before calculating the
average.
<value> A column or expression that evaluates to a numeric
data type.

Description: AvG() is an aggregate function that returns the average of the values in a specified column
or expression. Only numeric data types are allowed as input to AvG ().

If a field value involved in a calculation is NuLL or unknown, it is automatically excluded from the calculation.
Automatic exclusion prevents averages from being skewed by meaningless data.

AVG() computes its value over a range of selected rows. If the number of rows returned by a SeLecT is
zero, AVG() returns a NuLL value.

Examples: The following embedded SQL statement returns the average of all rows in a table:

EXEC SQL
SELECT AVG (BUDGET) FROM DEPARTMENT INTO :avg_budget;

The next embedded SQL statement demonstrates the use of sum(), AvG(), MIN(), and MAX () over a subset
of rows in a table:

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept

INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.11. BASED ON

Declares a host-language variable based on a column. Available in gpre.

BASED [ON] [<dbhandle>.]<table>.<col>[.SEGMENT] <variable>;

Argument Description

<dbhandle> |Handle for the database in which a table resides in a multi-database program; <dbhandle> must be pre-
viously declared in a SET DATABASE statement.

<table.col> | Name of table and name of column on which the variable is based.

.SEGMENT Bases the local variable size on the segment length of the Blob column during BLOB FETCH operations;
use only when <table.col> refers to a column of BLOB data type.

<variable> | Name of the host-language variable that inherits the characteristics of a database column.

Description: BASED oN iS a preprocessor directive that creates a host-language variable based on a column
definition. The host variable inherits the attributes described for the column and any characteristics that
make the variable type consistent with the programming language in use. For example, in C, BASED oN adds
one byte to cHAR and VARCHAR variables to accommodate the nuLL character terminator.

Embarcadero Technologies 27

SQL Statement and Function Reference

Use BASED ON in a variable declaration section of a program.

NOTE

BASED ON does not require the EXEC SQL keywords.

To declare a host-language variable large enough to hold a Blob segment during FETCH operations, use
the SeGMENT option of the BASED oN clause. The size of the variable is derived from the segment length
of a Blob column. If the segment length for the Blob column is changed in the database, recompile the
program to adjust the size of host variables created with BASED oON.

Examples: The following embedded statements declare a host variable based on a column:

EXEC SQL

BEGIN DECLARE SECTION

BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL

END DECLARE SECTION;

9.12. BEGIN DECLARE SECTION

Identifies the start of a host-language variable declaration section. Available in gpre.

BEGIN DECLARE SECTION;

Description: BEGIN DECLARE SECTION is used in embedded SQL applications to identify the start of host-
language variable declarations for variables that will be used in subsequent SQL statements. BEGIN DECLARE
SECTION is also a preprocessor directive that instructs gpre to declare SQLCODE automatically for the
applications programmer.

IMPORTANT

BEGIN DECLARE SECTION must always appear within a module’s global variable declaration section.

Example: The following embedded SQL statements declare a section and a host-language variable:

EXEC SQL

BEGIN DECLARE SECTION;

BASED ON EMPLOYEE.SALARY salary;
EXEC SQL

END DECLARE SECTION;

9.13. CASE

The cask function allows you to evaluate a column value on a row against multiple criteria, where each
criterion might return a different value.

CASE <expression>

WHEN <expression> THEN <expression> | NULL
[ELSE <expression> | NULL]

[COALESCE <expression>]

Embarcadero Technologies 28

SQL Statement and Function Reference

[NULLIF <expression, expression, ...>]
END

Description: The case expression is a conditional value expression that consists of a list of value expres-
sions, each of which is associated with a conditional expression. A case expression evaluates to the first
value expression in the list for which its associated conditional expression evaluates to TRUE. The CASE ex-
pression has simple and searched forms of syntax.

The coaLESCE and NULLIF expressions are common, shorthand forms of use for the case expression involving
the nuLL state. A coALESCE expression consists of a list of value expressions. It evaluates to the first value
expression in the list that evaluates to non-NuLL. If none of the value expressions in the list evaluates to
non-NULL, then the coALESCE expression evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are unequal then
the NULLIF expression evaluates to the first value expression in the list. Otherwise, it evaluates to NuLL.

Example: The following example demonstrates the use of case using the sample employee.ib database:

SELECT emp.first_name || ' ' || emp.last_name AS NAME,
CASE proj.proj_name
WHEN 'DigiPizza' THEN 'Digital Pizza'
WHEN 'AutoMap' THEN 'AutoMobile Map'
WHEN 'Translator upgrade' THEN 'Universal Language Translator'
ELSE 'Other'
END
AS project
FROM employee emp
INNER JOIN employee_project emp_proj
ON emp.emp_no = emp_proj.emp_no
INNER JOIN project proj
ON emp_proj.proj_id = proj.proj_id

9.14. CAST()

Converts a column from one data type to another. Available in gpre, DSQL, and 4sqt.

CAST (VALUE AS <data_type>)

Argument Description

<val> A column, constant, or expression; in SQL, <val> can also be a host-language variable, function, or UDF.

<data_type> | Data type to which to convert.

Description: casT() allows mixing of numerics and characters in a single expression by converting val
to a specified data type.

Normally, only similar data types can be compared in search conditions. casT() can be used in search
conditions to translate one data type into another for comparison purposes.

Data types can be converted as shown in the following table:

Embarcadero Technologies 29

SQL Statement and Function Reference

From data type class To data type class
Numeric character, varying character, numeric
Character, varying character numeric, date, time, timestamp
Date character, varying character, timestamp
Time character, varying character, timestamp
Timestamp character, varying character, date, time
Blob, arrays —

Boolean character, varying character

An error results if a given data type cannot be converted into the data type specified in CAST(). For example,
you will get a string conversion error if you attempt to cast from a numeric type which is unable to represent
in a date type to a date (e.g. a numeric type attempting to represent "year 99/12/31"(December) or "year
32768/3/1"(March)).

Example: In the following wHERE clause, cAST() is used to translate a CHARACTER data type, INTERVIEW_DATE,
to a DATE data type to compare against a bATE data type, HIRE_DATE:

WHERE HIRE_DATE = CAST (INTERVIEW_DATE AS DATE);

To cast a VARCHAR data type, you must specify the length of the string, for example:

9.15. CLOSE

UPDATE client SET charef = CAST (clientref AS VARCHAR(20));

Closes an open cursor. Available in gpre.

CLOSE <cursor>;

Argument Description

<cursor> Name of an open cursor

Description: cLosE terminates the specified cursor, releasing the rows in its active set and any associat-
ed system resources. A cursor is a one-way pointer into the ordered set of rows retrieved by the select
expression in the DECLARE CURSOR statement. A cursor enables sequential access to retrieved rows in turn
and update in place.

There are four related cursor statements:

Stage Statement Purpose
1 DECLARE CUR- | Declares the cursor; the SELECT statement determines rows retrieved for the cursor.
SOR
2 OPEN Retrieves the rows specified for retrieval with DECLARECURSOR; the resulting rows become the
active set of the cursor.
3 FETCH Retrieves the current row from the active set, starting with the first row; subsequent FETCH

statements advance the cursor through the set.

Embarcadero Technologies 30

SQL Statement and Function Reference

| 4 ‘ CLOSE Closes the cursor and releases system resources.

FETCH statements cannot be issued against a closed cursor. Until a cursor is closed and reopened, InterBase
does not reevaluate values passed to the search conditions. Another user can commit changes to the
database while a cursor is open, making the active set different the next time that cursor is reopened.

NOTE

In addition to CLOSE, COMMIT and ROLLBACK automatically close all cursors in a transaction.

Example: The following embedded SQL statement closes a cursor:

EXEC SQL
CLOSE BC;

9.16. CLOSE (BLOB)

Terminates a specified Blob cursor and releases associated system resources. Available in gpre.

CLOSE <blob_cursor>;

Argument Description

<blob_cursor> | Name of an open Blob cursor

Description:CLOSE closes an opened read or insert Blob cursor. Generally a Blob cursor should be closed
only after:

+ Fetching all the Blob segments for BLOB READ Operations.

* Inserting all the segments for BLOB INSERT operations.

Example: The following embedded SQL statement closes a Blob cursor:

EXEC SQL
CLOSE BC;

9.17. COALESCE()

The coaLEscE function evaluates to the first value expression in a list that evaluates to non-nuLL. If none of
the value expressions in the list evaluates to non-nuLL, then the coALESCE expression evaluates to NULL.

COALESCE (<expressionl>,<expression2>,...<expression_n>)

Description: The coALESCE and NULLIF expressions are common, shorthand forms of use for the case
expression involving the NULL state. A COALESCE expression consists of a list of value expressions. It evaluates
to the first value expression in the list that evaluates to non-nuLL. If none of the value expressions in the
list evaluates to non-nuLL, then the coaLESCE expression evaluates to NULL.

Example: The following example demonstrates the use of case using the sample employee.ib database:

Embarcadero Technologies 31

SQL Statement and Function Reference

select coalesce(department, head_dept, location) from department

9.18. COMMIT

Makes changes of a transaction to the database permanent, and ends the transaction. Available in gpre,
DSAL, and isql.

COMMIT [WORK] [TRANSACTION <name>] [RELEASE] [RETAIN [SNAPSHOT]];

IMPORTANT 0

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
WORK An optional word used for compatibility with other relational databases that require it
TRANSACTION <name> Commits transaction name to database. Without this option, COMMIT affects the default
transaction.
RELEASE Available for compatibility with earlier versions of InterBase.
RETAIN [SNAPSHOT] Commits changes and retains current transaction context.

Description: commiT is used to end a transaction and:

+ Write all updates to the database.

+ Make the changes of transaction visible to subsequent SNAPSHOT transactions or READ COMMITTED trans-
actions.

+ Close open cursors, unless the RETAIN argument is used.

A transaction ending with comm1T is considered a successful termination. Always use COMMIT Or ROLLBACK
to end the default transaction.

@ ‘:)

TIP

After read-only transactions, which make no database changes, use COMMIT rather than ROLLBACK. The effect is the
same, but the performance of subsequent transactions is better and the system resources used by them are reduced.

IMPORTANT T

The RELEASE argument is only available for compatibility with previous versions of InterBase. To detach from a database
use DISCONNECT.

Examples: The following isql statement makes permanent the changes to the database made by the
default transaction:

COMMIT;

The next embedded SQL statement commits a named transaction:

Embarcadero Technologies 32

SQL Statement and Function Reference

EXEC SQL
COMMIT TR1;

The following embedded SQL statement uses commIT RETAIN to commit changes while maintaining the

current transaction context:

EXEC SQL
COMMIT RETAIN;

9.19. CONNECT

Attaches to one or more databases. Available in gpre. A subset of conNECT options is available in isqt.

isql:
CONNECT 'filespec' [USER
[CACHE INT] [ROLE

SQL:
CONNECT [TO] {ALL

| <db_specs>
<db_specs> = dbhandle
| {'filespec' |
<config_opts> =
[PASSWORD {'password'

[ROLE {'rolename' |

DEFAULT?}
<config_opts> [,

'username'] [PASSWORD 'password']

'rolename']

<config_opts>

<db_specs> <config_opts>...];

:variable} AS dbhandle
[USER {'username' |

:variable}]

:variable}]
:variablel}]

[CACHE INT [BUFFERS]]
Argument Description

{ALL|DEFAULT} Connects to all databases specified with SET DATABASE; options specified with
CONNECT TO ALL affect all databases.

<'filespec>' Database file name; can include path specification and node. The filespec must
be in quotes if it includes spaces.

<dbhandle> Database handle declared in a previous SET DATABASE statement;
available in embedded SQL but not in isql.

<:variable> Host-language variable specifying a database, user name, or password; avail-
able in embedded SQL but not in isql.

AS<dbhandle> Attaches to a database and assigns a previously-declared handle to it; avail-
able in embedded SQL but not in isql.

USER {'<username>' :<variable>} |String or host-language variable that specifies a user name for use when at-
taching to the database. The server checks the user name against the security
database. User names are case insensitive on the server.

PASSWORD{ ¢ <password>’ | :<vari- String or host-language variable, up to 8 characters in size, that specifies pass-

able>}

word for use when attaching to the database. The server checks the user name
and password against the security database. Case sensitivity is retained for the
comparison.

Embarcadero Technologies

33

SQL Statement and Function Reference

Argument Description

ROLE{‘<rolename>’ | :<variable>} |String or host-language variable, up to 67 characters in size, which specifies
the role that the user adopts on connection to the database. The user must
have previously been granted membership in the role to gain the privileges of
that role. Regardless of role memberships granted, the user has the privileges
of a role at connect time only if a ROLE clause is specified in the connection.
The user can adopt at most one role per connection, and cannot switch roles
except by reconnecting.

CACHE <int> [BUFFERS] Sets the number of cache buffers for a database, which determines the num-
ber of database pages a program can use at the same time. Values for <int>:

« Default: 256

« Maximum value: system-dependent

Do not use the <filespec> form of database name with cache assignments.

Description: The connecT statement:

 |nitializes database data structures.

+ Determines if the database is on the originating node (a local database) or on another node (a remote
database). An error message occurs if InterBase cannot locate the database.

+ Optionally specifies one or more of a user name, password, or role for use when attaching to the
database. PC clients must always send a valid user name and password. InterBase recognizes only
the first 8 characters of a password.

If an InterBase user has 1sc_user and 1sc_PAsSwWORD environment variables set and the user defined by those
variables is not in the InterBase security database (admin.ib by default), the user receives the following
error when attempting to view users from the local server manager connection: “undefined user name
and password.” This applies only to the local connection; the automatic connection made through Server
Manager bypasses user security.

+ Attaches to the database and verifies the header page. The database file must contain a valid database,
and the on-disk structure (ODS) version number of the database must be the one recognized by the
installed version of InterBase on the server, or InterBase returns an error.

+ Optionally establishes a database handle declared in a SET DATABASE statement.
+ Specifies a cache buffer for the process attaching to a database.

In SQL programs before a database can be opened with conNECT, it must be declared with the SET DATABASE
statement. isgl does not use SET DATABASE.

In SQL programs while the same conNecT statement can open more than one database, use separate
statements to keep code easy to read.

When conNecT attaches to a database, it uses the default character set (NonE), or one specified in a previous
SET NAMES statement.

In SQL programs, the cAcHe option changes the database cache size count (the total number of available
buffers) from the default of 75. This option can be used to:

+ Set a new default size for all databases listed in the connecT statement that do not already have a
specific cache size.

+ Specify a cache for a program that uses a single database.

Embarcadero Technologies 34

SQL Statement and Function Reference

« Change the cache for one database without changing the default for all databases used by the pro-
gram.

The size of the cache persists as long as the attachment is active. If a database is already attached through
a multi-client server, an increase in cache size due to a new attachment persists until all the attachments
end. A decrease in cache size does not affect databases that are already attached through a server.

A subset of connecT features is available in isql: database file name, USER, and PASSWORD. isql can only
be connected to one database at a time. Each time connecT is used to attach to a database, previous
attachments are disconnected.

Examples: The following statement opens a database for use in isql. It uses all the coNnNECT options
available to isql:

CONNECT 'employee.ib' USER 'ACCT_REC' PASSWORD 'peanuts';

The next statements, from an embedded application, attach to a database file stored in the host-language
variable and assign a previously-declared database handle to it:

EXEC SQL

SET DATABASE DBl = 'employee.ib';
EXEC SQL

CONNECT :db_f1ile AS DB1;

The following embedded SQL statement attaches to employee.ib and allocates 150 cache buffers:

EXEC SQL
CONNECT 'accounts.ib' CACHE 150;

The next embedded SQL statement connects the user to all databases specified with previous SET DATABASE
statements:

EXEC SQL
CONNECT ALL USER 'ACCT_REC' PASSWORD 'peanuts'
CACHE 50;

The following embedded SQL statement attaches to the database, employee.ib, with 80 buffers and
database employee?.ib with the default of 75 buffers:

EXEC SQL
CONNECT 'employee.ib' CACHE 80, 'employee2.ib';

The next embedded SQL statement attaches to all databases and allocates 50 buffers:

EXEC SQL
CONNECT ALL CACHE 50;

The following embedded SQL statement connects to EMP1 and v, setting the number of buffers for each
to 80:

Embarcadero Technologies 35

SQL Statement and Function Reference

EXEC SQL
CONNECT EMP1 CACHE 80, EMP2 CACHE 80;

The next embedded SQL statement connects to two databases identified by variable names, setting dif-
ferent user names and passwords for each:

EXEC SOQL

CONNECT

:orderdb AS DB1 USER 'ACCT_REC' PASSWORD 'peanuts',
:salesdb AS DB2 USER 'ACCT_PAY' PASSWORD 'payout';

9.20. COUNT()

Calculates the number of rows that satisfy search condition of a query. Available in gpre, DsqL, and isql.

COUNT (= | [ALL] VALUE | DISTINCT VALUE)

Argument Description

Retrieves the number of rows in a specified table, including NULL values

ALL Counts all non-NULL values in a column.
DISTINCT Returns the number of unique, non-NULL values for the column.
<val> A column or expression.

Description: count() is an aggregate function that returns the number of rows that satisfy the search
condition of a query. It can be used in views and joins, as well as in tables.

Example: The following embedded SQL statement returns the number of unique currency values it en-
counters in the COUNTRY table:

EXEC SQL
SELECT COUNT (DISTINCT CURRENCY) INTO :cnt FROM COUNTRY;

9.21. CREATE DATABASE

Creates a new database. Available in gpre, DSQL, and isqt.

CREATE {DATABASE | SCHEMA} '<filespec>'

[USER '<username>' [PASSWORD '<password>']]

[PAGE_SIZE [=] <int>]

[LENGTH [=] <int> [PAGE[S]]]

[WITH ADMIN OPTION]

[DEFAULT CHARACTER SET <charset>]

[secondary_file];

secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = [LENGTH [=] +int [PAGE[S]] | STARTING [AT [PAGE]] dint }
[fileinfo]

Embarcadero Technologies 36

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument

Description

‘<filespec>’

« A new database file specification.

+ File naming conventions are platform-specific.

USER ‘<username>’

 Checks the <username> against valid user name and password
combinations in the security database on the server where the
database will reside.

« Windows client applications must provide a user name when attach-
ing to a server.

PASSWORD ‘<password>’

« Checks the <password> against valid user name and password com-
binations in the security database on the server where the database
will reside; can be up to 8 characters.

« Windows client applications must provide a password when attach-
ing to a server.

PAGE_SIZE [=] <int>

- Size, in bytes, for database pages.
« int can be 1024 (default), 2048, 4096, 8129, or 16384.

PREALLOCATE [=] <number> [PAGE[S]]

 Reserves storage space in a file system for the requested number of
database pages. It guarantees that a write will not fail due to lack of
storage space over this range of pages.

WITH ADMIN OPTION

« Create new database with embedded user authentication enabled.

DEFAULT CHARACTER SET <charset>

« Sets default character set for a database.

« <charset> is the name of a character set; if omitted, character set
defaults to NONE.

FILE ‘<filespec>’

« Names one or more secondary files to hold database pages after the
primary file is filled.

+ For databases created on remote servers, secondary file specifica-
tions cannot include a node name.

STARTING [AT [PAGE]] <int>

Specifies the starting page number for a secondary file.

LENGTH[=]
<int> [PAGE[S]]

« Specifies the length of a primary or secondary database file.

+ Use for primary file only if defining a secondary file in the same
statement.

Description: cCREATE DATABASE Creates a new, empty database and establishes the following characteristics

for it:

+ The name of the primary file that identifies the database for users.

By default, databases are contained in single files.

+ The name of any secondary files in which the database is stored.

Embarcadero Technologies

37

SQL Statement and Function Reference

A database can reside in more than one disk file if additional file names are specified as secondary files. If
a database is created on a remote server, secondary file specifications cannot include a node name.

« The size of database pages.
Increasing page size can improve performance for the following reasons:

* Indexes work faster because the depth of the index is kept to a minimum.

+ Keeping large rows on a single page is more efficient.

* Blob data is stored and retrieved more efficiently when it fits on a single page.
If most transactions involve only a few rows of data, a smaller page size might be appropriate, since less
data needs to be passed back and forth and less memory is used by the disk cache.

+ The number of pages in each database file.
+ The dialect of the database.

The initial dialect of the database is the dialect of the client that creates it. For example, if you are using
isql, either start it with the -sql_dialect <n> switch or issue the SETSQL DIALECT <n> command before
issuing the crReaTE pATABASE command. Typically, you would create all databases in dialect 3. Dialect 1 exists
to ease the migration of legacy databases.

To change the dialect of a database, use gfix or the Properties dialog in IBConsole. See the Migration
appendix in the InterBase Operations Guide for information about migrating databases.

* The character set used by the database.
For a list of the character sets recognized by InterBase, see Character Sets and Collation Orders.

Choice of DEFAULT CHARACTER SET limits possible collation orders to a subset of all available collation orders.
Given a specific character set, a specific collation order can be specified when data is selected, inserted,
or updated in a column.

If you do not specify a default character set, the character set defaults to nonE. Using character set NoNE
means that there is no character set assumption for columns; data is stored and retrieved just as you
originally entered it. You can load any character set into a column defined with NonE, but you cannot load
that same data into another column that has been defined with a different character set. In that case, no
transliteration is performed between the source and destination character sets, and transliteration errors
may occur during assignment.

+ System tables that describe the structure of the database.

After creating the database, you define its tables, views, indexes, and system views as well as any triggers,
generators, stored procedures, and UDFs that you need.

IMPORTANT [

In DSQL, you must execute CREATE DATABASE EXECUTE IMMEDIATE. The database handle and transaction name, if
present, must be initialized to zero prior to use.

Read-only databases :

Embarcadero Technologies 38

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

Databases are always created in read-write mode. You can change a table to read-only mode in one of two
ways: you can specify mode -read_only when you restore a backup, or you can use gfix -mode read_only
to change the mode of a table to read-only. See "Database User Management” in the Operations Guide
for more information on database configuration and maintenance.

About file sizes:

InterBase dynamically expands the last file in a database as needed. The maximum file size is system-de-
pendent. This applies to single-file databases as well as to the last file of multifile databases. You should
be aware that specifying a LENGTH for such files has no effect.

The total file size is the product of the number of database pages times the page size. The default page size
is 4KB and the maximum page size is 16KB. However, InterBase files are small at creation time and increase
in size as needed. The product of number of pages times page size represents a potential maximum size,
not the size at creation.

Examples: The following isql statement creates a database in the current directory using isqt:

CREATE DATABASE 'employee.ib';

The next embedded SQL statement creates a database with a page size of 2048 bytes rather than the
default of 4096:

EXEC SQL
CREATE DATABASE 'employee.ib' PAGE_SIZE 2048;

The following embedded SQL statement creates a database stored in two files and specifies its default
character set:

EXEC SQL

CREATE DATABASE 'employee.ib'

DEFAULT CHARACTER SET 1IS08859_1

FILE 'employee2.ib' STARTING AT PAGE 10001;

9.22. CREATE DOMAIN

Creates a column definition that is global to the database. Available in gpre, psqL, and isql.

CREATE DOMAIN <domain> [AS] data_type

[DEFAULT {<literal> | NULL | USER}]

[NOT NULL] [CHECK (dom_search_condition)]

[COLLATE <collation>];

data_type> =

{SMALLINT|INTEGER|FLOAT|DOUBLE PRECISION} [array_dim]

| {DATE|TIME|TIMESTAMP} [array_dim]

| {DECIMAL | NUMERIC} [(precision [, scale])] [array_dim]
| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(int)]
[array_dim] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(int)] [array_dim]

| BLOB [SUB_TYPE {int | subtype_name}] [SEGMENT SIZE -int]

Embarcadero Technologies 39

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

[CHARACTER SET charname]

| BLOB [(seglen [, subtype])]

| BOOLEAN

array_dim> = [[x:]y [, [x:1y ..]]
dom_search_condition> =

VALUE operator value

| VALUE [NOT] BETWEEN value AND value

| VALUE [NOT] LIKE value [ESCAPE value]

| VALUE [NOT] IN (value [, value ..])

| VALUE IS [NOT] NULL

| VALUE [NOT] CONTAINING value

| VALUE [NOT] STARTING [WITH] value

| (dom_search_condition)

| NOT dom_search_condition

| dom_search_condition OR dom_search_condition
| dom_search_condition AND dom_search_condition
operator> = {= | < | > | <= | >= | !I< | > <> | 1=}

Note on the cREATE DOMAIN Syntax:

« coLLATE is useful only for text data, not for numeric types. Also, you cannot specify a CoLLATE clause

for Blob columns.

+ When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is six characters

long:

my_array = varchar(6)[5,5]

* Use the colon () to specify an array with a starting point other than 1. The following example creates

an array of INTEGER values that begins at 20 and ends at 30:

my_array = ‘nteger[20:30]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,

and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<domain> Unique name for the domain.

<data_type> SQL data type

DEFAULT Specifies a default column value that is entered when no other entry is made; possible val-
ues are:
<literal> — Inserts a specified string, numeric value, or date value.
NULL — Enters a NULL value.
USER — Enters the user name of the current user; column must be of compatible character
type to use the default.

NOTNULL Specifies that the values entered in a column cannot be NULL.

Embarcadero Technologies 40

SQL Statement and Function Reference

CHECK (<dom_search_con- |Creates a single CHECK constraint for the domain.

dition>)

VALUE Placeholder for the name of a column eventually based on the domain.
COLLATE <collation> Specifies a collation sequence for the domain.

Description: creaTE pomMAIN builds an inheritable column definition that acts as a template for columns
defined with CREATE TABLE Or ALTER TABLE. The domain definition contains a set of characteristics, which
include:

» Data type

+ An optional default value

Optional disallowing of nuLL values
+ An optional cHEck constraint
+ An optional collation clause

The cHeck constraint in a domain definition sets a dom_search_condition that must be true for data entered
into columns based on the domain. The cHEck constraint cannot reference any domain or column.

NOTE

Be careful not to create a domain with contradictory constraints, such as declaring a domain NOT NULL and assigning
it a DEFAULT value of NULL.

The data type specification for a cHAR Or VARCHAR text domain definition can include a CHARACTER SET clause
to specify a character set for the domain. Otherwise, the domain uses the default database character set.
For a complete list of character sets recognized by InterBase, see Character Sets and Collation Orders.

If you do not specify a default character set, the character set defaults to nonE. Using character set NoNE
means that there is no character set assumption for columns; data is stored and retrieved just as you
originally entered it. You can load any character set into a column defined with NonE, but you cannot load
that same data into another column that has been defined with a different character set. In these cases,
no transliteration is performed between the source and destination character sets, so errors can occur
during assignment.

The coLLATE clause enables specification of a particular collation order for cHAR, VARCHAR, and NCHAR text data
types. Choice of collation order is restricted to those supported for the domain’s given character set, which
is either the default character set for the entire database, or a different set defined in the CHARACTER SET
clause as part of the data type definition. For a complete list of collation orders recognized by InterBase,
see Character Sets and Collation Orders.

Columns based on a domain definition inherit all characteristics of the domain. The domain default, colla-
tion clause, and NOoTNULL setting can be overridden when defining a column based on a domain. A column
based on a domain can add additional cHEck constraints to the domain cHeEck constraint.

Examples: The following isql statement creates a domain that must have a positive value greater than
1,000, with a default value of 9,999. The keyword vALUE substitutes for the name of a column based on
this domain.

CREATE DOMAIN CUSTNO
AS INTEGER
DEFAULT 9999

Embarcadero Technologies 41

SQL Statement and Function Reference

CHECK (VALUE > 1000);

The next isql statement limits the values entered in the domain to four specific values:

CREATE DOMAIN PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ('software', ‘'hardware', 'other', 'N/A'));

The following isql statement creates a domain that defines an array of cHAR data type:

CREATE DOMAIN DEPTARRAY AS CHAR(67) [4:5];

In the following isql example, the first statement creates a domain with user as the default. The next
statement creates a table that includes a column, ENTERED_BY, based on the usernaME domain.

CREATE DOMAIN USERNAME AS VARCHAR(20)

DEFAULT USER;

CREATE TABLE ORDERS (ORDER_DATE DATE, ENTERED_BY USERNAME,
ORDER_AMT DECIMAL(8,2));

INSERT INTO ORDERS (ORDER_DATE, ORDER_AMT)

VALUES ('1-MAY-93', 512.36);

The 1NSERT statement does not include a value for the ENTERED_BY column, so InterBase automatically
inserts the user name of the current user, JSMITH:

SELECT % FROM ORDERS;
1-MAY-93 JSMITH 512.36

The next isql statement creates a BLoB domain with a TExT subtype that has an assigned character set:

CREATE DOMAIN DESCRIPT AS
BLOB SUB_TYPE TEXT SEGMENT SIZE 80
CHARACTER SET SIJIS;

9.23. CREATE ENCRYPTION

Creates encryption keys for use during the encryption process.

CREATE ENCRYPTION key-name FOR AES | FOR DES

Argument Description

Key-name Name associated with the encryption key. Name must be unique.

For AES|DES Indicates the level of encryption InterBase will apply to the encrypted data. Advanced Encryption Stan-
dard (AES) is considered a strong encryption scheme and requires a license to use with InterBase. Data
Encryption Standard (DES) is considered a weak encryption scheme that requires no special license.

Description: cREATE ENCRYPTION Creates an encryption key. Only a SYSDSO (Data Security Owner) can
create an encryption key. An encryption key is used to encrypt pages and/or columns of a database. The

Embarcadero Technologies 42

SQL Statement and Function Reference

database owner uses an encryption key to perform encryption on a specific database or column. InterBase
stores encryption keys in the RDBSENCRYPTIONS System table.

Three new columns have been added to the RDB$RELATIONS_FIELDS table: RDBSENCRYPTION_ID, RDB$DECRYP-
T_DEFAULT_VALUE and RDB$DECRYPT_DEFAULT_SOURCE tO support the database page and column-level encryp-
tion as well.

Example: The following isql statement creates an encryption key called revenue_key using the AES en-
cryption scheme and a length of 192 bits:

CREATE ENCRYPTION revenue_key FOR AES WITH LENGTH 192 BITS

9.24. CREATE EXCEPTION

Creates a used-defined error and associated message for use in stored procedures and triggers. Available
in DSQL and 4sqt.

CREATE EXCEPTION <name> '<message>';

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In isq1, the semicolon is a terminating symbol
for the statement, so it must be included.

Argument Description

<name> Name associated with the exception message; must be unique among exception names in the database.

‘<message>’ | Quoted string containing alphanumeric characters and punctuation; maximum length = 78 characters.

Description: cREATE EXCEPTION Creates an exception, a user-defined error with an associated message.
Exceptions may be raised in triggers and stored procedures.

Exceptions are global to the database. The same message or set of messages is available to all stored
procedures and triggers in an application. For example, a database can have English and French versions
of the same exception messages and use the appropriate set as needed.

When raised by a trigger or a stored procedure, an exception:

+ Terminates the trigger or procedure in which it was raised and undoes any actions performed (directly
or indirectly) by it.

 Returns an error message to the calling application. In isqt, the error message appears on the screen,
unless output is redirected.

Exceptions may be trapped and handled with a wHeN statement in a stored procedure or trigger.

Examples: This isql statement creates the exception, UNKNOWN_EMP_ID:

CREATE EXCEPTION UNKNOWN_EMP_ID 'Invalid employee number or project 1id.';

The following statement from a stored procedure raises the previously-created exception when SQLCODE
-530 is set, which is a violation of a FOREIGN KEY constraint:

Embarcadero Technologies 43

SQL Statement and Function Reference

WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

9.25. CREATE GENERATOR

Declares a generator to the database. Available in gpre, DSQL, and isql.

CREATE GENERATOR <name>;

IMPORTANT [

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name for the generator

Description: cREATE GENERATOR declares a generator to the database and sets its starting value to zero. A
generator is a sequential number that can be automatically inserted in a column with the Gen_1p() function.
A generator is often used to ensure a unique value in a PRIMARY KEY, such as an invoice number, that must
uniquely identify the associated row.

A database can contain any number of generators. Generators are global to the database, and can be used
and updated in any transaction. InterBase does not assign duplicate generator values across transactions.

You can use SET GENERATOR tO set or change the value of an existing generator when writing triggers,
procedures, or SQL statements that call GEN_ID().

9.26. CREATE INDEX

Creates an index on one or more columns in a table. Available in gpre, DsqL, and 1isql.

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index>
ON <table> (<col> [, <col> ..1);

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
UNIQUE Prevents insertion or updating of duplicate values into indexed columns.
ASC[ENDING] Sorts columns in ascending order, the default order if none is specified.
DESC[ENDING] Sorts columns in descending order.
<index> Unigue name for the index.
<table> Name of the table on which the index is defined.

Embarcadero Technologies 44

SQL Statement and Function Reference

<col> Column in <table> to index.

Description: Creates an index on one or more columns in a table. Use cREATE INDEX to improve the speed
of data access. Using an index for columns that appear in a wHERE clause may improve search performance.

IMPORTANT

You cannot index Blob columns or arrays.

A uNIQUE index cannot be created on a column or set of columns that already contains duplicate or NuLL
values.

Asc and pesc specify the order in which an index is sorted. For faster response to queries that require sorted
values, use the index order that matches the s orper By clause of the query. Both an Asc and a pesc index
can be created on the same column or set of columns to access data in different orders.

TIP

To improve index performance, use SET STATISTICS to recompute index selectivity, or rebuild the index by making it
inactive, then active with sequential calls to ALTER INDEX.

Examples: The following isql statement creates a unique index:

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

The next isql statement creates a descending index:

CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);

The following isql statement creates a two-column index:

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

9.27. CREATE JOURNAL

Creates a journal file and activates journaling.

CREATE JOURNAL [<journal-file-specification>] [LENGTH <number-of-pages>]
[CHECKPOINT LENGTH <number-of-pages> [PAGES]]

[CHECKPOINT INTERVAL <number-of-seconds> [SECONDS]]

[PAGE SIZE <number-of-bytes> [BYTES]]

[PAGE CACHE <number-of-buffers> [BUFFERS]]

[[NO] TIMESTAMP NAME]

Argument Description

journal-file-specification Specifies a quoted string containing the full path and base file name of the journal file.
The base journal file name is used as a template for the actual journal file names as
they are created. The default is the full database path and file name.

LENGTH This clause specifies the number of pages that can be written to the journal file before
rolling over to a new journal file. The maximum length is 2GB or 4000 pages.

Embarcadero Technologies 45

SQL Statement and Function Reference

Argument Description

CHECKPOINT LENGTH This clause specifies the number of pages that can be written to the journal file before
checkpoint occurs. The default is 500.

CHECKPOINT INTERVAL Determines the number of seconds between database checkpoints. The checkpoint in-
terval determines how long it will take to recover after a server crash. The default is 0.

Note: If both CHECKPOINT LENGTH and CHECKPOINT INTERVAL are specified,
whichever event occurs first will initiate a database checkpoint.

PAGE SIZE Determines the size of a journal page in bytes. A journal page size must be at least
twice the size of a database page size. If a journal page size of less is specified, it will be
rounded up to twice the database page size and a warning will be returned. The jour-
nal page size needs not be a power of 2. The default is twice the database size.

PAGE CACHE Determines the number of journal pages that are cached to memory. This number
must be large enough to provide buffers for worker threads to write to when the cache
writer is writing other buffers. If the number is too small, the worker threads wait and
performance suffers.The default is 100 buffers.

[NO]JTIMESTAMP NAME Determines whether or not to append the file creation timestamp to the base journal
file name. The default is enabled.

If used, the base journal file name will be appended with a timestamp in the following
format:

YYYY_MM_DDTHH_MM_SSZ.sequence_number.journal

[NO] PREALLOCATE Determines journal file space requirements while simultaneously guaranteeing that the
space is allocated in advance. The default is twice the database size.

Description: A journal consists of one or more journal files. A journal file records each database transaction
as it occurs. To save changed journal pages in the database cache to the hard disk, you set up journaling
checkpoints to occur automatically. A checkpoint specifies the time at which InterBase must save all the
changed pages in the database cache to the database file.

The CREATE JOURNAL statement causes all subsequent write operations on a database to be done asyn-
chronously. The journal file 1/O is always synchronous and cannot be altered. All transaction changes are
safely recorded on durable storage before the transaction is committed.

Journaling can be used with journal archiving to provide more complete disaster recovery.

Example: In the following example:

CREATE JOURNAL ‘'e:\database\test!'
LENGTH 4000

CHECKPOINT LENGTH 10000

PAGE CACHE 2500;

The LEnGTH parameter of 65000 will cause rollover to a new journal file every 1GB (65000 x 16KB). A cHECK-
POINT LENGTH parameter of 10000 means the database checkpoint will occur every 160MB (10000 x 16KB).
The 2500 journal buffer configuration will leave 2000 spare buffers for the worker threads to dump their
journal changes. At the built-in Pace cacHe default of 100, the worker threads can stall due to a high rate
of journal buffer wait states.

Embarcadero Technologies 46

SQL Statement and Function Reference

9.28. CREATE JOURNAL ARCHIVE

Activities journal archiving and performs the initial database dump to the archive directory.

CREATE JOURNAL ARCHIVE <journal archive directory>

Argument Description

journal archive |The location in which InterBase stores the journal archive. If the directory does not exist or is not acces-
directory sible, InterBase returns an error message. The directory path can be a local drive, a mapped drive, or an
UNC path (as long as the underlying file APIs can open the file using that specification). If you do not
specify a journal archive directory in the CREATE JOURNAL ARCHIVE statement, InterBase uses the jour-
nal directory created with the CREATE JOURNAL statement.

Description: The CREATE JOURNAL ARCHIVE command performs two functions: it activates journal archiv-
ing in an InterBase database, and it automatically performs the initial full, physical dump of the database.
InterBase stores the dump in the journal archive directory you specify in the creaTE statement. A journal
archive enables you to recover to the last committed transaction in the most recently archived and com-
pleted journal file.

IMPORTANT

CREATE JOURNAL ARCHIVE creates the archive and performs an initial dump. However, you must issue a specific ghak
command to copy completed journal files to the journal archive. You use another gbak command to perform subsquent
dumps to the archive. For information about the gbak archive commands, and about how to implement journaling and
journal archiving, see the InterBase Operations Guide.

9.28.1. Journal Archive Management

You can manage the Journal Archive feature of InterBase V8. The archive is a directory that holds journal
files, which have been archived from the local journal directory associated with a database. In addition,
to storing copies of the local journal files, the archive also stores database dumps that are periodically
backed up to the archive.

Description: Archived database dumps represent the starting point from which long-term database re-
covery is initiated. A set of archive journal files are applied to a copy of the archive database in the same
way that local journal files are applied to a production database during short-term recovery. Also, an In-
terBase timestamp can be specified to indicate a point-in-time until which the journal files will be applied.

When the archive is used to recover a database, the resulting database is not a journaled database. This
means that RDBLOG_FILES, RDBJOURNAL_FILES and the log page of the database are empty. This pre-
vents the database from accidently using the journal and journal archive of an existing database. Database
recovery is usually used when the original database is corrupted or unavailable due to hardware fail-
ures. However, it could be possible to recover a database on the same machine as the working pro-
duction database or on a different machine where the journal and journal archive directories have no
similarly-named directories. Therefore, if journaling and/or journal archiving is desired for the recovered
database, it is necessary to execute the appropriate DDL commands to do so.

Examples: gbak is used to archive databases and journal files to the archive, and is also used to recover
a database from the archive back to a specified local directory of the user's choice.

To archive a database:
gbak -archive_database <dbname>

Embarcadero Technologies 47

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

To archive Tlocal journal files:
gbak -archive_journals <dbname>

To recover a database (optionally to a point-in-time)

gbak -archive_recover [-until <timestamp>] <archive_dbname> <local_dbname>

If the -until command line switch is not given, the database recover applies as many journal files as possible
to recover a database to the most recent point-in-time. If possible, the database recovery attempts to
"jump" from the archive to the local journal directory to apply the journal files that were never copied to
the archive. In this way, a database may be recovered to the most recently committed transaction of the
original database.

If allowed, the archive grows in storage size infinitely as the database and the most current journal files are
continually archived. gfix is used to manage and garbage collect archived items that are no longer required.
As the number of journal files grows in the archive without have created more recent archived database
dumps, so does the time that will be needed to recover the database from the archive. Therefore, it is
desirable to periodically create additional database dumps in the archive. At some point, you may decided
that older database dumps and the journal files on which they depend on are no longer necessary, as the
basis of recovery will be on more recent database dumps and journal files.

All archive items are denoted by an archive sequence number that corresponds to the order in which the
items were created in the archive.

To garbage collect archive items less than an archive sequence number.

gfix -archive_sweep [-force] <archive_sequence_no>

If an archive item cannot be swept for some reason, the sweep stops and returns an error status. In some
cases, this could stop the command from ever succeeding. For example, if an archive is manually deleted
with a shell OS command, the sweep always fails because it cannot find the file to drop. The -force option
continues regardless of errors to delete as much as possible. The -force switch logs errors to the InterBase
error log instead of returning an error status.

To specify how many database dumps to allow in the archive:

fix -archive_dumps <number>
g p

Once the number of database dumps in the archive exceeds the <number> given, all lower sequenced
archive items are deleted from the archive. Sometimes all lower sequenced items cannot be deleted. For
example, a database dump may depend on a lower sequenced journal file with which to start recovery.
In that case, InterBase automatically adjusts the given sequence number lower so that this dependency
is not lost.

To track that state of the archive, a new system table, RDB$JOURNAL ARCHIVES, has been added for ODS
12 databases. The gbak and gfix commands listed above used this system table to decide which archive
items are targets for the commands.

IMPORTANT

Listed below are the requirements and constraints for managing the Journal Archive.

Embarcadero Technologies 48

SQL Statement and Function Reference

1. The archive is platform-specific. An archive created with InterBase for Windows cannot be directly
used to recover on InterBase for Unix. Instead, an archived database dump could be logically backed
up in transportable format and then logically restored on the other platform.

2. The journal and journal archive are restricted to a single directory. The number of items allowed to
be archived will be limited to the number of files that are allowed in a directory for a give file system.

3. Only full database dumps are archived. In particular, it is not possible to archive incremental database
dumps.

4. Journaling must be enabled for a database before the database can be configured for journal archiv-
ing.

9.29. CREATE PROCEDURE

Creates a stored procedure, its input and output parameters, and its actions. Available in DSQL, and isql.

CREATE PROCEDURE'' name

"' [(<param>'' !''data_type [, <param>'' ''data_type'' ''..])]
[RETURNS param data_type'' [, ''<param>'' !''data_type ..])]
AS ''procedure_body '';

procedure_body =

[variable_declaration_Tlist]
block

variable_declaration_list =

DECLARE VARIABLE var data_type;
[DECLARE VARIABLE var data_type; ..]
block =

BEGIN

compound_statement

[compound_statement ..]

END

compound_statement = block | statement;

data_type = { SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}

| {DECIMAL | NUMERIC} [(PRECISION [, scalel)]

| {DATE | TIME | TIMESTAMP)

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}

[(INT)] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(INT)]

| BOOLEAN
Argument Description
<name> Name of the procedure. Must be unique among procedure, table, and view names in
the database.
<param data_type> Input parameters that the calling program uses to pass values to the procedure:

<param>: Name of the input parameter, unique for variables in the procedure.

<data_type>: An InterBase data type.

RETURNS <param data_type> |Output parameters that the procedure uses to return values to the calling program:

Embarcadero Technologies 49

SQL Statement and Function Reference

Argument Description

<param>: Name of the output parameter, unique for variables within the procedure.
<data_type>: An InterBase data type.

The procedure returns the values of output parameters when it reaches a SUSPEND
statement in the procedure body.

AS Keyword that separates the procedure header and the procedure body.

DECLARE VARIABLE Declares local variables used only in the procedure; must be preceded by DECLARE
VARIABLE and followed by a semicolon (;).

is the name of the local variable, unique for variables in the procedure.

<statement> Any single statement in InterBase procedure and trigger language; must be followed
by a semicolon (;) except for BEGIN and END statements.

Description: crReaTE PROCEDURE defines a new stored procedure to a database. A stored procedure is a self-
contained program written in InterBase procedure and trigger language, and stored as part of a metadata
of a database. Stored procedures can receive input parameters from and return values to applications.

InterBase procedure and trigger language includes all SQL data manipulation statements and some pow-
erful extensions, including IF .. THEN .. ELSE, WHILE .. DO, FOR SELECT .. DO, exceptions, and error handling.

There are two types of procedures:
« Select procedures that an application can use in place of a table or view in a SeLECT statement. A select
procedure must be defined to return one or more values, or an error will result.
* Executable procedures that an application can call directly, with the EXECUTE PROCEDURE Statement. An
executable procedure need not return values to the calling program.
A stored procedure is composed of a header and a body.
The procedure header contains:
« The name of the stored procedure, which must be unique among procedure and table names in the

database.

« An optional list of input parameters and their data types that a procedure receives from the calling
program.

« RETURNS followed by a list of output parameters and their data types if the procedure returns values
to the calling program.

The procedure body contains:

« An optional list of local variables and their data types.

A block of statements in InterBase procedure and trigger language, bracketed by BecIn and END. A
block can itself include other blocks, so that there may be many levels of nesting.

InterBase does not allow database changes that affect the behavior of an existing stored procedure (for
example, DROP TABLE Or DROP EXCEPTION). To see all procedures defined for the current database or the text
and parameters of a named procedure, use the isgl internal commands SHow PROCEDURES OF SHOW PROCEDURE
procedure.

Embarcadero Technologies 50

SQL Statement and Function Reference

InterBase procedure and trigger language is a complete programming language for stored procedures

and triggers. It includes:

+ SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.

+ SQL operators and expressions, including generators and UDFs that are linked with the database.

* Extensions to SQL, including assignment statements, control-flow statements, context variables (for
triggers), event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for stored procedures. For a complete description
of each statement, see Procedures and Triggers.

Language extensions for stored procedures

Statement

Description

BEGIN .. END

Defines a block of statements that executes as one.

» The BEGIN keyword starts the block; the END keyword terminates it.

» Neither should end with a semicolon.

variable = expression

Assignment statement: assigns the value of expression to variable, a local vari-
able, input parameter, or output parameter.

/* comment_text x/

Programmer’s comment, where comment_text can be any number of lines of
text.

EXCEPTION <exception_name>

Raises the named exception: an exception is a user-defined error that returns
an error message to the calling application unless handled by a WHEN state-
ment.

EXECUTE PROCEDURE <proc_name>
[[, ..]] [RETURNING_VALUES[, ..]]

Executes stored procedure, <proc_name>, with the listed input arguments, re-
turning values in the listed output arguments following RETURNING_VALUES;
input and output arguments must be local variables.

EXIT

Jumps to the final END statement in the procedure.

FOR <select_statement> DO <com-
pound_statement>

Repeats the statement or block following DO for every qualifying row retrieved
by <select_statement>.

<select_statement> is like a normal SELECT statement.

<compound_statement>

Either a single statement in procedure and trigger language or a block of
statements bracketed by BEGIN and END.

IF (<condition>) THEN <com-
pound_statement> [ELSE <com-
pound_statement>]

Tests <condition>, and if it is TRUE, performs the statement or block following
THEN; otherwise, performs the statement or block following ELSE, if present.

<condition>: a Boolean expression (TRUE, FALSE, or UNKNOWN), generally two
expressions as operands of a comparison operator.

NEW. <column>

New context variable that indicates a new column value in an INSERT or UP-
DATE operation.

OLD.<column>

Old context variable that indicates a column value before an UPDATE or
DELETE operation.

POST_EVENT <event_name> | <col>

Posts the event, <event_name>, or uses the value in <col> as an event name.

SUSPEND

In a SELECT procedure:
« Suspends execution of procedure until next FETCH is issued by the calling
application.
 Returns output values, if any, to the calling application.

« Not recommended for executable procedures.

Embarcadero Technologies

51

SQL Statement and Function Reference

Language extensions for stored procedures

Statement

Description

WHILE (<condition>) DO <com-
pound_statement>

While <condition> is TRUE, keep performing <compound_statement>:

« Tests <condition>, and performs <compound_statement> if condition is
TRUE.

* Repeats this sequence until <condition> is no longer TRUE.

WHEN {<error> [, <error> ..] |
ANY} DO <compound_statement>

Error-handling statement: when one of the specified errors occurs, performs
<compound_statement>:

» WHEN statements, if present, must come at the end of a block, just before
END.

¢ <error>: EXCEPTION <exception_name>, SQLCODE <errcode> or GDSCODE
errcode.

e ANY: Handles any errors.

The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

+ Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE

FILTER

« Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

» Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

* CONNECT/DISCONNECT, and sending SQL statements to another database

* GRANT/REVOKE

* SET GENERATOR

* EVENT INIT/WAIT

* BEGIN/END DECLARE SECTION
¢ BASED ON

* WHENEVER

¢ DECLARE CURSOR

¢ OPEN

* FETCH

Examples: The following procedure, SUB_TOT_BUDGET, takes a department number as its input pa-
rameter, and returns the total, average, smallest, and largest budgets of departments with the specified

HEAD_DEPT.

CREATE PROCEDURE SUB_TOT_BUDGET (HEAD_DEPT CHAR(3))
RETURNS (tot_bwludget DECIMAL(12, 2), avg_budget DECIMAL(12, 2),

min_budget DECIMAL(12,
AS
BEGIN

2), max_budget DECIMAL(12, 2))

SELECT SUM(BUDGET), AVG(BUDGET), MIN(BUDGET), MAX(BUDGET)

FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

Embarcadero Technologies

52

SQL Statement and Function Reference

EXIT;
END

The following seLecT procedure, ORG_CHART, displays an organizational chart that shows the department
name, the parent department, the department manager, the manager’s job title, and the number of em-

ployees in the department:

CREATE PROCEDURE ORG_CHART
RETURNS (HEAD_DEPT CHAR(25),
MNGR_NAME CHAR(20),
AS

DECLARE VARIABLE mngr_no INTEGER;
DECLARE VARIABLE dno CHAR(3);
BEGIN

FOR SELECT H.DEPARTMENT,
FROM DEPARTMENT D

LEFT OUTER JOIN DEPARTMENT H ON D.HEAD_DEPT
ORDER BY D.DEPT_NO

TITLE CHAR(5),

D.DEPARTMENT,

INTO :head_dept, :department, :mngr_no, :dno
DO

BEGIN

IF (:mngr_no IS NULL) THEN
BEGIN

MNGR_NAME = '--TBH--';
TITLE = '';

END

ELSE

SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE

WHERE EMP_NO = :mngr_no
INTO :mngr_name, :title;

SELECT COUNT (EMP_NO)
FROM EMPLOYEE
WHERE DEPT_NO =
INTO :emp_cnt;
SUSPEND;

END

END ;

:dno

D.MNGR_NO,

DEPARTMENT CHAR(25),
EMP_CNT INTEGER)

D.DEPT_NO

= H.DEPT_NO

When orG_cHART is invoked, for example in the following isgl statement:

SELECT % FROM ORG_CHART

It displays the department name for each department, which department it is in, the department manager’s
name and title, and the number of employees in the department.

Embarcadero Technologies

53

SQL Statement and Function Reference

HEAD_DEPT DEPARTMENT MGR_NAME TITLE EMP_CNT
Corporate Bender, Oliver H. CEO 2
Headquarters
Corporate Headquarters Sales and MacDon- VP 2
Marketing ald, Mary S.
Sales and Marketing Pacific Rim Baldwin, Janet ? Sales 2
Headquarters
Pacific Rim Headquarters Field Of- Yamamoto, Takashi SRep 2
fice: Japan
Pacific Rim Headquarters Field Office: —TBH- 0
Singapore

ORG_CHART must be used as a select procedure to display the full organization. If called with EXEcUTE PRo-
CEDURE, the first time it encounters the suspenp statement, it terminates, returning the information for Cor-
porate Headquarters only.

9.30. CREATE ROLE

Creates a role.

CREATE ROLE <rolename>;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<rolename> Name associated with the role; must be unique among role names
in the database

Description: Roles created with CREATE ROLE can be granted privileges just as users can. These roles can be
granted to users, who then inherit the privilege list that has been granted to the role. Users must specify the
role at connect time. Use GRANT to grant privileges (ALL, SELECT, INSERT, UPDATE, DELETE, EXECUTE, REFERENCES)
to a role and to grant a role to users. Use REVOKE to revoke them.

Example: The following statement creates a role called “administrator.”

CREATE ROLE administrator;

9.31. CREATE SHADOW

Creates one or more duplicate, in-sync copies of a database. Available in gpre, psqL, and isqtl.

CREATE SHADOW set_num [AUTO | MANUAL] [CONDITIONAL]

'<filespec>' [LENGTH [=] <int> [PAGE[S]]]

[secondary_file];

secondary_file = FILE 'filespec' [fileinfo] [secondary_file]
fileinfo = LENGTH [=] INT [PAGE[S]] | STARTING [AT [PAGE]] INT

Embarcadero Technologies 54

SQL Statement and Function Reference

[fileinfo]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<set_num> Positive integer that designates a shadow set to which all subsequent files listed in the
statement belong.

AUTO Specifies the default access behavior for databases in the event no shadow is available.

« All attachments and accesses succeed.

» Deletes all references to the shadow and detaches the shadow file.

MANUAL Specifies that database attachments and accesses fail until a shadow becomes avail-
able, or until all references to the shadow are removed from the database

CONDITIONAL Creates a new shadow, allowing shadowing to continue if the primary shadow be-
comes unavailable or if the shadow replaces the database due to disk failure.

¢<filespec>’ Explicit path name and file name for the shadow file; must be a local file system and
must not include a node name or be on a networked file system.

LENGTH [=] <int> [PAGE[S]] |Length in database pages of an additional shadow file; page size is determined by the
page size of the database itself.

<secondary_file> Specifies the length of a primary or secondary shadow file; use for primary file only if
defining a secondary file in the same statement.

STARTING [AT [PAGE]] <int> |Starting page number at which a secondary shadow file begins.

Description: cREATE sHADoOW is used to guard against loss of access to a database by establishing one or
more copies of the database on secondary storage devices. Each copy of the database consists of one or
more shadow files, referred to as a shadow set. Each shadow set is designated by a unique positive integer.

Disk shadowing has three components:

* A database to shadow.
* The RoBSFILES system table, which lists shadow files and other information about the database.

+ A shadow set, consisting of one or more shadow files.

When crReATE sHADowW is issued, a shadow is established for the database most recently attached by an
application. A shadow set can consist of one or multiple files. In case of disk failure, the database admin-
istrator (DBA) activates the disk shadow so that it can take the place of the database. If coNDITIONAL is
specified, then when the DBA activates the disk shadow to replace an actual database, a new shadow is
established for the database.

If a database is larger than the space available for a shadow on one disk, use the <secondary_file> option
to define multiple shadow files. Multiple shadow files can be spread over several disks.

TIP

To add a secondary file to an existing disk shadow, drop the shadow with DROP SHADOW and use CREATE SHADOW to
recreate it with the desired number of files.

Examples: The following isql statement creates a single, automatic shadow file for employee. ib:

Embarcadero Technologies 55

SQL Statement and Function Reference

CREATE SHADOW 1 AUTO 'employee.shd';

The next isql statement creates a conditional, single, automatic shadow file for employee. ib:

CREATE SHADOW 2 CONDITIONAL 'employee.shd' LENGTH 1000;

The following isql statements create a multiple-file shadow set for the employee.ib database. The first
statement specifies starting pages for the shadow files; the second statement specifies the number of pages
for the shadow files.

CREATE SHADOW 3 AUTO
'employee.shl'

FILE 'employee.sh2'
STARTING AT PAGE 1000
FILE 'employee.sh3'
STARTING AT PAGE 2000;
CREATE SHADOW 4 MANUAL 'employee.sdw'
LENGTH 1000

FILE 'employee.shl'
LENGTH 1000

FILE 'employee.sh2';

9.32. CREATE SUBSCRIPTION

Establishs interest in observing changed data on a set of tables beyond the natural boundary of a database
connection, a subscription must be created on a list of tables (base tables or views).

CREATE SUBSCRIPTION <subscription_name> ON
<table>[(column_comma-1list)]:[FOR ROW ({INSERT, UPDATE, DELETE})

], <table>[(column-comma_list)][FOR ROW ({INSERT, UPDATE, DELETE})] ...]
[DESCRIPTION user-description];

Argument Description
FOR ROW Determines what types of row modification causes column-level changes.
<table> If a table is specified, all table columns are tracked.
column_comma-list Specifies a subset of columns to be tracked.
user-description

Description: The For clause tailors what types of row modifications causes column-level changes to be
tracked for the subscription. If the For clause is omitted then all data changing row operations cause
column data to be tracked for the subscription. If a table alone is specified then all columns of the table
are tracked. If only a subset of columns is desired to be tracked, then an optional list of columns can be
specified by the subscription.

An optional list of columns is specified for the "Employees" table so that only changes on those columns
are tracked. Since no FOR clause is specified for "Employees" the default of For assumes that all insert,
update, and delete changes are tracked by the subscription. The "Customer" table clause specifies that
only row deletions are tracked.

Embarcadero Technologies 56

SQL Statement and Function Reference

« If you no longer want to observe a set of changed views, the subscription must be dropped.

« If ResTRICT is specified then a check of existing subscribers is performed. If there are subscribers then
an error is returned without dropping the subscription.

« If cascape is specified then all subscribers of this subscription are also dropped.
* If neither RESTRICT NOr cASCADE is specified then RESTRICT is assumed.

Example: If only a subset of columns is desired to be tracked, then an optional list of columns can be
specified by the subscription.

CREATE SUBSCRIPTION "Subscribed_Changes" ON "Employees" (NAME, DEPARTMENT,
SALARY), "Customers" FOR ROW (DELETE).

To create your subscriptions (the first line shows new employees, the second shows customer records that
were deleted).

CREATE SUBSCRIPTION "Subscribed_Inserts" ON "Employees" (FULL_NAME, DEP_NO,
SALARY) FOR ROW (INSERT)
CREATE SUBSCRIPTION “Customer_Deletes" ON '"Customer" FOR ROW (DELETE)

9.33. CREATE TABLE

Creates a new table in an existing database. Available in gpre, bsqL, and isqt.

IMPORTANT

To create a global Temporary table, see: "global Temporary Tables” in the Data Definition Guide.

CREATE TABLE <table> [EXTERNAL [FILE] '<filespec>']
(col_def [, col_def | tconstraint ..]) [ON COMMIT {PRESERVE | DELETE} ROWS]
[[NO] RESERVE SPACE];

col_def = col {data_type | COMPUTED [BY] (expr) | DOMAIN}
[DEFAULT {literal | NULL | USER}]
[NOT NULL]

[col_constraint]

[COLLATE collation]

data_type =

{SMALLINT | INTEGER | FLOAT | DOUBLE PRECISION}[array_dim]
| (DATE | TIME | TIMESTAMP} [array_dim]

| {DECIMAL | NUMERIC} [(PRECISION [, scale])] [array_dim]

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR} [(INT)]
[array_dim] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}

[VARYING] [(INT)] [array_dim]

| BLOB [SUB_TYPE {INT | subtype_name}] [SEGMENT SIZE INT]

[CHARACTER SET charname]

| BLOB [(seglen [, subtypel)]

| BOOLEAN

array_dim = [[x:]y [, [x:]y ..1]

Embarcadero Technologies 57

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

expr = A valid SQL expression that results IN a single VALUE.
col_constraint = [CONSTRAINT CONSTRAINT]

{ UNIQUE

| PRIMARY KEY

| REFERENCES other_table [(other_col [, other_col ..])]

[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (search_condition)}

tconstraint = [CONSTRAINT CONSTRAINT]

{{PRIMARY KEY | UNIQUE} (col [, col ..])

| FOREIGN KEY (col [, col ..])

REFERENCES other_table [(other_col [, other_col ..])]

[ON DELETE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {RESTRICT|NO ACTION|CASCADE|SET DEFAULT|SET NULL}]

| CHECK (search_condition)}

search_condition = val operator {val | (select_one)}

| val [NOT] BETWEEN val AND val

| val [NOT] LIKE val [ESCAPE val]

| val [NOT] IN (val [, val .. | select_list)

| val IS [NOT] NULL

| val {>= | <=}

| val [NOT] {= | < | >}

| {ALL | SOME | ANY} (select_list)

| EXISTS (select_expr)

| SINGULAR (select_expr)

| val [NOT] CONTAINING val

| val [NOT] STARTING [WITH] val

| (search_condition)

| NOT search_condition

| search_condition OR search_condition

| search_condition AND search_condition

val = { col [array_dim] | :variable

| constant | expr | FUNCTION

| udf ([val [, val .J1)

| NULL | USER | RDB$DB_KEY | 2?2 }

[COLLATE collation]

constant = num | ‘'string' | charsetname 'string'
FUNCTION = COUNT (* | [ALL] val | DISTINCT val)
| SUM ([ALL] val | DISTINCT val)
| AVG ([ALL] val | DISTINCT val)
| MAX ([ALL] val | DISTINCT val)
| MIN ([ALL] val | DISTINCT val)
|
|
|

CAST (val AS data_type)

UPPER (val)

GEN_ID (generator, val)
operator = {= | < | > | <= | >= | < | > | < | !=}
select_one = SELECT ON a single COLUMN; RETURNS exactly one VALUE.
select_list = SELECT ON a single COLUMN; RETURNS zero OR more VALUES.
select_expr = SELECT ON a list OF VALUES; RETURNS zero OR more VALUES.

Embarcadero Technologies 58

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Notes on the cREATE TABLE statement:

« When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters

long:

my_array VARCHAR(6)[5,5]

+ Use the colon (;) to specify an array with a starting point other than 1. The following example creates
an array of integers that begins at 10 and ends at 20:

my_array INTEGER[10:20]

+ In SQL and 4sqt, you cannot use val as a parameter placeholder (like "?").

* In DSQL and 1sql, val cannot be a variable.

* You cannot specify a coLLATE clause for Blob columns.

* expris any complex SQL statement or equation that produces a single value.

Argument

Description

<table>

Name for the table; must be unique among table and procedure names in the
database.

EXTERNAL [FILE]‘<file-
spec>’.

Declares that data for the table under creation resides in a table or file outside the
database; <filespec> is the complete file specification of the external file or table.

<col>

Name for the table column; unique among column names in the table. You can also
encrypt/decrypt a column when you create a table. For instructions on how to encrypt
and decrypt a column or database see “Encrypting Your Data” in the Data Definition
Guide.

<data_type>

SQL data type for the column; see Data Types.

COMPUTED [BY] (<expr>)

Specifies that the value of the data of the coulmn is calculated from <expr> at runtime
and is therefore not allocated storage space in the database.

« <expr> can be any arithmetic expression valid for the data types in the expres-
sion.

« Any columns referenced in <expr> must exist before they can be used in <expr>.

« <expr> cannot reference Blob columns.

« <expr> must return a single value, and cannot return an array.

<domain>

Name of an existing domain

DEFAULT

Specifies a default column value that is entered when no other entry is made; possible
values are:

« <literal>: Inserts a specified string, numeric value, or date value.

e NULL: Enters a NULL value.

 USER: Enters the user name of the current user. Column must be of compatible
text type to use the default.

Embarcadero Technologies

59

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

Argument Description

Defaults set at column level override defaults set at the domain level.

CONSTRAINT <constraint> Name of a column or table constraint; the constraint name must be unique within the
table.
<constraint_def> Specifies the kind of column constraint; valid options are UNIQUE, PRIMARY KEY, CHECK,

and REFERENCES.

REFERENCES Specifies that the column values are derived from column values in another table; if

you do not specify column names, InterBase looks for a column with the same name as
the referencing column in the referenced table.

ON DELETE |ON UPDATE Used with REFERENCES: Changes a foreign key whenever the referenced primary key

changes; valid options are:

e [Default] NO ACTION: Does not change the foreign key; may cause the primary
key update to fail due to referential integrity checks.

+ CASCADE: For ON DELETE, deletes the corresponding foreign key; for ON UPDATE,
updates the corresponding foreign key to the new value of the primary key.

¢ SET NULL: Sets all the columns of the corresponding foreign key to NULL.

e SET DEFAULT: Sets every column of the corresponding foreign key is set to its de-
fault value in effect when the referential integrity constraint is defined. When the
default for a foreign column changes after the referential integrity constraint is
defined, the change does not have an effect on the default value used in the ref-
erential integrity constraint.

CHECK <search_condition> An attempt to enter a new value in the column fails if the value does not meet the

<search_condition>.

COLLATE <collation> Establishes a default sorting behavior for the column; see Character Sets and Collation

Orders for more information.

Description: cReATE TABLE establishes a new table, its columns, and integrity constraints in an existing
database. The user who creates a table is the owner of the table and has all privileges for it, including the
ability to GraNT privileges to other users, triggers, and stored procedures.

CREATE TABLE supports several options for defining columns:

Local columns specify the name and data type for data entered into the column.

Computed columns are based on an expression. Column values are computed each time the table is
accessed. If the data type is not specified, InterBase calculates an appropriate one. Columns referenced
in the expression must exist before the column can be defined.

Domain-based columns inherit all the characteristics of a domain, but the column definition can in-
clude a new default value, a NoT NuLL attribute, additional cHeck constraints, or a collation clause that
overrides the domain definition. It can also include additional column constraints.

The data type specification for a cHAR, VARCHAR, or Blob text column definition can include a CHARACTER
seT clause to specify a particular character set for the single column. Otherwise, the column uses the
default database character set. If the database character set is changed, all columns subsequently
defined have the new character set, but existing columns are not affected. For a complete list of
character sets recognized by InterBase, see Character Sets and Collation Orders.

If you do not specify a default character set, the character set defaults to NnonE. Using character set
NONE means that there is no character set assumption for columns; data is stored and retrieved just
as you originally entered it. You can load any character set into a column defined with NONE, but you
cannot load that same data into another column that has been defined with a different character set.
In this case, no transliteration is performed between the source and destination character sets, and
errors may occur during assignment.

Embarcadero Technologies 60

SQL Statement and Function Reference

* The coLLATE clause enables specification of a particular collation order for cHAR, VARCHAR, and Blob text
data types. Choice of collation order is restricted to those supported for the given character set of
the column, which is either the default character set for the entire database, or a different set defined
in the cHARACTER SET clause as part of the data type definition. For a complete list of collation orders
recognized by InterBase, see Character Sets and Collation Orders.

* NOT NULL is an attribute that prevents the entry of NnuLL or unknown values in column. NoT NuLL affects
all INserT and uPDATE Operations on a column.

IMPORTANT

A DECLARE TABLE must precede CREATE TABLE in embedded applications if the same SQL program both creates a
table and inserts data in the table.

« The EXTERNAL FILE option creates a table whose data resides in an external file, rather than in the
InterBase database. Use this option to:

+ Define an InterBase table composed of data from an external source, such as data in files managed
by other operating systems or in non-database applications.

+ Transfer data to an existing InterBase table from an external file.

External files must either be placed in <InterBase_home>/ext Or their location must be specified in the
ibconfig configuration file using the EXTERNAL_FILE_DIRECTORY entry.

Referential integrity constraints:

+ You can define integrity constraints at the time you create a table. These constraints are rules that
validate data entries by enforcing column-to-table and table-to-table relationships. They span all
transactions that access the database and are automatically maintained by the system. cREATE TABLE
supports the following integrity constraints:

* A PRIMARY KEY is one or more columns whose collective contents are guaranteed to be unique. A
PRIMARY KEY column must also define the noT NuLL attribute. A table can have only one primary key.

* UNIQUE keys ensure that no two rows have the same value for a specified column or ordered set of
columns. A unique column must also define the NnoT NuLL attribute. A table can have one or more
UNIQUE keys. A UNIQUE key can be referenced by a FOREIGN KEY in another table.

+ Referential constraints (REFERENCES) ensure that values in the specified columns (known as the foreign
key) are the same as values in the referenced unNIQUE Or PRIMARY KEY columns in another table. The
UNIQUE Or PRIMARY KEY columns in the referenced table must be defined before the REFERENCES con-
straint is added to the secondary table. REFERENCES has oN DELETE and oN UPDATE clauses that define
the action on the foreign key when the referenced primary key is updated or deleted. The values for
ON UPDATE and oN DELETE are as follows:

Action specified Effect on foreign key
NO ACTION [Default] The foreign key does not change. This may cause the primary key update or delete to
fail due to referential integrity checks.
CASCADE The corresponding foreign key is updated or deleted as appropriate to the new value of the
primary key.
SET DEFAULT Every column of the corresponding foreign key is set to its default value. If the default value of

the foreign key is not found in the primary key, the update or delete on the primary key fails.

The default value is the one in effect when the referential integrity constraint was defined.
When the default for a foreign key column is changed after the referential integrity constraint is

Embarcadero Technologies 61

SQL Statement and Function Reference

Action specified Effect on foreign key
set up, the change does not have an effect on the default value used in the referential integrity
constraint.
SET NULL Every column of the corresponding foreign key is set to NULL.

* You can create a FOREIGN KEY reference to a table that is owned by someone else only if that owner
has explicitly granted you RerereNces privilege on that table. Any user who updates your foreign key
table must have REFERENCES Or SELECT privileges on the referenced primary key table.

* CHECK constraints enforce a <search_condition> that must be true for inserts or updates to the spec-
ified table. <search_condition> can require a combination or range of values or can compare the
value entered with data in other columns.

NOTE

Specifying USER as the value for a <search_condition> references the login of the user who is attempting to write to
the referenced table.

+ Creating PRIMARY KEY and FOREIGN KEY constraints requires exclusive access to the database.

+ For unnamed constraints, the system assigns a unique constraint name stored in the RDB$RELA-
TION_CONSTRAINTS System table.

NOTE

Constraints are not enforced on expressions.

Examples: The following isql statement creates a simple table with a PRIMARY KEV:

CREATE TABLE COUNTRY (COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

The next isql statement creates both a column-level and a table-level unIQuE constraint:

CREATE TABLE STOCK (

MODEL SMALLINT NOT NULL UNIQUE,

MODELNAME CHAR(10) NOT NULL,

ITEMID INTEGER NOT NULL,

CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

The following isqt statement illustrates table-level PRIMARY KEY, FOREIGN KEY, and CHECK constraints. The
PRIMARY KEY constraint is based on three columns. This example also illustrates creating an array column
Of VARCHAR.

CREATE TABLE JOB (

JOB_CODE JOBCODE NOT NULL,
JOB_GRADE JOBGRADE NOT NULL,
JOB_COUNTRY COUNTRYNAME NOT NULL,
JOB_TITLE VARCHAR(25) NOT NULL,
MIN_SALARY SALARY NOT NULL,
MAX_SALARY SALARY NOT NULL,
JOB_REQUIREMENT BLOB(400,1),
LANGUAGE_REQ VARCHAR(15) [5],

Embarcadero Technologies 62

SQL Statement and Function Reference

PRIMARY KEY (JOB_CODE, JOB_GRADE, JOB_COUNTRY),
FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY),
CHECK (MIN_SALARY < MAX_SALARY));

In the next example, the F2 column in table T2 is a foreign key that references table T1through the primary
key P1of T1. When a row in T1 changes, that change propagates to all affected rows in table T2. When a
row in T1is deleted, all affected rows in the F2 column of table T2 are set to nuLL.

CREATE TABLE T1 (P1 INTEGER NOT NULL PRIMARY KEY);

CREATE TABLE T2 (F2 INTEGER FOREIGN KEY (F2) REFERENCES T1 (P1)
ON UPDATE CASCADE

ON DELETE SET NULL);

The next isql statement creates a table with a calculated column:

CREATE TABLE SALARY_HISTORY (

EMP_NO EMPNO NOT NULL,

CHANGE_DATE DATE DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,

OLD_SALARY SALARY NOT NULL,

PERCENT_CHANGE DOUBLE PRECISION

DEFAULT ©

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN -50 AND 50),
NEW_SALARY COMPUTED BY

(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRIMARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREIGN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO));

In the following isqtl statement the first column retains the default collating order for the default character
set of the dataset. The second column has a different collating order, and the third column definition
includes a character set and a collating order.

CREATE TABLE BOOKADVANCE (

BOOKNO CHAR(6),

TITLE CHAR(50) COLLATE IS08859_1,

EUROPUB CHAR(50) CHARACTER SET IS08859_1 COLLATE FR_FR);

Creates a trigger, including when it fires, and what actions it performs. Available in DSQL, and {isqt.

NO RESERVE SPACE for Database and User Tables

This feature is useful if you have very, large databases (VLDB) with tables that are archival in nature. An
archival table means that the rows of a table are infrequently or never UPDATED or DELETED; have complex
queries, such as aggregates and analytics that process a high percentage of rows; and where indexes are
rebuilt and the database is backed and/or restored frequently. These database operations could see a
performance improve of 20% or more with a savings in storage space.

Embarcadero Technologies 63

SQL Statement and Function Reference

By default, InterBase reserves a small amount of space in each data page of a table to optimize UPDATE
and DELETE operations on resident rows. This reserve space can amount to 20% or more of the total space
occupied by all of the rows of the table. Some tables archive historical data or data that are UPDATED
infrequently or not at all and their rows may never be deleted. Database operations that process most
or all of the rows, such as backup, restore, index creation, aggregate computation have always suffered
performance penalties proportional to this reservation overhead.

For this reason, a CREATE/ALTER TABLE clause is introduced that prevents space reservation and maxi-
mizes row packing for the most efficient fill ratio. At the database level, it has been possible to restore
a database with the -USE_ALL_SPACE switch so that no space is reserved for any table. To change the
storage behavior in a like manner for new or existing databases, the same clause is introduced for CRE-
ATE/ALTER DATABASE.

User Interface To effect the new storage behavior, a non-standard SQL clause is added:

Clause is presented before the secondary file specification.

CREATE DATABASE <file name> ... [NO] RESERVE SPACE

Clause is presented after the column list specification and optional ON COMMIT clause for temporary
tables.

CREATE TABLE <TABLE name> ... [NO] RESERVE SPACE

This causes newly INSERTED rows to not reserve space on their data page for a DELETE record version stub,
as would normally be the case. Over many row insertions, a decrease in storage size should be observed
relative to what the table size would be in the absence of this feature. The optional NO keyword when used
with ALTER TABLE toggles the behavior to the alternate state of the current storage behavior for the table.

The NO RESERVE storage modifier is preserved across database backup and restore. This state is stored
as flag bit 64 (0x100) of RDB$RELATIONS.RDB$FLAGS for the user's table entry in the system table RDB
$RELATIONS.

The clause is displayed by ISQL's SHOW TABLE command following the enumeration of a table's column
definitions. It is also visible using ISQL's Extract (-x) command in a syntax-correct manner for the CREATE
TABLE output of the respective table listing. The state for database-wide storage behavior is stored in a
like manner for the RDB$DATABASE entry in RDB$RELATIONS.

ON COMMIT

A global temporary table is declared to a database schema via the normal CREATE TABLE statement with
the following syntax:

CREATE GLOBAL TEMPORARY TABLE {{Placeholder|TABLE}}
({{Placeholder|<col_def>}} [, {{Placeholder|<col_def>}} |
{{Placeholder |<tconstraint>}} ...])
 [ON COMMIT
{PRESERVE | DELETE} ROWS];

Embarcadero Technologies 64

SQL Statement and Function Reference

The first argument that you supply CREATE GLOBAL TEMPORARY TABLE is the temporary table name,
which is required and must be unique among all table and procedure names in the database. You must
also supply at least one column definition.

The ON COMMIT clause describes whether the rows of the temporary table are deleted on each trans-
action commit (ON COMMIT DELETE) or are left in place (ON COMMIT PRESERVE) to be used by other
transactions in the same database attachment. If the ON COMMIT is not specified then the default behav-
ior is to DELETE ROWS on transaction commit.

There is a change in behavior in the GLOBAL TEMPORARY TABLE Support with the InterBase XE3 Up-
date 2 release. When an SQL script is executed ISQL reported a "deadlock" if EXIT is called without COM-
MIT/ROLLBACK on a global temporary table. To resolve this issue, the GLOBAL TEMPORARY TABLES func-
tion has been redesigned which changes the behavior and corrects the deadlock error.

It is no longer possible for transactions emanating from the same connection to see each other's rows in
a transaction-specific (ON COMMIT DELETE) temporary table. To do that, you must use a session-specific
(ON COMMIT PRESERVE) temporary table that makes all rows visible to transactions starting in the same
session. This is still not the same in that the rows will persist until the connection is finished.

A Global temporary table is dropped from a database schema using the normal DROP TABLE statement.

CREATE TABLE <table> [EXTERNAL [FILE] '<filespec>']
(col_def [, col_def | tconstraint ..]) [ON COMMIT {PRESERVE | DELETE} ROWS]
[[NO] RESERVE SPACE];

9.34. CREATE TRIGGER

CREATE TRIGGER name FOR TABLE

[ACTIVE | INACTIVE]

{BEFORE | AFTER}

{DELETE | INSERT | UPDATE}

[POSITION NUMBER]

AS trigger_body ;

trigger_body = [variable_declaration_1list] block
variable_declaration_list =

DECLARE VARIABLE variable data_type;

[DECLARE VARIABLE variable data_type; ..]

block =

BEGIN

compound_statement

[compound_statement ..]

END

data_type = SMALLINT

| INTEGER

| FLOAT

| DOUBLE PRECISION

| {DECIMAL | NUMERIC} [(PRECISION [, scalel)l]

| {DATE | TIME | TIMESTAMP)

| {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
[(INT)] [CHARACTER SET charname]

| {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR} [VARYING] [(INT)]

Embarcadero Technologies 65

SQL Statement and Function Reference

| BOOLEAN
compound_statement

= block | statement;

Argument Description
<name> Name of the trigger; must be unique in the database.
<table> Name of the table or view that causes the trigger to fire when the specified operation

occurs on the table or view.

ACTIVE|INACTIVE

Optional. Specifies trigger action at transaction end:

« ACTIVE: [Default] Trigger takes effect.
« INACTIVE: Trigger does not take effect.

BEFORE | AFTER

Required. Specifies whether the trigger fires:

« BEFORE: Before the associated operation.

« AFTER: After the associated operation.

Associated operations are DELETE, INSERT, or UPDATE.

DELETE|INSERT |UPDATE

Specifies the table operation that causes the trigger to fire.

POSITION <number>

Specifies the firing order for triggers before the same action or after the same action;
<number> must be an integer between 0 and 32,767, inclusive.

+ Lower-number triggers fire first.

« Default: 0 = first trigger to fire.

« Triggers for a table need not be consecutive; triggers on the same action with the
same position number will fire in random order.

DECLARE VARIABLE

Declares local variables used only in the trigger. Each declaration must be preceded by
DECLARE VARIABLE and followed by a semicolon (;).

« : Local variable name, unique in the trigger.

 <data_type>: The data type of the local variable.

<statement>

Any single statement in InterBase procedure and trigger language; each statement ex-
cept BEGIN and END must be followed by a semicolon ().

Description: crReaTE TRIGGER defines a new trigger to a database. A trigger is a self-contained program
associated with a table or view that automatically performs an action when a row in the table or view is

inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts tO INSERT, UPDATE, OF DELETE
arow in a table, any triggers associated with that table and operation automatically execute, or fire. Triggers
defined for uppATE on non-updatable views fire even if no update occurs.

A trigger is composed of a header and a body.

The trigger header contains:

« A trigger name, unique within the database, that distinguishes the trigger from all others.

+ A table name, identifying the table with which to associate the trigger.

« Statements that determine when the trigger fires.

The trigger body contains:

Embarcadero Technologies

66

SQL Statement and Function Reference

« An optional list of local variables and their data types.

+ A block of statements in InterBase procedure and trigger language, bracketed by BEGIN and END.
These statements are performed when the trigger fires. A block can itself include other blocks, so that
there may be many levels of nesting.

A trigger is associated with a table. The table owner and any user granted privileges to the table automat-
ically have rights to execute associated triggers.

Triggers can be granted privileges on tables, just as users or procedures can be granted privileges. Use the
GRANT Statement, but instead of using To <username>, use To TRIGGER <trigger_nam>e. Triggers privileges
can be revoked similarly using REVOKE.

When a user performs an action that fires a trigger, the trigger will have privileges to perform its actions
if one of the following conditions is true:

+ The trigger has privileges for the action.

« The user has privileges for the action.
InterBase procedure and trigger language is a complete programming language for stored procedures
and triggers. It includes:

+ SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.

+ SQL operators and expressions, including generators and UDFs that are linked with the calling appli-
cation.

« Powerful extensions to SQL, including assignment statements, control-flow statements, context vari-
ables, event-posting statements, exceptions, and error-handling statements.

The following table summarizes language extensions for triggers. For a complete description of each state-
ment, see Procedures and Triggers.

Language extensions for triggers

Statement Description

BEGIN ..END Defines a block of statements that executes as one.

» The BEGIN keyword starts the block; the END keyword terminates
it.

 Neither should it be followed by a semicolon.

Assignment statement that assigns the value of <expression> to
<variable>, a local variable, input parameter, or output parameter.

<variable> = <expression>

/* <comment_text> %/

Programmer’s comment, where <comment_text> can be any number
of lines of text.

EXCEPTION <exception_name>

Raises the named exception; an exception is a user-defined error that
returns an error message to the calling application unless handled by
a WHEN statement.

EXECUTE PROCEDURE < proc_name> [[, ..]]
[RETURNING_VALUES[, ..]]

Executes the stored procedure, <proc_name>, with the listed input ar-
guments.

* Returns values in the listed output arguments following RETURN-
ING_VALUES.

« Input and output arguments must be local variables.

EXIT

Jumps to the final END statement in the procedure.

Embarcadero Technologies

67

SQL Statement and Function Reference

Language extensions for triggers

Statement

Description

FOR <select_statement> DO <compound_s-
tatement>

Repeats the statement or block following DO for every qualifying row
retrieved by <select_statement>.

<select_statement>

A normal SELECT statement.

<compound_statement>

Either a single statement in procedure and trigger language or a
block of statements bracketed by BEGIN and END.

IF (condition) THEN compound_statement
[ELSE compound_statement]

Tests <condition>, and if it is TRUE, performs the statement or block
following THEN; otherwise, performs the statement or block following
ELSE, if present.

<condition>

A Boolean expression (TRUE, FALSE, or UNKNOWN), generally two ex-
pressions as operands of a comparison operator.

NEW.<column>

New context variable that indicates a new column value in an INSERT
or UPDATE operation.

OLD.<column>

Old context variable that indicates a column value before an UPDATE
or DELETE operation.

POST_EVENT <event_name> | <col>

Posts the event, <event_name>, or uses the value in <col> as an
event name.

WHILE (<condition>) DO <compound_state-
ment>

While condition is TRUE, keep performing <compound_statement>.

+ Tests <condition>, and performs <compound_statement> if
<condition> is TRUE.

* Repeats this sequence until <condition> is no longer TRUE.

WHEN {<error> [, <error> ..]
<compound_statement>

| ANY} DO

Error-handling statement. When one of the specified errors occurs,
performs <compound_statement>. WHEN statements, if present, must
come at the end of a block, just before END.

« ANY: Handles any errors

<error>

EXCEPTION <exception_name>, SQLCODE <errcode> or GDSCODE
errcode

The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

+ Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE

FILTER

« Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK

» Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

* CONNECT/DISCONNECT, and sending SQL statements to another database

* GRANT/REVOKE

®* SET GENERATOR

®* EVENT INIT/WAIT

* BEGIN/END DECLARE SECTION
* BASED ON

* WHENEVER

* DECLARE CURSOR

Embarcadero Technologies

68

SQL Statement and Function Reference

¢ OPEN

* FETCH

Examples: The following trigger, SAVE_SALARY_CHANGE, makes correlated updates to the SALARY_HIS-
TORY table when a change is made to an employee’s salary in the EMPLOYEE table:

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE

AFTER UPDATE AS

BEGIN

IF (OLD.SALARY <> NEW.SALARY) THEN

INSERT INTO SALARY_HISTORY

(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, 'now', USER, OLD.SALARY,

(NEW.SALARY - OLD.SALARY) x 100 / OLD.SALARY);

END

The following trigger, SET_CUST_NO, uses a generator to create unique customer numbers when a new
customer record is inserted in the CUSTOMER table.

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
BEFORE INSERT AS

BEGIN

NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END ;

The following trigger, POST_NEW_ORDER, posts an event named “new_order” whenever a new record is
inserted in the SALES table.

CREATE TRIGGER POST_NEW_ORDER FOR SALES
AFTER INSERT AS

BEGIN

POST_EVENT 'new_order';

END

The following four fragments of trigger headers demonstrate how the POSITION option determines trigger
firing order:

CREATE TRIGGER A FOR accounts

BEFORE UPDATE

POSITION 5 .. /*Trigger body followsx/
CREATE TRIGGER B FOR accounts

BEFORE UPDATE

POSITION 0O .. /*Trigger body followsx/
CREATE TRIGGER C FOR accounts

AFTER UPDATE

POSITION 5 .. /*Trigger body followsx/
CREATE TRIGGER D FOR accounts

AFTER UPDATE

POSITION 3 .. /*Trigger body followsx/

Embarcadero Technologies 69

SQL Statement and Function Reference

When this update takes place:

UPDATE accounts SET account_status

WHERE account_balance < 0;

The triggers fire in this order:

1. Trigger B fires.
2. Trigger A fires.
3. The update occurs.
4. Trigger D fires.
5. Trigger C fires.

9.35. CREATE USER

= 'on_hold'

Create a new user. Available in psqL and +isql.

CREATE USER <name> SET
[PASSWORD <password>]
[[NO] DEFAULT ROLE <name>]

[[NO] SYSTEM USER NAME <name>]

[[NO] GROUP NAME <name>]
[[NO] UID <number>]

[[NO] GID <number>]

[[NO] DESCRIPTION <string>]
[[NO] FIRST NAME <string>]
[[NO] MIDDLE NAME <string>]
[[NO] LAST NAME <string>]
[ACTIVE]

[INACTIVE];

Argument

Description

PASSWORD

Password of user

[NO]JDEFAULT ROLE

Default role

[NO] SYSTEM USER NAME

System user name for target user

[NOJGROUP NAME

Group name for target user

[NO] UID

Target user ID

[NO] GID

Group ID for target user

[NO] DESCRIPTION

Description

[NOJFIRST NAME

First name for target user

[NO] MIDDLE NAME

Middle name for target user

[NOJLAST NAME

Last name for target user

ACTIVE

Default. After inactive, reinstates selected user.

INACTIVE

Prevents a user from logging into database.

Embarcadero Technologies

70

SQL Statement and Function Reference

Description: cREATE USER creates a new user. Only used with database under embedded user authenti-
cation. If you choose to set more than one property value for the user, include a comma between each
property value pair.

NOTE

When NO is specified, an argument to the option must not be supplied. NO sets the option to a NULL state.

Examples: The following statement creates the user, JDOE and set password, jdoe:

CREATE USER IJDOE SET PASSWORD ¢jdoe’;

The next statement creates the user, JDOE, and set password, first name and last name:

CREATE USER IJDOE SET PASSWORD ¢‘jdoe’, FIRST NAME ‘Jane’, LAST NAME ¢‘Doe’;

9.36. CREATE VIEW

Creates a new view of data from one or more tables. Available in gpre, DsSQL, and 1sql.

CREATE VIEW name [(view_col [, view_col ..])]
AS SELECT [WITH CHECK OPTION];

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
<name> Name for the view; must be unique among all view, table, and procedure names in the
database.
<view_col> Names the columns for the view:

« Column names must be unique among all column names in the view.
» Required if the view includes columns based on expressions; otherwise optional.

« Default: Column name from the underlying table.

<select> Specifies the selection criteria for rows to be included in the view.

WITH CHECK OPTION Prevents INSERT or UPDATE operations on an updatable view if the INSERT or UPDATE vio-
lates the search condition specified in the WHERE clause of the SELECT clause of the view.

Description: cReaTE vIEw describes a view of data based on one or more underlying tables in the database.
The rows to return are defined by a seLEcT statement that lists columns from the source tables. Only the
view definition is stored in the database; a view does not directly represent physically stored data. It is
possible to perform select, project, join, and union operations on views as if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability to GranT privileges
to other users, roles, triggers, views, and stored procedures. A user may have privileges to a view without
having access to its base tables. When creating views:

+ A read-only view requires seLecT privileges for any underlying tables.

Embarcadero Technologies 71

SQL Statement and Function Reference

+ An updatable view requires aLL privileges to the underlying tables.

The <view_col> option ensures that the view always contains the same columns and that the columns
always have the same view-defined names.

View column names correspond in order and number to the columns listed in the seLecT clause, so specify
all view column names or none.

A <view_col> definition can contain one or more columns based on an expression that combines the
outcome of two columns. The expression must return a single value, and cannot return an array or array
element. If the view includes an expression, the view-<column> option is required.

NOTE [#]

Any columns used in the value expression must exist before the expression can be defined.

A seLECT statement clause cannot include the orbeErR BY clause.

When seLEcT « is used rather than a column list, order of display is based on the order in which columns
are stored in the base table.

WITH CHECK OPTION enables InterBase to verify that a row added to or updated in a view is able to be
seen through the view before allowing the operation to succeed. Do not use wITH CHECK oPTION for read-
only views.

NOTE (4
You cannot select from a view that is based on the result set of a stored procedure.

An updatable view cannot have UNION clauses. To create such a view, use embedded SQL.

A view is updatable if:

* Itis a subset of a single table or another updatable view.

+ All base table columns excluded from the view definition allow nuLL values.

+ The seLEcT statement of the view does not contain subqueries, a bISTINCT predicate, a HAVING clause,
aggregate functions, joined tables, user-defined functions, or stored procedures.

If the view definition does not meet these conditions, it is considered read-only.

NOTE

Read-only views can be updated by using a combination of user-defined referential constraints, triggers, and unique
indexes.

Examples: The following isql statement creates an updatable view:

CREATE VIEW SNOW_LINE (CITY, STATE, SNOW_ALTITUDE) AS
SELECT CITY, STATE, ALTITUDE

FROM CITIES

WHERE ALTITUDE > 5000;

The next isql statement uses a nested query to create a view:

Embarcadero Technologies 72

SQL Statement and Function Reference

CREATE VIEW RECENT_CITIES AS

SELECT STATE, CITY, POPULATION

FROM CITIES WHERE STATE IN

(SELECT STATE FROM STATES WHERE STATEHOOD > '1-JAN-1850');

In an updatable view, the wITH CHECK OPTION prevents any inserts or updates through the view that do not
satisfy the wHERE clause of the CREATE VIEW SELECT statement:

CREATE VIEW HALF_MILE_CITIES AS
SELECT CITY, STATE, ALTITUDE
FROM CITIES

WHERE ALTITUDE > 2500

WITH CHECK OPTION;

The wITH cHECK OPTION clause in the view would prevent the following insertion:

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Chicago', 'Illinois', 250);

On the other hand, the following upbATE would be permitted:

INSERT INTO HALF_MILE_CITIES (CITY, STATE, ALTITUDE)
VALUES ('Truckee', 'California', 2736);

The wITH cHECK oPTION clause does not allow updates through the view which change the value of a row
so that the view cannot retrieve it. For example, the wiTH cHEck opTION in the HALF_MILE_CITIES view
prevents the following update:

UPDATE HALF_MILE_CITIES
SET ALTITUDE = 2000
WHERE STATE = 'NY';

The next isql statement creates a view that joins two tables, and so is read-only:

CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT, LOCATION, PHONE_NO
FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

9.37. DECLARE CURSOR

Defines a cursor for a table by associating a name with the set of rows specified in a SeLecT statement.
Available in gpre and DSQL.

SQL form:

DECLARE cursor CURSOR FOR SELECT [FOR UPDATE OF col [, col.]];

Embarcadero Technologies 73

SQL Statement and Function Reference

DSQL form:

DECLARE cursor CURSOR FOR statement_qid

Blob form: See DECLARE CURSOR (BLOB).

Argument

Description

<cursor>

Name for the cursor.

<select>

Determines which rows to retrieve. SQL only.

]

FOR UPDATE OF <col> [,

<col> |Enables UPDATE and DELETE of specified column for retrieved rows.

<statement_id>

SQL statement name of a previously-prepared statement, which in this case must
be a SELECT statement. DSQL only.

Description: bEcLARE CURSOR defines the set of rows that can be retrieved using the cursor it names. It is
the first member of a group of table cursor statements that must be used in sequence.

Select specifies a SeLECT statement that determines which rows to retrieve. The seLECT statement cannot
include 1NTO Or ORDER BY clauses.

The ForR UPDATE oF clause is necessary for updating or deleting rows using the WHERE CURRENT OF clause
with UPDATE and DELETE.

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in the bECLARE
CURSOR statement. It enables sequential access to retrieved rows in turn. There are four related cursor

statements:

Stage

Statement

Purpose

1

DECLARE CURSOR

Declares the cursor; the SELECT statement determines rows retrieved for the cursor.

2 | OPEN Retrieves the rows specified for retrieval with DECLA RECURSOR; the resulting rows become
the active set of the cursor.

3 FETCH Retrieves the current row from the active set, starting with the first row; subsequent FETCH
statements advance the cursor through the set.

4 CLOSE Closes the cursor and releases the system resources.

Examples: The following embedded SQL statement declares a cursor with a search condition:

EXEC SQL

DECLARE C CURSOR FOR

SELECT CUST_NO,
FROM SALES

ORDER_STATUS

WHERE ORDER_STATUS IN ('open', 'shipping');

The next DSQL statement declares a cursor for a previously-prepared statement, QUERYT:

DECLARE Q CURSOR FOR QUERY1

Embarcadero Technologies 74

SQL Statement and Function Reference

9.38. DECLARE CURSOR (BLOB)

Declares a Blob cursor for read or insert. Available in gpre.

DECLARE cursor CURSOR FOR

{READ BLOB COLUMN FROM TABLE

| INSERT BLOB COLUMN INTO TABLE}
[FILTER [FROM subtype] TO subtype]
[MAXIMUM_SEGMENT LENGTH];

Argument Description
<cursor> Name for the Blob cursor
<column> Name of the Blob column
<table> Table name
READ BLOB Declares a read operation on the Blob
INSERT BLOB Declares a write operation on the Blob

[FILTER [FROM <subtype>] TO <subtype>] |Specifies optional Blob filters used to translate a Blob from one us-
er-specified format to another; <subtype> determines which filters
are used for translation

MAXIMUM_SEGMENT <length> Length of the local variable to receive the Blob data after a FETCH op-
eration

Description: Declares a cursor for reading or inserting Blob data. A Blob cursor can be associated with
only one Blob column.

To read partial Blob segments when a host-language variable is smaller than the segment length of a Blob,
declare the Blob cursor with the maxImum_seeMeNT clause. If length is less than the Blob segment, FETCH
returns length bytes. If the same or greater, it returns a full segment (the default).

Examples: The following embedded SQL statement declares a READ BLOB cursor and uses the MAXIMUM_SEG-
MENT Option:

EXEC SQL
DECLARE BC CURSOR FOR
READ BLOB JOB_REQUIREMENT FROM JOB MAXIMUM_SEGMENT 40;

The next embedded SQL statement declares an INSERT BLOB CUISOr:

EXEC SQL
DECLARE BC CURSOR FOR
INSERT BLOB JOB_REQUIREMENt INTO JOB;

9.39. DECLARE EXTERNAL FUNCTION

Declares an existing user-defined function (UDF) to a database. Available in gpre, bsqL, and isql.

DECLARE EXTERNAL FUNCTION name [data_type
| CSTRING (<int>) [, data_type | CSTRING (<int>) ..]]

Embarcadero Technologies 75

SQL Statement and Function Reference

RETURNS {data_type [BY VALUE] | CSTRING (<int>) | PARAMETER <n}> [FREE_IT]
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

NOTE

Whenever a UDF returns a value by reference to dynamically allocated memory, you must declare it using the FREE_IT
keyword in order to free the allocated memory.

Argument Description

<name> Name of the UDF to use in SQL statements; can be different from the name of the function specified
after the ENTRY_POINT keyword.

<data_type> Data type of an input or return parameter.

« All input parameters are passed to a UDF by reference.
+ Return parameters can be passed by value.

« Cannot be an array element.

CSTRING (<int>) |Specifies a UDF that returns a null-terminated string <int> bytes in length.

RETURNS Specifies the return value of a function.

BYVALUE Specifies that a return value should be passed by value rather than by reference.

PARAMETER <n> - . .
« Specifies that the <n>th input parameter is to be returned.

+ Used when the return data type is BLOB.

FREE_IT Frees memory of the return value after the UDF finishes running.

 Use only if the memory is allocated dynamically in the UDF

+ See also Error Codes and Messages.

'<entryname>' Quoted string that contains the function name as it is stored in the library that is referenced by the
UDF.

'<modulename>' | Quoted specification identifying the library that contains the UDF.

 The library must reside on the same machine as the InterBase server.

« On any platform, the module can be referenced with no path name if it is in <<Inter-
Base_home>>/UDF or <<InterBase_home>>/intl

« If the library is in a directory other than <<InterBase_home>>/UDF or <<Inter-
Base_home>>/intl, you must specify its location in configuration file (ibconfig) of InterBase us-
ing the EXTERNAL_FUNCTION_DIRECTORY parameter.

« Itis not necessary to supply the extension to the module name.

Description: DECLARE EXTERNAL FUNCTION provides information about a UDF to a database: where to find
it, its name, the input parameters it requires, and the single value it returns. Each UDF in a library must be
declared once to each database where it will be used. As long as the entry point and module name do
not change, there is no need to redeclare a UDF, even if the function itself is modified.

entryname is the actual name of the function as stored in the UDF library. It does not have to match the
name of the UDF as stored in the database.

Embarcadero Technologies 76

SQL Statement and Function Reference

IMPORTANT [

The module name does not need to include a path. However, the module must either be placed in <<Inter-
Base_home>>/UDF or be listed in the InterBase configuration file using the EXTERNAL_FUNCTION_DIRECTORY param-
eter.

To specify a location for UDF libraries in the InterBase configuration file, enter a line of the following form
for Windows platforms:

EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase

For UNIX, the line does not include a drive letter:

EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase

The InterBase configuration file is called ibconfig on all platforms.

Examples: The following isql statement declares the TOPS() UDF to a database:

DECLARE EXTERNAL FUNCTION TOPS
CHAR(256), INTEGER, BLOB

RETURNS INTEGER BY VALUE
ENTRY_POINT 'tel' MODULE_NAME 'tml';

This example does not need the FRee_IT keyword because only cstrings, cHAR, and VARCHAR return types
require memory allocation.

The next example declares the Lowers () UDF and frees the memory allocated for the return value:

DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
RETURNS CSTRING(256) FREE_IT
ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

9.40. DECLARE FILTER

Declares an existing Blob filter to a database. Available in gpre, bsqL, and isql.

DECLARE FILTER FILTER
INPUT_TYPE subtype OUTPUT_TYPE subtype
ENTRY_POINT 'entryname' MODULE_NAME 'modulename';

IMPORTANT 1

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Embarcadero Technologies 77

SQL Statement and Function Reference

Argument Description
<filter> Name of the filter; must be unique among filter names in the database.
INPUT_TYPE <subtype> Specifies the Blob subtype from which data is to be converted.
OUTPUT_TYPE <subtype> Specifies the Blob subtype into which data is to be converted.
‘<entryname>’ Quoted string specifying the name of the Blob filter as stored in a linked library.
¢<modulename>’ Quoted file specification identifying the object module in which the filter is stored.

Description: pecLARE FILTER provides information about an existing Blob filter to the database: where to
find it, its name, and the Blob subtypes it works with. A Blob filter is a user-written program that converts
data stored in Blob columns from one subtype to another.

INPUT_TYPE and ouTPUT_TYPE together determine the behavior of the Blob filter. Each filter declared to
the database should have a unique combination of INPUT_TYPE and ouTPUT_TYPE integer values. InterBase
provides a built-in type of 1, for handling text. User-defined types must be expressed as negative values.

<entryname> is the name of the Blob filter stored in the library. When an application uses a Blob filter,
it calls the filter function with this name.

Example: The following isql statement declares a Blob filter:

DECLARE FILTER DESC_FILTER
INPUT_TYPE 1

OUTPUT_TYPE -4

ENTRY_POINT 'desc_filter'
MODULE_NAME 'FILTERLIB';

9.41. DECLARE STATEMENT

Identifies dynamic SQL statements before they are prepared and executed in an embedded program.
Available in gpre.

DECLARE statement STATEMENT;

Argument Description

<statement> | Name of a SQL variable for a user-supplied SQL statement to prepare and execute at run time.

Description: pecLARE STATEMENT names a SQL variable for a user-supplied SQL statement to prepare
and execute at run time. DECLARE STATEMENT is not executed, so it does not produce run-time errors. The
statement provides internal documentation.

Example: The following embedded SQL statement declares Q1 to be the name of a string for preparation
and execution.

EXEC SQL
DECLARE Q1 STATEMENT;

Embarcadero Technologies 78

SQL Statement and Function Reference

9.42. DECLARE TABLE

Describes the structure of a table to the preprocessor, gpre, before it is created with cREATE TABLE. Available
in gpre.

DECLARE TABLE TABLE (table_def);

Argument Description

<table> Name of the table; table names must be unique within the database.

<table_def> | Definition of the table; for complete table definition syntax, see CREATE TABLE.

Description: DECLARE TABLE causes gpre 10 Store a table description. You must use it if you both create
and populate a table with data in the same program. If the declared table already exists in the database
or if the declaration contains syntax errors, gpre returns an error.

When a table is referenced at run time, the column descriptions and data types are checked against the
description stored in the database. If the table description is not in the database and the table is not
declared, or if column descriptions and data types do not match, the application returns an error.

DECLARE TABLE can include an existing domain in a column definition, but must give the complete column
description if the domain is not defined at compile time.

DECLARE TABLE cannot include integrity constraints and column attributes, even if they are present in a
subsequent CREATE TABLE Statement.

IMPORTANT

DECLARE TABLE cannot appear in a program that accesses multiple databases.

Example: The following embedded SQL statements declare and create a table:

EXEC SQL
DECLARE STOCK TABLE

(MODEL SMALLINT,

MODELNAME CHAR(10),

ITEMID INTEGER);

EXEC SQL

CREATE TABLE STOCK

(MODEL SMALLINT NOT NULL UNIQUE,

MODELNAME CHAR(1@) NOT NULL,

ITEMID INTEGER NOT NULL,

CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID));

9.43. DELETE

Removes rows in a table or in the active set of a cursor. Available in gpre, DsqL, and 4sqtl.

SQL and DSQL form:

Embarcadero Technologies 79

SQL Statement and Function Reference

IMPORTANT

Omit the terminating semicolon for DSQL.

DELETE [TRANSACTION TRANSACTION] FROM TABLE

{[WHERE search_condition] | WHERE CURRENT OF cursor}

[ORDER BY order_list]

[ROWS VALUE [TO upper_value] [BY step_value] [PERCENT][WITH TIES]];
search_condition = SEARCH condition AS specified IN SELECT.

isql form:

DELETE FROM TABLE [WHERE search_condition];

Argument Description

TRANSACTION<transaction> Name of the transaction under control of which the statement is executed; SQL only

<table> Name of the table from which to delete rows

WHERE<search_condition> Search condition that specifies the rows to delete; without this clause, DELETE affects
all rows in the specified table or view

WWHERE CURRENT OF <cursor> |Specifies that the current row in the active set of <cursor> is to be deleted

ORDER BY <order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows

ROWS <value>

[TO <upper_value>] + <value> is the total number of rows to return if used by itself

[BY <step_value>] « <value> is the starting row number to return if used with T0
[PERCENT] [WITH TIES] _ . _
 <value> is the percent if used with PERCENT

« <upper_value> is the last row or highest percent to return

- If <step_value> = <n>, returns every <n>th row, or <n> percent rows

e PERCENT causes all previous ROWS values to be interpreted as percents

e WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY

DELETE specifies one or more rows to delete from a table or updatable view. beLETE is one of the database
privileges controlled by the GranT and REVOKE Statements.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction
controls the pELETE operation. The TRANSACTION clause is not available in DSQL or isqt.

For searched deletions, the optional wHERE clause can be used to restrict deletions to a subset of rows in
the table.

IMPORTANT

Without a WHERE clause, a searched delete removes all rows from a table.

When performing a positioned delete with a cursor, the wHERE CURRENT oF clause must be specified to
delete one row at a time from the active set.

Embarcadero Technologies 80

SQL Statement and Function Reference

Examples: The following isql statement deletes all rows in a table:

DELETE FROM EMPLOYEE_PROJECT;

The next embedded SQL statement is a searched delete in an embedded application. It deletes all rows
where a host-language variable equals a column value.

EXEC SQL
DELETE FROM SALARY_HISTORY
WHERE EMP_NO = :emp_num;

The following embedded SQL statements use a cursor and the wHERE CURRENTOF option to delete rows from
cITIES With a population less than the host variable, min_pop. They declare and open a cursor that finds
qualifying cities, fetch rows into the cursor, and delete the current row pointed to by the cursor.

EXEC SQL

DECLARE SMALL_CITIES CURSOR FOR
SELECT CITY, STATE

FROM CITIES

WHERE POPULATION < :min_pop;

EXEC SQL

OPEN SMALL_CITIES;

EXEC SQL

FETCH SMALL_CITIES INTO :cityname,
WHILE (!SQLCODE)

{EXEC SQL

DELETE FROM CITIES

WHERE CURRENT OF SMALL_CITIES;
EXEC SQL

FETCH SMALL_CITIES INTO :cityname,
EXEC SQL

CLOSE SMALL_CITIES;

9.44. DESCRIBE

:statecode;

:statecode;}

Provides information about columns that are retrieved by a dynamic SQL (DSQL) statement, or information
about the dynamic parameters that statement passes. Available in gpre.

DESCRIBE [OUTPUT | INPUT] statement

{INTO | USING} SQL DESCRIPTOR xsqlda;

Argument Description
OUTPUT [Default] Indicates that column information should be returned in the
XSQLDA.
INPUT Indicates that dynamic parameter information should be stored in the
XSQLDA.
<statement>

« A previously defined alias for the statement to DESCRIBE.
+ Use PREPARE to define aliases.

Embarcadero Technologies

81

SQL Statement and Function Reference

Argument Description

{INTO|USING}SQL DESCRIPTOR <xsqlda> Specifies the XSQLDA to use for the DESCRIBE statement.

Description: DESCRIBE has two uses:

+ As a describe output statement, bEscrIBE stores into an XSQLDA a description of the columns that
make up the select list of a previously-prepared statement. If the PREPARE statement included an InToO
clause, it is unnecessary to use DESCRIBE as an output statement.

* As a describe input statement, bEscrIBE stores into an XSQLDA a description of the dynamic param-
eters that are in a previously-prepared statement.

DESCRIBE is one of a group of statements that process DSQL statements.

Statement Purpose
PREPARE Readies a DSQL statement for execution.
DESCRIBE Fills in the XSQLDA with information about the statement.
EXECUTE Executes a previously-prepared statement.
EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

Separate DESCRIBE statements must be issued for input and output operations. The InpuT keyword must
be used to store dynamic parameter information.

IMPORTANT \

When using DESCRIBE for output, if the value returned in the sqld field in the XSQLDA is larger than the sqln field,
you must:

« Allocate more storage space for XSQLVAR structures.

» Reissue the DESCRIBE statement.

NOTE

The same XSQLDA structure can be used for input and output if desired.

Example: The following embedded SQL statement retrieves information about the output of a seLECT
statement:

EXEC SQL
DESCRIBE Q INTO xsqlda

The next embedded SQL statement stores information about the dynamic parameters passed with a state-
ment to be executed:

EXEC SQL
DESCRIBE INPUT Q2 USING SQL DESCRIPTOR xsqlda;

9.45. DISCONNECT

Detaches an application from a database. Available in gpre.

Embarcadero Technologies 82

SQL Statement and Function Reference

DISCONNECT {{ALL | DEFAULT} | dbhandle [, dbhandle] ..]1};

Argument Description

ALL|DEFAULT | Either keyword detaches all open databases.

<dbhandle> Previously-declared database handle specifying a database to detach.

Description: p1sconnecT closes a specific database identified by a database handle or all databases, re-
leases resources used by the attached database, zeroes database handles, commits the default transac-
tion if the gpre-manual option is not in effect, and returns an error if any non-default transaction is not
committed.

Before using pxsconnecT, commit or roll back the transactions affecting the database to be detached.
To reattach to a database closed with bIsconnECT, reopen it with a connECT statement.

Examples: The following embedded SQL statements close all databases:

EXEC SQL
DISCONNECT DEFAULT;
EXEC SQL
DISCONNECT ALL;

The next embedded SQL statements close the databases identified by their handles:

EXEC SQL
DISCONNECT DB1;

EXEC SQL

DISCONNECT DB1, DB2;

9.46. DROP DATABASE

Deletes the currently attached database. Available in isqt.

DROP DATABASE;

Description: prop DATABASE deletes the currently attached database, including any associated secondary,
shadow, and log files. Dropping a database deletes any data it contains.

A database can be dropped by its creator, the SYSDBA user, and any users with operating system root
privileges.

Example: The following isql statement deletes the current database:

DROP DATABASE;

9.47. DROP DOMAIN

Deletes a domain from a database. Available in gpre, DsqL, and isqt.

Embarcadero Technologies 83

SQL Statement and Function Reference

DROP DOMAIN name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing domain

Description: brop DoMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the prop operation fails. To prevent
failure, use ALTER TABLE to delete the columns based on the domain before executing broP DOMAIN.

A domain may be dropped by its creator, the SYSDBA, and any users with operating system root privileges.

Example: The following isql statement deletes a domain:

DROP DOMAIN COUNTRYNAME;

9.48. DROP ENCRYPTION

Used to delete an encryption key from a database.

DROP ENCRYPTION key-name [RESTRICT | cascade]

Argument Description
key-name Specifies the name of the encryption key to drop from the database.
restrict This is the sub-command which is the default drop behavior.
cascade Decrypts all fields in all relations encrypted by it.

Description: An encryption key can be dropped (deleted) from the database. Only the SYSDSO can
execute this command. The command fails if the encryption key is still being used to encrypt the database.
If any table columns are encrypted when "restrict" is specified, which is the default drop behavior, the
command also fails. If "cascade" is specified, then all columns using that encryption are decrypted and the
encryption is dropped “Restrict” and “Cascade” are the only options available for this command.

In the case of Column-level Encryption use, although prop ENCRYPTION cAscaDE decrypts all fields in all
relations encrypted by it, that decryption process makes back versions of the decrypted records, which
remain dependent on the existence of the encryption. The encryption is only marked for deletion.

The next time the database is swept, database sweep completion checks for any record formats that still
depend on a “marked for deletion” encryption. If there are none, the encryption is fully deleted at that time.

If you are trying to completely remove all encryption from your database and are presented with an
"unsuccessful metadata update encryptions still exist', you need to sweep the database after the prop
ENCRYPTION CASCADE and before ALTER DATABASE SET NO SYSTEM PASSWORD.

Embarcadero Technologies 84

SQL Statement and Function Reference

Example: The following example uses the cascade option to decrypt all columns using the revenue_key
and to delete the key:

drop encryption revenue_key cascade

9.49. DROP EXCEPTION

Deletes an exception from a database. Available in DSQL and isq.

DROP EXCEPTION name

Argument Description

<name> Name of an existing exception message

Description: brRoP EXCEPTION removes an exception from a database.

Exceptions used in existing procedures and triggers cannot be dropped.

TIP

In isql, SHOW EXCEPTION displays a list of exceptions’ dependencies, the procedures and triggers that use the exceptions.

An exception can be dropped by its creator, the SYSDBA user, and any user with operating system root
privileges.

Example: This isql statement drops an exception:

DROP EXCEPTION UNKNOWN_EMP_ID;

9.50. DROP EXTERNAL FUNCTION

Removes a user-defined function (UDF) declaration from a database. Available in gpre, DSQL, and 4sqt.

DROP EXTERNAL FUNCTION name;

IMPORTANT \

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing UDF

Description: bror EXTERNAL FUNCTION deletes a UDF declaration from a database. Dropping a UDF dec-
laration from a database does not remove it from the corresponding UDF library, but it does make the
UDF inaccessible from the database. Once the definition is dropped, any applications that depend on the
UDF will return run-time errors.

A UDF can be dropped by its declarer, the SYSDBA user, or any users with operating system root privileges.

Example: This isql statement drops a UDF:

Embarcadero Technologies 85

SQL Statement and Function Reference

DROP EXTERNAL FUNCTION TOPS;

9.57. DROP FILTER

Removes a Blob filter declaration from a database. Available in gpre, DsqL, and isqt.

DROP FILTER name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing Blob filter

Description: brop FILTER removes a Blob filter declaration from a database. Dropping a Blob filter dec-
laration from a database does not remove it from the corresponding Blob filter library, but it does make
the filter inaccessible from the database. Once the definition is dropped, any applications that depend on
the filter will return run-time errors.

DROP FILTER fails and returns an error if any processes are using the filter.
A filter can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: This isql statement drops a Blob filter:

DROP FILTER DESC_FILTER;

9.52. DROP GENERATOR

Drops a generator from the database. Available in DSQL, and 4sqt.

DROP GENERATOR generator_name

Argument Description

generator_name Name of the generator.

Description: This command checks for any existing dependencies on the generator (as in triggers or UDFs)
and fails if such dependencies exist. The statement fails if generator_name is not the name of a generator
defined on the database. An application that tries to call a deleted generator returns runtime errors.

NOTE

In previous versions of InterBase that lacked the DROP GENERATOR command, users issued a SQL statement to delete
the generator from the appropriate system table. This approach is strongly discouraged now that the DROP GENERATOR
command is available, since modifying system tables always carries with it the possibility of rendering the entire database
unusable as a result of even a slight error or miscalculation.

Embarcadero Technologies 86

SQL Statement and Function Reference

9.53. DROP INDEX

Removes an index from a database. Available in gpre, DsQL, and isqtl.

DROP INDEX name;

IMPORTANT (1)

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing index

Description: bror INDEX removes a user-defined index from a database.

An index can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

IMPORTANT (1)

You cannot drop system-defined indexes, such as those for UNIQUE, PRIMARY KEY, and FOREIGN KEY.

An index in use is not dropped until it is no longer in use.

Example: The following isql statement deletes an index:

DROP INDEX MINSALX;

9.54. DROP JOURNAL

Discontinues the use of journaling and deletes existing journal files in the database.

DROP JOURNAL

Description: The prop JourNAL statement discontinues the use of write-ahead logging and deletes all
journal files. This operation does not delete any journal files in the journal archive but does discontinue
maintenance of the journal archive. Dropping journal files requires exclusive access to the database.

9.55. DROP JOURNAL ARCHIVE

Discontinues journal archiving on the database.

DROP JOURNAL ARCHIVE

Description: bror J0URNAL ARCHIVE disables journal archiving for the database. It causes all journal files and
database file dumps to be deleted in all journal archive directories. The file system directories themselves
are not deleted.

Embarcadero Technologies 87

SQL Statement and Function Reference

IMPORTANT \

This command does not discontinue journaling and the creation of journal files.

9.56. DROP PROCEDURE

Deletes an existing stored procedure from a database. Available in DSQL, and isqt.

DROP PROCEDURE name

Argument Description

<name> Name of an existing stored procedure

Description: brRoP PROCEDURE removes an existing stored procedure definition from a database.

Procedures used by other procedures, triggers, or views cannot be dropped. Procedures currently in use
cannot be dropped.

TIP

In isql, SHOW PROCEDURE displays a list of procedures’ dependencies, the procedures, triggers, exceptions, and tables
that use the procedures.

A procedure can be dropped by its creator, the SYSDBA user, or any user with operating system root
privileges.

Example: The following isql statement deletes a procedure:

DROP PROCEDURE GET_EMP_PROJ;

9.57. DROP ROLE

Deletes a role from a database. Available in gpre, DSQL, and 1isql.

DROP ROLE <rolename>;

IMPORTANT i

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<rolename> Name of an existing role

Description: brop RoLE deletes a role that was previously created using cREATE RoOLE. Any privileges that
users acquired or granted through their membership in the role are revoked.

A role can be dropped by its creator, the SYSDBA user, or any user with superuser privileges.

Example: The following isql statement deletes a role from its database:

Embarcadero Technologies 88

SQL Statement and Function Reference

DROP ROLE administrator;

9.58. DROP SHADOW

Deletes a shadow from a database. Available in gpre, DsQL, and {sqtl.

DROP SHADOW <set_num>;

IMPORTANT [

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<set_num> | Positive integer to identify an existing shadow set

Description: prop sHADow deletes a shadow set and detaches from the shadowing process. The isql SHow
DATABASE command can be used to see shadow set numbers for a database.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating system root priv-
ileges.

Example: The following isql statement deletes a shadow set from its database:

DROP SHADOW 1;

9.59. DROP SUBSCRIPTION

To eliminate interest in observing a set of change views, a subscription must be dropped.

DROP SUBSCRIPTION <subscription_name> [RESTRICT | CASCADE];

IMPORTANT)

If RESTRICT is specified then a check of existing subscribers is performed. If there are subscribers then an error is
returned without dropping the subscription. If CASCADE is specified then all subscribers of this subscription are also
dropped. If neither RESTRICT nor CASCADE is specified then RESTRICT is assumed.

Argument Description

<RESTRICT> Checks existing subscribers.

CASCADE All subscribers of the subscription are dropped.

9.60. DROP TABLE

Removes a table from a database. Available in gpre, DsSQL, and 1isql.

DROP TABLE name;

Embarcadero Technologies 89

SQL Statement and Function Reference

IMPORTANT [

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing table

Description: prop TABLE removes the data, metadata, and indexes of a table from a database. It also
drops any triggers that reference the table.

Atable referenced in a SQL expression, a view, integrity constraint, or stored procedure cannot be dropped.
A table used by an active transaction is not dropped until it is free.

NOTE

When used to drop an external table, DROP TABLE only removes the table definition from the database. The external
file is not deleted.

A table can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: The following embedded SQL statement drops a table:

EXEC SQL
DROP TABLE COUNTRY;

9.61. DROP TRIGGER

Deletes an existing user-defined trigger from a database. Available in DSQL and isql.

DROP TRIGGER <name>

Argument Description

<name> Name of an existing trigger

Description: broP TRIGGER removes a user-defined trigger definition from the database. System-defined
triggers, such as those created for cHeck constraints, cannot be dropped. Use ALTER TABLE to drop the
CHECK clause that defines the trigger.

Triggers used by an active transaction cannot be dropped until the transaction is terminated.

A trigger can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

TIP 0

To inactivate a trigger temporarily, use ALTER TRIGGER and specify INACTIVE in the header.

Example: The following isgl statement drops a trigger:

Embarcadero Technologies 90

SQL Statement and Function Reference

DROP TRIGGER POST_NEW_ORDER;

9.62. DROP USER

Deletes an existing user from an embedded user authentication database. Available in DSQL, and isqt.

DROP USER <name>

9.63. DROP VIEW

Removes a view definition from the database. Available in gpre, DSQL, and {sqt.

DROP VIEW name;

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing view definition to drop

Description: prop vIEW enables a view's creator to remove a view definition from the database if the view
is not used in another view, stored procedure, or CHECK constraint definition.

A view can be dropped by its creator, the SYSDBA user, or any user with operating system root privileges.

Example: The following isql statement removes a view definition:

DROP VIEW PHONE_LIST;

9.64. END DECLARE SECTION

Identifies the end of a host-language variable declaration section. Available in gpre.

END DECLARE SECTION;

Description: END DECLARE SECTION is used in embedded SQL applications to identify the end of host-
language variable declarations for variables used in subsequent SQL statements.

Example: The following embedded SQL statements declare a section, and single host-language variable:

EXEC SQL

BEGIN DECLARE SECTION;

BASED_ON EMPLOYEE.SALARY salary;
EXEC SQL

END DECLARE SECTION;

Embarcadero Technologies 91

SQL Statement and Function Reference

9.65. EVENT INIT

Registers interest in one or more events with the InterBase event manager. Available in gpre.

EVENT INIT request_name [dbhandle]
[('string' | :variable [, 'string' | :variable ..]);

Argument Description

<request_name> | Application event handle

<dbhandle> Specifies the database to examine for occurrences of the events; if omitted, <dbhandle> defaults to
the database named in the most recent SET DATABASE statement.

‘<string>’ Unique name identifying an event associated with <event_name>.

<variable> Host-language character array containing a list of event names to associate with.

Description: EVENT INIT is the first step in the InterBase two-part synchronous event mechanism:

1. EVENT INIT registers an application interestin an event.

2. EVENT WAIT causes the application to wait until notified of the event occurrence.

EVENT INIT registers an application interest in a list of events in parentheses. The list should correspond
to events posted by stored procedures or triggers in the database. If an application registers interest in
multiple events with a single event INIT, then when one of those events occurs, the application must
determine which event occurred.

Events are posted by a posT_eveNT call within a stored procedure or trigger.

The event manager keeps track of events of interest. At commit time, when an event occurs, the event
manager notifies interested applications.

Example: The following embedded SQL statement registers interest in an event:

EXEC SQL
EVENT INIT ORDER_WAIT EMPDB ('new_order');

9.660. EVENT WAIT

Causes an application to wait until notified of an event occurrence. Available in gpre.

EVENT WAIT request_name;

Argument Description

<request_name> | Application event handle declared in a previous EVENT INIT statement

Description: EVENT WAIT is the second step in the InterBase two-part synchronous event mechanism. After
a program registers interest in an event, EVENT WAIT causes the process running the application to sleep
until the event of interest occurs.

Examples: The following embedded SQL statements register an application event name and indicate the
program is ready to receive notification when the event occurs:

Embarcadero Technologies 92

SQL Statement and Function Reference

EXEC SQL

EVENT INIT ORDER_WAIT EMPDB ('new_order');
EXEC SQL

EVENT WAIT ORDER_WAIT;

9.67. EXECUTE

Executes a previously prepared dynamic SQL (DSQL) statement. Available in gpre.

EXECUTE [TRANSACTION TRANSACTION] statement
[USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

Argument Description

TRANSACTION <transaction> |Specifies the transaction under which execution occurs

<statement> Alias of a previously prepared statement to execute

USING SQL DESCRIPTOR Specifies that values corresponding to the prepared statement parameters should be
taken from the specified XSQLDA

INTOSQL DESCRIPTOR Specifies that return values from the executed statement should be stored in the speci-
fied XSQLDA

<xsqlda> XSQLDA host-language variable

Description: ExecuTE carries out a previously prepared DSQL statement. It is one of a group of statements
that process DSQL statements.

Statement Purpose
PREPARE Readies a DSQL statement for execution
DESCRIBE Fills in the XSQLDA with information about the statement
EXECUTE Executes a previously prepared statement
EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it

Before a statement can be executed, it must be prepared using the PREPARE statement. The statement can
be any SQL data definition, manipulation, or transaction management statement. Once it is prepared, a
statement can be executed any number of times.

The TrANSAcTION clause can be used in SQL applications running multiple, simultaneous transactions to
specify which transaction controls the ExecuTe operation.

USING DESCRIPTOR enables EXECUTE to extract a statement parameters from an XSQLDA structure previously
loaded with values by the application. It need only be used for statements that have dynamic parameters.

INTO DESCRIPTOR enables EXECUTE to store return values from statement execution in a specified XSQLDA
structure for application retrieval. It need only be used for DSQL statements that return values.

NOTE

If an EXECUTE statement provides both a USING DESCRIPTOR clause and an INTO DESCRIPTOR clause, then two XSQLDA
structures must be provided.

Embarcadero Technologies 93

SQL Statement and Function Reference

Example: The following embedded SQL statement executes a previously prepared DSQL statement:

EXEC SQL
EXECUTE DOUBLE_SMALL_BUDGET;

The next embedded SQL statement executes a previously prepared statement with parameters stored in
an XSQLDA:

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda;

The following embedded SQL statement executes a previously prepared statement with parameters in one
XSQLDA, and produces results stored in a second XSQLDA:

EXEC SQL
EXECUTE Q USING DESCRIPTOR xsqlda_l INTO DESCRIPTOR xsqlda_2;

9.68. EXECUTE IMMEDIATE

Prepares a dynamic SQL (DSQL) statement, executes it once, and discards it. Available in gpre.

EXECUTE IMMEDIATE [TRANSACTION TRANSACTION]
{:variable | 'string'} [USING SQL DESCRIPTOR xsqlda];

Argument Description

TRANSACTION <transaction> |Specifies the transaction under which execution occurs

<varijable> Host variable containing the SQL statement to execute
‘<string>’ A string literal containing the SQL statement to execute
USING SQL DESCRIPTOR Specifies that values corresponding to the statement parameters should be taken from

the specified XSQLDA

<xsqlda> XSQLDA host-language variable

Description: execuTe IMMEDIATE prepares a DSQL statement stored in a host-language variable or in a
literal string, executes it once, and discards it. To prepare and execute a DSQL statement for repeated use,
use PREPARE and EXECUTE instead Of EXECUTE IMMEDIATE.

The TrANSACTION clause can be used in SQL applications running multiple, simultaneous transactions to
specify which transaction controls the EXECUTE IMMEDIATE Operation.

The SQL statement to execute must be stored in a host variable or be a string literal. It can contain any
SQL data definition statement or data manipulation statement that does not return output.

USING DESCRIPTOR enables EXECUTE IMMEDIATE to extract the values of a statement’s parameters from an
XSQLDA structure previously loaded with appropriate values.

Example: The following embedded SQL statement prepares and executes a statement in a host variable:

EXEC SQL

Embarcadero Technologies 94

SQL Statement and Function Reference

EXECUTE IMMEDIATE :insert_date;

9.69. EXECUTE PROCEDURE

Calls a stored procedure. Available in gpre, bsqL, and isql.

SQL form:

EXECUTE PROCEDURE [TRANSACTION TRANSACTION]
name [:param [[INDICATOR]:1indicator]]

[, :param [[INDICATOR]:indicator] ..]
[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator] ..1];

DSQL form:

EXECUTE PROCEDURE name [param [, param ..]]
[RETURNING_VALUES param [, param ..]]

isglform:
EXECUTE PROCEDURE name [param [, param ..]]
Argument Description

TRANSACTION <transaction> Specifies the transaction under which execution occurs
<name> Name of an existing stored procedure in the database
<param> Input or output parameter; can be a host variable or a constant
RETURNING_VALUES: <param> Host variable which takes the values of an output parameter
[INDICATOR] :<indicator> Host variable for indicating NULL or unknown values

Description: execuTe PROCEDURE calls the specified stored procedure. If the procedure requires input pa-
rameters, they are passed as host-language variables or as constants. If a procedure returns output pa-
rameters to a SQL program, host variables must be supplied in the RETURNING_VALUES clause to hold the
values returned.

In isql, do not use the RETURN clause or specify output parameters. isql will automatically display return
values.

NOTE

In DSQL, an EXECUTE PROCEDURE statement requires an input descriptor area if it has input parameters and an output
descriptor area if it has output parameters.

In embedded SQL, input parameters and return values may have associated indicator variables for tracking
NULL values. Indicator variables are integer values that indicate unknown or nuLL values of return values.

An indicator variable that is less than zero indicates that the parameter is unknown or nuLL. An indicator
variable that is zero or greater indicates that the associated parameter is known and not NuLL.

Embarcadero Technologies 95

SQL Statement and Function Reference

Examples: The following embedded SQL statement demonstrates how the executable procedure, DEP-
T_BUDGET, is called from embedded SQL with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The next embedded SQL statement calls the same procedure using a host variable instead of a literal as
the input parameter:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

9.70. EXTRACT()

Extracts date and time information from pATE, TIME, and TIMESTAMP values. Available in gpre, DSQL, and isqt.

EXTRACT (part FROM VALUE)

Argument Description
<part> YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, WEEKDAY, or YEARDAY; see the table below for data
types and ranges of values
<value> DATE, TIME, or TIMESTAMP value

Description: The value passed to the EXTRACT() expression must be a DATE, a TIME, or a TIMESTAMP.
Extracting a part that does not exist in a data type results in an error. For example, a statement such as
tEXTRACT (YEAR from aTime) would fail.

NOTE

The data type of part depends on which part is extracted.

Example:

Part extracted Data type Range
YEAR SMALLINT 0-5400
MONTH SMALLINT 1-12
DAY SMALLINT 1-31
HOUR SMALLINT 0-23
MINUTE SMALLINT 0-59
SECOND DECIMAL(6,4) | 0-59.9999
WEEKDAY SMALLINT 0-6
(0 = Sunday, 1 = Monday, etc.)
YEARDAY SMALLINT 0-365

EXTRACT (HOUR FROM StartTime);

Embarcadero Technologies

96

SQL Statement and Function Reference

9.71. FETCH

Retrieves the next available row from the active set of an opened cursor. Available in gpre and DSQL.

SQL form:

FETCH cursor
[INTO :hostvar [[INDICATOR] :indvar]
[, :hostvar [[INDICATOR] :indvar] ..11;

DSQL form:

FETCH cursor {INTO | USING} SQL DESCRIPTOR xsqlda

Blob form: See FETCH (BLOB).

Argument Description
<cursor> Name of the opened cursor from which to fetch rows.
<hostvar> A host-language variable for holding values retrieved with the FETCH.

» Optional if FETCH gets rows for DELETE or UPDATE.

» Required if row is displayed before DELETE or UPDATE.

<indvar> Indicator variable for reporting that a column contains an unknown or NULL val-
ue.

[INTO|USING] SQL DESCRIPTOR Specifies that values should be returned in the specified XSQLDA.

<xsqlda> XSQLDA host-language variable

Description: FETCH retrieves one row at a time into a program from the active set of a cursor. The
first FETCH operates on the first row of the active set. Subsequent FETCH statements advance the cursor
sequentially through the active set one row at a time until no more rows are found and SQLCODE s set
to 100.

A cursor is a one-way pointer into the ordered set of rows retrieved by the select expression in the bECLARE
CURSOR statement. A cursor enables sequential access to retrieved rows. There are four related cursor
statements:

Stage Statement Purpose
1 DECLARE CURSOR Declare the cursor; the SELECT statement determines rows retrieved for the cursor.
2 OPEN Retrieve the rows specified for retrieval with DECLARE CURSOR; the resulting rows be-

come the cursor active set.

3 FETCH Retrieve the current row from the active set, starting with the first row; subsequent
FETCH statements advance the cursor through the set.

4 CLOSE Close the cursor and release system resources.

The number, size, data type, and order of columns in a FETcH must be the same as those listed in the query
expression of its matching bECLARE CURSOR statement. If they are not, the wrong values can be assigned.

Examples: The following embedded SQL statement fetches a column from the active set of a cursor:

Embarcadero Technologies 97

SQL Statement and Function Reference

EXEC SQL
FETCH PROJ_CNT INTO :department, :hcnt;

9.72. FETCH (BLOB)

Retrieves the next available segment of a Blob column and places it in the specified local buffer. Available
in gpre.

FETCH cursor INTO
[:buffer [[INDICATOR] :segment_length];

Argument Description
<cursor> Name of an open Blob cursor from which to retrieve segments
<buffer> Host-language variable for holding segments fetched from the Blob column; user must declare the

buffer before fetching segments into it

INDICATOR Optional keyword indicating that a host-language variable for indicating the number of bytes re-
turned by the FETCH follows

<segment_length> |Host-language variable used to indicate the number of bytes returned by the FETCH

Description: FeTcH retrieves the next segment from a Blob and places it into the specified buffer.

The host variable, segment_length, indicates the number of bytes fetched. This is useful when the number
of bytes fetched is smaller than the host variable, for example, when fetching the last portion of a Blob.

FETCH can return two SQLCODE values:

+ SQLCODE = 100 indicates that there are no more Blob segments to retrieve.

« SQLCODE =107 indicates that a partial segment was retrieved and placed in the local buffer variable.

NOTE

To ensure that a host variable buffer is large enough to hold a Blob segment buffer during FETCH operations, use the
SEGMENT option of the BASED ON statement.

Example: The following code, from an embedded SQL application, performs a BLOB FETCH:

while (SQLCODE != 100)

{

EXEC SQL

OPEN BLOB_CUR USING :blob_1id;

EXEC SOQL

FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;
while (SQLCODE !=100 || SQLCODE == 101)

{

blob_segment{blob_seg_len + 1] = '\0';

printf("%*.*xs" ,blob_seg_len,blob_seg_len,blob_segment);
blob_segment{blob_seg_len + 1] = ¢ 7;

EXEC SQL

FETCH BLOB_CUR INTO :blob_segment :blob_seg_len;

Embarcadero Technologies 98

SQL Statement and Function Reference

9.73. GEN ID()

Produces a system-generated integer value. Available in gpre, DsQL, and isql.

gen_id (generator, step)

Argument Description
<generator> Name of an existing generator
<step> Integer or expression specif}ying the increment for increasing or decreasing the current generator value.
Values can range from —(26) to 253 1

Description: The GEN_ID() function:

1. Increments the current value of the specified generator by step.

2. Returns the new value of the specified generator.

GEN_ID() is useful for automatically producing unique values that can be inserted into a UNIQUE Or PRIMARY

KEY column. To insert a generated number in a column, write a trigger, procedure, or SQL statement that
calls GEN_IDJ).

NOTE

A generator is initially created with CREATE GENERATOR. By default, the value of a generator begins at zero. It can be
set to a different value with SET GENERATOR.

Examples: The following isqt trigger definition includes a call to GEN_ID():

CREATE TRIGGER CREATE_EMPNO FOR EMPLOYEES
BEFORE INSERT

POSITION ©

AS BEGIN

NEW.EMPNO = GEN_ID (EMPNO_GEN, 1);

END

The first time the trigger fires, NEW.EMPNO is set to 1. Each subsequent firing increments NEW.EMPNO
by 1.

9.74. GRANT

Assigns privileges to users for specified database objects. Available in gpre, DsQL, and isql.

GRANT <privileges> ON [TABLE] {<tablename> | <viewname}>

TO {object|userlist [WITH GRANT OPTION]|GROUP <UNIX_group}>

| EXECUTE ON PROCEDURE procname TO {object | userlist}

| <role_granted> TO {PUBLIC | <role_grantee_list}>[WITH ADMIN OPTION];
privileges = ALL [PRIVILEGES] | privilege_list

Embarcadero Technologies 99

SQL Statement and Function Reference

privilege_1list
SELECT

DELETE

INSERT

DECRYPT
UPDATE [(col
| REFERENCES

0,
object

{

[(col [,
privilege_list

{

ENCRYPT ON ENCRYPTION

«1)]

col

[, col
-]1)1

]

PROCEDURE procname

|

| VIEW viewname

| PUBLIC

0,

userlist
[USER]

| rolename

| UNIX_user

}[,userlist

]
{

object

]

role_granted

role_grantee_list

rolename

TRIGGER trigname

username

rolename

o]
L

L,
[USER]

= [USER] w]

username username

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument

Description

<privilege_list>

Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, UPDATE, EN-
CRYPT ON ENCRYPTION, DECRYPT, and REFERENCES

<col>

Column to which the granted privileges apply

<tablename>

Name of an existing table for which granted privileges apply

<viewname>

Name of an existing view for which granted privileges apply

GROUP <unix_group>

On a UNIX system, the name of a group defined in /etc/group

<object>

Name of an existing procedure, trigger, or view; PUBLIC is also a permitted value.

<userlist>

A user in the InterBase security database (admin.ib by default) or a rolename created with
CREATE ROLE

WITH GRANT OPTION

Passes GRANT authority for privileges listed in the GRANT statement to userlist.

<rolename>

An existing role created with the CREATE ROLE statement

<role_grantee_list>

A list of users to whom <rolename> is granted; users must be in the InterBase security
database.

WITH ADMIN OPTION

Passes grant authority for roles listed to <role_grantee_list>.

Description: GrRaNT assigns privileges and roles for database objects to users, roles, or other database
objects. When an object is first created, only its creator has privileges to it and only its creator can GRANT

privileges for it to other use

rs or objects.

The following table summarizes available privileges:

Embarcadero Technologie

S 100

SQL Statement and Function Reference

Privilege Enables users to ...
ALL Perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES
SELECT Retrieve rows from a table or view
DELETE Remove rows from a table or view
DECRYPT After encrypting a column, the database owner or the individual table owner can grant decrypt

permission to users who need to access the values in an encrypted column.

ENCRYPT ON ENCRYP-
TION

Enables the database owner or individual table owner to use a specific encryption key to en-
crypt a database or column. Only the SYSDSO (Data Security Owner) can grant encrypt permis-
sion.

INSERT Store new rows in a table or view

UPDATE Change the current value in one or more columns in a table or view; can be restricted to a spec-
ified subset of columns.

EXECUTE Execute a stored procedure

REFERENCES Reference the specified columns with a foreign key; at a minimum, this must be granted to all
the columns of the primary key if it is granted at all.

NOTE

ALL does not include REFERENCES in code written for InterBase 4.0 or earlier.

To access a table or view, a user or object needs the appropriate SELECT, INSERT, UPDATE, DELETE, Of
REFERENCES privileges for that table or view. SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges
can be assigned as a unit with ALL.

A user or object must have execuTE privilege to call a stored procedure in an application.

For more information about the GRANT ENCRYPT ON ENCRYPTION and GRANT DECRYPT PErmissions, see
"Encrypting Your Data” in the Data Definition Guide.

To grant privileges to a group of users, create a role using CREATE ROLE. Then use GRANT <privilege>
To <rolename> to assign the desired privileges to that role and use GrRANT <rolename> To <user> to
assign that role to users. Users can be added or removed from a role on a case-by-case basis using
GRANT and REVOKE. A user must specify the role at connection time to actually have those privileges.
See "ANSI SQL 3 roles” in the Operations Guide for more information about invoking a role when
connecting to a database.

On UNIX systems, privileges can be granted to groups listed in /etc/groups and to any UNIX user
listed in /etc/passwd on both the client and server, as well as to individual users and to roles.

To allow another user to reference a column from a foreign key, grant REFERENCES privileges on the
primary key table or on the primary key columns of the table to the owner of the foreign key table.
You must also grant REFERENCES Or SELECT privileges on the primary key table to any user who needs
to write to the foreign key table.

TIP

Make it easy, if read security is not an issue, GRANT REFERENCES on the primary key table to PUBLIC.

« If you grant the REFERENCES privilege, it must, at a minimum, be granted to all columns of the primary
key. When REFERENCES is granted to the entire table, columns that are not part of the primary key
are not affected in any way.

« When a user defines a foreign key constraint on a table owned by someone else, InterBase checks
that the user has REFERENCES privileges on the referenced table.

Embarcadero Technologies 101

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide

SQL Statement and Function Reference

+ The privilege is used at run time to verify that a value entered in a foreign key field is contained in
the primary key table.

* You can grant REFERENCES privileges to roles.

+ To give users permission to grant privileges to other users, provide a userlist that includes the wiTh
GRANT OPTION. Users can grant to others only the privileges that they themselves possess.

+ To grant privileges to all users, specify puLIc in place of a list of user names. Specifying puLIc grants
privileges only to users, not to database objects.

Privileges can be removed only by the user who assigned them, using ReVokE. If ALL privileges are assigned,
then ALL privileges must be revoked. If privileges are granted to pusL1c, they can be removed only for
PUBLIC.

Examples: The following isql statement grants seLECT and DELETE privileges to a user. The WITH GRANT
OPTION gives the user GRANT authority.

GRANT SELECT, DELETE ON COUNTRY TO CHLOE WITH GRANT OPTION;

The next embedded SQL statement, from an embedded program, grants seLecT and UPDATE privileges to
a procedure for a table:

EXEC SQL
GRANT SELECT, UPDATE ON JOB TO PROCEDURE GET_EMP_PROJ;

This embedded SQL statement grants execuTe privileges for a procedure to another procedure and to
a user:

EXEC SQL
GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
TO PROCEDURE ADD_EMP_PROJ, LUIS;

The following example creates a role called “administrator”, grants uppATE privileges on tablel to that
role, and then grants the role to user1, user2, and user3. These users then have uppaTe and REFERENCES
privileges on tablel.

CREATE ROLE administrator;
GRANT UPDATE ON tablel TO administrator;
GRANT administrator TO userl, user2, user3;

9.75. GRANT SUBSCRIBE

A user is granted SUBSCRIBE privilege to subscribe to the subscription in order to track changes on the
listed tables:

GRANT SUBSCRIBE ON SUBSCRIPTION <subscription_name> TO <user_name>;
REVOKE SUBSCRIBE ON SUBSCRIPTION <subscription_name> FROM <user_name>;

Embarcadero Technologies 102

SQL Statement and Function Reference

IMPORTANT

To set a subscription as active, an application issues a SET SUBSCRIPTION statement.

Argument Description
<subscription_name> Implied by the user identity of the database
<user_name> User identify of the database connection

Description: This seT suBscrIPTION Statement allows multiple subscriptions to be activated and includes an
AT clause to denote a destination or device name as a recipient of the subscribed changes. The subscriber
user name is implied by the user identity of the database connection. Multiple subscriptions against the
same schema object for a user, via the AT clause, are available for two reasons:

First, each subscription for a user may connote a separate device among many that have a disconnected
interest in a change set that is queried independently at different times for different purposes.

Second, some multiuser applications use pooled database connections under the umbrella of a single user
name (for example CRM_User or even SYSDBA). In these cases, an alternate identifier must be provided
to distinguish which subscription should be used to query a change set. That additional identifier can be
thought of as a destination or a "device name".

Example: This is to grant subscribe privileges to that user:

GRANT SUBSCRIBE ON SUBSCRIPTION Subscribed_Inserts TO smartphone_user;
GRANT SUBSCRIBE ON SUBSCRIPTION Customer_Deletes TO smartphone_user;

9.76. GRANT TEMPORARY SUBSCRIBE

GRANT TEMPORARY SUBSCRIBE[(<column_comma-list>)] ON <table_name> TO
<user_name>;

REVOKE TEMPORARY SUBSCRIBE[(<column_comma-1ist>)]ON <table_name> FROM
<user_name>;TO SET a subscription AS active, an application -qdssues a SET
SUBSCRIPTION statement.

IMPORTANT

The user issues a SET SUBSCRIPTION command as usual giving the name of the base table instead of a subscription
name.

Argument Description

<column_comma-list>

<table_name>

user_name

Description:

Example: Retrieving Changed Views from ISQL

SET SUBSCRIPTION ":Employees" ACTIVE;
SELECT NAME, DEPARTMENT, SALARY :FROM "Employees";

Embarcadero Technologies 103

SQL Statement and Function Reference

COMMIT;

<Another USER reassigns an existing employee TO another department AND
gives another employee a raise>

SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<CHANGE> NAME DEPARTMENT SALARY

UPDATE joe sales 50000

UPDATE mary finance 75000

SET SAME;

SELECT NAME, DEPARTMENT, SALARY FROM "Employees";
<CHANGE> NAME DEPARTMENT SALARY

UPDATE <same> sales <same>

UPDATE <same> <same> 75000

COMMIT;

SET SUBSCRIPTION "Employees" INACTIVE;

ISQL has a collection of seT statements that toggle a display set. The seT same display toggle alternates
between showing the column data value or its changes state of <same> or the changed data value. The
CHANGE column is a pseudo column that shows the type of DML statement that modified the column value(s).
All of this change state is returned by the xsqLvAR.sqLIND member of the new XSQLDA structure.

Minimal support for changed data views is provided by InterBase SQL with the addition of a 1s sAME or
IS NoT SAME clause as the following example illustrates:

IMPORTANT

Using IS NOT SAME in SELECT queries

SELECT NAME, DEPARTMENT, SALARY FROM "Employees" WHERE SALARY IS NOT SAME;
<CHANGE> NAME DEPARTMENT SALARY
UPDATE mary finance 75000

We see that Joe's department reassignment is not returned since he received no compensation adjustment
for a lateral move.

9.77. INSERT

Adds one or more new rows to a specified table. Available in gpre, DSQL, and isqt.

INSERT [TRANSACTION TRANSACTION] INTO object [(<col> [, <col> ..])]

{VALUES (val [, val ..]) | select_expr};
object = tablename | viewname
val = {:variable | constant | expr

| FUNCTION | wudf ([val [, val ..Jl)

| NULL | USER | RDB$DB_KEY | ?

} [COLLATE collation]

constant = num | 'string' | charsetname 'string'
FUNCTION = CAST (val AS data_type)

| UPPER (val)

| GEN_ID (generator, val)

Embarcadero Technologies 104

SQL Statement and Function Reference

Argument Description

<expr> A valid SQL expression that results in a single column value

<select_expr> | A SELECT that returns zero or more rows and where the number of columns in each row is the same as
the number of items to be inserted

Notes on the INSERT statement:

+ In SQL and 4sqt, you cannot use val as a parameter placeholder (like "?").
» In DSQL and 4sqt, val cannot be a variable.

* You cannot specify a coLLATE clause for Blob columns.

IMPORTANT [

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

TRANSACTION <transaction> |Name of the transaction that controls the execution of the INSERT

INTO <object> Name of an existing table or view into which to insert data

<col> Name of an existing column in a table or view into which to insert values

VALUES (<val> [, <val> ..]) |Lists values to insert into the table or view; values must be listed in the same order as
the target columns

<select_expr> Query that returns row values to insert into target columns

Description: INSERT Sstores one or more new rows of data in an existing table or view. INSERT is one of the
database privileges controlled by the GrRANT and REVOKE statements.

Values are inserted into a row in column order unless an optional list of target columns is provided. If the
target list of columns is a subset of available columns, default or nuLL values are automatically stored in
all unlisted columns.

If the optional list of target columns is omitted, the vaLuEs clause must provide values to insert into all
columns in the table.

To insert a single row of data, the vaLues clause should include a specific list of values to insert.

To insert multiple rows of data, specify a select_expr that retrieves existing data from another table to insert
into this one. The selected columns must correspond to the columns listed for insert.

IMPORTANT \

It is legal to select from the same table into which insertions are made, but this practice is not advised because it may
result in infinite row insertions.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction
controls the INSERT operation. The TRANSACTION clause is not available in DSQL or isql.

Examples: The following statement, from an embedded SQL application, adds a row to a table, assigning
values from host-language variables to two columns:

EXEC SQL

Embarcadero Technologies 105

SQL Statement and Function Reference

INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:emp_no, :proj_id);

The next isql statement specifies values to insert into a table with a seLEcT statement:

INSERT INTO PROJECTS
SELECT % FROM NEW_PROJECTS
WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

9.78. INSERT CURSOR (BLOB)

Inserts data into a Blob cursor in units of a Blob segment-length or less in size. Available in gpre.

INSERT CURSOR cursor
VALUES (:buffer [INDICATOR] :bufferlen);

Argument Description
<cursor> Name of the Blob cursor
VALUES Clause containing the name and length of the buffer variable to in-
sert
<buffer> Name of host-variable buffer containing information to insert
INDICATOR Indicates that the length of data placed in the buffer follows
<bufferlen> | Length, in bytes, of the buffer to insert

Description: INSERT cURSOR writes Blob data into a column. Data is written in units equal to or less than
the segment size for the Blob. Before inserting data into a Blob cursor:

* Declare a local variable, <buffer>, to contain the data to be inserted.

* Declare the length of the variable, <bufferlen>.

* Declare a Blob cursor for InserT and open it.

Each InSERT into the Blob column inserts the current contents of <buffer>. Between statements fill <buffer>
with new data. Repeat the InNseRT until each existing <buffer> is inserted into the Blob.

IMPORTANT

INSERT CURSOR requires the INSERT privilege, a table privilege controlled by the GRANT and REVOKE statements.

Example: The following embedded SQL statement shows an insert into the Blob cursor:

EXEC SQL
INSERT CURSOR BC VALUES (:line INDICATOR :len);

9.79. MAX()

Retrieves the maximum value in a column. Available in gpre, DsqQL, and 4sql.

Embarcadero Technologies 106

SQL Statement and Function Reference

MAX ([ALL] val | DISTINCT val)

Argument Description
ALL Searches all values in a column
DISTINCT Eliminates duplicate values before finding the largest
<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF

Description: nax () is an aggregate function that returns the largest value in a specified column, excluding
NULL values. If the number of qualifying rows is zero, Max () returns a nuLL value.

When max () is used ONn a CHAR, VARCHAR, Or Blob text column, the largest value returned varies depending
on the character set and collation in use for the column. A default character set can be specified for an
entire database with the DEFAULT CHARACTER SET Clause in CREATE DATABASE, or specified at the column level
with the cOLLATE clause in CREATE TABLE.

Example: The following embedded SQL statement demonstrates the use of sum(), AvG (), MIN(), and MAX():

EXEC SQL
SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept

INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.80. MIN()

Retrieves the minimum value in a column. Available in gpre, bsqL, and +isql.

MIN ([ALL] wval | DISTINCT val)

Argument Description
ALL Searches all values in a column
DISTINCT Eliminates duplicate values before finding the smallest
<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF

Description: vIn() is an aggregate function that returns the smallest value in a specified column, excluding
NULL values. If the number of qualifying rows is zero, mIn() returns a NuLL value.

When MIN() is used On a CHAR, VARCHAR, or Blob text column, the smallest value returned varies depending
on the character set and collation in use for the column. Use the DEFAULT CHARACTER SET clause in CREATE
DATABASE To specify a default character set for an entire database, or the coLLATE clause in CREATE TABLE
to specify a character set at the column level.

Example: The following embedded SQL statement demonstrates the use of sum(), Ave (), MIN(), and MAX():

EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept

Embarcadero Technologies 107

SQL Statement and Function Reference

INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

9.81. NULLIF()

The nuLLzF function returns a null value if the arguments are equal, otherwise it returns the value of the
first argument.

NULLIF (<expressionl>, <expression2>)

Description: The coALESCE and NULLIF expressions are common, shorthand forms of use for the case
expression involving the NuLL state. A COALESCE expression consists of a list of value expressions. It evaluates
to the first value expression in the list that evaluates to non-NuLL. If none of the value expressions in the
list evaluates to non-NULL then the coALESCE expression evaluates to NULL.

The NULLIF expression consists of a list of two value expressions. If the two expressions are unequal then
the NULLIF expression evaluates to the first value expression in the list. Otherwise, it evaluates to NuLL.

Example: The following example demonstrates the use of case using the sample employee.ib database:

SELECT NULLIF(department, head_dept) FROM department

9.82. OPEN

Retrieve specified rows from a cursor declaration. Available in gpre and DSQL.

SQL form:

OPEN [TRANSACTION TRANSACTION] cursor;

DSQL form:

OPEN [TRANSACTION TRANSACTION] cursor [USING SQL DESCRIPTOR xsqlda]

Blob form: See OPEN (BLOB).

Argument Description

TRANSACTION <transaction> |Name of the transaction that controls execution of OPEN

<cursor> Name of a previously declared cursor to open

USING DESCRIPTOR <xsqlda> |Passes the values corresponding to the prepared statement’s parameters through the
extended descriptor area (XSQLDA)

Description: oren evaluates the search condition specified in a cursor's DECLARE CURSOR statement. The
selected rows become the active set for the cursor.

A cursor is a one-way pointer into the ordered set of rows retrieved by the SELECT in a DECLARE CURSOR
statement. It enables sequential access to retrieved rows in turn. There are four related cursor statements:

Stage Statement Purpose

Embarcadero Technologies 108

SQL Statement and Function Reference

1 DECLARE CUR- |Declares the cursor; the SELECT statement determines rows retrieved for the cursor
SOR
2 OPEN Retrieves the rows specified for retrieval with DECLARE CURSOR; the resulting rows become

the cursor's active set

3 FETCH Retrieves the current row from the active set, starting with the first row

» Subsequent FETCH statements advance the cursor through the set

4 CLOSE Closes the cursor and release system resources

Examples: The following embedded SQL statement opens a cursor:

EXEC SQL
OPEN C;

9.83. OPEN (BLOB)

Opens a previously declared Blob cursor and prepares it for reading or inserting. Available in gpre.

OPEN [TRANSACTION name] cursor
{INTO | USING} :blob_id;

Argument Description
TRANSACTION <name> Specifies the transaction under which the cursor is opened Default: The default transaction
<cursor> Name of the Blob cursor
INTO|USING Depending on Blob cursor type, use one of these:

INTO: For INSERT BLOB

USING: For READ BLOB

<blob_id> Identifier for the Blob column

Description: oren prepares a previously declared cursor for reading or inserting Blob data. Depending
on whether the DECLARE CURSOR statement declares a READ Or INSERT BLOB CUrsOr, oPEN obtains the value
for Blob ID differently:

» For a rReaD BLOB, the <blob_id> comes from the outer TABLE cursor.

 For an INseRT BLOB, the <blob_id> is returned by the system.

Examples: The following embedded SQL statements declare and open a Blob cursor:

EXEC SQL

DECLARE BC CURSOR FOR

INSERT BLOB PROJ_DESC INTO PRJOECT;
EXEC SQL

OPEN BC INTO :blob_id;

9.84. PREPARE

Prepares a dynamic SQL (DSQL) statement for execution. Available in gpre.

Embarcadero Technologies 109

SQL Statement and Function Reference

PREPARE [TRANSACTION TRANSACTION] statement
[INTO SQL DESCRIPTOR xsqlda] FROM {:variable | 'string'};

Argument Description

TRANSACTION <transaction> |Name of the transaction under control of which the statement is executed.

<statement> Establishes an alias for the prepared statement that can be used by subsequent DE-
SCRIBE and EXCUTE statements.

prepared statement.

INTO <xsqlda> Specifies an XSQLDA to be filled in with the description of the select-list columns in the

<variable> | “<string>’ DSQL statement to PREPARE; can be a host-language variable or a string literal.

Description: prepARE readies a DSQL statement for repeated execution by:

+ Checking the statement for syntax errors.
+ Determining data types of optionally specified dynamic parameters.
+ Optimizing statement execution.

« Compiling the statement for execution by EXECUTE.

PREPARE is part of a group of statements that prepare DSQL statements for execution.

Statement Purpose
PREPARE Readies a DSQL statement for execution.
DESCRIBE Fills in the XSQLDA with information about the statement.
EXECUTE Executes a previously prepared statement.
EXECUTE IMMEDIATE Prepares a DSQL statement, executes it once, and discards it.

After a statement is prepared, it is available for execution as many times as necessary during the current
session. To prepare and execute a statement only once, use EXECUTE IMMEDIATE.

<statement> establishes a symbolic name for the actual DSQL statement to prepare. It is not declared
as a host-language variable. Except for C programs, gpre does not distinguish between uppercase and
lowercase in <statement>, treating “B" and "b" as the same character. For C programs, use the gpre-
either_case switch to activate case sensitivity during preprocessing.

If the optional 1nTO clause is used, PRePARE also fills in the extended SQL descriptor area (XSQLDA) with
information about the data type, length, and name of select-list columns in the prepared statement. This
clause is useful only when the statement to prepare is a SELECT.

NOTE

The DESCRIBE statement can be used instead of the INTO clause to fill in the XSQLDA for a select list.

The rrom clause specifies the actual DSQL statement to PRePARE. It can be a host-language variable, or a
quoted string literal. The DSQL statement to PREPARE can be any SQL data definition, data manipulation,
or transaction-control statement.

Embarcadero Technologies 110

SQL Statement and Function Reference

Examples: The following embedded SQL statement prepares a DSQL statement from a host-variable
statement. Because it uses the optional InTo clause, the assumption is that the DSQL statement in the host
variable is a SELECT.

EXEC SQL
PREPARE Q INTO xsqlda FROM :buf;

NOTE

The previous statement could also be prepared and described in the following manner:

EXEC SQL

PREPARE Q FROM :buf;

EXEC SQL

DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

9.85. RELEASE SAVEPOINT

RELEASE SAVEPOINT <savepoint_name>

Description: Releasing a savepoint destroys savepoint named by the identifier without affecting any work
that has been performed subsequent to its creation.

9.86. REVOKE

Withdraws privileges from users for specified database objects. Available in -either_case, DsqL, and isql.

REVOKE [GRANT OPTION FOR] privilege ON [TABLE] {tablename | viewname}
FROM {object | userlist | rolelist | GROUP UNIX_group}
| EXECUTE ON PROCEDURE procname FROM {object | userlist}
| role_granted FROM {PUBLIC | role_grantee_list}};
privileges = ALL [PRIVILEGES] | privilege_list
privilege_list = {
SELECT
| DELETE
| INSERT
| ENCRYPT ON ENCRYPTION
| DECRYPT
| UPDATE [(col [, col ..])]
| REFERENCES [(col [, col ..])]
}[, privilege_list ..]
object = {
PROCEDURE procname
| TRIGGER trigname
| VIEW viewname
| PUBLIC
}[, object ..]

userlist = [USER] username [, [USER] username ..]
rolelist = rolename [, rolename ..]
role_granted = rolename [, rolename ..]

Embarcadero Technologies 111

SQL Statement and Function Reference

role_grantee_list =

[USER] wusername [, [USER] username ..]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument

Description

<privilege_list>

Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, ENCRYPT ON
ENCRYPTION, DECRYPT, UPDATE, and REFERENCES.

GRANT OPTION FOR

Removes grant authority for privileges listed in the REVOKE statement from <userlist>;
cannot be used with <object>.

<col>

Column for which the privilege is revoked.

<tablename>

Name of an existing table for which privileges are revoked.

<viewname>

Name of an existing view for which privileges are revoked.

GROUP <unix_group>

On a UNIX system, the name of a group defined in /etc/group.

<object>

Name of an existing database object from which privileges are to be revoked.

<userlist>

A list of users from whom privileges are to be revoked.

<rolename>

An existing role created with the CREATE ROLE statement.

<role_grantee_list>

A list of users to whom <rolename> is granted; users must be in the InterBase security
database (admin.ib by default).

Description: rREvokE removes privileges from users or other database objects. Privileges are operations
for which a user has authority.

The following table lists SQL privileges:

SQL privileges

Privilege Removes a user’s privilege to ...

ALL Perform SELECT, DELETE, INSERT, UPDATE, REFERENCES, and EXECUTE.

SELECT Retrieve rows from a table or view.

DELETE Remove rows from a table or view.

DECRYPT After encrypting a column, the database owner or the individual table owner can grant decrypt permis-
sion to users who need to access the values in an encrypted column.

ENCRYPT ON Enables the database owner or individual table owner to use a specific encryption key to encrypt a

ENCRYPTION database or column. Only the SYSDSO (Data Security Owner) can grant encrypt permission.

INSERT Store new rows in a table or view.

UPDATE Change the current value in one or more columns in a table or view; can be restricted to a specified sub-
set of columns.

REFERENCES Reference the specified columns with a foreign key; at a minimum, this must be granted to all the
columns of the primary key if it is granted at all.

EXECUTE Execute a stored procedure.

GRANT OPTION FOR revokes a user right to GranT privileges to other users.

The following limitations should be noted for REvOKE:

+ Only the user who grants a privilege can revoke that privilege.

Embarcadero Technologies 112

SQL Statement and Function Reference

« Asingle user can be assigned the same privileges for a database object by any number of other users.
A REVOKE issued by a user only removes privileges previously assigned by that particular user.

« Privileges granted to all users with PUBLIC can only be removed by revoking privileges from PUBLIC.

« When a role is revoked from a user, all privileges that granted by that user to others because of
authority gained from membership in the role are also revoked.

+ For more information about the REVOKE ENCRYPT ON ENCRYPTION and REVOKE DECRYPT PErmissions, see
"Encrypting Your Data” in the Data Definition Guide.

Examples: The following isql statement takes the seLecT privilege away from a user for a table:

REVOKE SELECT ON COUNTRY FROM MIREILLE;

The following isgl statement withdraws execuTe privileges for a procedure from another procedure and
a user:

REVOKE EXECUTE ON PROCEDURE GET_EMP_PROJ
FROM PROCEDURE ADD_EMP_PROJ, LUIS;

9.87. ROLLBACK

Restores the database to its state prior to the start of the current transaction or savepoint. Available in
gpre, DSQL, and isql.

ROLLBACK [TRANSACTION name] [TO SAVEPOINT <name>][WORK][RELEASE];

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
TRANSACTION <name> Specifies the transaction to roll back in a multiple-transaction application. [Default: roll
back the default transaction].
TOSAVEPOINT <name> Specifies the savepoint to roll back to.
WORK Optional word allowed for compatibility.
RELEASE Detaches from all databases after ending the current transaction; SQL only.

Description: roLLBACK undoes changes made to a database by the current transaction, then ends the
transaction. It breaks the program connection to the database and frees system resources. Use RELEASE
in the last rRoLLBACK tO close all open databases. Wait until a program no longer needs the database to
release system resources.

The TRANSACTION clause can be used in multiple-transaction SQL applications to specify which transaction to
roll back. If omitted, the default transaction is rolled back. The TRANSAcTION clause is not available in DSQL.

Embarcadero Technologies 113

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

SQL Statement and Function Reference

NOTE

RELEASE, available only in SQL, detaches from all databases after ending the current transaction. In effect, this option
ends database processing. RELEASE is supported for backward compatibility with older versions of InterBase. The pre-
ferred method of detaching is with DISCONNECT.

Examples: The following isql statement rolls back the default transaction:

ROLLBACK;

The next embedded SQL statement rolls back a named transaction:

EXEC SQL
ROLLBACK TRANSACTION MYTRANS;

9.88. SAVEPOINT

SAVEPOINT <savepoint_name>

Description: A savepoint allows a transaction to be partially rolled back. Updates that are made after a
named savepoint is established can be rolled back by issuing a roLLBACk command of the following form:

ROLLBACK [TRANSACTION transaction_name] TO SAVEPOINT savepoint_name;

If no transaction name is specified, the default transaction is used.

A savepoint name can be any valid SQL identifier. Savepoint names must be unique within their atomic
execution context. If you assign a name that is already in use, the existing savepoint is released and the
name is applied to the current savepoint. An application, for example, is an execution context, as is each
trigger and stored procedure. Thus, if you have an application with several triggers, you can have a save-
point named SV1 within the application and also within each trigger and stored procedure.

9.89. SELECT

Retrieves data from one or more tables. Available in gpre, DsqL, and isql.

9.89.1. Syntax

SELECT [TRANSACTION transact] [DISTINCT | ALL] {* | <val> [, <val> ..]}
[INTO :var [, :var ..]]
FROM <tableref> [, <tableref> ..]
[WHERE <search_condition>]
[GROUP BY col [COLLATE collation] [, col [COLLATE collation] ..] [HAVING
<search_condition>]
[UNION [ALL] select_expr][PLAN <plan_expr>]
[ORDER BY <order_list>]
[ROWS VALUE [TO upper_value] [BY step_value] [PERCENT][WITH TIES]]
[FOR UPDATE [OF col [, col ..J11;
val = {col [array_dim]
| :variable | constant | expr

Embarcadero Technologies 114

SQL Statement and Function Reference

| funct | wudf ([val [, val ..J1)
| NULL | USER | RDB$DB_KEY | ? }
[COLLATE collation] [AS alias]

array_dim = [[x:]y [, [x:ly .I]
constant = num | 'string' | charsetname 'string'

funct = COUNT (* | [ALL] val | DISTINCT val)

| SUM ([ALL] val | DISTINCT val)

| AVG ([ALL] val | DISTINCT val)

| MAX ([ALL] val | DISTINCT val)

| MIN ([ALL] val | DISTINCT val)

| CAST (val AS data_type)

| UPPER (val)

| GEN_ID (generator, val)

tableref = <joined_table> | <table_primary>

joined_table = tableref join_type JOIN tableref
ON search_condition | (joined_table)

join_type = [INNER] JOIN
| {LEFT | RIGHT | FULL } [OUTER]}

search_condition = val operator {val | (select_one)}
| val [NOT] BETWEEN val AND val

val [NOT] LIKE val [ESCAPE val]

val [NOT] IN (val [, val ..] | select_list)

val IS [NOT] NULL

val {>= | <=} val

val [NOT] {= | < | >} val

{ALL | SOME | ANY} (select_list)

EXISTS (select_expr)

SINGULAR (select_expr)

val [NOT] CONTAINING val

val [NOT] STARTING [WITH] val

(search_condition)

NOT search_condition

search_condition OR search_condition

search_condition AND search_condition

operator = {= | < | > | <= | >= | < | !> | < | !=}

table_primary = [{TABLE | VIEW | PROCEDURE} [[AS] alias]] |
<derived_table>

derived_table = query_expression [AS] alias

plan_expr = [JOIN | [SORT] [MERGE]] ({plan_item | plan_expr}
[, {plan_item | plan_expr} ..])

plan_item = {TABLE | alias}
{NATURAL | INDEX (INDEX [, INDEX ..]) | ORDER INDEX}

Embarcadero Technologies

115

SQL Statement and Function Reference

order_list = {col
[ASC[ENDING] |
[, order_list

| INT} [COLLATE collation]
DESC[ENDING]]

am]

Argument

Description

<expr>

A valid SQL expression that results in a single value.

<select_one>

A SELECT on a single column that returns exactly one value.

<select_list>

A SELECT on a single column that returns zero or more rows.

<select_expr>

A SELECT on a list of values that returns zero or more rows.

Argument

Description

TRANSACTION transact

Name of the transaction under control of which the statement is executed; SQL only.

SELECT[DISTINCT|ALL]

Specifies data to retrieve

« DISTINCT prevents duplicate values from being returned.

 ALL, the default, retrieves every value.

{*|<val>[,<val>

-]}

The asterisk (*) retrieves all columns for the specified tables.

<val>[,<val> ..]] retrieves a list of specified columns, values, and expressions.

INTO :<var>[,<var> ..]

Singleton select in embedded SQL only; specifies a list of host-language variables into
which to retrieve values.

FROM<tableref>[,<tableref>
]

List of tables, views, stored procedures or derived tables from which to retrieve data;
list can include joins and joins can be nested.

<joined_table>

A table reference consisting of a JOIN.

<join_type>

Type of join to perform. Default: INNER.

<table_primary>

Name of an existing table, view, stored procedure or a derived table.

alias

Alternate name for a table, view, or column.

<derived_table>

A result set of a SELECT query that you can use in the FROM clause. See Derived Tables
(SELECT FROM SELECT) for more information and examples.

WHERE<search_condition>

 Specifies a condition that limits rows retrieved to a subset of all available rows.

« A WHERE clause can contain its own SELECT statement, referred to as a subquery.

GROUP BY col [, col ..]

Groups related rows based on common column values; used in conjunction with HAV-
ING.

COLLATE collation

Specifies the collation order for the data retrieved by the query.

HAVING<search_condition>

Used with GROUP BY; specifies a condition that limits the grouped rows returned.

UNION[ALL]

« Combines the results of two or more SELECT statements to produce a single, dy-
namic table without duplicate rows.

« The ALL option keeps identical rows separate instead of folding them together in-
to one.

PLAN <plan_expr>

Specifies the query plan that should be used by the query optimizer instead of one it
would normally choose.

Embarcadero Technologies

116

SQL Statement and Function Reference

Argument Description
<plan_item> Specifies a table and index method for a plan.
ORDER BY<order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows.
ROWS<value>)))
« <value> is the total number of rows to return if used by itself.
[TO<upper_value>] + <value> is the starting row number to return if used with To.
[BY<step_value>] + <value> is the percent if used with PERCENT.

+ <upper_value> is the last row or highest percent to return.
[PERCENT] [WITH TIES]
« If <step_value>=<n>, returns every <n>th row, or <n> percent rows.

e PERCENT causes all previous ROWS values to be interpreted as percents.

« WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY.

FOR UPDATE Specifies columns listed after the SELECT clause of a DECLARE CURSOR statement that
can be updated using a WHERE CURRENT OF clause.

9.89.2. Description

SELECT retrieves data from tables, views, or stored procedures. Variations of the SELECT statement make
it possible to:

* Retrieve a single row or part of a row from a table. This operation is referred to as a singleton select.

NOTE

In embedded applications, all SELECT statements that occur outside the context of a cursor must be singleton selects.

* Retrieve multiple rows, or parts of rows, from a table.

O In embedded applications, multiple row retrieval is accomplished by embedding a SELECT within
a DECLARE CURSOR statement.

O In 49sqt, SELECT can be used directly to retrieve multiple rows.
* Retrieve related rows, or parts of rows, from a join of two or more tables.
« Retrieve all rows, or parts of rows, from union of two or more tables.
* Return portions or sequential portions of a larger result set; useful for Web developers, among others.

All SELECT statements consist of two required clauses (SELECT, FROM), and possibly others (INTO, WHERE,
GROUP BY, HAVING, UNION, PLAN, ORDER BY, ROWS).

For more information on how to use SELECT in isql, see the Operations Guide. For a complete explanation
of SELECT and its clauses, see the Embedded SQL Guide.

9.89.2.1. Derived Tables (SELECT FROM SELECT)

A derived table is the result set of a SELECT query that you can use in the FROM clause. You may find
it useful to think of a derived table as a view with statement-level scope. This allows you the expressive
flexibility to use a view-like structure without defining a database schema view, or allows the user to obtain
the same benefit in an ad-hoc query without requiring a database administer to create a view definition.

Embarcadero Technologies 117

http://docwiki.embarcadero.com/InterBase/2017/en/Operations_Guide
http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

You can use derived tables in triggers and stored procedures as well as user applications, but you must
have proper access privileges on the underlying base tables and views accessed by a derived table.

Dynamic SQL and 4sqtl support derived table syntax, Embedded SQL does not support derived table
syntax. For further info on Derived Tables refer to SQL Derived Table Support

Examples With Derived Tables

1. The following simple example shows how you can use derived tables:

SELECT elj.job_code,
elj.job_title

FROM (SELECT job_code,
job_title
FROM job

WHERE max_salary < 50000) AS elj;

The statement queries the EMPLOYEE table for entry-level jobs.

2. The following is a more complex statement using derived tables:

SELECT emp.emp_no,
emp.full_name,
emp.job_code,
job.job_grade,
job.job_title
FROM (SELECT emp_no,
full_name,
job_code,
job_grade,
job_country
FROM employee) AS emp,
(SELECT job_code,
job_grade,
job_country,
job_title
FROM job) AS job
WHERE (emp.job_code = job.job_code) AND
(emp.job_grade = job.job_grade) AND
(emp.job_country = job.job_country) AND
(emp.job_country = 'USA');

3. The following example shows a derived table with a subquery:

SELECT eid,
ename
FROM (SELECT e.emp_no,
e.full_name
FROM employee e

WHERE e.job_country =
(SELECT el.job_country
FROM employee el

Embarcadero Technologies 118

http://docwiki.embarcadero.com/InterBase/2017/en/SQL_Derived_Table_Support

SQL Statement and Function Reference

WHERE emp_no = 144)) AS emp (eid, ename);

Additional Notes on Derived Tables

e Derived tables can be nested.

+ Derived tables can be unions and can be used in unions. They can contain aggregate functions,
subselects and joins, and can themselves be used in aggregate functions, subselects and joins. They
can also be or contain queries on selectable stored procedures.

9.89.2.2. Additional Notes on SELECT

« When declaring arrays, you must include the outermost brackets, shown below in bold. For example,
the following statement creates a 5 by 5 two-dimensional array of strings, each of which is 6 characters
long:

my_array = VARCHAR(6)[5,5]

* Use the colon () to specify an array with a starting point other than 1. The following example creates
an array of INTEGER that begins at 10 and ends at 20:

my_array = INTEGER[20:30]

+ In SQL and 1sql, you cannot use val as a parameter placeholder (like ?).
« In DSQL and 1sqt, val cannot be a variable.
* You cannot specify a COLLATE clause for Blob columns.

* You cannot specify a GROUP BY clause for Blob and array columns.
9.89.2.3. Examples

1. The following isqt statement selects columns from a table:

SELECT job_grade,
job_code,
job_country,
max_salary

FROM project;

2. The next isql statement uses the * wildcard to select all columns and rows from a table:

SELECT =
FROM countries;

3. The following embedded SQL statement uses an aggregate function to count all rows in a table that
satisfy a search condition specified in the WHERE clause:

EXEC SQL

SELECT COUNT (%)
INTO :ent
FROM country

Embarcadero Technologies 119

SQL Statement and Function Reference

WHERE population > 5000000;

4. The next isql statement establishes a table alias in the SELECT clause and uses it to identify a column
in the WHERE clause:

SELECT c.city
FROM cities c
WHERE c.population < 1000000;

5. The following isql statement selects two columns and orders the rows retrieved by the second of
those columns:

SELECT city,
state

FROM cities

ORDER BY state;

6. The next isql statement performs a left join:

SELECT city,
state_name
FROM cities c
LEFT JOIN states s
ON s.state = c.state
WHERE c.city starting WITH 'San';

7. The following isql statement specifies a query optimization plan for ordered retrieval, utilizing an
index for ordering:

SELECT *

FROM cities

PLAN (cities ORDER cities_1)
ORDER BY city;

8. The next isql statement specifies a query optimization plan based on a three-way join with two
indexed column equalities:

SELECT =«
FROM cities c,
states s,
mayors m
WHERE c.city = m.city
AND c.state = m.state PLAN
JOIN (state NATURAL, cities INDEX dupe_city, mayors INDEX mayors_1);

9. The next example queries two of the system tables, RDB$CHARACTER_SETS and RDB$COLLATIONS
to display all the available character sets, their ID numbers, number of bytes per character, and col-
lations. Note the use of ordinal column numbers in the ORDER BY clause.

Embarcadero Technologies 120

SQL Statement and Function Reference

SELECT rdb$character_set_name,

rdb$character_set_qid,

rdbSbytes_per_character,

rdb$collation_name
FROM rdbScharacter_sets

JOIN rdbS$collations

ON rdb$character_sets.rdb$Scharacter_set_id =

rdbScollations.rdbScharacter_set_iefd
ORDER BY 1,4;

10. The following examples reward the best performing sales people and terminate the least performing
members of the sales team. The examples show how a Web developer, for example, could split the
result set in half for display purposes.

SELECT salesman,
sales_dollars,
sales_region

FROM salespeople

ORDER BY sales_dollars DESC

ROWS 1 TO 50;

SELECT salesman,
sales_dollars,
sales_region

FROM salespeople

ORDER BY sales_dollars DESC

ROWS 50 TO 100 WITH ties;

11. Reward the best 100 performing salesmen with a 15 percent bonus:

UPDATE salespeople

SET sales_bonus = 0.15 x sales_dollars
ORDER BY sales_dollars DESC

ROWS 100 WITH ties;

12.Eliminate the worst five percent of the sales force:

DELETE

FROM salespeople
ORDER BY sales_dollars
ROWS 5 percent WITH ties;

9.90. SET DATABASE

Declares a database handle for database access. Available in gpre.

SET {DATABASE | SCHEMA} dbhandle =

[GLOBAL | STATIC | EXTERN][COMPILETIME][FILENAME] 'dbname'
[USER 'name' PASSWORD 'string']

[RUNTIME [FILENAME]

Embarcadero Technologies 121

SQL Statement and Function Reference

{'dbname' | :<var}>
[USER {'name' | :<var}> PASSWORD {'string' |:<var}>]];
Argument Description
<dbhandle> An alias for a specified database

» Must be unique within the program.

» Used in subsequent SQL statements that support database handles.

GLOBAL [Default] Makes this database declaration available to all modules.

STATIC Limits scope of this database declaration to the current module.

EXTERN References a database declaration in another module, rather than actually declaring a new han-
dle.

COMPILETIME Identifies the database used to look up column references during preprocessing.

« If only one database is specified in SET DATABASE, it is used both at run time and compile

time.
¢<dbname>’ Location and path name of the database associated with <dbhandle>; platform-specific.
RUNTIME Specifies a database to use at run time if different than the one specified for use during prepro-
cessing.
<var> Host-language variable containing a database specification, user name, or password.
USER ‘<name>’ A valid user name on the server where the database resides

» Used with PASSWORD to gain database access on the server.

» Required for PC client attachments, optional for all others.

PASSWORD¢<string>’ |A valid password on the server where the database resides

» Used with USER to gain database access on the server.

» Required for PC client attachments, optional for all others.

Description: seT pATABASE declares a database handle for a specified database and associates the handle
with that database. It enables optional specification of different compile-time and run-time databases.
Applications that access multiple databases simultaneously must use SET DATABASE Statements to establish
separate database handles for each database.

dbhandle is an application-defined name for the database handle. Usually handle names are abbreviations
of the actual database name. Once declared, database handles can be used in subsequent coNNECT, cOMMIT,
and RoLLBAcK statements. They can also be used within transactions to differentiate table names when two
or more attached databases contain tables with the same names.

dbname is a platform-specific file specification for the database to associate with dbhandle. It should follow
the file syntax conventions for the server where the database resides.

GLOBAL, STATIC, and EXTERN are optional parameters that determine the scope of a database declaration.
The default scope, GLoBAL, means that a database handle is available to all code modules in an application.
sTATIC limits database handle availability to the code module where the handle is declared. exTern refer-
ences a global database handle in another module.

The optional compPILETIME and RUNTIME parameters enable a single database handle to refer to one database
when an application is preprocessed, and to another database when an application is run by a user. If

Embarcadero Technologies 122

SQL Statement and Function Reference

omitted, or if only a compILETIME database is specified, InterBase uses the same database during prepro-
cessing and at run time.

The user and passworp parameters are required for all PC client applications, but are optional for all other
remote attachments. The user name and password are verified by the server in the security database
before permitting remote attachments to succeed.

Examples: The following embedded SQL statement declares a handle for a database:

EXEC SQL
SET DATABASE DB1 = 'employee.ib';

The next embedded SQL statement declares different databases at compile time and run time. It uses a
host-language variable to specify the run-time database.

EXEC SOQL
SET DATABASE EMDBP = 'employee.ib' RUNTIME :db_name;

9.91. SET GENERATOR

Sets a new value for an existing generator. Available in gpre, DSQL, and isqtl.

SET GENERATOR name TO <int>;

IMPORTANT 1

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
<name> Name of an existing generator
<int> Value to which to set the generator, an integer from 2% 10 2%~ 1

Description: seT GENERATOR initializes a starting value for a newly created generator, or resets the value
of an existing generator. A generator provides a unique, sequential numeric value through the Gen_1p()
function. If a newly created generator is not initialized with SET GENERATOR, its starting value defaults to zero.

<int> is the new value for the generator. When the Gen_1p() function inserts or updates a value in a
column, that value is <int> plus the increment specified in the Gen_1b() step parameter. Any value that
can be stored in a bECIMAL (18,0) can be specified as the value in a SET GENERATOR statement.

Generators return a 64-bit value, and wrap around only after 2% invocations (assuming an increment of
1). Use an ISC-INT64 variable to hold the value returned by a generator.

TIP

To force a generator’s first insertion value to 1, use SET GENERATOR to specify a starting value of 0, and set the step
value of the GEN_ID() function to 1.

Embarcadero Technologies 123

SQL Statement and Function Reference

IMPORTANT)

When resetting a generator that supplies values to a column defined with PRIMARY KEY or UNIQUE integrity constraints,
be careful that the new value does not enable duplication of existing column values, or all subsequent insertions and
updates will fail.

Example: The following isgl statement sets a generator value to 1,000:

SET GENERATOR CUST_NO_GEN TO 1000;

If Gen_1D() now calls this generator with a step value of 1, the first number it returns is 1,001.

9.92. SET NAMES

Specifies an active character set to use for subsequent database attachments. Available in gpre, and isqt.

SET NAMES [charset | :var];

IMPORTANT)

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description
<charset> Name of a character set that identifies the active character set for a given process; default: NONE.
<var> Host variable containing string identifying a known character set name

» Must be declared as a character set name.

« SQL only.

Description: seT NaMES specifies the character set to use for subsequent database attachments in an
application. It enables the server to translate between the default character set for a database on the server
and the character set used by an application on the client.

SET NAMES must appear before the SET DATABASE and CONNECT statements are affected.

TIP Q

Use a host-language variable with SET NAMES in an embedded application to specify a character set interactively.

For a complete list of character sets recognized by InterBase, see Character Sets and Collation Orders.
Choice of character sets limits possible collation orders to a subset of all available collation orders. Given a
specific character set, a specific collation order can be specified when data is selected, inserted, or updated
ina column.

IMPORTANT)

If you do not specify a default character set, the character set defaults to NONE. Using character set NONE means that
there is no character set assumption for columns; data is stored and retrieved just as you originally entered it. You can
load any character set into a column defined with NONE, but you cannot load that same data into another column that
has been defined with a different character set. No transliteration is performed between the source and destination
character sets, so in most cases, errors occur during assignment.

Embarcadero Technologies 124

SQL Statement and Function Reference

Example: The following statements demonstrate the use of SeT NAMES in an embedded SQL application:

EXEC SQL

SET NAMES TIS08859_1;

EXEC SQL

SET DATABASE DBl = 'employee.ib';
EXEC SQL

CONNECT;

The next statements demonstrate the use of SET NAMES in isql:

SET NAMES LATIN1;
CONNECT 'employee.ib';

9.93. SET SQL DIALECT

Declares the SQL Dialect for database access. Available in gpre and -isql.

SET SQL DIALECT n;

Argument Description

<n> The SQL Dialect type, either 1, 2, or 3

Description: seT sqL pIALECT declares the SQL Dialect for database access.

n is the SQL Dialect type 1, 2, or 3. If no dialect is specified, the default dialect is set to that of the specified
compile-time database. If the default dialect is different than the one specified by the user, a warning is
generated and the default dialect is set to the user-specified value.

Set SQL Dialects for Database Access
SQL Dialect Used for
1 InterBase 5 and earlier compatibility.
2 Transitional dialect used to flag changes when migrating from dialect 1 to dialect 3.
3 Current InterBase; allows you to use delimited identifiers, exact numerics, and DATE, TIME, and TIMES-
TAMP data types.

Examples: The following embedded SQL statement sets the SQL Dialect to 3:

EXEC SQL
SET SQL DIALECT 3;

9.94. SET STATISTICS

Recomputes the selectivity of a specified index. Available in gpre, bsqL, and isqt.

SET STATISTICS INDEX name;

Embarcadero Technologies 125

SQL Statement and Function Reference

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument Description

<name> Name of an existing index for which to recompute selectivity

Description: seT sTATISTICS enables the selectivity of an index to be recomputed. Index selectivity is a
calculation, based on the number of distinct rows in a table, that is made by the InterBase optimizer when
a table is accessed. It is cached in memory, where the optimizer can access it to calculate the optimal
retrieval plan for a given query. For tables where the number of duplicate values in indexed columns
radically increases or decreases, periodically recomputing index selectivity can improve performance.

Only the creator of an index can use SET STATISTICS.

NOTE

SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

Example: The following embedded SQL statement recomputes the selectivity for an index:

EXEC SQL
SET STATISTICS INDEX MINSALX;

9.95. SET SUBSCRIPTION

A user is then granted SUBSCRIBE privilege to subscribe to the subscription in order to track changes on
the listed tables:

SET SUBSCRIPTION [<subscription_name> [, <subscription_name> ...]] [AT
<destination>] {ACTIVE | INACTIVE};

Argument Description
<subscription_name> | Implied by the user identity of the
database
<user_name> User identify of the database connection

Description: The following example activates two subscriptions and returns changed data sets from the
subscribed tables.

« The commiT updates all subscriptions for schema objects referenced during the transaction to set the
last observed timestamp and transaction context.

* The commiT RETAIN does not change the last observed state and maintains the current snapshot as
always.

+ The subscription is deactivated for the connection, which makes any subsequent queries against the
subscribed schema objects return normal data sets, without regard to the changed data status.

* Any number of subscriptions can be activated simultaneously during a database connection.

Example: seT susscripTION "Employee_Changes", "Customer_Deletes" AT 'smartphone_123'

Embarcadero Technologies 126

SQL Statement and Function Reference

SALARY FROM

"Employees";

ACTIVE;
SELECT NAME, DEPARTMENT,
SELECT * FROM '"Customers";

COMMIT or COMMIT RETAIN;

SET SUBSCRIPTION
INACTIVE;

"Employee_Changes",

"Customer_Deletes" AT 'smartphone_123'

9.96. SET TRANSACTION

Starts a transaction and optionally specifies its behavior. Available in ESQL (ePre), DSQL, and 1sqL.

SET TRANSACTION [NAME TRANSACTION]

[READ WRITE |
[WAIT | NO WAIT]
[[ISOLATION LEVEL]

READ ONLY]

{SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]

[RESERVING
| USING dbhandle [,
[[NO] SAVEPOINT];
reserving_clause =
[FOR [SHARED

TABLE [,
PROTECTED]

reserving_clause
dbhandle ..]]

TABLE ..]

{READ | WRITE}] [, reserving_clause]

IMPORTANT

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++,
and in isql, the semicolon is a terminating symbol for the statement, so it must be included.

Argument

Description

NAME <transaction>

Specifies the name for this transaction.

+ <transaction> is a previously declared and initialized host-language vari-

able.
« SQL only.
READ WRITE [Default] Specifies that the transaction can read and write to tables.
READ ONLY Specifies that the transaction can only read tables.
WAIT [Default] Specifies that a transaction wait for access if it encounters a lock con-
flict with another transaction.
NO WAIT Specifies that a transaction immediately return an error if it encounters a lock

conflict.

ISOLATION LEVEL

Specifies the isolation level for this transaction when attempting to access the
same tables as other simultaneous transactions; default: SNAPSHOT.

RESERVING<reserving_clause>

Reserves lock for tables at transaction start.

USING <dbhandle> [, <dbhandle>

]

Limits database access to a subset of available databases; SQL only.

NO SAVEPOINT

If NO SAVEPOINT is mentioned, the transaction is executed without starting an
implicit savepoint for any SQL statements that execute within the context of
that transaction. By default, InterBase starts an implicit savepoint to guaran-
tee the atomicity of an SQL statement. For more information, see Chapter 5,
"Working with Transactions" section on "Working with the NO SAVEPOINT Op-
tion" in the API Guide.

Embarcadero Technologies

127

SQL Statement and Function Reference

Description: seT TRANSACTION starts a transaction, and optionally specifies its database access, lock conflict
behavior, and level of interaction with other concurrent transactions accessing the same data. It can also
reserve locks for tables. As an alternative to reserving tables, multiple database SQL applications can restrict
a transaction access to a subset of connected databases.

IMPORTANT

Applications preprocessed with the gpre-manual switch must explicitly start each transaction with a SET TRANSACTION
statement.

SET TRANSACTION affects the default transaction unless another transaction is specified in the optional NAME
clause. Named transactions enable support for multiple, simultaneous transactions in a single application.
Alltransaction names must be declared as host-language variables at compile time. In DSQL, this restriction
prevents dynamic specification of transaction names.

By default a transaction has READ WRITE access to a database. If a transaction only needs to read data,
specify the READ ONLY parameter.

When simultaneous transactions attempt to update the same data in tables, only the first update succeeds.
No other transaction can update or delete that data until the controlling transaction is rolled back or
committed. By default, transactions warT until the controlling transaction ends, then attempt their own
operations. To force a transaction to return immediately and report a lock conflict error without waiting,
specify the No WAIT parameter.

ISOLATION LEVEL determines how a transaction interacts with other simultaneous transactions accessing the
same tables. The default ISOLATION LEVEL iS SNAPSHOT. It provides a repeatable-read view of the database
at the moment the transaction starts. Changes made by other simultaneous transactions are not visible.

SNAPSHOT TABLE STABILITY provides a repeatable read of the database by ensuring that transactions cannot
write to tables, though they may still be able to read from them.

READ COMMITTED enables a transaction to see the most recently committed changes made by other simul-
taneous transactions. It can also update rows as long as no update conflict occurs. Uncommitted changes
made by other transactions remain invisible until committed. READ commITTED also provides two optional
parameters:

* NO RECORD_VERSION, the default, reads only the latest version of a row. If the wazT lock resolution option
is specified, then the transaction waits until the latest version of a row is committed or rolled back,
and retries its read.

* RECORD_VERSION reads the latest committed version of a row, even if more recent uncommitted version
also resides on disk.

The RESERVING clause enables a transaction to register its desired level of access for specified tables when
the transaction starts instead of when the transaction attempts its operations on that table. Reserving tables
at transaction start can reduce the possibility of deadlocks.

The us1nG clause, available only in SQL, can be used to conserve system resources by limiting the number
of databases a transaction can access.

Examples: The following embedded SQL statement sets up the default transaction with an isolation level
of READ commITTED. If the transaction encounters an update conflict, it waits to get control until the first
(locking) transaction is committed or rolled back.

Embarcadero Technologies 128

SQL Statement and Function Reference

EXEC SQL
SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:

EXEC SQL
SET TRANSACTION NAME T1 READ COMMITTED;

The following embedded SQL statement reserves three tables:

EXEC SQL

SET TRANSACTION NAME TR1

ISOLATION LEVEL READ COMMITTED

NO RECORD_VERSION WAIT

RESERVING TABLE1, TABLE2 FOR SHARED WRITE,
TABLE3 FOR PROTECTED WRITE;

9.96.1. Exclusive Isolation Level
Introduction

A Tool performing online reorganization of tables may need temporary exclusive table access to perform
its functions. Transactions use exclusive table access to acquire an exclusive lock on a target table, and
they are the only ones able to execute SELECT, INSERT, UPDATE, and DELETE on a table. When a transaction
acquires an exclusive lock, other transactions with lock requests must wait until the lock is released or
downgraded to a compatible level. Transactions that maintain exclusive table access can modify data on
a table without interference from other transactions. This isolation level is different from TABLE STABILITY
and PROTECTED access because it does not allow other transactions to select from the table.

Usage

Use the SET TRANSACTION statement to specify the TABLE ExCLUSIVITY clause, or use the existing RESERVING
clause to request exclusive access to one or more tables. TABLE EXCLUSIVITY acquires exclusive access to
every table that a transaction accesses during statement execution. The RESERVING clause acquires exclu-
sive access to a list of tables at transaction startup. To use the RESERVING clause, specify FOR <table_list>
EXCLUSIVE [READ | WRITE]. Note that there is no difference between rReap and wRITE because both modes
do not allow other transactions to access the table. As with TABLE STABILITY, there is an increased likelihood
of lock conflicts and waits when this isolation level is used. In addition to isc_tpb_shared and isc_tpb_pro-
tected, YOU Can use isc_tpb_exclusive in a transaction parameter block (TPB) to specify exclusive table
access when calling isc_start_transaction() at the API level.

Requirements and Constraints

« |tis possible to acquire exclusive table access even if one or more statements or requests that access
the table have been prepared.

* |tis possible to acquire exclusive table access even if one or more statements or requests that access
the table have been executed as long as they have not yet accessed the table.

Migration issues

Embarcadero Technologies 129

SQL Statement and Function Reference

Prior to InterBase 2017, isc_tpb_exclusive could be used, but it allowed select access by concurrent trans-
actions. Starting with InterBase 2017, a transaction has to wait until those readers terminate and subsequent
readers block until the transaction with exclusive access terminates or downgrades the exclusive lock.

ALTER TABLE ... ALTER COLUMN for encryption and TRUNCATE TABLE acquire exclusive table access to perform
their function.

InterBase 2017 introduced the InterBase-specific SQL reserved keywords ExcLUSIVITY and EXCLUSIVE.

9.96.2. Wait time
Introduction

To acquire lockable resources, InterBase transaction lock can wait indefinitely, wait an specified period of
time, or do not wait and return an error immediately. When a transaction holds a lock on a resource at a
level incompatible with the requested lock level, this resource is inaccessible to other transactions. lockable
resources can be tables, rows, or transaction entities.

Usage

This is the SQL syntax to specify a lock resolution mode:

SET TRANSACTION {[NO] WAIT};

WAIT implies wait indefinitely until a resource lock is acquired.

To specify a wait period use an optional WAIT clause in seconds. This is the time a transaction waits for
a lock on a resource:

SET TRANSACTION WAIT [<number> [SECONDS]];

An {isc_lock_timeout error code returns if the lock on the resource cannot be acquired during the wait
period.

For example, consider attempting to Truncate Table. Table truncate attempts to acquire an exclusive lock
on the target table and referencing tables that have a foreign key constraint on the target table. It is
desirable to specify a wait time for the transaction if other transactions are using the table actively.

SQL> set transaction wait 10 seconds;
SQL> truncate table salary_history;
Statement failed, SQLCODE = -901

lock time-out on wait transaction
-unsuccessful metadata update
-object SALARY_HISTORY 1is 1in use
SQL>

There is a new transaction parameter block (TPB) parameter called isc_tpb_wait_time for use with InterBase
transaction APIs: isc_start_transaction(), isc_reconnect_transaction(), and isc_start_multiple(). Itis
followed by the literal "4" denoting a byte count and four bytes in little endian format denoting the wait
period in seconds. Here are two examples specifying a 30 second and 300 second (5 minute) wait period,
respectively:

Embarcadero Technologies 130

SQL Statement and Function Reference

There is a

isc_tpb_wait_time, 4, 30, 0, O,
isc_tpb_wait_time, 4, 44, 1, 0O,

n InterClient/JDBC extension APl method for class interbase.interclient.Connection: setLock-

Resolution(int mode, int waitTime) The existing method setLockResolution(int mode) iS equivalent
tO setLockResolution(int mode, 0).

/* Set transaction timeout to 1 minute x*/

Driver driver = -fnterbase.interclient.Driver();
Connection connection = driver.connect(url, properties);
(interbase.interclient.Connection
connection).setLockResolution(LOCK_RESOLUTION_WAIT, 60);

It is expected that FireDAC, IBX and ODBC frameworks will provide low-level integrated support for the

feature.

Requirements and Constraints

+ The WAIT period is a positive integer between 1 and 32,767, inclusive. This is the equivalent of about
9 hours.

+ Underlying remote and local protocols pass a 32-bit integer so that this limit can be increased without
modifying the protocols.

* The feature is available through Dynamic SQL but not Static (Embedded) SQL.
* The feature is available through InterClient/JDBC API.

+ The feature may not be visible as a transaction property by FireDAC, IBX or ODBC frameworks, but

shou

M

Id be available as pass-through DSQL.

igration issues

» The WAIT optional clause is not recognized by SQL parsers in InterBase versions older than 2017.

* The isc_tpb_wait_time TPB parameter is not recognized at the API level by InterBase versions older

than

2017.

9.97. SHOW SQL DIALECT

Returns the current client SQL Dialect setting and the database SQL Dialect value. Available in gpre and

isql.

Descript

SHOW SQL DIALECT;

ion: sHow sQL DIALECT returns the current client SQL Dialect setting and the database SQL Dialect

value, either 1, 2, or 3.

sQL Di- Used for
alect
1 InterBase 5 and earlier compatibility
2 Transitional dialect used to flag changes when migrating from dialect 1 to dialect 3.

Embarcadero Technologies 131

SQL Statement and Function Reference

’ 3

data types.

Current InterBase; allows you to use delimited identifiers, exact numerics, and DATE, TIME, and TIMESTAMP

Examples: The following embedded SQL statement returns the SQL Dialect:

EXEC SQL
SHOW SQL DIALECT;

9.98. SHOW SUBSCRIPTION

Syntax

SHOW {SUBSCRIPTION [<subscription_name>]

| SUBSCRIPTIONS};

Argument

Description

<subscription_name> | The name of the subscription that you want to display.

Description

To display a list of all subscriptions, use the sHow supscrIPTIONS command. If you only want to display one
supscription, use the sHow SUPSCRIPTION <subscription_name> command.

Example

SHOW SUBSCRIPTIONS;

Subscription Name

SUB_CUSTOMER_DELETES
SUB_EMPLOYEE_CHANGES
SUB_VARIOUS_CHANGES

SHOW SUBSCRIPTION sub_employee_changes;
Subscription name: SUB_EMPLOYEE_CHANGES
Owner: SYSDBA

Description: Subscribe TO changes IN EMPLOYEE TABLE

EMPLOYEE (SALARY, DEPT_NO,

SHOW SUBSCRIPTION sub_customer_deletes;
Subscription name: SUB_CUSTOMER_DELETES

Owner: SYSDBA

EMP_NO)

Description: Subscribe TO deletes IN CUSTOMER TABLE

CUSTOMER FOR ROW (DELETE)

SHOW SUBSCRIPTION sub_various_changes;
Subscription name: SUB_VARIOUS_CHANGES
Owner: SYSDBA

Description: Subscribe TO various changes ON multiple TABLES

EMPLOYEE FOR ROW (INSERT,
CUSTOMER FOR ROW (INSERT,
SALES FOR ROW (UPDATE),

UPDATE,
UPDATE,

DELETE),
DELETE),

Embarcadero Technologies

132

SQL Statement and Function Reference

DEPARTMENT (LOCATION) FOR ROW (UPDATE)

9.99. SUM()

Totals the numeric values in a specified column. Available in gpre, DsqL, and isql.

SUM ([ALL] wval | DISTINCT val)

Argument Description
ALL Totals all values in a column
DISTINCT Eliminates duplicate values before calculating the total
<val> A column, constant, host-language variable, expression, non-aggregate function, or UDF that evaluates

to a numeric data type

Description: sum() is an aggregate function that calculates the sum of numeric values for a column. If the
number of qualifying rows is zero, sum() returns a NuLL value.

Example: The following embedded SQL statement demonstrates the use of sum(),AvG (), MIN(), and MAX():

EXEC SQL

SELECT SUM (BUDGET), AVG (BUDGET), MIN (BUDGET), MAX (BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :head_dept

INTO

:tot_budget, :avg_budget, :min_budget, :max_budget;

9.100. TRUNCATE TABLE

Introduction

InterBase 2017 introduced the SQL reserved keyword TRUNCATE. The Truncate Table command allows users
and applications to empty the contents of a database table. This feature is useful for tables where rows
require frequent deletion. The Truncate Table command performs faster, requires less I/O, and journals
and archives much less information than an equivalent peLeTE From table command. ETL applications or
other applications can benefit from the combination of TRUNCATE TABLE with the NO RESERVE SPACE table
allocation option when they stage large amounts of data that are deleted after use or moved to a more
permanent location such as a history table.

Requirements and Constraints

1. The Truncate Table command obtains exclusive and protected write locks, this can have a visible
effect on concurrent transactions that try to access tables being truncated. Although the table is being
truncated anyways, all layers of the dependent table tree hierarchy in a TRUNCATE cAScADE are locked,
and in a TRUNCATE DEFERRED these locks are held until the transaction terminates.

2. As a consequence of the previous point, users may run Truncate Table commands using a transaction
with No wAIT or a waIT TIME limit.This way the transaction could rollback the operation if a timeout
occurs or retry a limited number of times.

3. Itis not possible to truncate system tables, temporary tables, and views. For optimization and perfor-
mance reasons the engine truncates physically some of these tables types, users don't have access
to this functionality. However, users might perceive better performance.

Embarcadero Technologies 133

SQL Statement and Function Reference

4. External tables can be truncated.

5. It's not possible to track who executed a Truncate Table command. FOR EACH STATEMENT triggers that
enable users to write a triggered action for a Truncate Table command are not supported in InterBase.

How it works

Truncate Table operates at table level rather than at row level, it acts on the stored data inside a table
instead of the metadata. Truncate Table deletes all the rows of a table in similar way to a DELETE FROM
<table> command, but it doesn't perform row level actions like DELETE triggers, check constrains, and
index maintenance. Truncate Table is usually faster than row-level deletion.

The Truncate Table command is not under transaction control. When you empty a table, it is not possible
to undo the action even if you roll back the transaction that executed it. Only a point-in-time recovery
can recover the data from InterBase journal archives. Truncated tables don't have storage allocated for
row data, indexes, or blobs.

The Truncate Table command is sensitive to other tables' foreign key constraints that reference the table
being truncated. In it's simplest form, foreign key constrains disallow table truncation. InterBase Truncate
Table provides several non-SQL and run-time extensions to override this restriction. This enables a more
liberal interpretation of the command enable execution in situations that do not compromise existing
foreign key constraints. Although Truncate Table is not under transaction control, it is possible to make it
behave as if it were by deferring its execution until after the effects of the transaction in which it is contained
have been committed or rolled back.

9.100.1. Truncate Table syntax

TRUNCATE TABLE <table_name> [IMMEDIATE | DEFERRED] [RESTRICT | CASCADE]

When using the truncate Table command, please consider these points:

* IMMEDIATE iS implicit if neither IMMEDIATE nor pEFERRED are specified. IMMEDIATE and DEFERRED are un-
reserved keywords.

* RESTRICT is implicit if neither RESTRICT NOr CASCADE are specified.

For example:

TRUNCATE TABLE <table_name>

is the same as:

TRUNCATE TABLE <table_name> IMMEDIATE RESTRICT

+ Use the 1mmepIATE qualifier to execute the Truncate Table command immediately and to empty the
content of the table.

* Use the pererrep qualifier to execute the Truncate Table command when the transaction terminates
with coMMIT Or ROLLBACK. coMMmIT guarantees all the transactional work before emptying the target
table. roLLBACK cancels the Truncate Table Command.

Embarcadero Technologies 134

SQL Statement and Function Reference

« When you specify the rResTrICT qualifier the Truncate Table command only succeeds if no foreign key
constrains reference the target table. The Truncate Table command only executes if the table has self-
referencing foreign key constrains.

« When you specify the cascape qualifier, declare all the foreign key constrains of referencing tables
with the oN cASCADE DELETE action, or the foreign key constrains not declared must reference currently
"empty" tables. This condition applies recursively to referencing tables, if any table violates this con-
dition the Truncate Table command fails with a foreign key violation error.

NOTE [£]

In this context "empty" means the table has no data storage allocated to it. A table with no rows still has storage
allocated to it. This can happen when all rows have been deleted with one or more DELETE statements, but concurrent
transactions still have earlier versions of the row in their snapshots, or the rows and their earlier versions are not in any
transactions' snapshots but have not yet been garbage collected. To immediately make those foreign key dependent
tables empty, Truncate Table can be run against such tables if logic dictates. A Truncate Table statement is allowed to
be called from InterBase triggers and stored procedures assuming they have been granted the TRUNCATE privilege.

9.100.2. Truncate Table privilege

Execution of a Truncate Table command requires a TRUNCATE privilege. By default, this privilege is granted
only to the table owner and SYSDBA initially. The TRUNCATE privilege must be specifically granted to any
other authorization identifier as it is not considered a member of ALL privileges.

{GRANT | REVOKE} TRUNCATE ON <table_name> {TO | FROM} <grantee> [WITH
GRANT OPTION]

NOTE

The TRUNCATE privilege is not required on referencing tables with non-ON CASCADE DELETE foreign key constraints
when checking if those tables are empty.

8n this context "empty" means the table has no data storage allocated to it. A table with no rows still has storage allocated to it.

9.100.3. Truncate Table operation
The Truncate Table command is executed in two phases:

1. A'locking phase.

2. A truncation phase.

Upon command, the returned target tables are always locked for exclusive access. If the bererrep qualifier is
specified, the truncation phase of the operation does not occur until transaction commzT. Specifically, foreign
dependent tables with non-on cAscAbe DELETE reference constraints are only locked for protected write.

Because these tables are not being physically dismantled, reads can be allowed without blocking on the
empty table. The protected write lock prevents insertion of new rows that might have a valid reference
on a table with an imminent truncation.

If the cascabe qualifier is specified, then the target table is locked as well as referencing tables with foreign
key constraints that depend on the target table. The locking protocol works in a top-down fashion, locking
the target table first followed by the referencing tables and recursively applied to those referencing tables
with oN cAscADE DELETE foreign key constraints. This is referred to as a dependent table tree hierarchy.

Embarcadero Technologies 135

SQL Statement and Function Reference

The truncation protocol works in a bottom-up fashion. First, it truncates foreign dependent tables, this
prevents dangling foreign key references if the total execution fails unexpectedly before completion. During
this phase, all table data, index and blob storage is released back to the database for reuse. Once the
tables have been truncated, the table locks are downgraded to the level they would have acquired for
normal write access. For a consistency mode transaction this is protected write. For a concurrency mode
transaction this is shared write.

9.100.4. Truncate Table errors

A lock error returns if an exclusive table lock cannot be acquired during the locking phase. The error
returned can be a isc_deadlock error or a transaction wait error depending on the transaction's wait mode.
If a transaction waits indefinitely for lock acquisition, it can only return a isc_deadlock error due to a real
deadlock with a concurrent transaction.

If the transaction is No WAIT, it returns an isc_lock_conflict error immediately. If the transaction requests
a WAIT TIME, it returns isc_lock_timeout when waiting the specified time for table lock acquisition.

It is also an error to execute a Truncate Table command from a READ_ONLY transaction or database. During
the truncation phase there is no expected way for an error to occur. However, unexpected errors can occur
due to extraneous circumstances.

If a transaction executing a Truncate Table command has open cursors on one or more of the truncated
tables, attempting to perform an uPDATE on those open cursors can return an isc_table_truncated. Oth-
erwise, if the fetch from the cursor is only for retrieval purposes, the fetch operation returns as if there
were no more remaining rows to fetch.

9.100.5. Truncate Table effect on Change Views

When a client database connection activates subscriptions containing one or more truncated tables, the
client receives two indications of the underlying truncate activity.

First, when a cursor opens (the seLecT operation is executed), a warning status vector indicating isc_ta-
ble_truncated returns with the name of the truncated table. A warning status vector can chain together
five separate isc_table_truncated status codes of truncated tables in a seLecT statement. Clients can use
this form of table notification to truncate one or more corresponding tables on the client. For example,
after executing the query:

if (disc_dsql_execute(status_vector, ...) == 0) /* after successful
execution check for warnings =*/

{

if (status_vector[2] == -dsc_arg_warning)

// A warning status vector for one or more truncated tables shall have
the following format.

status_vector[0] = dsc_arg_gds
status_vector[1l] = 0O
status_vector[2] = dsc_arg_warning

// The following sequence can be repeated up to 5 times

status_vector[3] = -1isc_table_truncated
status_vector[4] = dsc_arg_string
status_vector[5] = name of table truncated

Embarcadero Technologies 136

SQL Statement and Function Reference

// status_vector terminator

status_vector[last element] = dsc_arg_end

Second, on every fetch from the cursor, a sQLIND_TRUNCATE flag is set in the SQL indicator member of a
SQLVAR element for a column of a truncated table. Clients can use this form of column natification to
delete one or more rows in corresponding tables before using the other SQLIND flags to decide on the
appropriate row modification operation.

/* Bit flag definitions for SQLVAR.sqlind output variable =x/

#define SQLIND_NULL (short) (1 << 15)
#define SQLIND_INSERT (1 << 0)

#define SQLIND_UPDATE (1 << 1)

#define SQLIND_DELETE (1 << 2)

#define SQLIND_CHANGE (1 << 3)

#define SQLIND_TRUNCATE (1 << 4)

#define SQLIND_CHANGE_VIEW (1 << 5)

If the query returns no rows because there were no changes to the subscribed tables subsequent to
table truncation, then only the first method can be used. The second method will not work since the
SQLDA/SQLVAR element will not be populated because no rows have been returned.

Higher level database frameworks such as FireDAC may surface these truncate notifications with supporting
APIs (e.g., 'isTruncated().)

9.100.6. Truncate Table examples

Consider a lottery drawing example:

TRUNCATE TABLE PENDING_LOTTERY_TICKETS DEFERRED;
INSERT INTO CURRENT_LOTTERY_DRAWING ... SELECT FROM PENDING_LOTTERY TICKETS;
COMMIT;

The day of the lottery drawing at 9:00 PM the TRuNcATE TABLE command is executed with a DEFERRED sta-
tus. Because the Truncate Table command obtains an exclusive lock, any attempts to insert new lottery
tickets at 9:00 PM have to wait. The CURRENT_LOTTERY_DRAWING table is then populated with PENDING_LOT-
TERY_TICKETS. The PENDING_LOTTERY_TICKETS table is truncated only after a successful COMMIT, this ensures
the tickets are not lost before moving them for the current lottery drawing. Once truncation completes,
the PENDING_LOTTERY_TICKETS exclusive lock is released, allowing pending lottery ticket INSERT cOmmands
to complete and be eligible for the next lottery drawing.

Conversely, a bulk load operation would want to ensure a table is immediately emptied before the load:

TRUNCATE TABLE CUSTOMER_ORDERS; /x IMMEDIATE dis dimplied x/
EXECUTE LOAD_CUSTOMER_ORDERS;
COMMIT;

A set of tables may form a composition hierarchy to represent the semantic notion of containment:

Embarcadero Technologies 137

SQL Statement and Function Reference

INVOICE_HEADER <-- INVOICE_DETAILS <-- {RAIN_CHECK_TICKET, DROP_SHIP_ADDRESS}

The dependent tables are all declared with on cascape DELETE foreign key constraints. All the invoices can
be quickly dropped by executing:

TRUNCATE TABLE INVOICE_HEADERS CASCADE;

On the other hand, there may exist a lookup table of two-letter US State postal codes named PosTAL_CODES
that every document in an organization depends on. None of these dependent tables register an oN cas-
CADE DELETE foreign key constraint with the lookup table.

POSTAL CODE STATE

CA California

MA Massachusetts
NC North Carolina
X Texas

TRUNCATE TABLE POSTAL_CODES CASCADE;

Assuming that one or more of the foreign dependent tables are not empty, this command fails with a
FOREIGN KEY CONSTRAINT violation error. The foreign dependent tables are not oN cAscADE DELETE and have
storage allocated for their existing rows.

9.100.7. Truncate Table Tutorial

This section guides you in the use of the Truncate Table command and its qualifiers.

Creating a test database and tables

1. Create a Database.

CREATE DATABASE "truncate.ib";
COMIT;

2. Create a table named 'SOLO' that has no references from any other table.

CREATE TABLE SOLO (F1 INTEGER);
INSERT INTO SOLO VALUES (1);
COMMIT;

3. Create a table named 'SOLO_SELF_REF' and populate it with data, this table references itself.

CREATE TABLE SOLO_SELF_REF (EMP_NO INTEGER NOT NULL, MNGR_NO INTEGER,
PRIMARY KEY (EMP_NO));

ALTER TABLE SOLO_SELF_REF ADD FOREIGN KEY (MNGR_NO) REFERENCES

SOLO_SELF_REF (EMP_NO);

INSERT INTO SOLO_SELF_REF VALUES (1, 1);

Embarcadero Technologies 138

SQL Statement and Function Reference

INSERT INTO SOLO_SELF_REF VALUES (2, 1);
INSERT INTO SOLO_SELF_REF VALUES (3, 2);
INSERT INTO SOLO_SELF_REF VALUES (4, 2);
COMMIT;

4. Next, create the primary table called PT, and add a primary key on EMP_NO.

CREATE TABLE PT (EMP_NO INTEGER NOT NULL, SSN_NO INTEGER NOT NULL);
ALTER TABLE PT ADD PRIMARY KEY (EMP_NO);

INSERT INTO PT VALUES (1, 100);

INSERT INTO PT VALUES (2, 200);

INSERT INTO PT VALUES (3, 300);

INSERT INTO PT VALUES (4, 400);

COMMIT;

5. Create a table named "FT1" and add a foreign key reference, this references to PT with oN DELETE
CASCADE.

CREATE TABLE FT1 (MNGR_NO INTEGER NOT NULL, EMP_COUNT INTEGER, PRIMARY KEY
(MNGR_NO)) ;

ALTER TABLE FT1 ADD FOREIGN KEY (MNGR_NO) REFERENCES PT (EMP_NO) ON DELETE
CASCADE ;

INSERT INTO FT1 VALUES (1, 1);

INSERT INTO FT1 VALUES (2, 2);

COMMIT;

Truncate a table with no references from other tables

1. First check the number of records on each table.

SELECT COUNT(*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

2. Next, truncate the SOLO table.

TRUNCATE TABLE SOLO;
COMMIT;

3. Next, truncate the SOLO_SELF REF table with reference to self.

TRUNCATE TABLE SOLO_SELF_REF;
COMMIT;

4. Finally, check count of records on each table.

SELECT COUNT(%*) FROM SOLO;
SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate a table with no references from other tables using the DEFERRED qualifier

Embarcadero Technologies 139

SQL Statement and Function Reference

1. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

2. Truncate the SOLO_SELF_REF table with pererrep qualifier. We now have exclusive access to the table.
No other requests allowed to read/write to the table.

TRUNCATE TABLE SOLO_SELF_REF DEFERRED;

3. We still have access to the table. Do new DML requests.

SELECT * FROM SOLO_SELF_REF;
INSERT INTO SOLO_SELF_REF VALUES (5, 2);
SELECT * FROM SOLO_SELF_REF;

4. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

5. commIT will truncate now due to DEFERRED action

COMMIT;

6. Check count of records

SELECT COUNT(*) FROM SOLO_SELF_REF;

Truncate on a primary table cascades to table references with on cascape peLeTE definition

1. Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(*) FROM FT1;

2. TRUNCATE PT table with default ResTrICT qualifier

TRUNCATE TABLE PT;
COMMIT;

3. Check count of records

SELECT COUNT(*) FROM PT;
SELECT COUNT(%*) FROM FT1;

4. TRUNCATE PT table with cascabe qualifier

TRUNCATE TABLE PT CASCADE;

Embarcadero Technologies 140

SQL Statement and Function Reference

COMMIT;

5. Check count of records

SELECT COUNT (%)
SELECT COUNT (%)

FROM PT;
FROM FT1;

9.101. UPDATE

Changes the data in all or part of an existing row in a table, view, or active set of a cursor. Available in

gpre,DSQL,aﬂd isql.

SQL form:

UPDATE [TRANSACTION <transaction>]
SET col = val [, val ..]
[WHERE search_condition
[ORDER BY order_list]
[ROWS VALUE [TO upper_value]

col =

DSQL and 1isql form:

UPDATE {TABLE | VIEW}
SET col = val [, col =
[WHERE search_condition
[ORDER BY order_list]
[ROWS VALUE [TO upper_value]
val = {

[array_dim]

val ..]

| :variable
| constant
| expr

| FUNCTION
| udf ([val
| NULL

| USER

| ?}
[COLLATE collation]

Ix:]y [, [x:ly .]]

constant = num | 'string' | charsetname
FUNCTION = CAST (val AS data_type)

| UPPER (val)

| GEN_ID (generator,

[, val

-]1)

array_dim =

val)

{TABLE

| VIEW}

WHERE CURRENT OF cursor]

[BY step_value] [PERCENT][WITH TIES]];

[BY step_value] [PERCENT][WITH TIES]]

'string’

<expr> = A valid SQL expression that results in a single value.

<search_condition> = See CREATE TABLE. for a full description.

Notes on the upPDATE statement:

« In SQL and 1sql, you cannot use <val> as a parameter placeholder (like "?").

Embarcadero Technologies

141

SQL Statement and Function Reference

« In DSQL and 4sql, <val> cannot be a variable.

* You cannot specify a coLLATE clause for Blob columns.

Argument Description

TRANSACTION <transaction> |Name of the transaction under control of which the statement is executed

<table> | <view> Name of an existing table or view to update.

SET <col> = <val> Specifies the columns to change and the values to assign to those columns

WHERE <search_condition> Searched update only; specifies the conditions a row must meet to be modified

WHERE CURRENT OF <cursor> |Positioned update only; specifies that the current row of a cursor active set is to be
modified

» Not available in DSQL and isql

ORDER BY <order_list> Specifies columns to order, either by column name or ordinal number in the query, and
the sort order (ASC or DESC) for the returned rows

ROWS <value>

[TO <upper_value>] + <value> is the total number of rows to return if used by itself

[BY <step_value>] + <value> is the starting row number to return if used with TO
[PERCENT][WITH TIES] _) ,
 <value> is the percent if used with PERCENT

« <upper_value> is the last row or highest percent to return

o If <step_value> = <n>, returns every <n>th row, or <n> percent rows
¢ PERCENT causes all previous ROWS values to be interpreted as percents

e WITH TIES returns additional duplicate rows when the last value in the ordered
sequence is the same as values in subsequent rows of the result set; must be used
in conjunction with ORDER BY

Description: urpaTE modifies one or more existing rows in a table or view. uppATE is one of the database
privileges controlled by GRANT and REVOKE.

For searched updates, the optional wHerE clause can be used to restrict updates to a subset of rows in the
table. Searched updates cannot update array slices.

IMPORTANT

Without a WHERE clause, a searched update modifies all rows in a table.

When performing a positioned update with a cursor, the wHERE CURRENT oF clause must be specified to
update one row at a time in the active set.

NOTE

When updating a Blob column, UPDATE replaces the entire Blob with a new value.

Examples: The following isqtl statement modifies a column for all rows in a table:

UPDATE CITIES
SET POPULATION = POPULATION =% 1.03;

The next embedded SQL statement uses a wHERE clause to restrict column modification to a subset of rows:

Embarcadero Technologies 142

SQL Statement and Function Reference

EXEC SQL
UPDATE PROJECT
SET PROJ_DESC = :blob_id
WHERE PROJ_ID = :proj_id;

9.102. UPPER()

Converts a string to all uppercase. Available in gpre, psqL, and isql.

UPPER (val)

Argument Description

type

<val> A column, constant, host-language variable, expression, function, or UDF that evaluates to a character data

Description:UPPER() converts a specified string to all uppercase characters. If applied to character sets

that have no case differentiation, UPPER() has no effect.

Examples: The following isql statement changes the name, BMatthews, to BMATTHEWS:

UPDATE EMPLOYEE
SET EMP_NAME = UPPER (BMatthews)
WHERE EMP_NAME = 'BMatthews';

The next isql statement creates a domain called PROJNO with a CHECK constraint that requires the value

of the column to be all uppercase:

CREATE DOMAIN PROJINO
AS CHAR(5)
CHECK (VALUE = UPPER (VALUE));

9.103. WHENEVER

Traps SQLCODE errors and warnings. Available in gpre.

WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
{GOTO Tlabel | CONTINUE};

Argument Description
NOT FOUND Traps SQLCODE = 100, no qualifying rows found for the executed statement
SQLERROR Traps SQLCODE < 0, failed statement

SQLWARNING Traps SQLCODE > 0 AND < 100, system warning or informational message

GOTO <label> [Jumps to program location specified by <label> when a warning or error occurs

CONTINUE Ignores the warning or error and attempts to continue processing

Embarcadero Technologies

SQL Statement and Function Reference

Description: wHeNEVER traps for SQLCODE errors and warnings. Every executable SQL statement returns
a SQLCODE value to indicate its success or failure. If SQLCODE is zero, statement execution is successful.
A non-zero value indicates an error, warning, or not found condition.

If the appropriate condition is trapped for, wHENEVER can:

+ Use coTo label to jump to an error-handling routine in an application.

+ Use coNTINUE to ignore the condition.

WHENEVER can help limit the size of an application, because the application can use a single suite of routines
for handling all errors and warnings.

WHENEVER Statements should precede any SQL statement that can result in an error. Each condition to trap
for requires a separate wHENEVER Statement. If wHENEVER is omitted for a particular condition, it is not trapped.

TIP

Precede error-handling routines with WHENEVER .. CONTINUE statements to prevent the possibility of infinite looping
in the error-handling routines.

Example: In the following code from an embedded SQL application, three wHENEVER statements determine
which label to branch to for error and warning handling:

EXEC SQL

WHENEVER SQLERROR GO TO Error; /* Trap all errors. x*/

EXEC SQL

WHENEVER NOT FOUND GO TO AllDone; /*x Trap SQLCODE = 100 x/
EXEC SQL

WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings. */

For a complete discussion of error-handling methods and programming, see the Embedded SQL Guide.

9.104. RECONNECT

Reconnects to the latest successfully connected database. RECONNECT is only available in isgl and in SQL
scripts that you run in isqt.

Syntax
isql:
RECONNECT [USER <username>] [PASSWORD <password>] [ROLE <rolename>] [CACHE
<number>] [lc_ctype <charset> DIALECT <dialect_number>];
Argument Description
USER <username> String or host-language variable that specifies a user name for the database. The server
checks the user name against the security database. User names are case-insensitive.
PASSWORD <password> String or host-language variable, that specifies a password for the database. The server
checks the password against the security database. Passwords are case-sensitive.
ROLE <rolename> String or host-language variable up to 67 characters in size, that specifies the role that the
user adopts for this connection to the database. The user can adopt at most one role per
connection, and cannot switch roles (except by reconnecting).

Embarcadero Technologies 144

http://docwiki.embarcadero.com/InterBase/2017/en/Embedded_SQL_Guide

SQL Statement and Function Reference

CACHE <number> Sets the number of cache buffers for a database, which determines the number of database
pages a program can use at the same time. Values for <number>:

« Default: 256

« Maximum value: system-dependent

Note: a value of 256 or NONE clears the cache parameter.

lc_type <character Sets the character set, Use NONE to remove the character set.
set>

DIALECT <dialect num- |Sets the Dialect number, available values are: 1, 2, 3
ber>

Description

The ReconNECT statement connects to the last successfully connected database. All parameters for the
RECONNECT statement are optional. If you do not specify a parameter, RECONNECT uses the value that you
pass via Command-line Options.

Examples

RECONNECT;
RECONNECT USER 'sysdba' PASSWORD 'masterkey';
RECONNECT USER 'sysdba' PASSWORD 'masterkey' ROLE 'DBA';

Embarcadero Technologies 145

docwiki.embarcadero.com/InterBase/2020/en/Invoking_isql#Command-line_Options

Procedures and Triggers

Procedures and Triggers

InterBase procedure and trigger language is a complete programming language for writing stored pro-
cedures and triggers in isql and DSQL. It includes:
+ SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.
« Powerful extensions to SQL, including assignment statements, control-flow statements, context vari-
ables, event-posting, exceptions, and error handling.

Although stored procedures and triggers are used in entirely different ways and for different purposes, they
both use procedure and trigger language. Both triggers and stored procedures can use any statements
in procedure and trigger language, with some exceptions:

+ oLD and NEw context variables are unique to triggers.

* Input and output parameters, and the suspenp and EXIT statements are unique to stored procedures.
The Data Definition Guide explains how to create and use stored procedures and triggers. This chapter

is a reference for the statements that are unique to trigger and procedure language or that have special
syntax when used in triggers and procedures.

1. Creating Triggers and Stored Procedures

Stored procedures and triggers are defined with the CREATE PROCEDURE and CREATE TRIGGER Statements,
respectively. Each of these statements is composed of a header and a body.

The header contains::

* The name of the procedure or trigger, unique within the database.
 For a trigger:

+ A table name, identifying the table that causes the trigger to fire.

« Statements that determine when the trigger fires.

+ For a stored procedure:

An optional list of input parameters and their data types.

If the procedure returns values to the calling program, a list of output parameters and their data types.
The body contains: :

 An optional list of local variables and their data types.

A block of statements in InterBase procedure and trigger language, bracketed by BecIn and ENnD. A
block can itself include other blocks, so that there may be many levels of nesting.

2. Statement Types Not Supported

The stored procedure and trigger language does not include many of the statement types available in
DSQL or gpre. The following statement types are not supported in triggers or stored procedures:

+ Data definition language statements: CREATE, ALTER, DROP, DECLARE EXTERNAL FUNCTION, and DECLARE
FILTER

Embarcadero Technologies 146

http://docwiki.embarcadero.com/InterBase/2017/en/Data_Definition_Guide

Procedures and Triggers

« Transaction control statements: SET TRANSACTION, COMMIT, ROLLBACK
+ Dynamic SQL statements: PREPARE, DESCRIBE, EXECUTE

* CONNECT/DISCONNECT, and sending SQL statements to another database
* GRANT/REVOKE

* SET GENERATOR

* EVENT INIT/WAIT

* BEGIN/END DECLARE SECTION

* BASED ON

* WHENEVER

* DECLARE CURSOR

* OPEN

* FETCH

3. Nomenclature Conventions

This chapter uses the following nomenclature:

+ A block is one or more compound statements enclosed by BEGIN and END.
+ A compound statement is either a block or a statement.

+ A statement is a single statement in procedure and trigger language.

To illustrate in a syntax diagram:

<block> =

BEGIN

<compound_statement>

[<compound_statement> ..]

END

<compound_statement> = <block> | statement;

4. Assignment Statement

Assigns a value to an input or output parameter or local variable. Available in triggers and stored proce-
dures.

<variable> = <expression>;

Argument Description

<variable> A local variable, input parameter, or output parameter.

<expression> | Any valid combination of variables, SQL operators, and expressions, including user-defined functions
(UDFs) and generators.

Description: An assignment statement sets the value of a local variable, input parameter, or output pa-
rameter. Variables must be declared before they can be used in assignment statements.

Embarcadero Technologies 147

Procedures and Triggers

Example: The first assignment statement below sets the value of x to 9. The second statement sets the
value of y at twice the value of x. The third statement uses an arithmetic expression to assign z a value of 3.

DECLARE VARIABLE x INTEGER;
DECLARE VARIABLE y INTEGER;
DECLARE VARIABLE z INTEGER;
X = 9;

y = 2 * x5

z =4 x x [/ (y - 6);

5. BEGIN ... END

Defines a block of statements executed as one. Available in triggers and stored procedures.

<block> =
BEGIN
<compound_statement>
[<compound_statement> <..>]
END
<compound_statement> = {<block> | statement;}

Description: Each block of statements in the procedure body starts with a BEGIN statement and ends with
an EnD statement. As shown in the above syntax diagram, a block can itself contain other blocks, so there
may be many levels of nesting.

BEGIN and enp are not followed by a semicolon. In isqt, the final enp in the procedure body is followed
by the semicolon.

The final enp statement in a trigger terminates the trigger. The final Enp statement in a stored procedure
operates differently, depending on the type of procedure:

* In a select procedure, the final Enp statement returns control to the application and sets SQLCODE to
100, which indicates there are no more rows to retrieve.

* In an executable procedure, the final Enp statement returns control and current values of output pa-
rameters, if any, to the calling application.

Example: The following isql fragment of the pELETE_EMPLOYEE procedure shows two examples of BEGIN
. END blocks.

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)
AS

DECLARE VARIABLE ANY_SALES INTEGER;

BEGIN

ANY_SALES = 0;

IF (ANY_SALES > ©) THEN
BEGIN

EXCEPTION REASSIGN_SALES;
EXIT;

END

Embarcadero Technologies 148

Procedures and Triggers

END

0. Comment

Comment syntax allows programmers to add comments to procedure and trigger code or SQL scripts.
There are two different types of comments that you can use:

1. The simple comment: A comment that starts with a special symbol and ends with a new line.

NOTE

The simple comment syntax is only available starting with database engine version InterBase 2017.

-— comment text

2. The bracketed comment: A comment that starts and ends with a special symbol. It may be mul-
ti-line.

/* comment text
more comment text
another 1line of comment text

*/

Regardless of the type of comment that you use, you may start a comment anywhere in a line, but with
a simple comment you need to keep in mind that the comment area stops after new line. In order to use
the simple comment syntax for a multi-line comment, you need to start each line with the special symbol.

For example:

* A multi-line bracketed comment:

/* my multi-line
comment 1is this
text x/

+ A multi-line simple comment:

-— my multi-Tline
-—- comment 1is this

-- text

You can place comments on the same line as code, which makes them inline comments.

It is good programming practice to state the input and output parameters of a procedure in a comment
preceding the procedure. It is also often useful to comment local variable declarations to indicate what
each variable is used for.

Embarcadero Technologies 149

Procedures and Triggers

Examples The following isql samples illustrate some ways to use comments:

Procedure DELETE_EMPLOYEE : Delete an employee.

* Parameters:
* employee number
* Returns:

*x ——

*/

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)

AS

DECLARE VARIABLE ANY_SALES INTEGER; -- Number of sales for emp.
BEGIN

/* This script sets up Change Views Subscriptions
on the EMPLOYEE table.

o

CONNECT "emp.ib" USER 'SYSDBA' password 'masterkey';

COMMIT;

CREATE SUBSCRIPTION sub ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

-- Create a subscription on Employee table
CREATE SUBSCRIPTION subl ON EMPLOYEE FOR ROW (INSERT, UPDATE);
COMMIT;

« Simple comment followed by another SLC

-- One more comment

CREATE SUBSCRIPTION sub2 ON EMPLOYEE FOR ROW (INSERT);
COMMIT;

+ Simple comment followed by another SLC with leading whitespace

-- One more comment followed by Tleading whitespace before CREATE
below

CREATE SUBSCRIPTION sub3 ON EMPLOYEE FOR ROW (INSERT, UPDATE, DELETE);
COMMIT;

SHOW SUBSCRIPTIONS;

SELECT COUNT (*)
-- dnline comment 1
FROM RDB$DATABASE;

SELECT COUNT(*) -- 1inline comment 2
FROM RDB$DATABASE;
COMMIT;

Embarcadero Technologies 150

Procedures and Triggers

SET TERM *;

« Create a stored procedure with inline comments

CREATE PROCEDURE test_proc (

)

pl INTEGER, -- Param 1
p2 VARCHAR(68) -— Param 2

RETURNS (opl INTEGER) -— Output param

AS

DECLARE variable vl INTEGER;
DECLARE variable v2 VARCHAR(150); -- Variable 2
BEGIN

-- sample comment 1

-— sample comment 2

-- return “input value multiplied by 10
vl = pl % 10;

opl = vl;
SUSPEND;
ENDA
SET TERM ;A
COMMIT;

SHOW PROCEDURE test_proc;
SELECT opl FROM test_proc (2, NULL);

/. DECLARE VARIABLE

Declares a local variable. Available in triggers and stored procedures.

DECLARE VARIABLE var data_type;

Argument

Description

<var>

Name of the local variable, unique within the trigger or procedure

<data_type>

Data type of the local variable; can be any InterBase data type except arrays.

Description: Local variables are declared and used within a stored procedure. They have no effect outside
the procedure.

Local variables must be declared at the beginning of a procedure body before they can be used. Each
local variable requires a separate DECLARE VARIABLE statement, followed by a semicolon ;).

Example: The following header declares the local variable, ANY_SALES:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM INTEGER)

AS

DECLARE VARIABLE ANY_SALES INTEGER;
BEGIN

Embarcadero Technologies 151

Procedures and Triggers

8. EXCEPTION

Raises the specified exception. Available in triggers and stored procedures.

EXCEPTION name;

Argument Description

<name> Name of the exception being raised

Description: An exception is a user-defined error that has a name and an associated text message. When
raised, an exception:

« Terminates the procedure or trigger in which it was raised and undoes any actions performed (directly
or indirectly) by the procedure or trigger.

+ Returns an error message to the calling application. In isql, the error message is displayed to the
screen.

Exceptions can be handled with the wHeN statement. If an exception is handled, it will behave differently.

Example: The following isgl statement defines an exception named REASSIGN_SALES:

CREATE EXCEPTION REASSIGN_SALES
'Reassign the sales records before deleting this employee.' ;

Then these statements from a procedure body raise the exception:

IF (ANY_SALES > ©0) THEN
EXCEPTION REASSIGN_SALES;

9. EXECUTE PROCEDURE

Executes a stored procedure. Available in triggers and stored procedures.

EXECUTE PROCEDURE name [:<param> [, :<param> ..]]
[RETURNING_VALUES :<param> [, :<param> ..]J];

Argument Description

<name> Name of the procedure being executed. Must have been previously
defined to the database with CREATE PROCEDURE

[<param> [, <param> ..]] List of input parameters, if the procedure requires them

« Can be constants or variables

* Precede variables with a colon, except NEW and OLD context
variables

[RETURNING_VALUES <param> [, <param> ...]] | List of output parameters, if the procedure returns values; precede
each with a colon, except NEW and OLD context variables

Embarcadero Technologies 152

Procedures and Triggers

Description: A stored procedure can itself execute a stored procedure. Each time a stored procedure
calls another procedure, the call is said to be nested because it occurs in the context of a previous and
still active call to the first procedure. A stored procedure called by another stored procedure is known as
a nested procedure.

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve repetitive
steps. Each invocation of a procedure is referred to as an instance, since each procedure call is a separate
entity that performs as if called from an application, reserving memory and stack space as required to
perform its tasks.

NOTE

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite loops that can occur
when a recursive procedure provides no absolute terminating condition. Nested procedure calls may be restricted to
fewer than 1,000 levels by memory and stack limitations of the server.

Example: The following example illustrates a recursive procedure, FacTorIAL, which calculates factorials.
The procedure calls itself recursively to calculate the factorial of NUM, the input parameter.

CREATE PROCEDURE FACTORIAL (NUM 1INT)

RETURNS (N_FACTORIAL DOUBLE PRECISION)

AS

DECLARE VARIABLE NUM_LESS_ONE INT;

BEGIN

IF (NUM = 1) THEN

BEGIN /**x*x Base case: 1 factorial 1dis 1 *x%xx/
N_FACTORIAL = 1;

EXIT;

END

ELSE

BEGIN

/**x*x*x Recursion: num factorial = num * (num-1) factorial *xx*x/
NUM_LESS_ONE = NUM - 1;

EXECUTE PROCEDURE FACTORIAL NUM_LESS_ONE
RETURNING_VALUES N_FACTORIAL;

N_FACTORIAL = N_FACTORIAL =* NUM;

EXIT;

END

END;

10. EXECUTE STATEMENT

Embedding a variation of ExecuTe STATEMENTS within a Stored Procedure.

Description: Store procedure developers can now embed three variations of EXECUTE STATEMENT within
their Stored Procedures. The variations depend on the number of rows returned from the EXECUTE STATE-
MENT command. The variations are: No rows or data returned, One row of data returned, and Any number
of data rows returned.

Embarcadero Technologies 153

Procedures and Triggers

10.1. No Rows or Data Returned

EXECUTE STATEMENT <statement>

Argument Description

<statement> | A SQL statement returning no rows of data.

Examples:

CREATE PROCEDURE EXEC_STMT_NO_RET (proc_name VARCHAR(20))
AS

DECLARE VARIABLE EMPNO INTEGER;

DECLARE VARIABLE EXECSTMT VARCHAR(150);

BEGIN

SELECT MAX(EMP_NO) FROM EMPLOYEE INTO EMPNO;

EXECSTMT = 'EXECUTE PROCEDURE' || proc_name || '(' || CAST (EMPNO AS

VARCHAR(10)) || ")';
EXECUTE STATEMENT EXECSTMT;
END

10.2. One Row of Data Returned

EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]

Argument Description
<select-statement> SQL statement returning one or no rows of data.
<var> Valid procedure variable, the ":" is optional.

Example:

CREATE PROCEDURE EXEC_STMT_SINGLETON (TABLE_NAME VARCHAR(50))

AS

DECLARE VARIABLE MAXEMPNO INTEGER;

BEGIN

EXECUTE STATEMENT 'SELECT MAX(EMP_NO) FROM ' || TABLE_NAME INTO :MAXEMPNO;
END

10.3. Any Number of Data Rows Returned

FOR EXECUTE STATEMENT <select-statement> INTO :<var> [, :<var> ..]
DO <compound-statement>

Argument Description
<select-statement> SQL statement returning one or zero rows of data.
<var> Valid procedure variable. The : is optional.

Example:

Embarcadero Technologies

154

Procedures and Triggers

CREATE PROCEDURE EXEC_STMT_ANY (TABLE_NAME VARCHAR(50), INT_FIELD INTEGER)

RETURNS

(INT_RETVAR INTEGER)

AS

DECLARE VARIABLE IFIELD INTEGER;

BEGIN
FOR EXECUTE STATEMENT
'SELECT ' || INT_FIELD || ' FROM ' || TABLE_NAME INTO :IFIELD
DO

IF (IFIELD = ©) THEN
INT_RETVAR = 0;
ELSE
INT_RETVAR = INT_RETVAR + IFIELD;
SUSPEND;
END

10.4. Requirements and Constraints

There are constrains and peculiarities with using EXECUTE STATEMENT:

Starting with InterBase XE7 Update 1, there is a new requirement on FOR EXECUTE STATEMENT to match
every item in the seLecT list with a corresponding item in the InTo list.

The Statement is "prepared" every time it is executed, which affects the performance of the Stored
Procedure.

No checks are done on the statement when the procedure is created; dependency checks are not done
when the procedure is created, also the checks for existence of tables or column names referred in
the execute statement are not performed. All these checks are done at execute time and results in
errors if an error condition occurs.

The feature can be used to perform DDL operations.
All statements are executed based on the privileges of the user executing the Stored Procedure.

SQL statements, "coMmIT:”, "COMMIT RETAIN", "ROLLBACK", "ROLLBACK RETAIN", and “CREATE DATABASE" are
not supported with “EXECUTE STATEMENT". These statements return the code isc_exec_stmt_disallow
error.

11. FOR SELECT...DO

Repeats a block or statement for each row retrieved by the seLecT statement. Available in triggers and

stored procedures.

FOR <select_expr> DO <compound_statement>

Argument Description
<select_expr> SELECT statement that retrieves rows from the database; the INTO clause is required and
must come last
<compound_statement> Statement or block executed once for each row retrieved by the SELECT statement

Description: For SELECT is a loop statement that retrieves the row specified in the <select_expr> and
performs the statement or block following DO for each row retrieved.

Embarcadero Technologies

155

Procedures and Triggers

The <select_expr> is a normal seLEcT, except the 1nTo clause is required and must be the last clause.

Example: The following isgl statement selects department numbers into the local variable, RDNO, which
is then used as an input parameter to the DEPT_BUDGET procedure:

FOR SELECT DEPT_NO

FROM DEPARTMENT

WHERE HEAD_DEPT = :DNO

INTO :RDNO

DO

BEGIN

EXECUTE PROCEDURE DEPT_BUDGET :RDNO RETURNING_VALUES :SUMB;
TOT = TOT + SUMB;

END

12. IF..THEN ... ELSE

Conditional statement that performs a block or statement in the 1F clause if the specified condition is TRUE,
otherwise performs the block or statement in the optional ELsE clause. Available in triggers and stored
procedures.

IF (<condition>)
THEN <<compound_statement>>
[ELSE <<compound_statement>>]

Argument Description

<condition> Boolean expression that evaluates to TRUE, FALSE, or UNKNOWN; must be enclosed in
parentheses

THEN <compound_statement> |Statement or block executed if <condition> is TRUE

ELSE<compound_statement> Optional statement or block executed if <condition> is not TRUE

Description: The 1IF .. THEN .. ELSE statement selects alternative courses of action by testing a specified
condition.

<condition> is an expression that must evaluate to TRUE to execute the statement or block following THEN.
The optional ELSE clause specifies an alternative statement or block executed if <condition> is not TRUE.

Example: The following lines of code illustrate the use of 1f.. THEN, assuming the variables LINE2, FIRST,
and LAST have been previously declared:

IF (FIRST IS NOT NULL) THEN

LINE2 = FIRST || ' ' || LAST;
ELSE
LINE2 = LAST;

13. Input Parameters

Used to pass values from an application to a stored procedure. Available in stored procedures only.

Embarcadero Technologies 156

Procedures and Triggers

CREATE PROCEDURE <|name> [(<param data_type> [, <param data_type ..>]1)]

Description: Input parameters are used to pass values from an application to a stored procedure. They are
declared in a comma-delimited list in parentheses following the procedure name in the header of crReaTE
PROCEDURE. Once declared, they can be used in the procedure body anywhere a variable can appear.

Input parameters are passed by value from the calling program to a stored procedure. This means that
if the procedure changes the value of an input variable, the change has effect only within the procedure.
When control returns to the calling program, the input variable will still have its original value.

Input parameters can be of any InterBase data type. However, arrays of data types are not supported.

Example: The following procedure header, from an isqt script, declares two input parameters, EMP_NO
and PROJ_ID:

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS

14. NEW Context Variables

Indicates a new column value in an INSERT Or UPDATE Operation. Available only in triggers.

NEW.COLUMN

Argument Description

<column> Name of a column in the affect-
ed row

Description: Triggers support two context variables: oLb and New. A NEw context variable refers to the new
value of a column in an INSERT Or UPDATE Operation.

Context variables are often used to compare the values of a column before and after it is modified. Context
variables can be used anywhere a regular variable can be used.

New values for a row can only be altered before actions. A trigger that fires after INserT and tries to assign
a value to NEw. column Will have no effect. However, the actual column values are not altered until after the
action, so triggers that reference values from their target tables will not see a newly inserted or updated
value unless they fire after UPDATE Or INSERT.

Example: The following script is a trigger that fires after the empLoYEE table is updated, and compares an
employee’s old and new salary. If there is a change in salary, the trigger inserts an entry in the SALARY_HIS-
TORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS

BEGIN

IF (OLD.SALARY <> NEW.SALARY) THEN

INSERT INTO SALARY_HISTORY

(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY,

Embarcadero Technologies 157

Procedures and Triggers

PERCENT_CHANGE)

VALUES (OLD.EMP_NO, 'NOW', USER, OLD.SALARY,
(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);
END

15. OLD Context Variables

Indicates a current column value in an uPDATE Or DELETE operation. Available in triggers only.

OLD.COLUMN

Argument Description

<column> Name of a column in the affected row

Description: Triggers support two context variables: oLp and New. An oLp context variable refers to the
current or previous value of a column in an INSERT Or UPDATE operation.

Context variables are often used to compare the values of a column before and after it is modified. Context
variables can be used anywhere a regular variable can be used.

Example: The following script is a trigger that fires after the empLoYEE table is updated, and compares an
employee’s old and new salary. If there is a change in salary, the trigger inserts an entry in the SALARY_HIS-
TORY table.

CREATE TRIGGER SAVE_SALARY_CHANGE FOR EMPLOYEE

AFTER UPDATE AS

BEGIN

IF (OLD.SALARY <> NEW.SALARY) THEN

INSERT INTO SALARY_HISTORY

(EMP_NO, CHANGE_DATE, UPDATER_ID, OLD_SALARY, PERCENT_CHANGE)
VALUES (OLD.EMP_NO, ‘NOW’, USER, OLD.SALARY,

(NEW.SALARY - OLD.SALARY) * 100 / OLD.SALARY);

END

16. Output Parameters

Used to return values from a stored procedure to the calling application. Available in stored procedures
only.

CREATE PROCEDURE <name> [(<param DATA type> [, <param DATA TYPE ..>])]
[RETURNS (<param DATA type> [, <param DATA type> ..])]

Description: Output parameters are used to return values from a procedure to the calling application.
They are declared in a comma-delimited list in parentheses following the ReTurRNs keyword in the header
of crReAaTE PRoCEDURE. Once declared, they can be used in the procedure body anywhere a variable can
appear. They can be of any InterBase data type. Arrays of data types are not supported.

If output parameters are declared in the header of a procedure, the procedure must assign them values
to return to the calling application. Values can be derived from any valid expression in the procedure.

Embarcadero Technologies 158

Procedures and Triggers

A procedure returns output parameter values to the calling application with a suspenp statement. An ap-
plication receives values of output parameters from a select procedure by using the 1nTo clause of the
SELECT statement. An application receives values of output parameters from an executable procedure by
using the RETURNING_VALUES clause.

In a SELECT statement that retrieves values from a procedure, the column names must match the names
and data types of the output parameters of the procedure. In an EXECUTE PROCEDURE Statement, the output
parameters need not match the names of the output parameters of the procedure, but the data types
must match.

Example: The following isql script is a procedure header declares five output parameters, HEAD_DEPT,
DEPARTMENT, MNGR_NAME, TITLE, and EMP_CNT:

CREATE PROCEDURE ORG_CHART RETURNS (HEAD_DEPT CHAR(25), DEPARTMENT
CHAR(25), MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT INTEGER)

17. POST EVENT

Posts an event. Available in triggers and stored procedures.

POST_EVENT ‘'event_name' | <col | variable>;

Argument Description

<event_name> | Name of the event being posted; must be enclosed in quotes

col Name of a column whose value the posting will be based on

variable Name of a string variable in the stored procedure or trigger

Description: pPosT_EVENT posts an event to the event manager. When an event occurs, this statement will
notify the event manager, which alerts applications waiting for the named event.

Example: The following statement posts an event named “new_order”:

POST_EVENT 'new_order';

The next statement posts an event based on the current value of a column:

POST_EVENT NEW.COMPANY;

The next statement posts an event based on a string variable previously declared:

myval = 'new_order:' || NEW.COMPANY;
POST_EVENT myval;

18. SELECT

Retrieves a single row that satisfies the requirements of the search condition. The same as standard sin-
gleton seLecT, with some differences in syntax. Available in triggers and stored procedures.

Embarcadero Technologies 159

Procedures and Triggers

<select_expr> = <select_clause> <from_clause>
[<where_clause>] [<group_by_clause>]
[<having_clause>]

[<union_expression>] [<plan_clause>]
[<ordering_clause>]

<into_clause>;

Description: In a stored procedure, use the seLecT statement with an InTo clause to retrieve a single row
value from the database and assign it to a host variable. The seLecT statement must return at most one
row from the database, like a standard singleton seLecT. The 1InTO clause is required and must be the last
clause in the statement.

The 1nTO clause comes at the end of the seLECT statement to allow the use of uNToN Operators. UNION is not
allowed in singleton seLecT statements in embedded SQL.

Example: The following statement is a standard singleton seLecT statement in an embedded application:

EXEC SQL
SELECT SUM(BUDGET), AVG(BUDGET)
INTO :TOT_BUDGET, :AVG_BUDGET
FROM DEPARTMENT

WHERE HEAD_DEPT = :HEAD_DEPT

To use the above seLECT statement in a procedure, move the 1nTo clause to the end as follows:

SELECT SUM(BUDGET), AVG(BUDGET)
FROM DEPARTMENT

WHERE HEAD_DEPT = :HEAD_DEPT

INTO :TOT_BUDGET, :AVG_BUDGET;

19. SUSPEND

Suspends execution of a select procedure until the next FeTcH is issued and returns values to the calling
application. Available in stored procedures only.

SUSPEND;

Description: The suspenp statement:

+ Suspends execution of a stored procedure until the application issues the next FETCH.

+ Returns values of output parameters, if any.
A procedure should ensure that all output parameters are assigned values before a suspenD.

susPeEND should not be used in an execu